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NATIONAL ADVISORY COMMITTEE FOP AERONAUTICS 

TECHNICAL NOTE 1909 

FCT OF ANSV.ERSE SHEAR AND ROTARY INERTIA ON 

TEE NATURAL FEQUB2ICY OF. A UNIFORM BEAM 

By EdwinT. Kruszewski 

A theoretical analysis of the effect of transverse shear and 
rotary inertia on the natural frequencies of a ni1forni bean is 
presented. Frequency equations are derived for the cases of the canti-
lever bean, the symmetrically vibrating free-fre beam, and. the anti-
symmetrically vibrating free-free bean. Nterical results are pre-
sented in the form of curves giving the frequencies of the first three 
modes of the cantilever beam and the first six modes, three symmetrical. 
and three antisyinmetrical, of the free-free beam. 

INTRODUCTION 

In the dynamic analysis of aircraft, the determination of the 
natural frequency is of basic importance. A number of methods of 
vibrational analysis have been presented in the past. Tests on actual 
structures, however, have often shown discrepancies between the calcu-
lated and. the observed values of the natural frequency. 

One of the possible explanations for these discrepancies is that 
many of the previous calculations were based on methods in which only 
the elementary engineering theory of beam bending was used and no 
secondary effects were included. Among the secondary effects are shear 
lag, deformation of the webs due to transverse shear, and rotary 
inertia. The effec.t of shear lag and shear deformation of the web is 
to increase the flexibility of the beam because of the additional 
deflection that is introduced. The effect of rotary inertia is to 
increase the d.ynarnic loading on the beam because of the additional 
inertia loading due to the rotational acceleration of the differential 
elements of the bean. 

The effect of shear lag on the bending vibrations of box beams was 
discussed in reference 1 and. is not considered herein. The effects of 
transverse shear and rotary inertia were discussed by Titnoshenko 
(reference 2) but only to the extent of presenting the differential
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equation. In the present paper a general solution of this differential 
equation Is given together with specific solutions for the cantilever 
and. free-free beams. (See appendix.) Charts giving the frequencies of. 
the first three modes of the cantilever and. the first six modes (three 
synmetrical and three antisyixunetrical) of the free-free beam are 
presented..

S1B0LS 

AsG	 shear stiffness, pounds 

As	 shear area, square Inches 

AT - effective total cross-sectional area, square inches 

C1, C2, C 3 , C 1, constants of integration

El	 flexural stiffness, pound.-lnches2 

E	 modulus of elasticity, psi. 

G	 shear modulus, psi 

I	 moment of Inertia, inches' 

L	 length of cantilever beam and half-length of free-
free beam, inches 

M	 moment, pound-inches 

i	 reversed effective moment due to rotational accelera-
tion, pound-inches 

V	 shear, pounds 

g	 acceleration due to gravity, inches per second per 
second 

kB	 frequency coefficient, 

kB	 frequency coefficient where shear and rotary inertia 
0	 are neglected 
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coefficient of shear rigidity (
	 ) 

coefficient of rotarYinertia(J) 

m	 mass of beam per unit length, eecond.s2 per incl2 

distributed loading, pounds per Inch 

t	 time, seconds 

w	 weight of beam per unit length, pounds per inch 

x	 distance along span measured from root or center 
line, inches 

y	 deflection of beam, inches 

a., f3	 constants defined with equation (5) 

7	 shear strain 

e	 rotation of cross section, radians 

natural frequency of beam, radians per second 

natural frequency of beam excluding secondary effects, 
radians per second 

nond.iiaensional coordinate 

p	 density of beam, pounds per cubic inch 

RESULTS MID DISCUSSION 

Theoretical.- The natural frequencies for the cantilever beams and 
the free-free beams are defined by the frequency equations deriveci in 
the appendix. These equations are in terms of the parameters kB, k8, 

and k. In order to solve the equations, a trial-and-error process 

is used. For every combination of values of	 and	 there are
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an lflfinite number of values of kB that satisfy the frequency 

equations. The smallest value of kB is associated with the first 
mode, the next larger value with the second mode, and so forth. 

Numerical . - The frequency equations were used to calculate natural 
frequencies for the first three modes of the cantilever and the first 
six modes (three synmietrical and three antisymmetrical) of the free-
free'bearn. The results of these calculations are given in chart form 
in figures 1 to 3. In these charts the ratio of the natural fre-
quency U) to the natural frequency uo obtained by neglecting second-
ary effects is plotted as a function of the shear-stiffness param-
eter ks and the rotary- inertia parameter kRI . In order to obtain w 
from the ratio U)/a,	 must first be calculated from the formula 

where kB is a constant for a particular mode and is given on the 

chart for that mode in figures 1 to 3. The values of co/w0 are given 
only for values of ks from 0 to 0.211 and for values of	 in 
increments of. 0.05 from 0 to 0.20 inasmuch as. values above these are out 
of the range of probable design. The frequency equations derived in 
the appendix, however, can be used if values of CD/a)0 are needed for 
values of	 or kRI eater than those shown in the figures. 

Inspection of the curves shown in figures 1 to 3 shows that in 
extreme cases for which the coefficients k and. k11 are large, 
reductions in frequency as hirth as 50 percent can be had in the first 
mode; whereas reductions as high as 80 percent can be had in the third 
mode. 

Langley Aeronautical Laboratory 
National Mvisory Committee for Aeronautics 

Langley Air Force Base, Va., May 16, 1911-9
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DERIVATIONS AN]) SOLUTIONS OF FRE(4OENCY EQ1ATIONS 

In the solutions for the natural bending frequencies of beams 
based on the elementary engineering theory, he beam deflection is 
considered as a function only of the mRnner of support and the flexural 
stiffness El and., also, dynamic loading is considered as a function 
only of the translatory acceleration of the particles. The deflection, 
however, is also influenced by the shear stiffness A5G of the beam 
and. the dynamic loading is influenced bl the rotational acceleration of 
the cross section of the beam. 

The effect of the shear deformation Is introduced into the solu-
tion in the equation for the slope of the deflection curve. In the 
engineering theory of bending, the slope of the deflection curve i 

is assumed to depend only on the rotation of the cross sections of the 
beani associated with flexure 0 • The slope, however, depends also on 
the shear strain y which when included gives 

= e + y =
	

dx + 
dx 

where M is the moment and V, the shear. The coordinate system Is 
shown in figure 1k.. 

The effect of the rotary inertia is introduced into the solution 
in the summation of moments of the differential element shown in 
figure 5. The elements of the beam perform not only a translatory 
motion but also a rotation. The rotation 0 Is due to bending alone 
since the shear just superimposes a sliding of adjacent cross sections 
with respect to one another. This rotation varies with time. The 
angular velocity and the acceleration of each element are given 

by	 and.	 , respectively. The reversed. effective moment of the 
at 

forces due to this angular acceleration on a length dx is expressed as 

tiM_

g2
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where p is the density of the beam end g is the, acceleration due to 
gravity. The moment is taken as positive in the clockwise direction as 
shown in figure 5. 

The inclusion of both of these effects in the equilibrium equa-
tions of a uniform beam in free harmonic vibration results in the 
following differential equation: 

El	 + E]I	
+ 2)	

(2 im2a14' 
\ASG ATE	 -	 - ____ = 0
	 (1) 

where 

As	 effective shear-carrying area 

AT	 effective total cross-sectional area (wfp) 

w	 weight of the beam per unit length 

m	 mass of the beam per unit length 

natural frequency 

The terms not containing A6 and. AT are the terms that make up the 
standard differential equation when the effects of shear stiffness and. 
rotary inertia are neglected. The middle term is composed entirely of 
secondary effects. The last term contains an interaction effect of the 
two secondary effects. 

Division of the differential equation by	 2 and. the substitution 

of the nondiniensional coordinate	 =	 change equation (1) to 

+• (k52 + k 12)	 - (1 - kB2ks2kpI2)y = 0	 (2) 

where

(3a)
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(3b) 

and.

(3c) 

The quantity kB can be thought of as a frequency constant, as can be 

seen by transposing equation (3a) to

(14.) 

For a given uniform beam the quantity 	 is constant; therefore, 

the natural frequency of the beam is a function of the coefficient kB. 

The solution of the differential equation can be iritten in the 
form

	

y = C1 cosh kBa. +.C2 sinh kBcL + C 3 cos	 + Cj sin kB	 (5) 

where

a	

+ kRI2 ) +(:s2 -	 + 

'I(ks2 + kRI2 ) +	 - i2)2 + 

2 

and C1, C2, C 3 , and. C14. are constants of integration.
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Boizid.ary conditions . - The boundary cond.itiona . for the vibrating-
beani problenw considered in this paper will, be specified at the root 
and at the tip. 

For the conditions at the root, the equations are as follows: 

For the cantilever beam the conditions of zero deflection and. 
slope equal to shear strain are expressed by 

[y]	 =0
	

(6) 

=	 =	
kk	 LL .i + ( 2 + 

L Ld. d o AsG	 =0 L	 ks2kRI2kB2 [2 d3
(7) 

For the sy]mrletricafly vibrating free-free beam. the conditions of zero 
shear and, therefore, zero slope are expressed by 

	

=0
	

(8)

[dJ

=0	 (9) 

	

[kB2 d 3	 =0 

For the antisymmetrically vibrating beam the conditions of zero deflec-
tion and. zero moment are expressed. by 

	

[y]0	 (10) 

[ij	 =0	 (11)

Ld2J=o
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For the conditions at the tip for all beanie, the conditions of zero 
moment end zero shear are expressed by the following equations: 

F_L_1 +ks2yl	 =0	 (12) 
[kB2 d2 

[_ 1 +	 + i i2)j =1 = 0	 (13) 
[2 d.3 

The complete def1ecion curve of a beam is obtained by substi-
tuting equation (5) in the proper boundary conditions. This substi-
tution results in a set of four homogeneous linear equations 
In C1, C2, C3 , and. C. In order that solutions other than zero 

exist (that is, that vibration can occur), the determinant of the 
coefficients of the C's must be equal to zero. 

• Frequency equations . - The equations obtained by setting the 

determinant equal to zero give the relationship between ks, k1, 
and kB required to determine the natural frequency which is contained 

in kB . These equations for each beam treated in this paper areas 
follows: 

For the canti1ver beam 

2 - kB(ks2 + kRI2) sin 
kB sinli 

'I l 2 2 2 - k3 1 RI kB 

+ [kB2 (ks2 -	 + 2] cos kB cosh kBc = 0 (1))
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For the symietr1ca11y vibrating free-free beam 

- k32)tn}.1. kL +	 + k2) tan kB = 0	 (15) 

For the antisynmietrically vibrating free-free beam 

czz.2 + kS2)tanh kBcz. -	 -	 kB = 0	 (16)
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