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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL NOTE 1909

EFFECT OF TRANSVERSE SHEAR AND ROTARY INERTIA ON
THE NATURAL FREQUENCY OF A UNITFORM BEAM

By Edwin T. Kruszewski
SUMMARY

A theoretical analysis of the effect of tramsverse shear and
rotary inertis on the natural frequencles of a wniform beam is
presented. Frequency equations are derived for the cases of the canti-
lever beam, the symmetrically vibrating free-frée beam, and the anti-
-symeetrically vibrating free-free beam. Numerical results are pre-
gented in the form of curves glving the frequencies of the first three
modes of the cantilever beam and the first six modes, three symmetrical
and three antisymmetrical, of the free-free beam.

INTRODUCTION

In the dynamic analysis of alrcraft, the determination of the
natural frequency is of basic importance. A number of methods of
vibrational analysis have been presented in the past. Tests on actual
structures, however, have often shown discrepancles between the calcu-
lated and the observed values of the natural frequency.

One of the posselble explanations for these discrepancies is that
many of the previous calculations were based on methods in which only
the elementary englineering theory of beam bending was used and no
secondary effects were Included. Among the secondary effects are shear
lag, deformation of the webs due to transverse shear, and rotary
inertlia. The effect of shear lag and shear deformation of the wed 1is
to increase the flexiblility of the beam because of the additional
deflectlion that 1s introduced. The effect of rotary inertia is to
Increase the dynamic loading on the beam because of the additional
inertia loading due to the rotational acceleration of the differential
elements of the bean.

The effect of shear lag on the bending vibrations of box beams was
discussed in reference 1 and is not considered herein. The effects of
transverse shear and rotary lnertia were discussed by Timoshenko
(reference 2) but only to the extent of presenting the differential
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equation. In the present paper a general solution of this differential
equation is given together with specific solutions for the cantilever
and free-free beams. (See appendix.) Charts giving the frequencies of
the first three modes of the cantilever and the first six modes (three
symmetrical and three antisymmetrical) of the free-free beam are
presented .

SYMBOLS
AgG 1 shear stiffness, pounds
Ag éhear area, square inches
An - effective total cross-sectlonal area, square inches

C1, Cpy C3, C  constants of integration

EI flexural stiffness, pound-inches?

E moﬁulus of elasticity, psi.

d- : shear modulus, psi

T moment of inertia, iﬁcheslL

L . length of cantilever beam and half-length of free-
free beam, inches

M moment, pound-inches

dMp reversed effecﬁive moment due to rotational accelera-
tion, pound-inches

v ' shéar, pounds

g , acceleration due to gravity, inches per second per
second - '

kp frequency coefficient.

kBo ' frequency coefficient where shegr and rotary inertia

are neglected
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coefficient of shear rigidity (% "%—s%)

coefficient of rotary inertia (%\l% )

2 per '1nc1':2

mass of beam per unit length, seconds
distributed loading, pounds per inch
time, seconds

welght 'of beam per unit lengﬁh , pounds pei' Anch

distance along ‘span measured from root or center
line, inches

deflection of beam, inches

constants defined with equation (5)

shear strain

rotation of cross section, radiens

natural frequenc& of beam, radians per second

natural freguency of beam excluding secondary effects,
radians per second .

nondimensional coordinate

density of beam, pounds per cubic inch

RESULTS AND DISCUSSION

Theoretical.- The natural frequencies for the cantilever beams and
the free-free beams are defined by the frequency equations derived in

the appendix.

These equations are in terms of the parameters kg, kg,

and kpy. In order to solve the equations, a trial-and~-error process
is used. For every combination of values of ks and kRI there are



4 _ NACA TN 1909

an infinite number of values of kp that satisfy the frequency

equations. The smallest value of kg 1s associated with the first
mode, the next larger value with the second mode, and so forth.

e

Numerical.- The frequency equations were used to calculate natural
frequencies for the first three modes of the cantilever and the first
six modes (three symmetrical and three antisymmetrical) of the free-
free beam. The results of these calculations are given in chart form
in figures 1 to 3. In these charts the ratio of the natural fre-
quency o to the natural frequency w, obtained by neglecting second-
ary effects is plotted as a function of the shear-stiffness param-
eter ks and the rotary-inertia parameter kRI' In order to obtain

from the ratio cuﬁno, 0, must first be calculated from the formula

Do = kB, EEEv

where kBo is a conétant for a particular mode and 18 given on the

chart for that mode in figures 1 to 3. The values of wfw, are given
only for values of kg from O to 0.24 and for values of ket in

increments of 0.05 from O to 0.20 inasmuch as values above these are out
of the range of probable design. The frequency equations derived in
the appendix, however, can be used i1f values of w/&b are needed for

values of kS or ERI greater than those shown in the figures.

‘Inspection of the curves shown in figures 1 to 3 shows that in
extreme cases for which the coefficients kg and kpy are large,

reductions in frequency as high as 50 percent can be had in the first
mode; whereas reductions as high as 80 percent can be had in the third
mode. .

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Alr Force Base, Va., May 16, 1949
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APPENDTX
DERIVATIONS AND SOLUTIONS OF FREQUENCY EQUATIONS

In the solutions for the natural bending frequencies of beams
based on the elementary engineering theory, the beam deflection is
cansidered as a function only of the manner of support and the flexural
stiffness- EI and, also, dynamic loading is considered as a function
only of the translatory acceleration of the particles. The deflection,

however, is also influenced by the shear stiffness ASG of the beam

and the dynamic loading i1s Influenced by the rotatianal acceleration of
the cross section of the beam.

The effect of the shear deformation 1s Introduced into the solu-
tion in the equation for the slope of the deflection curve. In the
engineering theory of bending, the slope of the deflection curve _I

is assumed to depend only on the rotation of the crose sections of the
beam associated with flexure 6. The slope, however, depends also on
the shear strain 7 which when included gives

ay _ = [ M v
ax -9 t7? EIdx+ASG

where M 1s the moment and V, the shear. The coordinate system is
shown in figure 4.

The effect of the rotary inertia is introduced into the solution
in the summation of moments of the differential element shown in
figure 5. The elements of the beam perform not only a translatory
motion but also a rotation. The rotation 6 is due to bending alone
gince the shear Just superimposes a sliding of adjacent cross sections
with respect to cne another. This rotation varies with time. The
&ngular velocity and the acceleration of each element are given

by 5% and gtg’ respectively. The reversed effective moment of the

forces due to this angular acceleration on a length dx 1is expressed as

_.Ip 20 gy -
d'MRI— gat2dx
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vhere p 18 the density of the beam and g 1s the acceleration due to
gravity. The moment 1s taken as positive in the clockwise direction as
shown in figure 5.

The inclusion of both of these effecte in the equilibrium equa-
tions of a wniform beam in free harmonic vibration results in the
following differential equation:

EI d—l‘% m,z - d2 (nm2 Im2w&> =0 (1)
A6 " BB jax ATASG, o
where
Ag effective shear-carrying area
Ap effective total cross-secticnal ares (w/p)
w weight of the beam per unit length
n méae of the beam per unit length
) natural frequency

The terms not containing Ag and Ap are the terms that make up the

standard differential equation when the effects of shear stiffness and
rotary inertlia are neglected. The middle term 1s composed entirely of
gecondary effects. The last term contalns an mteraction effect of the
two secondary effects.

Division of the differential equation by my2 and the substitution
of the nondimensional coordinate & =i’5 change equation (1) to

I .
-ié Z—gﬁ + (ksz + kRI2 i—i'% - (1 - szksakRIQ)y =0 (2)

kp

where

k,B = \g‘[’T (33)
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ks = T o (3b)
and
“kpy ='Ilj é (3¢)

The quantity k'.B can be thought of as a frequency constant, as can be
seen by transposing equation (3a) to

o = oy [ELp | (1)
BT

. oLt |
the natural frequency of the beam is a function of the coefficlent Ikg.

For a given uniform beam the quantity w is constant; therefore,

The solution of the differential equation can be written in the
form

y =. Cq cosh kBag +.Co sinh kpat + C3 cos kppt + C) sin kgBe (5)

where

'(1%2 + kRIQ) + \'( ks - k312)2 + gg’g
2

a =

' ('ks2 + kRIQ) + \I( ksl2 y kR12)2 + gl;z
- _

and Cq, Cop, C3, and C) are constants of integrafion.
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Boundary conditions.- The boundary conditions for the vibrating-
beam problems considered in this paper will be specified at the root
and at the tip.

For the conditions at the root, the equations are as follows:

For the cantilever beam the conditions of zero deflection and
slope equal to shear straln are expressed by

(3], = © | (6)

kg Pkep® [1 a3y ,
2 2 2|2 1£3
1 - kgkpr Ky l‘k}dg

dg

(k52 + 2502 %%:l'
=0

(7)

For the symmetrically vibrating free-free beam the conditions of zero
shear and, therefore, zero slope are expressed by

[gz =0 | (8)
A e=0

_l_d_3.z 2 dy = |

[kB2 o (kR + g )"%Lo 0 o

For the antisymmetrically vibrating beam the conditions of zZero deflec-
tion and Z€ro moment are expressed by

[y]§=0=0 : | . (10)

[&] -0 (11)
2| ¢=0 |



NACA TN 1909 ) 9

For the conditions at the tip for all beams, the conditions of zero
moment and zero shear are expressed by the following equations:

1 d_gl + k. 2 ] = .

— s—y =0 ) (12)
kg® a2 e-1

1 ddy + ( 2 4 2)21 =0 (13)

The complete deflection curve of a beam is obtained by substi-
tuting equation (5) in the proper boundary conditions. This substi-
tution results in a set of four homogeneous linear equations
in Cq, Co, C3, and C). In order that solutions other than zero

exist (that is, that vibration can occur), thé determinant of the
coefficients of the C's must be equal to zero.

Frequency equations.- The equations obtalned by setting the
determinant equal to zero give the relationship between kg, kg1,

and kB required to determine the natural frequency which is contained
in kB. These equations for each beam treated in this paper are.as
follows: ‘

For the cantilever beam

2 2

2..
5 o o
ij‘ kg kpy Ky

sin kpB sinh kpa

. 2 '
+ I}Bg(ks2 - kRIg) + é] cos kpB cosh kpa = 0 (1)
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For the symmetrically vibrating free-free beam

B(2 - k?)tanh ko + afa? + kse)tan kB = 0 (15)
For the antisymmetrically vibrating free-free beam
aa? + kg2)tanh kpa - B(B2 - kg?)ten kgp = 0 (16)
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