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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 


THCENICAL NOTH 1925


LINE-VORTEX THEORY FOR CALCULTION OF


SUPERSONIC DOWNWASH


By Harold Mirels and Rudolph C. Haefeli 

The perturbation field induced by a line vortex in a super-
sonic stream and the d.ownwash behind a supersonic lifting surface 
are examined for the purpose of establishing approximate methods 
f or determining the downwasli behind supersonic wings. 

Lifting-line met-ods are presented for calculating super-
sonic downwash. An unbent lifting line (horseshoe-vortex system) 
is used to compute the downwash behind rectangular and. triangular 
wings and the results are compared, with the exact linearIzed. olu-
tions. The chord.wi.se position of the lifting line giving the 
best average agreement with the exact solution is noted for each 
wing. A bent lifting line is used to approximate the triangular 
wing, and the results are in good agreement with the exact solu-
tion except for points within 1/2 chord of the wing trailing edge. 
The use of a bent lifting line seems promising for obtaining 
accurate estimates of the d.ownwash behind. swept wings. 

ThTBODUOTION 

Several methods for obtaining the downwash behind supersonic 
wings based on linearized theory have been presented. These 
methods utilize conical superposition (reference 1), doublet dis-
tributions (references 2 and. 3), or vortex distributions (refer-
ences 4 arid. 5). Each of these methods has certain disadvantages. 
Conical superposition is restricted to wings having plan forms 
composed of straight-line seents and. Is cumbersome for other 
than trapezoidal or triangular plan forms. The doublet and vortex 
distributions apply to arbitrary plan forms, but provide integral 
expressions for downwash that are generally very tedious to eval - 
uate. The complexity of these expressions Indicates that there is 
a need for a straight-forward procedure for obtaining reasonably 
accurate, If not exact, downwash solutions.
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A logical approach to the develont of a simplified super-
sonic d.ownwash theory is to derive the supersonic analogues of the 
line-vortex procedures that have proved valuable in subsonic theory 
Certain differences exiat, however, between the properties of 
vortices in a supersonic stream and. vortices 1i a subsonic stream. 
Similarly, the downwash fields behind subsonic and supersonic wings 
differ in certain respects. These differences must be investigated 
before an extension of subsonic.techniq.ues is possible. 

The present report, prepared at the NACA Lewis laboratory, has 
three main objectives: (1) The downwaoh field induced. by a super-
sonic line vortex of constant slope is derived and discussed; 
(2)the downwash behind a supersonic lifting surface is examined 
and related to the d.ownwash field induced by line vortices; and 
(3)lIfting-line methods for computing d.ownwash are presented and 
calculations based on these methods are compared with the exact 
linearized solutions. Zero-thicimess wings (lifting surfaces) are 
considered throughout.

SYMBOL


The following symbols are used throughout this report: 

x,xi-.

Cartesian coordinate system 

z,zjJ 
u) 
v	 perturbation velocities 

wJ

unit vectors 

kj

components of vortex vector (three-dimensional field)
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C,..."

components of vortex vector (vortex sheet) 

S 

b	 wing span 

C	 function used in evaluation of finite part of divergent 
integral (equation (7)) 

C	 local wing pressure coefficient 

Ce	 effective chord of bent lifting line 

Cr	 root chord of wing 

E	 complete_elliptic Integral of second. kind, with modulus 

4/], (b)2 

(y1 - m1Xj )( 2m1y1 - x1) 
Gj(m) = r

1 [(y1 - mjX1 )2 + (1 - Ø2mj2)Z1] 

1 ___________ - 
r1 (y2 + z12) 

L(y)	 spanvise lift distribution 

M	 free -stream Mach number 

m	 sjope of line vortex or lifting line 

=	 ixj2 -	 - 2z12 

U	 free-stream velocity (taken in x-d.Irection) 

Xi = 	 X-X 

Yi =	 y-yi 

zI = 	 Z-ZI
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angle of attack 

cotangent of Mach angle fM2 - 

£	 inte'ation interval 

circulation 

perturbation-velocity potential 

q)	 CPT)B 

p	 free -stream density 

a	 cross-sectional area of vortex tube 

r	 spanwise distribution of wing circulation 

wing circulation at mid.span
1/2 

resultant vorticity (t2 + 2 + 2) 

finite part of d.lvergent integral 

line integral along closed, curve 

Subscripts: 

a,b	 points of intersection of forward. Mach cone with line vor-
tex, lifting line, or edge of vortex sheet 

B	 bottom surface of z = 0 plane 

C	 line integration 

i = 1,2,3 . . . n points on vortex lines 

2	 plan-form leading edge 

S	 surface integration 

T	 top surface of z = 0 plane 

t	 plan-form trailing edge 

V	 volun integration 

o	 variable of Integration
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Superscripts: 

-	 value of function at point of discontinuity when approach-
ing from negative y-d.irection 

+	 value of function at point of discontinuity when approach-
ing from positive y-d.irectioi 

THEORY


Generals, Vortex-Field Relations 

The equations relating velocity and. vorticity distributions 
In a slightly perturbed supersonic stream are derived In refer-
ences 4 and. 5. These relations are s1nTmArized in the following 
section. The velocity field is assumed to consist of a ina)or 
supersonic free-stream velocity U (taken in the positive 
x-d.irectlon) plus small perturbation velocities u, v, and. w 
such that the linearized equations of motion are applicable. 

Three-dimensional vortex field. - The velocity field in vector 
form is

(1) 

The vortex vector field 0.) is defined as the curl of the velocity 
vector. Thus

(0= VXq

(2) 

where

\\•
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Vortex lines are lines that are tangent at all points to the local 
vortex vector and. are determined from the equation

(3) 

Reference 4 presents the following integral expressions for 
the perturbation velocities induced, by the three-diinsional vortex 
field:

(z rj -Y ) 
0 

U = - '
	

&x dy	 (4a) 

2	 (x
	 - z0) 

v = -
	 r03	

d.x0 dy0 d.z 0	 (4b) 

w = -	 I	 (Y0 - x0) 

dXo dy0 dz0	 (4c) 

I V	
r03 

where

xo = x - 

Z0=z-z0 

=	 - p2Y02 - p2zo2 

The subscript o indicates a -variable of integration. The inte-
gration is conducted over the volume V included. In the forward 
Mach cone froni the point x,y,z. That Is, 

p I\JY1 + z02
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The ambol /	 designates the finite part of a d.ivergent inte-




gral. (See references 4, 6, or 7.) The procedure for obtaining 
the finite part is systematized in reference 7 as ollows: 

The integrals in equations (4a) to (4c) are of the form 

'2 
= r	 A(x0) 

('2 - ,)3/2 dx0	 (5) 

The upper limit in equatIon (5) corresponds to limits on the Mach 
cone In equations (4a) to (4c). The finite part of this integral 
is

-	 0 
r- 

IT	
A(x) 

-	 (x2 -	
dx',	 (6) 

I 

= -3(x1 ) - C 

where

C: lim ____ 

	

[_2A(x2)	
(xo)]	 (7)


Xo—X2 /2 - o - 

The term 3(x0) is the indefinite integral of equation (5) anti 
J ('i) Is the indefinite integral evaluated at the lower limit. 
The justification for this procedure is presented in references 4, 
6, and. 7 • It can be shown that finite parts are treated in a 
nnnr similar to that for ordinary integrals. The rules of addi - 
tion, differentiation under the integral sign, transformation of 
variables, and integration by parts apply. 

Vortex sheet. - If vorticity exists as a surface of velocity 
discontinuity In the z = 0 plane, then outside this plane, , 
i, anti	 are all zero, but in the z0 = 0 plane . = 0 whereas 

anti t are infinite. However, the limits
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= urn	 dz0 

T t	 liin	 idz0 

are finite and. are given by (reference 5) 

VBVT

(8) 
UTUB j 

The subscripts T and. B designate velocities on the top and. 
bottom surfaces of the z 0 = 0 plane, respectively. The perturba-
tion velocities Induced by the vortex sheet are obtained by sub-
stituting equation (8) In equations (4a) to (4c). In particular, 
the vertical-perturbation-velocity field. (upwash) Is given by 

V = - • /L	
tXt' &x

0 d.y,	 (9) 

The area of integration S includes all the vortiôlty In the 
forward Mach cone from x,y,z. 

Line vortex. - The vortex lines through all points on an 
infinitely small closed curve bound. a vortex "tube." The circu-
lation

= (O 

(where	 = ( +	
+	 is the resultant vorticity and 

is the infinitesimal cross-sectional area of the tube) is constant 
at all points along the tube. The vortex-vector components at 
any point, in terms of the differential distance d1 0 along the 

vortex tube, are
dx0 

dy0 

d10 

dz0 

d10
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The elemental volume is dx0d 0d.z 0 = 0d10 . A line vortex is gen-
erated. by allowing the cross section of the vortex tube to approach 
zero while maintaining CC constant • The upwash induced by such 
a line vortex is found. by substituting the preceding expressions 
into equation (4o) and. equals 

w= _Ir(00 -X0dy0) 
21t	 -	 r03	

(10) 

where the inte'at1on is conducted along the portion of the line 
vortex within the forecorie from x,y, z • A line vortex cannot 
terminate within a fluid. flow field but must either form a closed 
curve or extend. to Infinity or a boundary of the field. 

Upwaah Induced by Line Vortices 

Complicated velocity fields can be generated by the linear 
superposition of relatively simple fields. It will therefore prove 
useful for subsequent developments to determine the upwash field 
Induced by line vortices of constant slope. 

Line vortex of constant slope and strength. - The upwash at 
x,y,z due to a line vortex of constant slope ni and strength 
K intersecting the forward Mach cone at x,, yb (fig. 1) s 
(from equation (10)) 

2 ,c J	 m2 (y-.mx)dy0 
w -

	
[(l_2m2)yo2 + 2m( 2 -x)y0 + (x2_2_2z2)] 3/2 

(U) 

The Integration Is performed in appendix A and. yields 

(y - nix)	 - x)	
(12) w = -	

-	 - 2z)h/2 [(y.	 2 + (1 - 2m2)z2]
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The finite part of the integral in equation (U) is obtained, by 
substituting the lower limit into the indefinite integral (appen-
dix A). No contribution appears from the upper limit. By a trans - 
lation of coordinates, the upwash due to a line vortex from 
that intersects the forward. Mach cone at xb,yb (fig. 2(a)) is 
found. to be

(Yl - mXj, ) ( 2mYi - x1) 
w =	

r1	 - l )2 + (1 - 2m2 ) z2]	
(13) 

where

= x - x1 

Y1=y-y1 

r1 =fx12 - I32Y ,2 - t32z2 

By superposition (fig. 2) of a positive line vortex K from 
x1,y1 aid a negative vortex - from x2,y2, the upwash due to 
a line-vortex senent not intersecting the fOrward Mach cone is 

w = - [c(m) - Gi (m)]	 (14) 

where the notation

(Yl, - rnjXi)(I32mjYj - x1)
(15) Gj (m) =

r1 [(Yi - miXi ) 2 + (1 - 22) z2] 

Is used. The subscript for G indicates the appropriate sub-
scripts for X, Y, Z, r, and. m. 

Equation (14) applies for any line vortex of constant strength 
and slope. The circulation K is positive when the vortex vector 
is in the direction of integration. When the line vortex inter-
sects the forecone, the corresponding limit (Infinite Gj (m) term) 
is neglected by application of the finite-part concept. 

Line vortex of constant slope but varying strength. - Line 
vortices xy coincide to form a resultant line vortex whose cir-
culation is the sum of the strengths of the superposed components.
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The genemi line vortex Is then one of variable strength K along 
the line X() = x0 (y0) having the local slope m = d.yo/d.x0. The 
upwaah Ii.uced. by the segaent from x1 ,y1 to x2 ,y2 	 y be written 

I Y2
K(Y0-m0X0) 

The evaluation of equation (16) is generally tedious. For the 
particular case of constant slope, however, this equation n.y be 
integrated by parts to yield a useful expression for upwasb. mae-
much as

132(Y0 - m0X0) dG0(m) 

-	 m0r03	 -


the Integration by parts gives 

24	
y2 y2 

= - K0 fGo(m)1	 - r G0(m)	 dy	 (17)

y1 

The term	 [G0(m)] is disregarded at a limit corresponding to a 
point on the forward Mach cone. 

Equation (17) is a generalization of equation (14) to account 
for variations in strength along a line vortex of constant slope. 
Both equations are of fund.anta]. importance because appropriate 
distributions of such line vortices will be used to simulate a 
supersonic lifting surface. 

Characteristics of upwash field due to supersonic line vortex. - 

(16) 

1 • Infinite line vortices of constant strength and slope. An 
Infinite line vortex Inclined supersonically (I m1 ^i) to the free 
stream is shown in figure 3(a). Because both limits in equation (14) 
are neg'ected, the upwaah induced by this line vortex is zero. This 
result agrees with the indications of oblique-airfoil theory because 
the perturbation velocities are zero downstream of the envelope of 
the Mach cones from the trailing edge of a two-dimensional airfoil 
Inclined supersonically to the free stream.
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The infinite -line vortex along the line (y0 - y ) = m(x0 - x1) 
(fig. 3(b)), inclined. subsonically ( I in i <1 ), has one limit that 
intersects the forward. Mach cone whereas the other extends to 
infinity. The .upwash is then, for O^13m<1, 

urn 00(m) 
xo -p - 

- 

4i - 2m2 (Y1 - mX1) 
= 

+ fl	 - l) + (1 - 32m2 ) z2	
(18) 

where x1,y1 is a point on the line vortex. The upwae1t is Infinite 
along the line vortex. For in = 0, equation (18) becomes 

K _______ (19) 

which is identical with the expression for upwash due to an infinite 
vortex parallel to the stream (along the line y = y ) in an inoom-
pressible field. 

These results indicate that the behavior of the infinite super-
sonic line vortex for ImI^l is completely different from that of 
the incompressible flow vortex. Eowever, when l3mkl, both vortices 
have similar upwash properties in the vicinity of the vortex line 
and are, in fact, identical for m = 0. 

2. Bent line vortices. The upwaeh due to a bent line vortex 
(fig. 3(c)) of constant strength is 

w = - [G1 (rn) - Gi. (m)]	 (20) 

where m, and. m1 desiiate the slopes of the line vortex before 
and. after the bend at x,y1 . The term r1 appears as a factor in 
the denominator of equation (20) so that the upwash exists only In 
the aftercone from x1,y1 and. is infinite on the cone surface 
(except in the z = 0 plane). This infinite value of upwash is 
not to be confused. with the infinity introduced at the Intersection 
of the line vortex with the forward Mach cone, which is eliminated. 
by application of the finite-part concept.
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Linearized Supersonic -Wing-Theory Relations 

The perturbation velocities on supersonic lifting surfaces 
(zero-thickness wings) have been evaluated for a large variety of 
plan forms. (See, for example, references 7 to 9.) Those results 
vii]. now be utilized to determine the vortex field generated by a 
lifting surface. 

Velocity potential. - If the boundary conditions for a lifting 
surface are specified In the z = 0 plane, the u and. v veloc-
ities are antlsymnietrlc and, the w velocities are symmstric about 
this plane. Thus the velocities on the top and. bottom surface of 
the z = 0 plane are related by 

UtJUBi 
vT =_vB	 (21) 

VT = WB J 
The discontinuities in u and. v constitute a vortex sheet. 
Because the flow Is ever"where irrotational, except across this 
sheet, a perturbation-velocity potential p can be so defined that 

dc=&x+d.y+dz 1 

	

Z	 (22) 

	

=ud.x+vdy+wdz	 J 
When the undleturbea. flow field upstream of the wing Is considered 
to be of zero potential, and. the boundary condition requiring that 
UT = uB = 0 off the wing (antisymne'try of u and. zero lIft off 
wing) is applied., the ,potential in the z = 0 plane may be obtained 
by integrating along lines of constant y. 

= Ix 
x2 

x

	

	 (23) 

UBdX
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where x1 Is the equation of the leading edge as a function of y. 
From equation (23) It may be concluded that 

1. Everywhere in z = 0 plane except behind, the wing leading 

e&ge TB°' 
2, At a given span station CPT and CPB remain constant for 

all values of x d.ownstrean of the trailing edge. 

Lines of constant potential for rectangular and. triangular wings 
are shown in figure 4. 

Vortex lines. - The equation for the vortex lines (from equa-
tion (3)) Is

T'd.x- 'dy=O	 -	 (24) 

When the following expressions (equations (8), (21),and. (22)) are 
substituted

=_(vT_vB)=-2—=2— - 

-2--2 

	

T' _pU_	 --	
•5E" 

the equation for the vortex lines becomes 

rr 
dx +	 =	 dx +	 dy = 0	 (25) 

Comparison with equation (22) shows that equation (25) represents 
lines of constant potential. Thus the vortex lines coincide with 
the lines of constant potential in the z = 0 plane. 

Circulation. - The circulation included between two points 
and x2 ,y2 on a wing is given by 

	

=fudx+vdY+wdz	 (26) 

The path o'f integration is arbitrary except that the path should 
cross the z = 0 plane only at the two specified points. If the 
integral is taken along the top and bottom surfaces of the z = 0 
plane,

I
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x2 ,y2 	 X]Y1 

K = f	 (	 + VT dy) + f	 (UB + TB ) xl,yl 	 x2,y2 

= ( T,2	 + ( B,l	 =	 -	 (27) 

where cp equals q' - q> and. represents the jump in potential at 
the point. The quantity p' is, in fact, the doublet potential 
(reference 2), so that the net circulation between two points equals 
the difference in the doublet potential between those points. The 
equivalence of a doublet distribution and. a vortex distribution 
indicates that the flow about a lifting surface can be calcula%ed n 
either basis. 

Circulation az lift. - The lift per unit span Is given by the 
chordwlse integration 

L(y)
	

(Cp,B - Cp,T)
	

(28) 

After substitution of the linearized values for pressure coefficient 

2uT 	 2p 
0p,T -	 = - 

2UB 
= - -f-- = U

! _ 

	

and integration, equation (28) becomes, because 	 = 0, 

L(y) = PU
	

(29) 

The factor &ps, is the circulation Included between the leading 
and trailing edges at the spanwise station under consideration. 
When this circulation is designated r, equation (29) becomes

/ 

L(y) = pur	 (30)
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which is the familiar incompressible-flow relation. Also 

= 4PT	 B)t 
d.y 

-= ( VT - 

= -(r)	 (31) 

EquatIon (31) relates the shed. vorticity to the rate of change of 
spanvise loading.

APPLICIONS TO CALCULATIONS OF 


SUPERSONIC DOWNWASH 

The vertical perturbation velocities due to a supersonic line 
vortex of constant slope have been presented in a form that permits 
analytical or mechanical evaluation (equations (14) and. (17)). The 
vortex d.IstrIbution associated, with a lifting surface has also been 
discussed.. These relations vU]. be used. to develop exact and. approx-
imate method.s for calculating d.ownwasb behind, lifting surfaces at 
supersonic speeds. 

Downwaah an Infinite Distance behind. Wing 

The vertical-perturbation-Velocity field. behind, a supersonic 
lifting surface (from equatIon (9)) is 

- X011) 
w = -
	 rd3	

dy -

(32) 

ir
dx,d.y 

whee the inteation over the plan form Is designated by S and. 
over the wake by SW. As x becomes Infinite, X0 also beconies
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Infinite in the Integral for the bound (plan form) vortices • This 
Integral then becomes zero because X 0 is of higher order in the 
denominator than in the numerator. Thus, only the Integration over 
the trailing vortex sheet contributes to the vertical perturbation 
velocities at Infinity. The trailing vortex sheet may be con-
sld.ered. to consist of elemental vortices of Infinite length along 
y = constant lines, each having the strength 

' d.y = -	 The vertIcal perturbation velocity at 

cx,y,z due to the elemental vortex along y = y0 is, from equa-
tIon (19)

1 dl' 

dw=
Yo +z 

so that the vertical-perturbat1on-yelocItr field at Infinity is 
given by

b I 
1 1	 o dl' =

 - 1J b Yo2 + Z2 ;; d.y0	 (33) 

-. 

where b/2 is the semispan. The velocity field obtained from 
equatIon (33) is identical to that induced by a subsonic wing with 
the given span loadIng. The velocIty field at infinity is thus 
independent of Mach number (excluding the influence of Mach number 
ii ar/d,). This result has been derived In references 1 aM 2 

by other methods. The evaluation of equation (33) is relatively 
simple and may be used. to approximate the d.ownwash several chords 
behind a supersonic wing. 

Regions of Infinite Downwash 

Approximate solutions may modify or introduce singularities 
in the d.ownwash field. It Is therefore of interest to establish 
the regions for which linearized theory indicates an infinite 
downwash. 

Infinite downwash in z = 0 plane. - The vertical perturba-
bation velocities In the z = 0 plane that exist an infinite
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distance behind, a wing having a discontinuity in di'/d.y0 will 
first be considered.. These velocities are d.eterinined. from the 
equation

b

rYo	 (34) 

The Cauchy principal value is required. for points on the vortex 
sheet. For the particular case of tr1angilar loading (fig. 5(a)) 

dT 2Fm 
dy0 b 

in the integration interval 4^yo ^O ann. 

a.r	 2Tm 

dYo	 b 

in the interval 0 ^ y0^ . (Tm is the circulation at the micispan). 

When these values for	 are substituted. in equation (34), the 

integral yields

w_loH 
y2 I	 (35) 

-	 9b2I 

Infinite upwash exists along the lines y = ±b/2 whereas infinite 
d.ownwash exists along the line y = 0.. These infinite 'aluea are 
due to the d.iscontinuities in the spanwise vorticity distribution 
and apply for all points on these lines downstream of the wing 
trailing edge. 

In general, if (d.F/dy0Y and (dl'/dy0Y' represent a dis-
continuity in the rate of change of apaiwiae loading at station 

= Yl' infinite vertical perturbation velocities, will exist a1on 
=	 downstream of the trailing edge. For (dT/dy0) - 

infinite upwash will exist, and for (dT/d.y0 >(dr/d.y0) infinite
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doynwash will exist along this line • Such d.iecontinuities in 
dr/d.y0 originate both at a wing tip and at thoae points along a 
supersonic trailing edge where the plan-form slope is discontinuons 
and. the local-wing-pressure coefficient is not equal to zero • This 
discontinuity in vorticity ny be verified by the methods employed 
In reference 3. for finding the upwaah and sidewash directly behind 
a supersonic trailing edge. 

The discontinuity In shed. voi-ticity at the tips of an ellip-
tically loaded wing Is a special case of the previously stated rule 
governing infinite vertical perturbation velocities In the z = 0 
plane. For wing loading given by 

r = rJi - 

the shed. vorticity is

4 
dr	

-.. mo 

d.y0	
,	 4	 2 

- ;. 
y0 

and. the vertical-perturbation-velocity field at Infinity, In the 
z = 0 plane, Is

b 
2 

w=ir 

2 

Integration yields

y0 -' 

YoJl _4 y02 

i'm 
w= 

y14
for
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ath

lyl 

for

I4 
As in.icated. in figure 5(b), the vertical perturbation velocity is 
*uiscontinuoue at y = ±b/2, but is bound.ed. for all points on the 
vortex sheet. 

Infinite &ownwash on Mach cone from wing tip. - Reference 3 
indicates infinite vertical perturbation velocities on the down-
stream Mach cones from the tips of a triangular wing. This result 
will now be extended. to apply to any wing tip formed. by the inter-
section of a subsonic leading edge and. a supersonic trailing edge 
provid.ed. that the slope of the subsonic edge is not zero at the 
tip (fig. 6). 

The contribution to the vertical-perturbation-velocity field. 
due to the bending of an elenental vortex at the trailing edge 
(fig. 6) Is, from equatIon (20), 

dr 

dv = -	 2t [o.0(mi - a0(0)]	 (36) 

where

=	
xoYo 

r0 (Y02 + z02) 
The vertical perturbation velocity at a point on the Mach cone from 
this tip due to the bending of the vortices is found by Inte'ating 
(al,ng the trailing edge)

rO 
1/ w = -	 [Go(mi - G0(0)] 1.::; d.y0	 (37)
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EquatIon (37) In the expanded form becomes 

('O 

1	 r (T0 - mo xo)(P2mcYo x0)	 X0Y0 1 V 
= - J L0 -çx0) 2 + (1 - P2in 2 )z2 + Toa + 

zj ;a;d.Yo 

(38) 

The limits of inteatIon ire roots of	 so that the factor 
l/r0 is singular of order 1/2 at the limits and, the Integral is 
Improper (assuming (m)y = 	 0). The convergence of the Integral 

depends on the nature of d.r/d.y0 at the limits. Appendix B shows, 
however, that dI'/d.y0 Is also singular of order 1/2 at the tip. 
The combined singularity causes equatIon (38) to diverge at the 
upper limit and. results In logarithmically Infinite vertical per-
turbation velocities on the Mach cone from the tip. The dIvergence 
Is a consequence of both the singularity in d.r/dy0 and. the singu-
larity on the Mach cone from a bend. in the elemental line vortex. 

The Infinite vertical perturbation velocities on the Mach cone 
from the tip do not appear In the z = 0 plane inasmuch as equa-
tion (38) then reduces to 

,-0	 _________ 

1 I m0
 Jx02 - 

(0 -mX0)Y0 

and. the singularity due to r0 is no longer present. 

Approximate Downwash Solutions 

Several approximate methods for obtaining d.ownwash were con-
sidered. Methods based on a lifting line seem the most promising 
ax4 are discussed In the following sections • A bent lifting line 
is proposed for determining the downwash behind. a swept wing and. 
an unbent lifting line (horseshoe vortex system) for deterniinfng 
the downwash behind an unawept wing. These methods are applied to 
compute the downwash behind. triangular and. rectangular wings and. 
the results are compared with the exact linearized solutions.
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A lifting line concentrates the chord.wise load.ing into a line. 
Thus the bou3. circulation is represented. by a line vortex of vari-
able strength (K = r = apt), whereas the trailing-vortex system 
maintains the sams vorticity (' = -d1'/d.y,) but now originates at 
the line rather than at the trailing edge. 

Bent lifting line. - A lifting line approximating the section 
centers of pressure

r7-t 

X p =	

(C,B - Cp,T)(x - xz) d.x 

f(
Cp,B - cP,T) 

x1 

seems to be a reasonable representation of a aweptback or swept-
forward, wing. In ord.er to facilitate d.ownwash calculations, the 
line of section centers of pressure can be approximated by two 
straight-line eeients, each connecting an end. point to the mid.-
point of the hue. The result is a bent lifting line (fig. 7) of 
span b aM effective chord. ce (x- .distance between mid.point and. 
end. points of lifting line). For a sweptback lifting line, the 
slopes at the mid.point are

-	 b 
(in0 )	 = 0	 - 

and.

	

+	 b 

	

(in0 )	
o = 

The vertical perturbation velocities ind.uoed. by the bound. 
vortices can be d.etermined. from equation (17) and. equal 

[a0(m) - Go(m)lyo o - • [ G0(m)	 _ d.y0 (39) 

where the integration is conâucted. along the lifting line (figs. 8(a) 
and. 8(b)). The vertical perturbation velocit1es lnd.uced. by the 
trailing-vortex system are obtained from
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w=	 f %(0) -dy0	 (40) 

The term G0(o) Ia as defined, for equatIon (36) and. the integration 
is again conducted along the lifting line • The vertical perturba-
tion velocities Ind.uced. by the complete lifting-line system (bounil 
and. trailing vortices) are then the sum of equations (39) and. (40) 
and. equal 

w =	 [Go(m1 - G'o(m+ )] y = 0 -	 [Go(m) - G0(O.)]

(41) 

The value m0 = (m0) = 0 Is used. for the integration interval 

YaYo0 and m = (nL ' )	 r Is used. f or the Interval 
OYO^Yb.	 0	 - 

Equation (41) Is the expression for the vertical perturbation 
velocities behind. a swept wing using the bent-lifting-line approxi-
mation. This equation can also be considered as derived from a 
superposition of a system of bent line vortices of constant strength 
(equation (20)), as indicated in figure 9. The nonlntegral term of 
equation (41) Is then the contribution of the bent line vortex of 
strength 1'm whereas the Integral term represents the contribution 

of the elemental line vortices of strength - L dy0. 
dy0 

The Integral term of equation (41) may be evaluated by analy-t-
ba]. or mechanical methods • When mechanical methods are used, the 
singularities In the Integrand. must be isolated. Suitable proce-
dures for isolating the commonly encountered singularities are as 
follows: 

(1) Singularity due to intersection of forward Mach cone with 
lifting line. The Integranci In equatIon (41) Is infinite at the 
intersection of the forward Mach cone and. the lifting line (for 
z 0). The contribution 6w of the integral, for the interval 
yb - C b yoS y (fIg. 8(a)), to the vertical perturbation velocity 
field. may be written
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f or
Dm0 > 1, 

rdy0 	 _________	 m(x	 2my) (1	 2m2)y 1 
__________ 6ifl	 ___________________________ 

I	 = L 22 - 1	 m0	 - m0x)2 (1 - 22)z2j 

-	 2m0	
ein	

(22 - 1) b 
- 22 -1	 2 [(x - 2y) - (1 - 22)yb] 

for

= 1, 

r____________________________ r	 I	 22	 2	 21 
/	

ay0	 m0 \J' 'Y - in0X jy0 +	 I - y - 

J
r0	 y-Inox	 - 

bb 
j	 2C.1 

=m I 
O v m0x - y 

where m0 is the slope of the lifting line at Yb• A similar pro-
cedure applies for the singularity at Ya• 

(2) Singularity in dr/o.y0 at wing tip. The vertical pertur-
bation velocity at a point whose forward Mach cone intersects the 
edges of the trailing vortex sheet (fig. 8(b)) is obtained from 
equation (41) by integration between the limits - -^y04. If 
dI/d.y0 is singular at these limits, the singularity ny be isolated 
by a procedure similar to that used in equation (42). Thus,the 
contribution to the vertical perturbation velocity field, from the 
integration interval	 - C < y	 .,	 y be written
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[c.0 (m) - G.0 (0)]	 dy 

[Go (m). - G0 (o)] - [Go(m) - Go(0)]] dy - 

Yo = 

- G0(0)]J	

=	

dy0	
(43) 

Cb 

where

b 

r2 I	 dI1	 •-(r')	 b 
I	 yo.' 

Jb 

(3) Singularity at points on vortex sheet. The Cauchy prin-
cipal value of the integral (equatIon (41)) is required. for deter-
mining the vertical perturbation velocity at a point on the vortex 

sheet z = 0, - .^y4. For this case, considering the Interval 

y - c^y0^y + c (fig. 8(c)), the contribution of the Integral to 
the vertical_perturbatIon-velocitY field Is 

+ C 

6w = + 1 /	
m0 ,1x02 - 32yo2 

J

	

	 (y0 - m0X )Y0	
(44) 

y -c 

If dF/dy0 can be approxinted by the first two terms of the 
Taylor's expansion
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dl' _(dr'\ 
dy0 -

yo y

(2r\ 
+ (yo - Y\dy02)y = y

27 

and. C is sufficiently small that 

mcJx2	
22 

0	 -1 
(Y0 - m0X) 

equation (44) may be written 

y+C

[dr

=y 
y-C	

yo 

£ (d.2r \
= +	
Yo2Jy =

"d2r	 1dy0 
- Y0	

= y_J

(45) 

Inasmuch as d.l'/dy0 is an odd. function in y0 for a wing syimnet-
rica]. about the inidepan, dT/d.y 0 is either discontinuous or zero 
for y0 = 0. If dr/dy0 is discontinuous, the vertical perturba-
tion velocities are inIinite along this line. 

Unbent lifting line. The unbent lifting line (horseshoe-
vortex system) appears to be a reasonable representation for an 
upswept wing. The use of such a lifting line considerably sim-
plifies the calculations. 

The vertical perturbation velocities induced by an unbent 
lifting line (along the y-axis) are obtained. from equation (41) 
by setting m0 =	 and. are equal to 

1 r	 x Y0 (r02 - 2z2) 
21tJ . r(x2 - 32 z2 )(Y02 + z2)	

dy0	 (46) 

The singularities are isolated as follows:



28
	

NACA	 1925 

(1)Singularity due to Intersection of forward Mach cone with 
lifting line. 

j	 (	 - 22) (y02 + z2) dy0 + ( Y0	 I	 + = -	 r	
[ 

x	 - 2z2)	 .L	 2z2 d.	 1 d.y0 

bb	
YoYbj 

1 (2Z2p\	 r	 dy0 I 
o=b bb 

where

r d.y0 2	 -1' sin tJ 

] 

(2)Singularity In dr/dy0 at the tip. 

/	

x Y0 (r02 - 2 z2 )	 x Y0(r02-2z2) 1 
2 J	 1r (- 2 z2 )(Y02+z2 ) - [ro(x 2 z2 )(yo2+z2 )j J	 dy0 + 0 b	 to

Y0J 

2	 22 
xY(r -z) 

r0(x2 - 2 z2 )(Y02 + z2)

	

	
b (P 

y0 = - Lb

yo=. 

(3). SingularIty at points on vortex sheet. 

w c(d2r 

dy2)
yo=y
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The chórdwiae location of the unbent lifting line that will give 
the best average agreement with the exact linearized solution is 
still to be determined. According to the techniques used. in subsonic-
wing theory, an unbent lifting line at the wing center of pressure. 
should be a good first approximation. However, further investi-
gation is required. It may be possible to determine the best loca-
tion for each general class of plan forms by comparing the lifting-
line solution with the exact linearized solution for several 
representative plan forms. 

Examples and discussion. - A bent lifting line and an unbent 
lifting line will be used to obtain solutions for the downwash in 
the y = 0 plane behind triangular wings having subsonic leading 
edges. The chordwise distribution of wing loading suggests the use 
of the bent lifting line. The unbent lifting line will be used. for 
pu.rpoes of comparison. An unbent lifting line also will be used 
to compute the d.ownwash in the y = 0 plane behind rectangular 
wings. The chordwiee location of the unbent lifting line giving 
the best average agreement with the exact linearized solutions 
will be noted for both the triangular and the rectangular wings. 
In order to. clmplify the expressons 1 M	 (that i, 3 = 1) 
will be assund. 

The apanwise circulation distribution for a triangular wing 
lb	 \ of span b and root chord Cr, having subsonic \_<l) leading 

edges, is (from equation (24) of reference 2) 	 r 

1_A	 _&/,	 4	 2 £ 

where E is the complete elliptià integral of the second kind 

with modulus /l - (_)2• The circulation at the midapan Is 

r - czljb 

and. the rate of change of circulation is 

d_ 4a11 ____ 
dy0 - -

	 /
l - 4y02 

\I	 b
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The expression for the vertical perturbation velocitiea in the 
y = 0 plane using the bent-lifting-line approxiixtion of fig-
ure 10(a) Ia 

aIJb 
Hxn+)]	

4aU r [G0 (m) - a.(o)] 
o +	 I yo=	 Jo	

Ji 
4 2 

	

-; . Y0	 (47) 

where (m0) - 0 =	
Equation (47) is obtained, from equation (41) 

and. the properties of an even function. The vertical-perturbation-
velocity field. behind. an unbent lifting line, having the same 
load.ing (fig. 10(b)) Is from equation (46), 

4a1J 

y	
x(r02 - z2)	

(48) 

r0 (x2 - z2 ) (y02 + z2 ) Ji - ;* Yo2 

The spanwise circulation for a rectangular wing of aspect 

ratio	 for the tip region	 - Cr^YO	 is 

F =	

=	

C -
	

-	 + cr 
tan1! 

Cr

(49a) 

and. for 0cy0^ - Cr

r = 2IJ Cr
	 (49b) 

Equations (49a) and. (49b) were obtained, from equation (20) of refer-
ence 8. The wing Is illustrated. in figure 10(c). The rate of 

change of spanwise circulation for	 - Cr< 3<	 is
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- 4cxU	 iYo+Cr

- 7 °r4I b 

y	
--0 

The vertical-perturbation-velocity field. in the y = 0 plane 
behind. an unbent lifting line having this loading is

31 

b 

4aUCr 
-

It

2 Cr

x (r02 - z2 ) y	 Iy0 + Cr - 

b	 d.y0 
r0(x2 - z2) (y02 + z2) 1j 	 . -

(50) 

Equation (47) was evaluated to determine the downwash along 
theline y=O, z=0 andalongtheline y=0, z=0.lb 
for triangular wings with aspect ratios (2b/cr) of 1.6 and. 3.2. 
EquatIon (48) was evaluated. for the saiiie wings at points along 
the line y = 0, z = 0. Equation (50) was evaluated at points 
along the line y = 0, z = 0 for rectangular wings with aspect 
ratios (b/cr) of 2 and. 4. The integrations were performed mechan-
ically for equations (47) and. (50) and analytically for equa-
tion (48). The results are compared with the exact linearized 
solutions obtained. from references 1 to 3 in figures 11 to 14. 

The bent-lifting-line solutions f or the triangular wings are 
shown in figures U and. 12. The discontinuity in the curves for 
the z = 0.1 b plane (figs. 11(b) and. 12(b)) designates large 
negative (upwaeh) values that become infinite on the Mach cone 
from the tip, as indicated in the discussion associated. with 
equation (38). The agreement with the exact solutions is good 
for all points except those within 1/2 chord. from the trailing 
edge. The correlation Is unexpected because of the large contri-
bution of the nonintegral term of equation (47). This term Is 
associated with the bending of the lifting line at the midpoint. 
This bend. was artificially introduced.. The agreement with the 
exact d.ownwash solutions, however, indicates that the bent lifting 
line is a good. average representation of the triangular-type wing 
(at least in regard. to the downwash solution in the region of 
the line y = 0, z = 0). This method. should give even better 
agreement when used to represent a sweptbac- wing such as the one 
represented in figure 7, because the bent lifting line would. then 
more closely approximate the actual vorticity distribution.
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The nbent-1ifting-l1fle solution for the triangular wings is 
presented. In fIgure 13. The lifting line is placed. at the 
3/4-chord point to give the best average agreement with the exact 
linearized. solution. (The center of pressure for these wings is 
at the 2/3-chord. point.) The agreement Is not as good. as that 
obtained. with the bent lifting line and indicates that the bent 
line is more suitable for computing d.ownwash behind triangular 
wings. The smaller-aspect-ratio wing (2b/cr = 1.6) Is in better 
agreement with the exact linearized. solution because of the rapidity 
with which the d.ownwash approaches the asymptotic value at infinity. 

The unbent-lifting-line solution for the rectangular wings is 
presented. in fIgure 14 • The downwash obtained. with the lifting 
line at the 1/2 -chord. point Is in exceflent agreement with the 
exact linearized. solutIon. (The location of the , center of pressure 
Is at the 4/9-chord and. 10/21-chord points for aspect ratios of 2 
and. 4, respectIvely.) These calculations suggest that the unbent 
lifting line Is well suited. for computing the d.ownwash behind 
unswept supersonic wings and that the best chordwise position for 
the unbent lifting line Is at or slightly downstream of the wing 
center of pressure. 

A more accurate estimate of the d.ownwash in the z = 0 plane 
àlose to the trailing edge may be obtained by judiciously fairing 
the curve obtained. by the line -vortex method to the known value 
of downwash at the trailing edge. At a subsonic trailing edge 
satisfying the Kutta condition, -w/czU Is unity; whereas ata 
supersonic trailing edge, -w/cxZJ can be computed. by the method. 
presented In reference 1. 

It should. be noted. that linearized theory neglects the effect 
on the d.ownwash of the friction wake and the displacement and dis-
tortion of the trailing vortex sheet. ftn experimental program, 
such as that reported. in reference 10 for wings In subsonic flight, 
is ultimately required. to determine the necessary modifications to 
linearized. theory that will result in good agreement between theory 
and practice.

StIMMARY OF ANALYSIS AIID APPLIC.kFIONS 

The perturbation field induced. by a line vortex in a super-
sonic stream and the d.oiniwash field. behind a supersonic lifting 
surface have been examined. for the purpose of establishing approx-
imate methods for the calculation of supersonic d.ownwash.
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An infinite line vortex of constant strength and slope, super-
sonically inclined, to the free stream, Induces no perturbation 
field.. A subsonicafl,y Inclined, line vortex has properties similar 
to those of a vortex in an Incompressible-flow field.. Bend.s in a 
line vortex induce infinite vertical perturbation velocities on 
the surface of the downstream Mach cone from the bend. (except in 
the z = 0 plane). 

The d.ownwash field. behind. a supersonic lifting surface d.iffers 
from that behind, a subsonic wing in several respects. For a super-
sonic lifting surface, d.iscontlnuities in shed. vorticity occur at 
those points along a supersonic trailing edge where the plan-form 
slope is discontinuous and. the local pressure coefficient is not 
zero. These d.iscontlnuities lead. to singularities in the d.ownwash 
field. in the z = 0 plane. Also, the vertical perturbation veloc-
ities are logarithmically Infinite on the d.ownstream Mach cone 
from a wing tip formed. by the Intersection of a subsonic leading 
plan-form edge and a supersonic trailing plan-form edge. 

A bent-lifting-line method.. has been, proposed. for the solution -.	 .	 -	 . 1.	 .I .1 3 1..,L,.l ..	 1. ..4	 ..,.	 4 Vi. ti.ie U,VWLiWLL J. .1..LU. L?V LJLIM.I. 0 W	 U IV £1Ia.	 P1 â4SLL	 UJ 

triangular wing, this method gave results that were in very good 
agreement with the exact linearized. solution for points near the 
line y = 0, z = 0 except for points within 1/2 chord. of the 
wing trailing edge. 

An unbent lifting line (horseshoe-vortex system) has been 
proposed. for unavept wings. This method. was applied. to determine 
the d,ownwash behInd rectangular wings with aspect ratios b/cr of 
2 and. 4. Excellent aeement was obtained. for both aspect ratIos 
by placing the lifting line at the 1/2 -chord point. 

Lewis Flight Propulsion Laboratory, 
National Advisory Committee for Aeronautics, 

Cleveland, Ohio, April 29, 1949.
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UWASH INDUCED BY LINE VOirix	 - 

The upwash induced, by the line vortex segment of figure 1 Is, 

2( 

(I-m)y0' + 2m(n-x)y0 +

(U) 

The upper limit is at the intersection of the line vortex (y0 = inx,) 
with the trace of the forward. Mach cone in the z = 0 plane 

[(x - x0 )2 - 2 (y - y0)2 - 2 z2 =	 ami Is therefore the appropriate 
root of the expression appearing in the d.enomlnator of the integrand.. 
The roots are

	

-m(132my - x)	 m	 - mi)2 + (1 - 2m2)z2	 (Al) 
Ya'Yb =	 (1 - 32m2) 

so that equation (U) y be rewritten 

3	 [Yb 

-2 (1 - 2m2 )2 =	 = /f 
2m2 (y - mx)	

/	
[(	 - Yo)(Yb - 

y0)]312	
(A2) 

From equations (6) and. (7), 

fiE- = - j(0) -c	 (A3) 

where

2(y + Yb)


	

j(o) =
	 Yb2 ?JaYb
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I 2A(yb) C= Jim

kYb - 
Yo - (Yo )J 

2	 2(ya+yb_2yo)	 1 
= 1	

3	
- &ab)2 V(Ya_Yo)(Yb_Yo)j Y4Yb I

Lab) Ibo 

S

2(ya + Yb) 

- b )2
	 (A4) 

Substituting equation (A4) in equation (A2) and solving for v 
yields

K	 (y-mx)(132my-x) (A5) 

,2 22 2221	 )2	 22 21 x -f3 y - z	 L-"	 + (1-13 m )z J 

Thus

LI
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APPENDIX B 

LOADING iii VICINITY OF WING TIP 

The nature of the loading in the vicinity of a wing tip formed 
by the intersection of a subsonic leading edge with a supersonic 
trailing edge (fig. 6) is to be determined.. 

According to linearized theory, UT in the region of a sub-
sonic leading edge is singular of the form 

1 
UT =
	 - 

where x1 is the equation for the leading edge as a function of 
y0 . This relation may be deduced from equation (II) of refer-
ence 10. The corresponding wing circulation is 

	

dx	 ___ 
r=q=2 /	

°	
4jXtX2	 (Bi) 

The derivative of equation (B±) is

dy0 
______	 (B2) fXX 

where (xt - x1) là the wing chord as a function of y0 . However, 
(xt - 'z) must be of the form 

Xt X =
	

[f(y0)]	 (B3) 

(where [f(y0)]	 . O,) in order to satisfy the restrictions


yo=O 
that at the wing tip
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(a) the chord is zero 

	

(Xt - x 2 )	 = 0

yo = 0 

(b) the slopes of the leading and. trailing edges are neither 
equal

rd(x -x)1 
[	 dy	 -iy0=O 

nor in the free-stream direction 

[d(	 - xi)1 
I	 dy	 co 

L	 0 Jy0=0 

Substituting equation (B3) into the denominator of equation (B2) 
yields

d(xt - x1) 
2

dy 

- iJo [f(y0)]	
(B4) 

Equation (B4) indicates that dF/dy0 is singular of order 1/2 at 
= 0 for the wing tip of figure 6. 
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(0.0

Line vortex, 
= 31VC 

reoone trace in 
z,3 0 plane, 

(x,y,z)

	 xx0zp J(y_y0)2..z2 

Figure 1. - Geanetric relations for deteridnation of upwash

induced by line vortex.
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(a) Line vortex from (x1,y1). 
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(b) Line vortex from (x2,y2). 
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Line vortex of 
strength -If 

G2(m) 

Line vortex of

strength IC 

W -	 + 

(x,y,z) 

(o) Line vortex from - (x.1,y1 ) to (x2,y2). 

Figure 2. - Superposition for obtaining upwash induced by line-




vortex segnient from x1,y1 to x2,y2.
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(a) Infinite line vortex inclined supersonically 
to free stream. 
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(b) Infinite line vortex inclined zubsonically 
to free stream. 

Slope rn 

1 x,xo
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// \\\
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(c) Bent line vortex. 

Figure 3. Typical line vortices.
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(a) Reotangulai' wing.
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Figure 4. - Lines of constant potential for rectangular and

triangular wings.
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(a) Triangular load distribution.

(b) Elliptic load distribution. 

Figure 5. - Upwash in z 0 plane an infinite distance behind wings 

of triangular and elliptic loading.
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'V

Figure 6. - Wing tip formed by Intersection of subsonic leading and 

supersonic trailing plan-form edges.
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Figure 7. - Bent-.lifting..line apprciination f or sweptback wing.
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(x,y,z) 

(a)Intersection of torec one with lifting line. 

x,xo 

(ce )@e 

(x,y,z) 

(b)Intersection of forecone with edge of vortex sheet. 

I	 \f/(xaiO) 

(o) Point on vortex sheet. 

Figure 8. - Improper intervals of d.owwiash integral.
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Stre. 

Figux'e 9. - Superposition of bent line vortices yielding bent-
lifting-line representation of supersonic wing (equation (41)). 

Strc	 -
dy0 'O
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NACA TN 1925 

,—Section centers 
/	 of pressure ,,, ,l2fZS%
	 \ ,—Bent lifting line 

/	 x,x.o S( N 
/ 

(eej)"9 	 '1(°e4) 

(a) Bent-lifting.-].ine representation of 

triangular wing. 

10 /'A\ .'	 /	 \	 \. -- T11-i+ 14P+!vit, 14ri 

(b) Unbent..].ifting-line representation

of triangular wing.

(e) Unbent-lifting-line representation of rectangular wins. 

Figure 10. - Lifting-line representations of triangular and rectangular 

wings.
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