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SUMMARY .

The perturbation field induced by & line vortex in a super-
sonic stream and the downwash behind a supersonic lifting surface
are examined for the purpose of establishing approximate methods
for determining the dovnwash behind supersonic wings.

Lifting-line met“nds are pregented for calculating super-
sonic downwash. An unbent 1ifting line (horseshoe-vortex system)
is used to compute the.downwash behind rectangular and triangular
-wings and the results are compared with the exact linmearized sclu-
tions. The chordwise position of the 1lifting line giving the
best average agreement with the exact solution is noted for each
wing. A bent 1lifting line is used to approximate the triangular
wing, and the results are in good agreement with the exact solu-
tion except for points within 1/2 chord of the wing trailing edge.
The use of a bent lifting line seems promising for obtaining
accurate estimates of the downwash behind swept wings.

INTRODUCTION

Several methods for obtaining the downwesh behind supersonic
wings based on linearized theory have been presented. These
methods utilize conical superposition (reference 1), doublet dis-
tributions (references 2 and 3), or vortex distributions (refer-
ences 4 and 5). Each of these methods has certain disadvantages.
Conical superposition is restricted to wings having plan forms
composed of straight-line segments and is cumbersome for other
than trapezoidal or trianguler plan forms. The doublet and vortex
distributions apply to arbitrary plan forms, but provide integral
expressions for downwash that are generally very tedious to eval-
uate. The complexity of these expressions indicates that there is
a need for a straight-forward procedure for obtaining reasonably
accurate, if not exact, downwash solutions.
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A logical approach to the development of a simplified super-
sonic¢ downwash theory is to derive the supersonic analogues of the
line-vortex procedures that have proved valuable in subsonic theory.
Certain differences exist, however, between the properties of
vortices in a supersonic stream and vortices in a subsonic stream.
Similarly, the downwesh fields behind subsonic and supersonic wings
differ in certain respects. These differences must be 1nvestigated
before an exbension of subsonic. techniques is possible.

The present report, prepared at the NACA Lewis laboratory, has
three main objectives: (1) The downwash field induced by & super-
sonic line vortex of constant slope is derived and discussed;

(2) the downwash behind a supersonic 1ifting surface is examined
and related to the downwash field induced by line vortices; and
(3) lifting-line methods for computing downwash are presented and
calculations based on these methods are compared with the exact
linearized solutions. Zero-thickness wings (lifting surfaces) are
considered throughout. -

.

SYMBOLS

The following symbols are used throughout this report:

Y)Yy Cartesian coordinate system

perturbation velocities

t 4

<« ®
N

L
4

$ unit vectors

es|

w1l

P

7 /) components of vortex vector (three-dimensional field)
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El

Gy(m) =

G4(0) =

L(y)

components of vortex vector (vortex sheet)

wing sypan

function used in evaluation of finite part of divergent
integral (equation (7))

local wing pressure coefficient
effective chord of bent lifting line-
root chord of wing

complete elliptic integral of second kind with modulus

, 2
b
A1 -(zr.:-.) '
V \&Cx/

(4 - m%y) (°myyy - Xy)
ry [(¥y - mXy)2 + (1 - $%my2)z,2 ]

spanwise 1ift distribution
free-stream Mach number

slope of line vortex or lifting line

Vi2 - B2y,2 - pPz°
free-stream velocity (taken in x-direction)

x - x
I =733

‘Z-Zi
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angle of attack
cotangent of Mach angle «/Mz -1
integration interval

circulation

- perturbation-velocity potential -

Pp -Pp

free-stream density

- cross-sectional area of vortex tube

spanwise distri'buﬂon of wing circulation
wing circulation at midspan

_ 1/2
resultant vorticity (2 + nz + t2) /

finite part of divergent integral

, line integral along closed curve

Subscripts:

a,b

[

¢ 13 42} o~

<

points of intersection of forward Mach cone with line vor-
tex, lifting line, or edge of vortex sheet

bottom surface of z = O plane

line integration

=1,2,3 . ..n points on vortex lines

plan-form leading edge
surface integration

t‘.op. surface of z = 0 plane
plan-form trailing ed.ge-
volume ihtegration

variable of integration
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Superscripts:

- value of function at point of discontinuity when approach-
ing from negative y-direction

+ value of function at point of discontimuity when approach-
’ ing from positive y-direction

THEORY
General, Vortex-Field Relations

The equations relating velocity and vorticity distributions
in a slightly perturbed supersonic stream are derived in refer-
ences 4 and 5. These relations are summarized in the following
section. The velocity field is assumed to consist of a major
supersonic free-stream velocity U (taken in the positive
x-direction) plus small perturbation velocities u, v, and w
such that the linearized equations of motion are applicable.

Three-dimensional vortex field. - The velocity field in vector
form is ' : .

a=(W+u)i+v)+wk | _ ()

The vortex vector field ® is defined as the curl of the velocity -
vector. Thus

W=Vxgq
=§.1-.+1]:‘]-+£E (2)
where
[ ¥
. ow
n= 35‘&)

| %
. ¢ &'35)
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Vortex lines are lines that are tangent at all points to the local
vortex vector and are determined from the equation

dx _dy _dz |
g"‘n"g ) (3)

Reference 4 presents the following integral expressions for
the perturbation velocities induced by the three-dimensional vortex
field: -

2 (zn-128 - ‘
B f 0 0
us= -5 dx_ dy. dz (4&)
2n v i.OS o o o .
o2l fEL-2¢)
2 ~o- o '
V= -5 f 3 ~ dx, dyo 4z (‘4b.)
' v o
2| ~(¥.t-Xn) |
B 0 o
W= - f—-—;-:s——dxo d.yo dz, (4c)
\ o :
where |
X, =X - Xg
Yo=3-7
Z0=z-zo
) 2 2. 2 2, 2
ro'—"'\/;{o - BYy - B

The subscript o indicates a variable of integration. The inte-
gration is conducted over the volume V included in the forward
Mach cone from the point x,y,z. That is,
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The symbol / designates the finite part of a divergent inte-
gral. (See references 4, 6, or 7.) The procedure for obtaining
the finite part is systematized in reference 7 as follows:

The integrals in equations (4a) to (4c) are of the form

A(x,)
o x:)5/2 ax, (s)

|

The upper limit in equation (5) corresponds to limits on the Mach

cone in equations (4a) to (4c). The finite part of this integral
is :

[
- 2 A(x,)
t= (xz - x5)3/2 o ' ©
. val
= -J(xl) -C
where
C= 1lim -§§§§§L: - J(xg) »(7)

XX | NX2 = Xo

The term J(x,) 1s the indefinite integral of equation (5) and
J(x1) 1is the indefinite integral evaluated at the lower limit.
The Justification for this procedure is presented in references 4,
6, and 7. It can be shown that finite parts are treated in a
menner similar to that for ordinary integrals. The rules of addi-
tion, differentiation under the integral sign, transformation of
variables, and integration by parts apply.

Vortex sheet. - If vorticity exists as a surface of velocity
discontinuity in the 25 =0 plane, then cutside this plane, ¢,
1, and { are all zero, but in the 2z, = O plane { = O whereas
¢ and 1 are infinite. However, the limits
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E' = lim gdzo
- dzg—0

n' = 1im T] d.zO

dzd—*ﬁo <

are finite and are given.by (reference 5)

£

Vg = Vp
(8)

t

n

Up - Up

The subscripts T and B designate velocities on the top and
bottom surfaces of the z, = O plane, respectively. The perturba-
tion velocities induced by the vortex sheet are obtained by sub-
stituting equation (8) in equations (4a) to (4c). In particular,
the vertical-perturbation-velocity field (upwash) is given by

2 Y ' - X' - -
_ .8 [ Yot - Xon
LA > 73 dx, dy, | (9)

s (o}

The area of integration S includes all the vortiéity in the
forwerd Mach cone from Xx,y,z. '

" 1ine vortex. - The vortex lines through all points on an
infinitely small closed curve bound a vortex "tube.” The circu-
lation ' '

K = 0O

(where ® = (gz + nz + Qz)l/z is the resultant vorticity and ©
is the infinitesimal cross-sectional area of the tube) is constant
at all points along the tube. The vortex-vector components at
any point, in terms of the differential distance dl, along the
vortex tube, are :

e
]
€
o
o~
)

e
]
€
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The elemental volume is dxydyodzo = Odly. A line vortex is gen-
erated by allowing the cross section of the vortex tube to approach
zero while maintaining w0 constant. The upwash induced by such
a line vortex is found by substituting the preceding expressions
into equation (4c) and equals

2 k(Y -x
V=-L (O r3 dyO) ’ (10)

C (o}

where the integration is conducted along the portion of the line
vortex within the forecone from x,y,z. A line vortex cannot
terminate within a fluid flow field but must either form a closed
curve or extend to infinity or a boundary of the field.

Upwash Induced by Line Vortices

Complicated velocity fields can be generated by the linear
superposition of relatively simple fields. It will therefore prove
useful for subsequent developments to determine the upwash field
induced by line vortices of constant slope.

Line vortex of constant slope and strength. - The upwash at
X,¥,z due to a line vortex of constant slope m and strength
K, intersecting the forward Mach cone at x‘b:Y‘b (fig. 1) is
(from equation (10))

7o
i3 n? (y-mx)dy,

i 22 Fl--ﬁzmz)yo2 + 2n(pPmy-x)y, + mz'(xz-ﬁzyz-ﬁzzz)] 5/2
o U

(11)

The integration is perfbrmed in appendix A and yields

v - (¥ - J_(ﬁz = X) (12)
o (£ - %2 - g2 2)H/2 v - w02 + (2 - g2 w2)z2 |
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The finite part of the integral in equation (11) is obtained by
substituting the lower limit into the indefinite integral (appen-
dix A). No contribution appears from the upper limit. By a trans-
lation of coordinates, the upwash due to a line vortex from x,y;
that intersects the forward Mach cone at xp,y, (fig. 2(a)) is
found to dbe

. (Yy - uXy)(p%m¥y - X3)

W= = o

T2 [(Yl - 1X7)% + (1 - B?mf) 22],

(13)

where ’

X

X - x1

Hh=7v-n

; r, = ,\[ x,2 - p2n,2 - %2

By superposition (fig. 2) of a positive line vortex K from
X1,y1 and a negative vortex -K from x3,yz2, the upwash due to
a line-vortex segment not intersecting the forward Mach cone is

v ek [oam) - 0y (u) e

where the notation

(Y3 - m%y) (BPmy¥y - %y)
ry L(Yi - mixi)z + (1 - le_n-_q_z) 212] \

Gy (m) = (15)

is used. The subscript for G indicates the appropriate sub-
sceripts for X, Y, Z, r, anmd m,

Equation (14) applies for any line vortex of constant strength
and slope. The circulation K 1is positive when the vortex vector
is in the direction of integration. When the line vortex inter-
gects the forecone, the corresponding limit (infinite Gy(m) term)
is neglected by application of the finite-part concept.

Line vortex of constant ’slope but varying strength. - Line
vortices may coincide to form a resultant line vortex whose cir-
culation is the sum of the strengths of the superposed components.

»
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‘

The general line vortex is then one of variable strength K along

the line x4 = Xo(y,) baving the local slope my = dyo/dx,. The
upwash induced by the segment from x;,y; to x3,yp may be written

J2

2 K(Y, - moX,) : |
ve-£ T2 ay, (16)
moro

J1

The evalpation of equation (16) is generally tedious. For the
particular case of constant slope, however, this equation may be
integrated by parts to yield a useful expression for upwash., Inas-
mich as

i BE(Y, - mX;) _ 4G, (m)

m°r°3 T W

the integration by parts glves

Jp  J2
v {:"c .[Go(m)]} - f Gy (m) g}% ay, (27)
1 "N

‘The term K, [G,(m)] is disregarded at a limit corresponding to a
point on the forwaxrd Mach cone.

Equation (17) is a generalization of equation (14) to account
for variations in strength along a line vortex of constant slope.
Both equations are of fundamental importance because appropriate
distributions of such line vortices will be used to simlate a
supersonic lifting surface.

Characteristics of upwash field due to supersonic line vortex. -

1. Infinite line vortices of constant strength and slope. An
infinite line vortex inclined supersonically (|Bml21) to the free:
stream is shown in figure 3(a). Because both limits in equation (14)
are neglected, the upwash induced by this line vortex is zero. This
result agrees with the indications of oblique-airfoil theory because
the perturbation velocities are zero downstream of the envelope of
the Mach cones from the trailing edge of a two-dimensional airfoil
inclined supersonically to the free stream.
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The infinite-line vortex along the line (y, - y1) = m(xo - x3)
(fig. 3(b)), inclined subsonically (|Pm/<l), has one limit that
intersects the forward Mach cone whereas the other extends to
infinity. The upwash is then, for O0<pm<l,

w=-5- lim Go(m)
xO_)"a

Jo—>-=®

e N1 -8%f (Yy - X))

= 4 =

(18)

where xl;,yl is a point on the line vortex. The upwash is infinite
along the line vortex. For m = 0, equation (18) becomes

kK 1

= 4 o ————
Zﬁle

(19)
+ 22 !

v

which is identical with the expression for upwash due to an infinite
vortex parallel to the stream (along the line y = yj) in an incom-
presgible fleld.

These results indicate that the behavior of the infinite super-
sonic line vortex for |fm|21 1is completely different from that of
the incompressible flow vortex. However, when |fml|<l, both vortices
have similar upwash properties in the vicinity of the vortex line
and are, in fact, identical for m = O.

2. Bent line vortices. The upwash due to a bent line vortex
(fig. 3(c)) of constant strength is

w = 2 (6 (n) - 61 (u*) - (20)

where m~ and ml"' designate the slopes of the line vortex before
and after the bend at xj3,y). The term 1r; appears as a factor in
the denominator of equation (20) so that the upwash exists only in
the aftercone from x;,y; and is infinite on the cone surface
(except in the z = O plane). This infinite value of upwash is
not to be confused with the infinity introduced at the intersection
of the line vortex with the forward Mach cone, which is eliminated
by application of the finite-part concept.
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Linearized Supersonic-Wing-Theory Relations

The perturbation velocities on supersonic lifting surfaces
(zero-thickness wings) have been evaluated for a large variety of
plan forms. (See, for exammple, references 7 to 9.) Those results
will now be utilized to determine the vortex field generated by a

1ifting surface. '

Velocity potential. - If the boundary conditions for a 1lifting
surface are specified in the 2z = O plane, the u and v veloc-
1ties are antisymmetric and the w velocities are symmetric about
this plane. Thus the velocities on the top and bottom surface of
the z = 0 plane are related by

up = -up

Wip = Vg __J

The discontinuities iIn u and v constitute a vortex sheet.
Because the flow is everywhere irrotational, except across this
sheet, a perturbation-velocity potential ¢ can be so defined that

(21)

q_q)=g§dx+%$dy+?;dz (22)
=ud.x+_vdy+wdz

When the undisturbed flow field upstream of the wing is considered
to be of zero potential, and the boundary condition requiring that
up = ug = 0 off the wing (antisymmetry of u and zero 1lift off
wing) is applied, the ,potential in the 2z = O plane may be.obtained
by integrating along lines of constant y.

°PT=fx up dx

; ; (23)
q’3=f qu.x

xl y
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where x; 1s the equation of the leading edge as a function of y.
From equation (23) it may be concluded that

1. Everywhere in 2z = O plane except behind the wing leading
edge @p =P = O. :

2. At a given span station Pp and ®Pp remain constant for
all values of x downstream of the trailing edge. '

' Lines of constant potential for rectangular and triangular wings
are shown in figure 4.

Vortex lines. - The equation for the vortex lineé (from equa-
tion (3)) 1is

'1:' dx - £ dy =0 ' (24)

When the following expressions (equations (8), (21),-and (22)) are
substituted .

£|=-(vT-YB)=-2?;r-=2?:
n'=uT-uB=2.?=-2?i

.the equation for the vortex lines becomes

?;—r-d.;z+§r-dy=§d;+§?dy=o (25).

Comparison with equation (22) shows that equation (25) represents
lines of constant potential, Thus the vortex lines coincide with
the lines of constant potential' in the 2z = O plane. :

Circulation. - The circulatioh included between two points
1571 and X5,y ona wing is given by

l!='7é-ud.x+vdy+wdz (286)

The path of integration is arbitrary except that the path should
cross the z = 0O plane only at the two specified points. If the
integral is taken along the top and bottom surfaces of the z = 0

plane,
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X2,72 ' X31,71

K= (qu.X-i-VTdY)'F (qu.X‘PVde)
X1,¥1 : X2532
= @Pp2 ~Pp 1) + (Bg 1 ~Pp2) = 49, - &py (27)

where AP equals @p -@p and represents the jump in potential at
the point. The quantity AQ@: is, in fact, the doublet potential
(reference 2), so that the net circulation between two points equals
the difference in the doublet potential between those points. The
equivalence of a doublet distribution and a vortex distribution
indicates that the flow about a 1lifting surface can be calculated m
elther basis. :

Circulation amu 1ift. - The 1ift per unit span is given by the
chordwise integration

Lt
L(y) = 200° (Cp,p - Cp,p) ax (28)
Xy

After substitution of the linearized values for pressure coefficient

o .. tm_ 2%
p,T U - UE‘
o ... B 2%
BT T7T T&x

and integration, equation (28) becomes, because apy = 0,

L(y) = oU A, (29)

The factor Mpy 1s the circulation included between the leading
-and tralling edges at the spanwise station under consideration.
When this circulation is designated I, equation (29) becomes

L(y) = oUI (30)
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which is the familiar incompressible-flow relation. Also

ar _ 2®r -%s)y

dy dy

= (vT - vB)t

= (') (31)
Equation (31) relates the shed vorticity to the rate of ohange of
spanwise loading. »

APPLICATIONS TO QAICULATIONS OF
SUPERSONIC DOWNWASH
The vertical perturbation velocities due to a supersonic line

vortex of constant slope have been presented in a form that permits
analytical or mechanical evaluation (equations (14) and (17)). The
vortex distribution associated with a 1lifting surface has also been
discussed. These relations will be used to develop exact and approx-
imate methods for calculating downwash behind lifting surfaces at
supersonic speeds. .

Downwash an Infinite Distance behind Wing

The vertical-perturbation-velocity field behind a supersonic
1ifting surface (from equation (9)) 18 :

2 (Yt = Xon')
V_=‘§:?f 2 dx, 43, -
r.

Sp (o}

(32)

-

where the integration over the plan form is designated by Sp and
over the wake by Sy. As x becomes infinite, X, elso becomes
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infinite in the integral for the bound (plan form) vortices. This
integral then becomes zero because ' X, 1is of higher order in the
denominator than in the numerator. Thus, only the integration over
the trailing vortex sheet contributes to the vertical perturbation
velocities at infinity.- The trailing vortex sheet may be con-
sidered to consist of elemental vortices of infinite length along
Y = constant 1lines, each having the strength

ak = ¢' dy, = - g‘y—;—o dyoe The vertical perturbation velocity at

®,y,z due to the elemental vortex along y = Yo .18, from equa-
tion (19) .
\ ar
( 4y, dyo> T,
=

an 2 2
Yo + 2

80 that the vertical-perturbation-velocity field at infinity is
given by , : o

]
2
Y
0 ar
W =2 = o= dy (33)
2 b Y 2, g2 dy, “©° :
z

where b/2 1s the semispan. The velocity field obtained from
equation (33) is identical to that induced by a subsonic wing with
the given span loading. The velocity field at infinity is thus
independent of Mach number (excluding the influence of Mach mumber
on dI/dy,). This result has been derived in references 1 and 2
by other methods. The evaluation of equation (33) is relatively
simple and may be used to approximate the downwash several chords
behind a supersonic wing.

Regions of Infinite Downwash

Approximate solutions may modify or introduce singularities
in the downwash field. It is therefore of interest to establish
the regions for which linearized theory indicates an infinite
downwash.

Infinite downwash in z = 0 plane, - The vertical perturbs -
bation velocities in the z = O plane that exist an infinite

i !
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distance behind a wing having a discontimuity in aI/dy, will
first be considered. These velocities are determined from the
equation :

]
2

ar/ay o ,
ook | TR, (=
b

2

The Cauchy principal value is required for points on the vortex
gheet. For the particular case of triangular loading (fig. 5(a))

a@ -
Jo b
in the integration interval -2<yoS0 and
ar _ _Zm
4y, b
in the interval 0< yos:;i (T, 1s the .circulation at the midspan).

When these values for %— are substituted in equation (34), the
o

integral yields

T,

w =A :% log, (35)

2
b
-7

Infinite upwash exists along the lines y = 4+b/2 whereas infinite
downwash exists along the line y = O. These infinite values are
due to the discontimmities in the spanwise vorticity distribution
 and apply for all points on these lines downstream of the wing
trailing edge. :

In general, if (dT/dy,)~ and (dT/dy,)* represent a dis-
contimuity in the rate of change of spanwise loading at station
¥y = ¥1, infinite vertical perturbation velocities will exist alo
y =y, downstream of the trailing edge. For (aT/ay,)~ <(al/ay,)
infinite upwash will exist, and for (aI/dy,)~ >(al/dy,)* infinite
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downwash will exist along this line. Such discontimmities in
dl"/d.yo originate both at a wing tip and at those points along a
superscnic trailing edge where the plan-form slope is discontinuous
and the local-wing-pressure coefficient is not equal to zero. This
discontinuity in vorticity may be verified by the methods employed
in reference 1 for finding the upwash and sidewash directly behind
a supersonic trailing edge.

The diséontinnity in shed vorticity at the tips of an ellip-
tically loaded wing 1s a special case of the previously stated rule

governing infinite vertical perturbation velocities in the 2z = 0O
plane. For wing loading given by )

’ 4 2
I‘=I"m l-?yo

the shed vorticity is

4
ar ‘bﬁ‘myo
dyo -4-}'2

bZ o]

and the vertical-perturbation-velocity field at infinity, in the
z = 0 plane, is ‘

Integration yields

for
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and
S U S . 4
' 2
2%
for
= S

As indicated in figure S(b), the vertical perturbation velocity is
discontimious at y = %b/2, dbut is bounded for all points on the
vortex sheet. .

Infinite downwash on Mach cone from wing tip. - Reference 3
indicates infinite vertical perturbation velocities on the down-
gtream Mach cones from the tips of a triangular wing. This result
will now be extended to apply to any wing tip formed by the inter-
gection of a subsonic leading edge and a supersonic trailing edge
provided that the slope of the subsonic edge 18 not zero at the
tip (fig. 6).

The contribution to the vérbica.l-perturbation-velocity field
due to the bending of an elemental vortex at the tralling edge
(£1g. 6) is, from equation (20), _

dI‘
- o

d.w=-

(6o - 66(0)] (36)

where

The vertical perturbation velocity at a point on the Mach cone from
this tip due to the bending of the vortices is found by integra.ting

(along the trailing edge)

0
a
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Equation (37) in the expanded form becomes

0
1 (Yo - mg"X5) (8ng ¥, - X5) X% | 2
r

ar
+ 4
éx y (Yo - mgXo)2 + (1 - B2 2)z2 * Y 2 + 22| To &0, Vo
a ‘ ‘

(38)

The 1limits of integration are roots of r,, so that the factor
l/ro is singular of order 1/2 at the limits and the integral is
improper (assuming (mo-)yo =0 # 0). The convergence of the integral

depends on the nature of dI/dy, at the limits. Appendix B shows,
~ however, that dI/dy, 1s also singular of order 1/2 at the tip.
The combined singularity causes equation (38) to diverge at the
upper limit and results in logarithmically infinite vertical per-
turbation velocities on the Mach cone from the tip. The divergence
is a consequence of both the singularity in dl"/dyo and the singu-
larity on the Mach cone from a bend in the elemental line vortex.

The infinite vertical perturbation velocities on the Mach cone
from the tip do not appear in the z = O plane inasmch as equa-
tion (38) then reduces to :

o .
- 2 2« 2
1 m, VX5 = F'Y," ar
2x | (Y, -~ mg"X,)Y, dy, "©°

W=

and the singularity due to r, 1s no longer present.,

Approximate Downwash Solutions

Several approximate methods for obtaining downwash were con- -
sidered. Methods based on & 1lifting line seem the most promising
and are discussed in the following sections. A bent lifting line
is proposed for determining the downwash behind a swept wing and
an unbent 1lifting line (horseshoe vortex system) for determinihg
the downwash behind an unswept wing. These methods are applied to
compute the downwash behind triangular and rectangular wings and
the results are compared with the exact linearized solutions.
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A 1ifting line concentrates the chordwise loading into a line.
Thus the bound circulation is represented by & line vortex of vari- -
able strength (K = I' = Apy), whereas the trailing-vortex system
maintains the same vorticity (t' = -dI/dy,) but now originates at
the line rather than at the trailing edge.

Bent 11fting line. - A 1ifting line approximating the section

centers of pressure
Xy,
L (Cp,B - Cp,T)(x - x7) dx

Xy,
/ ‘(CP:B - CP:T) ax

X

Xop = X3 +

geems to be a reasonable representation of a sweptback or swept-
forward wing. In order to facilitate downwash calculations, the
line of section centers of pressure can be approximated by two
straight-line segments, each connecting an end point to the mid-
point of the lire. The result is a bent lifting line (fig. 7) of
span b and effective chord ¢ (x-distance between midpoint and
end points of lifting line). For a sweptback lifting line, the
slopes at the midpoint are )

(m°-)yo_ =0°% "3 '
and
b
(m5*)y, = 0 = 7o,

The vertical perturbation velocities induced by the bound
vortices cen be determined from equation (17) and equal -

.- ' ¥
T b
=2 -y - +y| 41 ar
V= [Go(m ) = Go(m )]yo =0~ 35 Go(m) T dy, (39)
_ Vo
where the integration is conducted along the 1ifting line (figs. 8(a)

and 8(b)). The vertical perturbation velocities induced by the
trailing-vortex system are obtained from
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T
1 ar :
W= E;t-/ GO(O) a;-; dyo ) (40)

Ta

The term Go(0) is as defined for egquation (36) and the integration
is again conducted along the lifting line., The vertical perturba-
tion velocities induced by the complete 1ifting-line system (bound
and trailing vortices) are then the sum of equations (39) and (40)
and equal

b
T
v e g2 oot - o], Lo - & / [oote) - 6o(0)] &L,

C(41)

The value m, = (mg )y = 0 18 used for the integration interval
¥a<7,<0 and m, (m.*)..o = 0 18 used for the interval

a—-vg— - 55

O<y <yb.'

Equation (41) 1s the expression for the vertical perturbation
velocities behind a swept wing using the bent-lifting-line approxi-
mation. This equation can also be considered as derived from a
superposition of a system of bent line vortices of constant strength
~ (equation (20)), as indicated in figure 9. The nonintegral term of
equation (41) is then the contribution of the bent line vortex of
strength I'y, whereas the integral term represents the contribution

of the elemental line vortices of strength gg 4y, .
o

The. integral term of equation (41) may be evaluated by analyt-
ical or mechanicel methods. When mechanical methods are used, the
singularities in the integrand must be isolated. Suitable proce-
dures for isolating the commonly encountered singularities are as
- follows:

(1) Singularity due to intersection of forward Mach cone with
1lifting line. The integrand in equation (41) is infinite at the
intersection of the forward Mach cone and the lifting line (for
z # 0). The contribution &w of the integral, for the interval ‘
Yp - €p<¥o<¥, (fig. 8(a)), to the vertical perturbation velocity
field may be written
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for
Pm,>1,
. 2
o | _ o o [molx- B%n y) - (1 - 8%m 2)y
ro Bzmoa -1 Bmo )\/(y - mox)z (l - BszZ)_zz
o =€ A v = €p
2m, u (P22 - 1) €,
= —— sin
\Bem 2 - \/ [mo(x - Bmy) - (1 - g2 ne2)yy, |
for
Pmy =
r‘yb Ly ] T
dy, o Ne(y - mx)yg + mozxz;- 7° - 2%
e
b - €p ' ‘ b = %

L
oAlm x - y

where m, 1s the slope of the 1lifting line at Yp. A similar pro-
cedure applies for the singularity at T

(2) singularity in 4I/dy, at wing tip. The vertical pertur-
bation velocity at a point whose forward Mach cone intersects the
edges of the tralling vortex sheet (fig. 8(b)) is obtained from "
equation (41) by integration between the limits - 12—)< o< 1§)' If
-dI‘/dyo is singular at these limits, the singularity may be isolated
by a procedure similar to that used in equation (42). Thus, the
contribution to the vertical perturbation velocity field, from the

integration interval -g- = <Y< -213-, may be written
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b
2
1 arl’
B = - (6o (m) - co(0)] i,
b €
2°-
b
2
.- leotm). - co(0)] - {[Go(m) - Go(o)]} g_o ay, -
N : b/,
:29- - & Yo = 3
]
1 2 qr
= {[eotm) - cof0)] | ) a5,
yo = -é— (43)
Z" %
where
b
2
ar ~
- = = (I
T ay, ( )Yo _ ‘té)_ - o

(3) Singularity at points on vortex sheet. The Cauchy prin-
cipel value of the integral (equation (41)) is required for deter-
mining the vertical perturbation velocity at a point on the vortex

sheet z =0, =~ :,g-s ysg. For this case, considering the interval

J - €Sy Sy + € (fig. 8(c)), the contribution of the integral to
the vertical-perturbation-velocity field is

y +¢€
/ 2 2+« 2
1 5 X0 P Yo ar ay, (44)

o = + =
21 ; (Y, - nX,)Y, 4y,
y -

If dI‘/dyo can be approximated by the first two terms of the
Taylor's expension
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r .{arl a2r
T =& + (35 - ¥)
ay dy ° 2
(e} %3y, =¥ ay, Jo = ¥
and € is sufficiently small that
m, xo2 - BzYo2 = -1

(Yo - mo%o)

equation (44) may be written

. ' y+€ ‘
1 ' ar aer
YT TE (dyo> "o (dy Z
\ - o
;- Yo =¥

tx\ 2
d-yo yo = y

27

(45)

Inasmch as dI/dy, 1s an odd function in y, for a wing symmet-
rical about the midspan, dI/dy, is either discontimious or zero
for yo = 0. If dIYdyo is discontimuous, the vertical perturba-

tion velocities are infinite along this line.

Unbent lifting line. = The unbent lifting line (horseshoe;
vortex system) appears to be a reasonable representation for an
upswept wing. The use of such a lifting line considerabdly sim-

plifies the calculations.

The vertical perturbation velocities induced by an unbent
1lifting line (along the y-axis) are obtained from equation (41)

by setting m, = and are equal to

b
.- 1 x Yo(ro2 - Bzzz) . ar
on v, ro(xz - 5222)(Y02 + ZZ) dyo

The singularities are isolated as follows:

(46)
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dyo +
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(1) Singula.rity due to intersection of forward Mach cone with
1ifting line.
Ty : .
2 2.2
R S x Yo(ry” - B%2%) dI‘+<B222dI‘) Ey_o__'_
2n (x2 - 5222)(Y02~+ 22) ay, x Y, 4y, b O
Tb= Yo T,
Ib
1 (ﬁzzz @.LL) 430
2n \x Y, 4y r.
o Yo/, _ )
Yo S _e
b~ .
where
Jv
9.._0. = ?— sin-l v
ro B 2(yp - ) '
yb'e'b
(2) Singularity in 4aI/dy, at the tip.
3
2 q2,.2 ,
. . -];/ xYo(r -Bz) . xYo(ro-Bz) FL
2 b ro(xz-ﬁzzz)(Yozﬂz) ro(xz.‘-ﬁzzz)(’foz-kzz) 4y,
2" ‘

%

2 2 2
x Y (r° - B°z%)
1l 0'"0 (I")

B r (2 - PR AE + 2P Vo=3 -

-2
I = 3

(3). Singularity at points on vortex sheet.

2
5w =-€-<d 1">
T \gy 2
. ?o

Vo =7

N’

€p

b -
Y052
-
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The chordwise location of the unbent 1ifting line that will give

the best average agreement with the exact linearized solution is

8till to be determined. According to the techniques used in subsonic -
wing theory, an unbent lifting line at the wing center of pressure .
should be a good first approximation. However, further investi-
gation is required. It may be possible to determine the best loca-
tion for each general class of plan forms by comparing the lifting-
line solution with the exact linearized solution for several
representative plan forms.

Examples and discussion. - A bent 1ifting line and an unbent
1ifting line will be used to obtain solutions for the downwash in
the y = 0 plane behind triangular wings having subsonic leading
edges. The chordwise distribution of wing loading suggests the use
of the bent 1ifting line. The unbent 1lifting line will be used for
purpoges of comparison. An unbent lifting line also will be used
to compute the downwash in the y = O plane behind rectangular
wings. The chordwise location of the unbent lifting line giving
the best average agreement with the exact linearized solutions
will be noted for both the triangular and the rectangular wings.

In order to.simplify the expressions, M = ,/2 (that 1s, 8 = 1)

wlll be assumed.

The spanwise circulation distribution for a triangular wing

of span b and root chord Cp, having subsonic (-2%-<1) leading
edges, 1s (from equation (24) of reference 2) r

oJb 4
I =t = vl'b—gyoz

where E 1is the complete elliptic integral of the second kind

2
with modulus A/l = <§§—) . The circulation at the midspan is
r ,
-~ 9Ub
n =5

ar
dyo
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The expression for the vertical perturbation velocities in the
y = O plane using the bent-lifting-line approximation of fig-
ure 10(a) is

Y-

‘ b
aljb [G ( +)] 4a [Go(m+) - Go(o)] &
W= - [PolB yo=o+non i 2 Yo Vo
- 32 Yo ' (47)
where (m0+)y 0= c—b- Equation (47) is obtained from equation (41)
o~ r

and the properties of an even function. The vertical-perturbation-
velocity field behind an unbent lifting line, having the same
loading (fig. 10(b)) is from equation (46), .

o 2 _ .2y .2
ﬁﬂU_f x(ro - =) 3o Wo . (48)
0

= " noE
2 2 2 2 4 2
r (x* - 2%) (7, + 27) ’l';fz'yo

The spanwise circulation for a rectangular wing of aspect

ratio -03-22 for the tip region 123 - ¢, S yOS%’- is

’ (49a)
and for OSyOS% - Cp
=200 Co . (49v)

Equations (49a) and (49b) were obtained from equation (20) of refer-
ence 8. The wing 1s illustrated in figure 10(c). The rate of

change of spanwise circulation for % - Cpn< yog-g is
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The vertical-perturbation-velocity field in the y = O plane
behind an unbent 1lifting line having this loading is

L2
2
datic,, x (r,2 - 2%) v,
V= - .
x2 ro( - 28)(y 2 + 22)
b. .
2" % (s0)

Equation (47) was evaluated to determine the downwash along
the line y =0, 2z =0 and along the line y =0, 2 =0.1b
for triangular wings with aspect ratios (2b/c,) of 1.6 and 3.2.
Equation (48) was evaluated for the same wings at points along
the line y = 0, 2z = 0. Equation (50) was evaluated at points
along the line y =0, 2z =0 for rectangular wings with aspect
ratios (b/cy) of 2 and 4. The integrations were performed mechan-
ically for equations (47) and (50) and analytically for equa- :
tion (48). The results are compared with the exact linearized
golutions obtained from references 1 to 3 in figures 11 to 14.

The bent-lifting-line solutions for the triangular wings are
shown in figures 11 and 12. The discontinuity in the curves for
the 2z = 0.1 b plane (figs. 11(b) and 12(b)) designates large
negative (upwash) values that become infinite on the Mach cone
from the tip, as indicated in the discussion associated with
equation (385. The agreement with the exact solutions is good
for all points except those within 1/2 chord from the trailing
edge. The correlation is unexpected because of the large contri-
bution of the nonintegral term of equation (47). This term is
_assgociated with the bending of the lifting line at the midpoint.
This bend was artificially introduced. The agreement with the
exact downwash solutions, however, indicates that the bent lifting
line is a good average representation of the triangular-type wing
(at least in regard to the downwash solution in the region of
the 1ine y =0, 2z = 0). This method should give even better
agreement when used to represent a sweptbac!: wing such as the one
represented in figure 7, because the bent 1lifting line would then
more closely approximate the actual vorticity distribution.
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The unbent-lifting-line solution for the triangular wings is
presented in figure 13. The 1lifting line is placed at the
3/4-chord point to give the best average agreement with the exact
linearized solution. (The center of pressure for these wings is
_at the 2/3-chord point.) The agreement is not as good as that
obtained with the bent 1ifting line and indicates that the bent
line is more suitable for computing downwash behind triangular
wings. The smaller-sspect-ratio wing (2b/cr=1.6) 1is in better
agreement with the exact linearized solution because of the rapidity
with which the downwash approaches the asymptotic value at infinity.

The unbent-lifting-lineé solution for the rectangular wings is .
presented in figure 14. The downwash obtained with the lifting
line at the 1/2-chord point is in excellent agreement with the
exact linearized solution. (The location of the center of pressure
ig at the 4/9-chord and 10/21-chord points for aspect ratios of 2
and 4, respectively.) These calculations suggest that the unbent
1ifting line is well suited for computing the downwash behind
unswept supersonic wings and that the best chordwise position for
the unbent 1ifting line is at or slightly downstream of the wing
center of pressure. .

A more accurate estimate of the downwash in the z = O plane
élose to the trailing edge may be obtained by Judiciously fairing
the curve obtained by the line-vortex method to the known value
of downwash at the trailing edge. At a subsonic trailing edge
satisfying the Kutta condition, ~w/ol is unity; whereas at'a
supersonic trailing edge, -w/all can be computed by the method
presented in reference 1. . :

Tt should be noted that linearized theory neglects the effect
on the downwash of the friction weke and the displacement and dis=-
tortion of the trailing vortex sheet. An experimental program,
such as that reported in reference 10 for wings in subsonic flight,
is ultimately required to determine the necessary modifications to
linearized theory that will result in good agreement between theory
and practice. . '

SUMMARY OF ANALYSIS AND APPLICATIONS -

The perturbation field induced by a line vortex in a super-
gonic stream and the doimwash field behind a supersonic lifting
surface have been examined for the purpose of establishing approx-
imate methods for the calculation of supersonic downwash.
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An infinite line vortex of constant strength and slope, super-
sonically inclined to the free stream, induces no perturbation
field. A subsonically inclined line vortex has properties similar
to those of a vortex in an incompressible-flow field. Bends in a
line vortex induce infinite vertical perturbation velocities on
the surface of the downstream Mach cone from the bend (except in
the z = 0 plane).

The downwash field behind a supersonic lifting surface differs
from that behind a subsonic wing in several respects. For a super-
sonlc lifting surface, discontimuities in shed vorticity occur at
those points along a supersonic trailing edge where the plan-form
slope is discontimuous and the local pressure coefficient is not
zero. These discontinuities lead to singularities in the downwash
field in the z = O plane. Also, the vertical perturbation veloc-
ities are logarithmically infinite on the downstream Mach cone
from & wing tip formed by the intersection of a subsonic leading
plan-form edge and & supersonic trailing plan-form edge.

A bent-1ifting-line method has been proposed for the solution
of the downwash field behind swept wings. When applied to a
triengular wing, this method gave results that were in very good
-agreement with the exact linearized solution for pointe near the
line y =0, z = 0 except for points within 1/2 chord of the

wing trailing edge.

An unbent 1ifting line (horseshoe-vortex system) has been
proposed for unswept wings. This method was applied to determine
the downwash behind rectangular wings with aspect ratios b/c,. of
2 and 4. Excellent agreement was obtained for both aspect ratios
by placing the lifting line at the 1/2-chord point.

Lewis Flight Propulsion Laboratory, ‘
Netional Advisory Committee for Aeronautics,
Cleveland, Ohio, April 29, 1949.
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APPENDIX A

UPWASH INDUCED BY LINE VORTEX .

The upwash induced by the line vortex segment of figure 1 1is,

7 P |
wg_p_z_n f B n°(y-mx)dy,
o o [('l-fBZIIIZ)yO2 + 2n(Plmyx)y, + mz(xz-ﬁzyz-ﬁzzz)] 372

(11)

The upper limit is at the intersection of the line vortex (yo = mx,)
with the trace of the forward Mach cone in the 2z = O plane

[(x - xojz - B8(y - 70)2 - p2z% = O] and is therefore the appropriate
root of the expression appearing in the denominator of the integrand.
The roots are '

-m(pPmy - x) & Pm V(g - mx)? + (1 - p2n%)z?

= Al
Jasp a - Bzmz) (A1)
so that equation (11) may be rewritten
. 3 v
> _
2n(1 - B%m?) W= E= i 4y, v (a2)
pPmlK(y - mx) [(y&1 - ¥o) (7p - y°>]3/2
From equations (6) and (7),
‘ \
' [T=-3(0) -c¢ (a3)
‘where \ '
2 + ¥y)
J(O) - (ya yb

(3, - %p)? e
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and
-
¢- 1m |23 0
= m —_— - J(y
Yo% Myb - Jo °
- 14m :2’> z(ya +Jp - zyo)
To—Tp 5 (7g-73)2 Y/(7a~o) (75-75)
(yg-7p) Q/yb-yo \
=0
Thus
2(yq + ¥p)
E = - -] 5 b (A4) .
(3 - ¥p)°A[TaTy
Substituting equation (A4) in equation (A2) and solving for w
yields
2 .
__ K _(y-mx) (B°my-x) .

 (%-p%yP-p%4P)2 [(ymc)+(lﬁ 2]
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APPENDIX B

LOADING IN VICINITY OF WING TIP

The nature of the loading in the vicinity of a wing tip formed
by the intersection of a subsonic leading edge with a supersonic
trailing edge (fig. 6) 1s to be determined.

According to linearized theory, wup in the region of a sub-
sonic leading edge is singular of the form

1.
uT - ,\/xo - Il

where x; is the equation for the leading edge as a function of
Jo- This relation may be deduced from equation (11) of refer-
ence 10. The corresponding wing circulation is

x;
dx,
F=Ap =2 =4,x -1 _ (B1)
X "X
o]
The derivative of equation (Bl) is
2 d(xy - x7) A
dy -
g = > (B2)
o x.t - xz

where (zt - xz) .48 the wing chord as a function of y,. However,
(x¢ - x3) mst be of the form

(where [f'(yo)] # 0,0) 1in order to satisfy the restrictions -
o= 0
that at the wing tip
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(a) the chord is zero

(xy - x;) =0
t Zyo=0

(b) the slopes of the leading and trailing edges are neither

equal
{d(xt - xz] 4o |
dyo yo = 0 . >

nor in the free-stream direction.
a(xy - xzf} ' L
——L  {e

Substituting equation (BS) into the denominator of equation (BZ)
yields

2 d(xt - Xz)
ar - dyo
dyo ,\/yo [f(yo)]

Equation (B4) indicates that 4aI/dy, 1s singular of order 1/2 at
Jo = 0 for the wing tip of figure 6.

(B4)

REFERENCES

1. Lagerstrom, P. A., and Graham, Martha E,: Downwash and Side-
wash Induced by Three-Dimensional Lifting Wings in Supersonic
Flow. Rep. No. SM-13007, Douglas Aircraft Co., Inc., April
1947. . _

.2. Heaslet, Max A., and Lomax, Harvard: ' The Calculation of Down-
wash behind Supersonic Wings with an Application to Triangular
Plan Forms. NACA TN 1620, 1948,



38 ’ : ' NACA TN 1925

3. Lomax, Harvard, and Sluder, Loma: Downwash in the Vertical and
Horizontal Planes of Symmetry behind a Triangular Wing. NACA
TN 1803, 1949.

4. Robinson, A.: On Source and Vortex Distributions in the Lin-
earized Theory of Steady-Supersonic Flow. Rep. No. 9, College
Aero. (Cranfield), Oct. 1947. .

S. Robinson, A., and Hunter-Tod, J. H.: Bound and Trailing Vor-
tices in the Linearized Theory of Supersonic Flow and the
Downwash in the Wake of a Delta Wing. Rep. No. 10, College
Aero. (Cranfield), Oct. 1947.

6. Hadamard, Jacques: Lectures on Cauchy's Problem in Linear
Partial Differential Equations. Oxford Univ. Press (London),
1923, pp. 133-135. A

7. Heaslet, Max A., and Lomax, Harvard: The Use of Source-Sink
and Doublet Distributions Extended to the Solution of Arbi-
trary Boundary Velue Problems in Supersonic Flow. NACA TN
1515, 1948,

8. Evvard, John C.: Distribution of Wave Dreg and Lift in the ~
Vicinity of Wing Tips at Supersonic Speeds. NACA TN 1382,
1947,

9. Evvard, John C.: Theoretical Distribution of Lift on Thin Wings
at Supersonic Speeds (An Extension). NACA TN 1585, 1948,

10, Silverstein, Abe, Katzoff, S., and Bullivant, W. Kenneth:
Downwash and Wake behind Plain and Flapped Airfoils. NACA
Rep.'651, 1939.



_NACA TN 1925

(x5¥52)
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Z{-/I.d.ne vortex,
¢ Jo ® MK,

Forecone trace in
%o =0 plane,

x-%4=p \f(y-¥,)2~22

Flgure 1. = Geometric relations for determination of upwash

induced by line vortex.
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Line vortex of
strength K

'1 - - 'EK’-[ Gl(m)

(x5752)

(a) Line vortex from (x,,¥;).

n (xlgyl )c
(x20Y2

Ys¥o Line vortex of
strength =K
X%, Wy = 4L Gp(m)

(Xp¥s2)

(o) Line vortex from (xz,yz).

(xl’yl ) \

(32372 )

Line vortex of

strength X

W=W1+ Vo

= éﬁn[Gz(m)-Gl(lﬂ)]

(x5752) :

(¢) Line vortex from . (xl,yl) to (xz,yz).

‘ ) Figure 2, - Superposition for obtaining upwash induced by line-
vortex segment from X,,y; to Xo,¥yo.
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(x,¥,2)

(a) Infinite line vortex inclined supersonically
to free stream.

(%55Y0) Yo-¥y 3 m(xp=xy)

NS -
lU _ \ (%4 577 ) ’//
' \\ 1991 /,

|em| <1

(x5y¥52)

(b) Infinite line vortex inclined subsonically
to free strean,

(x5¥52)

(¢) Bent line vortex. m

Figure 3. « Typical line vortices.

41
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(b) Triangular wing.

Figure 4, = Lines of constant potential for rectangular and

triangular wings.
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(2) Triangular load distribution.

“!ﬂ‘;’F’

(b) Elliptic load distribution.

Flgure 5. - Upwash in z=0 plane an infinite distance behind wings
of triangular and elliptic loading.
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Figure 6. - Wing tip formed by intersectlon of subsonic leading and
supersonic tralling plan-form edges.
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Figure 7. - Bent-liftingeline approximation for sweptback wing.
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(a) Intersection of forecone with 1lifting line.

'

(b) Intersection of forecone with edge of vortex sheet.

YOvo

(ce’%)- |

(x5750)

(¢) Point on vortex sheet. _ NACA

Figure 8. - Improper intervals of downwash integral,
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Strength Pm_\

Strength -7

Figure 9. - Superposition of bent line vortices Yielding bent-
lifting=line representation of supersonic wing (equation (41)).



48

NACA TN 1925

Section centers
of pressure

Bent 1ifting line

(a) Bent-lifting-line representation of

triangular wing.
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(v) Unbent-liftiné-line representation

of triangular wing.
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il N N o N
7/ 4 AN N
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NACA

(¢) Unbent-1ifting-line representation of rectangular wing.
Figure 10, - Lifting-line representations of triangular and rectangular

\'Iings e
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