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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 1928

CRITICAL COMBINATIONS OF SHEAR AND DIRECT AXTAL
STRESS FOR CURVED RECTANGUILAR PANELS

By Murry Schildcrout and Manuel Stein
SUMMARY

A solution is presented for the problem of the buckling of curved
rectangular panels subJjected to combinsed shear and direct axial stress.

Charts giving theoretical critical combinations of shear and direct axial

gtress are presented for panels having five different length—width
ratios.

Because the actual critical compresslve stress of rectangular
panels having substantial curvature is known to be much lower than
the theoretical value, a semlempirical method of analysis of curved
panels supjected to combined shear and direct axlal stress 1s presented
for use in design.

INTRODUCTION

An investigation was made to determine the combinations of shear
and direct axial stress that cause simply supported curved rectangular
ranelg to buckle. Because panels having substantial curvature are
Xnown to buckle in compression at a stress well below the theoretical
value, the solution must be at least partly empirical. In order to
eliminate the necessgity for an extenslive test program, a theoretical
golution to the problem is presented and is modified for use in design.
The modifications to the theoretical Interaction curves are based
upon results of teste on the buckling of curved rectangular panels
under combined shear and axlal compression and incorporate results
for curved panels subjected to shear alone (reference 1) and axial
compression alone (references 2 and 3). The resulting cmpirical
interaction curves are expected to glve a good approximation to the
actual critical combinations of shear and direct axial stress.
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SYMBOLS
axial or circumferential dimension of panel, whichever
1s larger

axial or circumferentlal dimension of panel, whichever
1s smaller

integers
radlus of curvature of panel
thickness of panel

displacement of point on shell median surface in
radial direction; positive outward

axial coordinate of panel
circumferential coordinate of panel

Et3

flexural stiffness of panel per unit length | ————ouw—r
12 (1 - ;@)

Young's modulus of elasticity

2
curvature parameter (ggvg — ue)

coefficients of terms in deflectlon functions

D

Oxtbe
critical-axlal-—setress coefficlent 5
n<D

theoretical shear—stress ratio (ratio of shear stress
present to theoretical critical shear stress 1in
absence of other stresses)

experimental shear—stress ratio (ratio of shear stress
present to experimental critical shear stress In
absence of other stresses)
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(Rx)tn theoretical direct-axial-stress ratio (ratio of direct
axial stress present to theoretical direct axial
stress in absence of other stresses)

(Rx)exp experimental direct—axial-stress ratio (ratio of direct
axlial stress present to experimental critical direct
axial stress in absence of other stresses)

B = %

W Poisson's ratio

T critical shear gtress
Ox critical axial stress

p_dh L, r ot

+
Bxeaye Byh

=

Vrh inverse of ¢~ defined by v74674w> =W

RESULTS AND DISCUSSION

Theoretical Solution

The combinations of shear and axlal stress that cause rectangular
curved panels (rfig. 1) to buckle may be obtained from the equations

kgnD
b2t

and

Ky TeD
(o1 =
T v

when the stress coefficlente ks and kx are known. The theoretical

combinations of stress coefficlents for simply supported curved
rectangular panels having different ratios of circumferentlal to
axial dimension are gilven in figure 2. These comblnatlions of stress
were obtained from the solution pregented in the appendix, based
upon the small deflectlon theory of elastic stabllity of curved
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plates. Each part of figure 2 presents results for panels having a
constant ratio of circumferential to axial dimension but varilous values
of the curvature parameter Z.

Figure 2 indicates that, irrespective of the length—width ratilo
of the panel, the theoretical interaction curves approach those for a -
cylinder as the value of Z increases. The value of Z at which this
correlation between the cylinder and rectangular panel becomes close
increases as the ratio of circumferential to axlal dimension of the
panel decreases. The critlcal compressive stress of rectangular panels
is very nearly equal to that of cylinders even at low values of Z,
whereas the critical shear stress differs greatly at low values of Z;
therefore, a good indication of the point at which the interaction curve
for a panel is approximated very closely by that for a cylinder is the
value of 7 at which the respective critical shear stresses are nearly
equal. These values of Z may be obtalned for simply supported panels
having various length—width ratios from figure 3, which is taken fram
reference 1. At sufficiently high values of Z, as in the case of a
cylinder (see reference 4), the theoretical interaction curves in
stress—ratio form may therefore be approximated in the compression
range by a straight line from (Ry)ip = 1 to (Rg)yy =1 and in the

beginning of the temsion range by a straight line of slope -0.8
passing through (Rs)th = 1. The critical-axial-stress and critical—

shear-etress coefficients are obtained, respectively, by multi-—
plying the stress ratio (Rx)th by the theoretical critical stresses

for axial compression alone and the corresponding stress ratio (RS)th

by the theoretical critical stresses for shear alone. These theoretical
critical stresses may be obtalned from figures 4 to 7, which are taken
from references 1 to 3.

Although a theoretical solution 1s given only for simply
supported panels, the conclusions drawn as to the shape of the
interaction curves may be extended to clamped panels, because clampsed
panels of appreclable curvature buckle at stresses equal to or only
slightly higher than simply supported panels. (See figs. 4 to 7.)

The interaction data computed for simply supported panels are
given in table 1.

Empirical Interaction Curves

Curved rectangular panels are known to buckle in compression at
gtresses well below the theoretical values, whereas they buckle in
shear at stresses close to the theoretical values; therefore, the -
theoretical solutlon for the critical combinations of compression and
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shear must be modified so that it may be used for the deslgn of panels
subJected to combined shear and axlal compression. Empirical interaction
curves for long plates with transverse curvature and for cylinders
(references 3 and 4) indicate that the design curves in the compression.
range for rectangular panels wlth substantial curvature would be of the
form :

(Be)en + (Br)oxp = 1 (1)

where the denominators of the stress ratios (Rs)th and (Rx) are,

exp
respectively, the theoretical critical stress of the panel in shear
alone and the experimentally determined critical stress of the panel

In axial compression alone. Equatlon (1) should be conservative for
all panels regardless of the length-width ratioc and should become more
conservative as the ratio of the axlal to the clrcumferential dimension
increases.

The critical shear stresgs to be used as the denominator of the
stregs ratio (Rs)th may be obtained from figures 6 and 7. In order

to sllminate the need for Iinterpolation for the critlcal shear stress
of curved rectangular panels of any length—width ratio, the results
of figure 6 for panels with simply supported edges are replotted

In terms of other parameters in figure'8. The ordinate in figure 8
1s the increase 1n the critical-shear-stress coefficlent oAkg over
the flat-plate value and the absclssa 1s a functlion of the curvature
paramster Z and the length—wldth raetio of the panel B. In using
this figure B should be taken as equal to 1 whenever the circumfer—
ential dimension is equal to or greater than the axial dimension. The
value of the shear—stress coefficient for a panel is determined by
adding the value of Akg found from figure 8 to the flat—plate value

given approximately by the equation

kg = 5.35+ﬁ*§

as obtained from reference 5 or more accurately by

N

kg = 5.34% + ——
& o7/
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where B 1s a/b. In a similar way a curve may be obtalned for panels
wlth clamped edges by replotting the results of figure 7 In terms of
the same parameters as figure 8.

The critical compressive stress to be used as the denominator of
the stress ratio (Rx)exp may be approximated by the design curves of

figures 4 and 5 for cylinders and long curved plates, respectively.

At very low values of 2 (z < 10), panels buckle in compression
at a stress close to the theoretical value and the theoretical inter—
actlon curves may be used for design.

Rectangular curved panels subjected to combined shear and tension
may be expected to buckle at stresses that agree closely with the
theoretically predicted values because tension tends to minimize
initlal imperfections. The theoretical interaction curve should
therefore be used for this range. ‘

In connection with the present paper a set of 25 panels that had
been previously buckled were subJected to a combination of shear and
compression. (The previous results were presented in reference 6.)
Because most or perhaps all of these panels had large initial eccen-—
tricities an inordinate amount of scatter in the various test results
was found. Comparisons could be made, however, between the different
critical combinations of stress on each panel. These comparlsons ars
shown in stress-ratio form in figyre 9, in which the stress ratlos
are based on the experimental stress for buckling under either compres—
sion or shear alone. These comparisons confirm the shape of the curve
represented by equation (1) in the compression range.

CONCLUDING REMARKS

The theoretical solution for the buckling of rectangular  curved
panels in combined shear and direct axial stress indicates that the
behavior of & pansl ig simllar to that of a cylinder when the curvature
paremeter is sufficlently high, irrespective of the length—wldth ratio
of the panel. For lower values of the curvature parameter theoretical
interaction curves for panels of five different length-wldth ratios are
presented that glve either the shear or direct axial stress required for
buckling when a glven amount of the other stress is present.
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Because a panel having substantial curvature buckles in compression
alone at a stress well below the theoretical critical stress, the theo—
retical results for the critical combinations of stress are modified in

- the compression range for the purposes of design. ’

Langley Aeronautical Laboratory
Natlonal Advisory Committee for Aeronautics
Langley Air Force Base, Va., June 23, 1949
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APPENDIX
THEORETICAL SOLUTION

The problem of the buckling of a simply supported rectangular
curved panel under combined shear and direct axial stress (fig. 1) is
solved in a manner similar to the one used for the buckling of a panel
under shear alone. (See the appendix of reference 1.)

The equation of equilibrium of reference 1 is modified to introduce
direct axial stress and becomes

W + E%-V'A QEE + 27t o + 0yt QE% =0 (A1)
X

r 3t Oxdy d
where x and y are, respectively, the axial and clrcumferential
coordinates,
The problem igs solved by use of the Galerkin method as outlined

in references 7 and 8. As in the case of shear alone, the following
series expansion 1s used for w

W o= :;i ;;i 8y sin BEX gipn 2y (A2)
a b
m=1 n=1
which imposes the boundary conditions of simple support.

Division of equation (Al) by D gives

2 L 2 5\2 2
P 4 1225 g ot | Zke® 9w | kx Pv _ o

The equation of equilibrium may be represented by

Qw = 0
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where @ 1s the operator defilned by

Qo122 k| Bt 3R ke 32
pl axt p2 Oy p? P

According to the Galerkin method the coefficlents are chosen to satisfy

the equations
a b
sin ng sin E%Z Qv dx dy = O (A3)
o Uo :
(

p=1l,2, .. .;a=1,2,...)

When the exprecsions for Q and w are substituted in equation (A3)
and the indicated operations are performed, the following set of
algebralc equations results:

(2 + g262)° 4 12 2%t

22
8pq N 5 kxB“p
™ (p° + ¢°p°)
3283k, & & mnpq
+ =0
2 2 T E TR E )

where the summation includes only those values of m and n for
which m* p and n + g are odd. The condition for a nonvanishing
solution of these equations is the vanishing of the determinant of ths
coefficlents of the unknown values of 8pq° This infinlte determinant

may be factored Into two Infinite subdeterminants, one for p * g even
and the other for p * q odd. The vanishing of these subdeterminants
leads to determinantal equations similar to equations (9) and (10) of
reference 1, except that Mpq 1s now defined by
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2 .
Mo = — % |(p2 + q2p2)% 4 12 z2pMph > = g
3283k, o~ @2 + q26°)

These determinants give the comblnatlons of stresses that cause

buckling of curved plates with various ratios of axial to circumferential
dimension. The solution to the determinant where p t q 18 even
corresponds to a buckle pattern that 1s symmetrical about the center

of the panel, and the solution where p * q 1is odd corresponds to a
buckle pattern antisymmetrical about the center of the panel.

By use of a finite determinant including the rows and columns
corresponding to the most important terms (usually ten are sufficient)
in the expansion for w (equation (A2)), the two determinantal equations
were solved by a matrix iteration method (reference 9) for the lowest
combinations of ky and kg that satlsfled the equations. The present

solution was found by maintaining kx at an assumed constant value and -
solving for the lowest value of kg that satisfies each of the two
equations. The lower of the two kg values found by solving both
determinantal equations with a constant kx value 1s the critical-shear—
stress coefficient for the values of B, Z, and k, under consideration.

This procedure is repeated for a gilven value of B and Z, and several
constant values of ky are used until enough points are obtained to

draw an interaction curve. The computed Interaction data are presented
in table 1.

Figure 2 gives the interaction curves obtalned from the lower
combinations of interaction data presented in table 1. The discontinu—
ities in the curves of these figures are caused by a change of buckle
pattern from gymmetrical to antisymmetrical.

In the previous discussion & and b are, respectively, the
axlal and circumferential dimensions of the panel. TFor the purposes
of comparison with the cylinder, the definitions of a and b were
reversed in table 1 and in the figures. No changes were made in the
definitions of ky, kg, %2, and B.
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TABLE 1
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TEEGRETICAL COMBINATIONS OF SHEAR-STRESS AND AXTAL-STHESS COEFFICIENTS

FOR SIMPLY SUPPORTED RECTANGULAR CURVED PARELS

e

.

]
|
\

kB
p . =, ()
a e f"'é) T td
) (n Vi-w (;r)
Even determinant 0dd determinant
1 1 4,03 o | e
3.6 3.130 T7.704
2 &.652 | ceeme-
0 9.4 11.59
~3.6 13.13 14.50
10 7.08 o1 emeee-
6 L.431 6.766
1 R S e
0 11.65 12.77
-6 16.60 16.93
30 21.08 [ ot
18 5.603 6.846
B Lo T 11.95
o] 18.57 17.59
-18 28.07 26.53
100 70.3 [+ .
60 10.07 7.433
wo | e 16.97
0 34.65 33.5%
-60 54,15 55.68
1.5 1 37} eeeeee 0
L 2.795 2,334
2 5.376 5.990
[ T7.124 8.025
-4 10.0k4 11.14
10 717 | e 0
[ 3.h19 3.882
4 552 ] emeee-
0 8.550 9.750
6 12.26 13.53
30 21,16 ] e=eeee 0
18 %.899 5,208
10 9.3 | 0 memee-
[¢] 14.30 15.38
-18 22.16 22,34
100 70,2 | e o
60 8.503 7.476
w @l e 1,61
0 30.54 27.15
—60 46.78 Ly ol
2 1 o3 | eeeeee 0
3.6 3,520 2.168
2 5119 | eeeeee
Q 6.618 6.652
—3.6 8.755 9.285
10 X S R u— 0
6 3.402 3.158
3 5146 0 [ cceees
0 7.645 8.433
-6 10.78 11.96
100 70.3 o S
60 7.642 8.358
Lo 14,82 16.21
a 26.96 26.19
—£0 42,02 39.72
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TABLE 1.~ Concluded

13

THEORETICAL COMBINATIONS OF SHEAR—STRESS AND AXTAT-STRESS

COEFFICIENTS — Concluded

f

a

X
e 1 >
ky kg
® | e | (&) )
b (f? 1 — u2> D1[2 Dx
Even determinant 0dd determinant
1.5 1 2.15 o T N e
1.8 3.006 6.257
1 5.3 | ------
0 T.373 7.994
-1.8 9,588 9.621
10 T.h2 | eeme-- 0
6 4,448 3.530
L 5.822
0 10.38 9.490
-6 14.58 13.90
30 21.07 0O | eemea-
18 L4.574 3.694
10 9.84%0 | a-eee-
0 15.23 15.51
-18 24.09 24.70
2 1 1.57 o | ee-e--
: 1.3 3.293 5.064
.8 5.053 5.806
0 6.676 6.611
-1.3 8.37k4 8.070
10 7.08 | aoa-- 0
6 3.738 2.288
e 4.953
0 8.983 8.948
-4 13.18 13.59
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Figure l.— Curved rectangular panel under a combination of shear and
direct axial stress.
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Flgure 3.— Critical-ehear-stress coefficients of simply supported curved panels compared with cylinders
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(b) ky and Z defined in terms of the axial dimension of the panel.

Q6T NI VOUN

12



I
t

Ly 50

L, 1000 :for ended
|, 2000 design

« 3000,

1
Meraica / |
7

IR I 1 17T I 1R R RA T T T TT1T1T
K\
N

\

\

10?
o L
* D
——— Simply supported edges
10 ——— Clamped edges
//
- s/
- ///
_ |
L/
| | L1 ¢t 1Lt 1 L1 L)Ll | Ll 1 ll_lJllI | llIIlI15
| 10 102 2 10° 0% , 10

kT

Figure L4.— Critical-stress coefficients for thin—walled circular cylinders subJected to axial
compression. L, length of cylinder. (From reference 2.)

9

26T NIL VOVN



o
— I
o ’ 1
N v 500
» , 700| Recommended
| . design
Theoretical curvges
| curves —\ 7 1000
10? |- // /
k =Uxtb2 : //
“Dme |
10

—— Simply supported edges
——- Clamped edges

i H [ J Lo 1 111l ] L1 ] til] I Lol

| 10 2 10 103 104
i -2

Figure 5.- Critical-axial—compressive—stress coefficlients for infinitely long plates with transverse
curvature. * (From reference 3.)

82S6T NI VOWN

15



26 NACA TN 1928

10°
0% |
) rtb? i
Ks= Dn2 |
10 E= =
| b
| 1 [ A | | N N S B I | 1 [ I
! 10 o2 10? 103

(a) Circumferential dimension greater than the
axial dimension.

- Figure 7.— Estimated critical-shear-stress coefficients for curved
panels with clamped edges. (From reference 1.)
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Figure 9.— Test results for buckling of curved rectangular panels
under combined shear and compression compared to the

parabola (Rs)sxp + (Rx)exp = 1.

NACA-Langley - 8-8-49 - 900

29






