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NATIONAL ADVISORY COMMITTEE FOR 	 ONAUPICS 

TECHNICAL NOTE 196i 

METHOD FOR DTER1v1INING TUE FREQUENCY-RESPONSE 

CUARACTFRITICS OF AN ELEMENT OR SYSTEM FROM TUE 

SYSTEM TRANSIENT OUTPUT RESPONSE 

TO A KNOWN INPUT FtJNCT ION 

By Howard. J. Cur±'xnan, Jr. and. Robert A. Gard.iner 

SUMMARY' 

• A method is presented for the determination of the frequency-
response characteristics of an element or systeni by utilizing the tran-
sient output response to a known but arbitrary input to the system. 
Since the application of special inputs, such as step s functions or 
sinusoids, Is often imperfect or impractical, a method. for utilizing 
arbitrary inputs is desirable. Simple flight-test data may be reduced 
by this method to give the frequency response of an aircraft. Examples 
are given as determinations of aircraft frequency responses; however, 
the method. can be applied to any type of dynamic system, such as 
automatic-control components, vibration-absorption equipment, and many 
types of instruments. The method requires that the arbitrary input 
function tend to a finite value after a finite time and that the system 
or element output be measured as a representative quantity having a 
static sensitivity.

INTRODUCTION 

Among the essential elements in the study of the problem of auto-
matic stabilization and. control of an aircraft are the frequency-
response characteristics of the aircraft in the mode of motion under 
investigation. For example, if 'attitude stabilization is under con-
sideration and. is to be maintained by elevator control, the pitch 
response of the aircraft to sinusoidal inputs of control d.eflections' at 
variou.e forcing frequencies, expressed as an amplitude ratio and a phese 
relationship, is required. Heretofore, the determination of this 
important factor was extremely'difficult if it was to be found'or 
checked by flight tests. Such measurements have been made for a piloted. 
airplane (reported. in reference 1) by the laborious, time-consuming 
method. of applying sinusoidal control-surface inputs. For a pilotless
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aircraft In which automatic stabilization and control are needed, the 
problem of successfully determining these characteristics in flight 
tests is more complex. The primary purpose of this paper is to present 
and Illustrate a method by which simple flight-test results can be used 
to evaluate the aircraft frequency-response curves desired. The method 
shows how the frequency-response characteristics can be found if the 
output response is known for any known arbitrary input function. 

This problem of determining desired frequency responses has been 
considered with regard to special types of inputs, such as the step-
function input (reference 2) and the sinusoidal input (references 1 and 3). 
In the actual testing of various systems, factors such as time limita-
tions and limiting accelerations may dictate the type of input that 
gives applicable data. In pilotless-aircraft studies the step-function 
input technique appears extremely valuable; however, the application of 
a true step function is, in itself, a problem. Therefore, a method of 
handling inputs which are not too restricted and. which are easily 
realized Is desirable in the determination of frequency-response charac-
teristics. 

Throughout the field of automatic control, a knowledge of the fre-
quency response, which relates the output of an element to its input, 
is desirable for an analysis and synthesis of a control system composed 
of a group of elements. Since the application of sinusoidal Inputs of 
varying frequencies and the measurement of the output of an element are 
often extremely impractical, as in a hydraulic or pnei.mstic servonotor, 
the present method affords a means of evaluating the response character-
istics needed for effective understanding and design of' a system. 

The present method is an extension of one presented in reference 2 
in which the derivation of the frequency response (performance operator 
in reference 2) is shown for a known transient output response to a 
step-function input. Other methods, of course, have been developed to 
perform this operation. Reference 4 gives a method whereby the output 
transient to a step input is used with Duhamel's integral to produce 
the frequency-response curves. A discussion of a Fourier integral 
method is given in reference 5 . The Fourier method is used In refer-
ence 2, and the approach therein was used to derive the present method 
for finding the frequency response of an element If its output response 
to an arbitrary input Ia known. Although the possibility exists, no 
attempt has been made to employ the line of reasoning of this extension 
to any of the other methods. The present extension is illustrated by 
three examples. The method, however, is only approximate in that a 
finite nuather ofterms in a series expansion are used to determine the 
response at each value of forcing frequency and that a linear differ-
ential equation is necessarily implied, for the system under consideration.
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SYMBOLS 

angular forcing frequency, radians per second 

j=\f:i:

phase angle, degrees, positive when output leads input 

t	 time, seconds 

D	 differential operator () 

i	 illustrative variables 

a.	 angle of attack, radians (except as noted), positive when nose 
is above relative wind, vector 

aircraft elevator deflection angle, radians (except as noted), 
positive when trailing edge is down 

I	 pitching iu.ent of inertia, slug-feet square 

&ynarnic pressure, pounds per squere foot 

S	 wing area, square feet 

c	 mean aerodynamic chord, feet 

m	 mass of aircraft, slugs 

V	 aircraft velocity, feet per second 

CL	 lift coefficient (Lift/q,S) 

Cm	 pitching-moment coefficient (Moment/qsc) 

C	 lift-curve slope (CL/a.) 

C	 pitching-moment-curve slope (?iCm/a.) 

CL	 rate of change of lift coefficient with elevator 
deflection (CL/5) 

rate of change of pitching-moment coefficient with elevator 
deflection (Cm/b)
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2V 

q	 pitching angular velocity, radians per second. 

C

'' 2V 

ci	 rate of change of angle of attack, radians per second 

ANALYSIS 

The analysis which presents the method for obtaining the frequency-
response data from the transient response to an arbitrary input to an 
element or system is considered in two sections. The first section is a 
review of the results presented. in reference 2 arid discusses the deter-
minstion of the frequency response when the transient output for a 
step-function input is known.- This procedure is herein, called the 
"step-function input technique." In the second section the basic 
technique presented in the first section is . extended, and the resulting 
procedure is termed the "arbitrary-input technique." The method requires 
that:

(i) The element or system is describable by linear differential 
equations. 

(2) The arbitrary input function tends to a fixed value after a 
finite time. 

(3) The representative output of the system tends to a fixed value. 
The ratio of this value to the final fixed input, is the static 
sensitivity.

Step-Function Input Technique 

In reference 2 the complete analysis has been given for determining 
the frequency-response characteristics of an element or system when the 
transient response to a step-function input is known. The method. 
therein involves initially a representation of the output by a series 
of step functions of various amplitudes delayed by time Increments from 
the time origin of the step input to the system. Since the output mey
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also be considered as the product of a step-function input and the fre-
quency response of the element or system, these expressions are equated. 
The required. amplitude arid, phase for the system at the desired frequency 
are found. from the solution of this equation. Since this feature is 
basic and is only extended in the present analysis, the procedure is 
briefly discussed. 

Let it be assumed that the response to a step-function input of 
unit magnitude is known. This response is a function of time, and. the 
time scale is divided into equal time increments in the manner shown in 
figure 1. Since no general rule concerning the number of time incre-
ments necessary to give adequate results exists, cases with two differ-
ent increments may be determined. and then compared for differences. In 
general, for highly oscillatory responses more increments seem to be 
required to approximate the curve and the area beneath It. The change 
In output from the transient-response curve during each of the time 
Increments must be measured. These changes are noted in figure 1 by 
increments of X and the time interval is noted in the subscript, for 
example, LXt0 _t1 . Some of these changes may be negative; however, their 

sum gives the output steady-state value (static sensitivity). As shown 
in reference 2, the amplitude ratio lxi and the phase angle q may be 
expressed as a function of the arbitrary forcing frequency w by 

= IXIe 

= t t0 _t1e /) + xt1_e3(tt2) 

+	 t2_t3e5t/'2) +	 +,. . . (1) 

The addition of these vectors results in a vector defining the response 
characteristics of the element or system at the forcing frequency used. 
This procedure Is'required for as many values of U) as are desired. 

Another method of performing this operation is given in refer-
ence 6 in which the output transient is approximated by step functions 
not delayed by constant time Intervals. This method, however, requires 
the definition of a fuiidamental frequency and. therefore limits computa-
tion to the responses at the odd harmonics of this frequency. This 
method was not used in the analysis herein because the present calcula-
tions had been completed before the existence of reference 6 was noted 
The use of the method of reference 2 is therefore not to be construed as 
meriting any particular preference.
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Arbitrary-Input Technique 

The d.etermination of the frequency-response characteristics of an 
element when the transient response to an arbitrary iflput is imown is 
an extension of the method given in the previous discussion of the 
step-function input technique. The data required are the time varia-
tions of the input and the corresponding time record of the output 
caused by this input. 

In order to clarify the discussion of this method, figure 2 has 
been prepared. The solid, lines in the block diagram indicate the 
element or system for which the frequency response is desired and. for 
which the input and output time variations are known. This frequency 
response is expressed as a frequency-dependent vector 

Output 
Input 

Since the input is an arbitrary function of time, for example, as shown 
in the upper part of figure 2, the step-function method is not 
applicable. For the determination of the required frequency response, 
three steps are required. 

The first step is the introduction of a mathematical element in 
series with the original one, as shown in figure 2. It is then assumed 
that a unit step-function input is applied to the mathematical element 
and that its result is the time variation of the input to the real 
element. After these assumptions are applied, the response for the 
mathematical element as a frequency-dependent vector can be written 

Input 
Step (;i))
	 (2) 

This procedure is the same as the method outlined for the step-function 
input technique. 

The second step is the consideration of the two elements or the 
over-all response characteristics from the step-function Input to the 
mathematical element to the output of the element under investigation. 
In this step the output-time variation found for the element in question 
is assumed. to be the output response to the step-function input to the 
over-all (two-block) system. If the same method presented for the step-
function analysis is used, the result is an over-all response represented 
by the frequency-dependent vector 

Output 

Step	 (3)
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The third step is the combination of these two frequency-dependent 
vectors to produce the frequency response of the subject element. This 
operation is the division of th3 second vector by the first vector at 
the same frequency. Since the division of two vectors is another 
vector, the response of the element in question is also a frequency-
dependent vector expressed as

OutPut .i>) 
OutPut()	 Step	

(14.) 

	

Input	 InPut() 
Step 

The algebraic operation of these vectors is that of linear analyses and 
is valid since the method involved, in determining the responses requires 
the assumption that the elements are represented by linear equations. 
Since the given input and output time responses are Imown for the 
element, and. since equations (2) and (3) are the characteristics 
required to give these responses, the vector operation indicated in 
equation (14-) represents the required f'equency response of the element. 

ILlUSTRATIVE EXAMPLES ATID DISCUSSION 

In the first two examples, cases were chosen in which the actual 
time responses could be analytically determined. The method of this 
paper was then applied and the results compared with the theoretical 
frequency-response curves. The final example is a case in which an 
aircraft frequency response is determined from experimental flight-test 
data. These results are compared with the theoretical values found by 
using the stability derivatives obtained from the same flight-test data. 

Example I 

The block diagram for example I is as follows: 

	

I One degree of I	 5	
Aircraft	 a 

freedom	 I 

The first block Is taken as a single-degree-of-freedom system having 
the same characteristics as a spring-mass-viscous-damping system
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two-tenths critically d.axnped with an und.amped natural frequency 
of 50 radians per second. The differential equation is 

(D2 + 20D + 2500)5 Ki1	 (5) 

In this case K is a constant and is chosen as 2500 to give a static 
sensitivity of unity for this system; that is, a unit	 produces a 
unit S at steady state. 

The second block represents the transfer function CL/S for an air-
craft having the characteristics given in table I. If two degrees of 
freedon are considered longitudinally, the force equation along the 
longitudinal axis neglected, and the velocity considered as constant, 
the response in terms of the differential operator D is 

These results were reduced from the equations of motions adapted from 
reference 3. 

The time variations of S and a were computed for a step-
function input ii of 10°. These computations resulted in the transients 
shown in figure 3 . For the problem under consideration, the 5 was the 
input variation that caused the output variation a. The airplane fre-
quency response is the quantity of interest in this paper. 

If the method described in this paper is used, th.i'ee steps are 
taken:

(1) The step-function input technique is applied to the tran-
sient 5 variation and the vector frequency response S/ri is deter-
nLined for various forcing frequencies w. 

(2) The step-function input technique is applied to the tran-
sient a variation and the vector frequency response ct/ri is deter-
mined for the same forcing frequencies. 

(3) The frequency response a/S is determined by the vector 
division of ct/ri by s/ri at the same forcing frequencies. 

mV CL5 -L1 - CL5 Cmq	 - Cm gSc 

I mVf 
+	 + Cm)	 ,- c1	 + Cin	 + CI Cinq y 

(D) =
D2 

qSc qS

(6)
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In step (1) a total transient time of 0.1 4 8 second was used. and. a 
time increment t of 0.015 second was chosen. These conditions gave 
a total of 32 increments defining the 5/ii variation. 

In step (2) a total transient time of 1.75 seconds was used. and a 
time increment .t of 0.05 second was chosen. These conditions gave 
a total of 35 increments defining the a./t1 variation. 

The results of steps (1) and (2) are presented. in figure 13. In 
figure 13-(a) the response from the step-function input technique 
is shown by the test points and the dashed curve faired through these 
points. The theoretical frequency response of /'ri was found from 
equation (5) by letting D =	 and solving the resultant expression 
for various values of w. The theoretical curve is shown as the solid 
line. The corresponding curves for the cL/ri response are shown in 
figure l(b). 

The cL/5 'response of the aircraft was formed by dividing the 
amplitude ratio of cL/'q by that of b/ij and by subtracting the phase 
angle of cL/ri from the phase angle of of1-1 at corresponding values 
of the forcing frequency w. Figure 5 is the desired. final result, the 
dashed curve Indicating the results computed. from the method herein and 
the solid curve showing the theoretical values derived by letting D = 
In equation (6). 

These results obviously only approximate the theoretical values; 
this fact, of course, Is expected since the individual response at 
each w was calculated by a finite number of terms. In each of the 
responses, however, the comparison Is considered entirely satisfactory. 
Furthermore, the extension presented in this paper is shown to be 
reliable.

Example II 

The second example is Illustrated In figure 6 by the block diagram 
representing the a./8 response of the same aircraft used in example I. 
The input 0 is the ramp function as shown In the figure; the output 
transient response. a. is also presented. 

In this case a mathematical element is considered as described In 
the analysis. An imaginary 	 as a step-function Input is considered 
and the output of the mathematical element is the ramp function 0. In 
this case no linear differential equation could reasonably be expected 
to give a ramp-function transient-response to a'step-function input. 
Therefore, the frequency response determined by the arbitrary-Input 
technique n& the theoretical frequency response may differ more than 
in the previous example.
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The /r response is found by applying the step-function technique 
to the ramp function . Two cases were computed.: 

(1) The ramp-function transient time was Q.14 second. A time there-
ment .t of 0.05 second was used. and resulted in eight terms in the 
swniation. 

(2) The transient time was 0.li. second., and. a time increment it 
of 0.01 second, which gve 11.0 points, was used. 

The step-function technique was applied to the output c response 
to give the cL/ri frequency response. In this case the transient time 
was chosen as 1.0 second, a time increment Lt of 0.025 second: was 
used., and a total of Li-0 points resulted. 

Figure 7 shows the results of combining the separate a./r1 and. 6/ 
responses to give the desired a./6 frequency response. The cases for 
both 6/ri results are shown. The solid curves are the theoretical 
frequency response and. are the same as those used. in example I. 

In this example the discrepancy in the a./ responses is evident. 
No sound. explanation of these differences is known; however, conjectures 
arise. A simple explanation that may apply is that no linear differ-
ential equation could. be expected. to give a ramp-function transient 
responae to a step-function input. Whatever may be said. about this 
topic, the final results may be satisfactory in some cases. The general 
trend is revealed although the peak value is accentuated in this example. 

Example III 

The final example is the determination of the cx./6 response of an 
aircraft from the experimental flight-test data of 6 and. a. time 
responses. These data were obtained. from the flight of a rocket-
powered aircraft model. Additional measurements of lift and' other 
factors were made during this flight, and. by 'using the period and rate 
of decay of the oscillations in angle of attack and normal acceleration, 
the longitudinal stability derivatives for the aircraft were found and. 
presented. in table I. From the flight-test data the factor C + C 

was determined.. Reference 7 was used. to indicate that C 1<1 was 60 per-
cent of this total factor, the value used. in the' theoretical calcula-
tions herein. For the present paper the 6 and a. responses are 
presented in figure 8. 

.The step-function technique using a transient time of 0.55 second. 
and a time increment Lt of 0.0275 second (20 points) was applied. to 
both the 6 and a. transients.
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The two responses were combined vectorially by the method herein 
to give the desired ct/b frequency response (fig. 9) . The theoretical 
curves, shown as solid lines, were found by using equation (6) and the 
stability derivatives presented in table I. These curves are the 
amplitude-ratio and phase-angle curves and show satisfactory agreement. 
In this case the present method gives results comparable to those found 
by using the equations of motion and the stability derivatives. The 
response curves resulting from this method may be even more reliable 
than the .calculated curves since the equations of motion and. the required 
coefficients may not be completely expressed. 

The phase angles resulting from the use of equation (6) with this 
configuration can be seen , to have the incorrect signs for the true lag 
angles. These values have been corrected by subtracting 1800 from the 
calculated value. This inconsistency arises since the NACA sign conven-
tion require's that a positive b (Input) to this airframe produce a 
negative a. (output). The canard airframe of example I, however, has a 
positive B which produces a positive a.; thus, equation (6) in that 
case gives the correct signs for the lagging phase angles. 

CONCLTJDING REMARKS 

A method has been presented for determining the frequency response 
of an element or system when the transient output response.to  a known 
arbitrary input function is obtainable. This method has been derived 
by extending an analysis that permitted the determination of the fre-
quency response when the transient resulting from a step-function input 
is known. This method has been illustrated by three examples, which 
include the determination of an aircraft angle-of-attack response from 
experimental flight-test data involving an arbitrary elevator input. 

The method is limited to inputs that tend to a fixed value after a 
finite time and to systems having an output that can be measured as a 
quantity having a static sensitivity. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Air Force Base, Va.
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TABLE I

AIRCRAFT PARAMTThS USED IN IIUJSTRATIVE EX.A?vIPLES 

Aircraft parameter

Example 

I 
(canard)

III 
(delta-wing 

configuration) 

1.8 1.2 

30 17.10 

2.52 6.25 

1.11. 2.19 

Machniuuber	 ...............

I,	 slug-ft2 	 ..............

11..66 5.72 

s,rt2 	 .................

14.270 1920 

1963 1320 

q., lb/ft2 	 ...............

3.01 2.705 

c, ft .................

ni,slugs	 ...............

CIa, pei' radian ............

per radian	 .......... -2.22 -0.77 

V, ft/sec ...............

-0.218 0.585 

C, per radian ............1.58 -o.561# 

CL, per radian .............

19. 11.8 -2.65 + C, per radian .........

per radian ............-19.48 -1.59
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Time
	 Time 

Step	 Mathematical -	 Thput	 Elemeht or I	 Output 

	

--	 0.1	 I ----p-H elementj	

I	
system	

J	 I L___	 _______ 

Output 
Step (Jo)) 

Output
(jw) Output,	 Step 

iJw) =Input	 Input 
Step° 

Figure 2.— Block diagram showing method for determining frequency 
response when input is arbitrary.
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24
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Figure 3.— Calculated input () and. output (cx.) transients.
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- 
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- 
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/0	 20	 30	 40	 50	 60	 70	 80 
fl/J/ar Iorc//7 Ireqe/encbi a), rodins/sec 

(a) One-degree-of-freedom frequency response, 

Figure )4.._ Comparison of theoretical frequency responses and. computed. 
frequency responses determined from the transients of figure 3.
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-240
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5 

V

I 
Angw/ar forc/ni frq/?, a) rocJh7ns/J'ec 

(b) Over—all frequency response, 

Figure 4.- Concluded. 
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-40 

-80 

-/20 

-/60

3.2 

-200

2.4

______________________TheoreiYco/ 

ii \—Presen/ rne/½cS 

j26 

.8

/0	 20	 30	 40 50	 60 

Aga/or IOrC/'y ñequetcg, a, rodio,'s/sec 

Figure 5.- Comparison of the theoretical response and the computed 
response determined, from the computed. frequency responses of 
figure 14.
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Figure 6.- The input (es) a2li output (a) tmneiente for the ramp-
function—Input example.
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42	 5
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Opofr7fs on ramp 6 

'orthcc/ 

'senl rnel½od 

Ana/ar forcing freque/2c9, a., r€x//on$/seC 

FIgure 7.- Comparison of theoretical and computed frequency responses 
f or the ramp—function—input example.
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34

'I 

I	 I	 I	 •I	 I	 II	 I	 I 
C	 .2	 .3	 .4	 .5	 .6 

Zz?e,ZL,sec, 

FIgure 8.- The ecperIniental arbitrary elevator Input and resulting 
angle-of--attack output from flight test ofaróckèt—powered 
aircraft model. 
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Figure 9.- Comparison of theoretical and computed aircraft angle—of-



attack frequency responses as determined from flight—test data. 
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