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HATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL NOTE 1970

METHOD OF DESIGNING CASCADE BLADES WITH PRESCRIBED VELOCITY
DISTRIBUTIONS IN COMPRESSIBLE POTENTIAL FLOWS

By George R. Costello

SUMMARY

By use of the assumption that the pressure-volume relation is
linear, a solution to the problem of designing a cascade for a
given turning and with a prescribed velocity distribution along
the blade in a potential flow of a compressible perfect fluid was
obtained by a method of correspondence between potential flows of
ccmpressible and incompressible fluids.

If the prescribed velocity distribution is not theoretically
attainable, the method gives a wey of modifying the dlstribution S0
as to obtaln a physically significant blade shape.

INTRODUCTION

In order to control boundary-layer growth, tramsition, and
separetion in the design of a cascade for a given turning, it is
advantageous to prescribe the velocity along the blade as a func-
"~ tion of the arc length along the blade and then to compute the
blade shape. For the case of an incompressible fluid, several
solutions to thls problem have been obtalned (See references-1

to 3.) . '

A similar solution for the two-dimensional potential flow of
a compressible perfect fluid has been developed at the NACA Lewis
laboratory. This solution is based on the assumption that the '
pressure-volume relation is given by a linear approximation to the
isentropic curve instead of the true curve. The flow pattern of
the compressible fluid is obtained by a transformation from a cor-
responding flow of an incompressible fluid using the transformation
developed by Lin (reference 4).

The method of solution consists in using the free-stream
velocities upstream and downstream of the cascade and the prescribed
dimensionless velocity distribution along the blade to select a
suitable incompressible potential flow about the unit circle and
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then to determine the mapping function that transforms this incom-
pressible flow into a compressible flow about a cascade of airfoils.
The image of the unit circle under this mapping gives the cascade
with the prescribed velocity distribution along the blade, provided
the velocity distribution is theoretically attainable. If the veloc-
ity distribution is unattainable, methods are given for modifying the
distribution so that a physically significant profile is obtained.

SYMBOLS
The following symbols are used in this report:

A,B,Cq,C5,D complex constants

a1,8p° logation of complex sources in {-plane
c(t) function of { defined by equation (44)
d spacing of cescade
F(t) complex potential function (incompressible flow)
£(¢) regular function of {
g(t) regular function of {
B(t) regular function of {
Re H(t) function of { defined by equation (59)
Im imaginary part
K(6) function of 6 defined by equation (49) °
2q1
Ky constant equal to
1+ A/l + ql2
2q2
Ko constant equal to
| 1 ,\/1 2
+ + dg
k .+ constant defined by equation (33)
n ) number determined by included trailing-edge angle

of blade
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P pressure
Q(s) auxiliary function of s
q magnitude of dimensionless velocity in compressible-

flow plane (ratio of actual velocity to stagnation
velocity of sound) .

qle10L1 dimensionless velocitj upstream of cascade

qzeia2 .dimensionless velocity downstream of cascade

R region in {-plane defined by |§l_>_ 1

Re real part

r , number defined by equation (23)

s arc length along blade

v(0) velocity on unit circle (incompressible flow)

2 = X + iy complex variable (compressible-flow plane)

a angle of velocity in compressible flow (measured from
positive x-axis)

r : circulation (positive counterclockwise)

y ratio of specific heats

o inclﬁ@ed trailing-edge angle of blade

{ = ¢+ in complex variable (incompressible-flow plane) .

] circle angle (incompressible-flow plane)

A auxiliary variable defined by equation (37)

o) density

T var.able of integration

velocity potential

/] stream function



4 ‘ NACA TN 1870.

Subscripts:

c compressible flow

i incompressible flow
n ) leading edge

t trailing edge

Prime indicates a derivative.

THEORY OF METHOD

In reference 4, Lin has shown that if the pressure{density
relation is :

p =-C1 - :; ‘ _ (1)

then the compressible potential flow about a cascade of blades can
be obtained by transforming the incompressible flow about the unit

. ¢ircle in the following manner. The complex potential function F(t)

for the incompressible flow due to two complex sources at { = a

and { = a, outside the unit circle. |{| =1 is

CF(E) =2 logg(f-a7) +A log, é- _L> + B loge(c-az) + B log, <§- ;1— D
) 8.1 8.2

(2)

where A and B are complex constants with Re A 2 0 and

Re A = -Re B, and D 1is an arbitrary complex constant. The bar
indicates the complex conjugate. The mapping between the z-plane
‘and the {-plane defined by

iz = &(t) (t-a)™" ()" at - 2 (0)]? [at)] T (toay) (teay) at
| ()

glves a compreésible flow with the linear pressure-volume relation
past a straight cascade of identical blades in the z-plane with
the velocity potential P, and stream function Wc given by

P, + 1V, § (& - ', (4)

1183
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provided that g(f) is chosen to satisfy the following require-
ments: .

(a) The function g({) is regular in closed region Riw
defined by |[{| = 1.

(b) The function g(t) #0 in R, except possibly at
one point on the circle where F'({) = 0. (The order of
the zero not to exceed 1.) - Y (5)

(c) Along the circle |t| =1, QE dz = O.
A

(d) The fuﬁction g(l) satisfies the 1nequa11ty
0] [s0)]? (o) o) <2 o m

The magnitude q and the direction « of the dimensionless
velocity at any point in the z-plane are given by

2q -ia F'(0(t-a))(t-ay)

—————— O = () (6)
1 +\/I—:—;§ ' et

In order to use this transformation in designing a blade with
a prescribed dimensionless velocity distribution along the blade
in a cascede, the prescribed conditions are used to select a suit-
able incompressible flow about the unit circle and to determine the
function g({). .

The prescribed conditions are the velocity distribution on the

ia :
airfoil, the upstream velocity q; € 1 and the downstream velocity
qgelaz. The upstream and downstream velocities are related by the

isentropic-flow equations with 7y = -1. This relation is

2 2 2 2
Q" cosTa, gy cosTay

) = 2 , - (7)
l+q2 »l+q1 .

where the axis of the cascade has been taken along the y-axis for
convenience and the flow is from left to right. (See fig. 1.)
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Flow in Circle Plane

The flow of an incompressible fluid about the unit circle is
selected by determining the constants A, B, 8y, and az in

the complex potential

F({) = A 10€e(t'al) + A loge é- a]f—) + B_loge(g-az) + B 1°ge é_ él_> +D
1 . 2

(8)

from the given conditions. The constants A and" B are obtained
from the upstream and downstream velocities and the circulation
and then a8y and a, are determined by the range of the potential

on the airfoil.

Circulation and cascade spacing. - The magnitude of the pre-
scribed dimensionless velocity q along the airfoil is given as a
function of the arc lengths @ = q(si] where the total arc length
is taken to be 2n and is measured from the trailing edge along the
lower surface. If Q(s) is defined by

- a(s) 0<s<s

Q(s)

. (9)
a(s) sp <s=<2n

*

Q(s)

where s is the leading-edge stagnation point, then

n
S -
?.(s) =[ Q(s) ds (10)

N2 _ )
T = Q(s) ds (11)
0

The circulation and the spacing of the cascade are related by
d = - s - (12)
q; sinay - q, sin a, .

where d 1is the spacing. The quantities I’ , q,, 4y, %, and
ap are known so that the spacing is determined.:

g8T1
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Detérmlnation of A,

- The value of d from equation (12) is
used to evaluate A and ‘B because the spacing is also given by

the absolute value of dz taken along a path around a; or as.
(See fig. 2. ) The axis of the cascade has been taken along the

y-axis so' that '
id=j£dz=-y€dz (13)
8.1 az :

The second equality comes from the fact that the residues at infin-
ity of

g(mc-al)'l (t-ag) ™

and

[Free]® [e(t] ™ (t-ay)(t-sy)

in the expression for dz in equation (3) are zero and consequently

ygdz+ dz + dz = 0 (14)
c

where c¢ 1is the unit circle. But by equation 5(c)

jﬁ’ dz = 0
jg dz = -jg dz (15)
3y Ve '

The evaluation of equation (13) in terms of the potential F({)

S(Q) at - l\jéw [%'(ﬁi]z (£-aq)(L-a,)
4 ay

so that

is

'al P (3) at (1s)

ual
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But

+ (17)

1
id = 2ni - = 2ni 18
Zal-azs 4 gfali (18)

I
0
2
P
|

(19)

at ¢ = a;, equation (6).becomes‘

2qy e—jal A(aq-ap)

N - glay)
1+ l+q12 . 1
2q1

1l + A’1+q12

which on writing

Kl =

reduces to

e

8ley) _a im (20)
: (al—az) Ky

Substitution of the values from equatioﬁ (20) in equation .(19)
gives .

' i AR, i
1d = 2ni (—‘-‘—eal +-—lea1> 4 (21)
Kl 4
Hence,:the bracketed expression in equation (21) must be a real
number and
- 2

4A+AK1

4K

= re—ial . | (22)
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where
2 2 2
2 4+K12 4-K1 .
ré = i, Re A) + i, Im A . (23)
From equation (22)
2
(4-1{1 ) Im A _
> = - tan 51
(4+K1A) Re A
. or
4+ 2
Im A = - > Re A tan o, (24)
4-K,7 -

In'A = - Afl+q;® Re A ten o " (25)

which gives the relation between Re A and Im A.

Substitution of the value of Im A from equation (24) in
equation (23) yields

22 22
s (4K o 4+K1>RzAtz
r 4K]_ e + 4K1 e anoul

4K22‘ '
- 1 R 2 A sec2
4K, € 9

or

4+X 2

Re A lsec all

Hence

d = 2n —ZKI~ Re A Isec all '(26)
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Substitution of the value of d from équation (26) in equa-
(12) gives

4'+K12 | Pc
AN Afsec o) = g5t ay - o sin 6

4K, T, lcoé all

Re A = 5
2n(4+K1%)(q sin oy - gy sin ay)

(27)

and Re A 1is now determined. By use of this value of Re A in

equat

ion (25), Im A is obtained. Hence A 1is completely given

by equations (27) and (25).

Determination of B. - From equation (13)

~id

id

where

- jé‘ dz
vaz

35 g(t)(t-a)) H(t-a,) ™ ate 3 jg [w(;)]z|};<';)]'1(;-a1)(c-a2)dc
az ) 8'2

glay) 1 g2 (ag-1) 73
2ry —Es + T s
(ay-e,) g (ap)

]
[\
A
[

]

]
0N
A
e
AR
¥
o5
o
N——
o
[o)
o
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The bracketed expression must be real, so that

(4-K52) Im B |
5 = - tan o, (28)
(4+K,%) Re B
But
Re B=-Re A ‘ ' (29)
and equation (28) can be written
. 4+K,%
= Re A ten
4-K,° 2

A/l+q22 Re A tan o, (30)

Consequently, B is determined by equations (29) and (30) because
Re A 1is known from equation (27).

Determination of &) and ap. - After A and B are known,
the points a; and ap are to be selected to satisfy the single

condition that the range of potential on the circle must equal the
range of potential on the airfoil, that is,

®, (20) - mylay) = 7O _petmy o (a

where 6y and 6, are the trailing-edge and leading-edge stagnﬁ-

tion angles, respectively. This condition is only one equdation in
two unknowns, a3 and ap; consequently, the values of a; and

ap are not uniquely determined. By imposing an additional restric-
tion that &, and a; are-real and ’

8 = - ap (32)

unique values are obtained for a; and ap in all cases. In

particular problems, however, some other restriction may be more
useful, such as assignlng a definite value for a, and computing

82.
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With the restriction given in equation (32), it is possible
to express 6 and 6, 1in terms of a; and substitute these

values in equation (31), but the resulting equdtion cannot be
.solved explicitly for aj.

One method for obtaining a3 is'as follows: Let

1
(0]

ay
(33)

]
'
[}

82
where k> 0. Then equation (.8) becomes
F({)=A logg(f-€¥X)+ & 1oge(§-e-k) +B loge(l+e¥) + B loge(ﬁ-e'k).+ D

or, for poihts on the unit circle ¢ = eie

(eia k)( i6_ -k)

F(elf) = @, (6) + 1y, (6) = Re A log, IR o+
: : : (e " +e )(e e )
eie_ek -e19+ek
iImAlog——-—+iImBlog—-———+D (34)
A %8 15k e 16,k

Hence, ®(6) may be written in the form

©(6) = -2 Re A tanh™l €8 6 | (1n A 4 Inm B) ten ! ten @

cosh k tanh k
) -1 sin O : -1 cos 6y
(I;xxA-Im-B)pan —ToL & * 2 Re A tamh " ———esf -
- tan 6
-1 t , -1 sin 8¢
(Im A + Im B) tan™" Tk - (ImA - Im B) tan T

(35)

where D has been chosen to make cp (9 ) = 0 and the angle con-
vention ‘is ]

- < tan

-1 sin 8 <X
2 .sinh k 2

- e————

1183
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1 _tan® 45 taken in the same quadrant and same direction

d tan”
ane &% tamnx

as 6, ,
The velocity on the circle v(8) is

2Re A sin 6 cosh k . (Im A + Im B) tanhksec29+

v(e) =
cosh2 k - cosz 6 1:anh2 k + te.n2 6
(Im A - Inm B) sixzzhkcosg
sinh® k + sin“ 6

= Tcosh 2k 2_ cos 20) I:ZRe A sin 6 cosh k +

(Im A-Im B) cos 6 sinh k + (Im A + Im B) sinh k cosh k]
(36)

Equation (36) can be further simplified by ’defining A as

. _(ImA - Im B) sinh k
ten A = 2Re A cosh k

n ¢
'§<)\<§

Then

2 o2 _ 2 2|
v(e) = 2..'\[4Re A coigsi ;k(fmc‘:sIgGB) sinh kl}‘in 6 cos A+

(Im A + Im B) sinh k cosh k
N4ReZA cosh? k + (Im A - Im B)® sinh®k

cos @ sin A+

_ 2 N4Re®A cosh® k + (Im A - Im B)Z ginh® k
- cosh 2k - cos 26 sin (6 + A) +

§Im A + Im B) cosh k sinh k (38)
N4 Re2A cosh? k + (Im A - Im B)2 sinh? k |- »

The stagnation angles 6, and 6, are therefore the roots of the

equation
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sin(6+)) = -(Im A + Im B) sinh k cosh k (39)

N4 Re2a cosh? k + (Im A - Im B)Z sinh® k - : .

The desired value of k 1s obtained as follows:
(1) Assume a value of k.

(2) Compute A by equation (37).
(3) Obtain 6, and 6, from equation (39).

(4) Compute mi(6t+2n) - ¢a(6n).

(5) Repeat (1) to (4) several times to obtain a plot of
4 (64+421) - ¢3(9n) as a function of k..

(6) Interpolate to obtain k such that

P (04+2n) -.9;(6,) = @,(21) - @ (s))

With k determined the flow about the circle is known. The
potential ®;(6) and velocity v(6) for points on the circle are
glven by equations (35) and (38), respectively.

Function g({)

The function g(!) can be computed for points on the unit
circle by using the prescribed velocity on the airfoil and the
veloclity on the unit circle to determine the real part of g(g)
The imaginary part of g(!) can then be computed by Poisson's
integral. Because of the restrictions imposed by the given con-
ditioms, however, g({) is actually obtained in a slightly dif-
ferent manner, as shown in the following sections.

Airfoil with pointed trailing edge. - If an airfoil with a
pointed trailing edge is desired, then g(!) must vanish at the

164
trailing-edge stagnation point { = e ', Hence, g(l!) can be

w:itten in the form
) 164 \B |
g(t) = Q. - e—f—> Y (40)

8Tl
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where f£(!{) 1is regular in the exterior of the unit circle and

=12 (41)

where & 1s the included trailing-edge angle of the airfoil.
(See reference 4.)

Values of g(iek) - Because the velocities are given for the
compressible flow upstream and downstream of the cascade, the
value of g(t) at ¢ =+eX is determined from equation (6),

2e¥ael™
g(e¥) = = K:
(42)
g(-eK) = = 2¢"Be’%2
K

In order that g({) have these values, f£({) is writtemn in
the form

-2k2

7 2k $2\7 2
2(0) = ot) + L=t ’;‘2‘ =) m(y) (43)

where

i('L1+ k

; k
c(f) = % <} + —(> logg K12?1 vk +

Kk iap + k|

1 € -2Be :

101 - & hog (44)
2 ( t > ® &, (et )

and H(!{) is regular in the exterior .of the unit circle with

lim LH(L) =0 - (45)
!—)m

The restriction on H({) imposed by equation (45) is neces-
sary so that f(!) (equation (43)) will be regular. By use of
equation (43), g(l) 1is expressed as
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¢

and g(f) will be known when H(!) is determined. For the actual
computation of the blade shape, only the values of g(l) on the

unit circle are needed. Hence, it is only necessary to compute H ({)
for points on the circle, If desired, the values of H () for any
point in the exterior of the circle can be obtained from the values
on the circle by Poisson's integral.

104\R . /y 2k ,2,,p2 -2k '
&(t) =<19——) R G );(é ) m(t) ()

Determination of Re H on the circle. - By equation (4), the .
potentials ¢c(é) and ¢1(6) are equal at corresponding points.

Thus, by matching these potentials a correspondence is established
between points along the airfoil arc and the circle angles; that is,
s = 8(6). By use of this correspondence, the magnitude of the pre-
scribed velocity along the airfoil is obtained as a function of the
circlf ?ngle q = q(8). Hence, by taking absolute values of equa-
tion (6 .

2q(6) = & (eie)(eie-ek)(eiewk)' ,

1 + A1l+q(6)2 ‘ |g(eie)|

for points on the circle. Substitution of the value of g({) from
equation (46) with -{ = ei® and replacing F'(el®) by the velocit
v(6) (equation (38)) on the circle give _

(47)

2q(8)  _
1+ p/1+a(6)2

¢ |v(8)] (2 cosh 2k - 2 cos 26)

ol

= _
| - i6 : _ 19]
[? .2 cos,(et-ei]z e[%e c(e )_+ (2 cosp 2k - 2 cos'26) Re H(e'")

or, with the equation solved for Re H(8),

o=

A |v(e)|’(2 cosh 2k-2 cos 26)
ol

log - Re C(eie) + k

(<

K(0) [2 - 2 cos (0, - )]
2 cosh 2k - 2 cos 26

Re H(elf) =
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where

k(o) = 238 (49)

1+ ,,/1+q(ea_)2

Restrictions on Re H(elf). - Equation (45) imposes restric-

tions on the values of Re H(eie), as shown by writing H(!) in
the form : '

H(§)=ho+'?+-£§+... : (50)

For points on the circle, equation (50) becomes

8(eif) = e H(el®) + 1 m E(e1®)

Re hy + Z (Re hy cos J6 + Im hy sin Jjo) +
J=1

i I:Im hy + Z (Im by cos J0 - Re hy sin JG:\ (s1)

=1

Equation (51) is a Fourier expansion and

2n
Re hy = ;1;/ re H(el?) as © (52)
0
’ 2n
Re by =21_:t Re H(eie) cos 6 d9 (53)
0
2n
Im by = —;-,; Re H(elf) sin 6 a8 (54)
0]

But equation (45) requires that

Be hy=Imhy =Re by =Inh) =0 (55)
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Consequently, Re H(eie) must satisfy the equations

2n |
f Re H(el®)as = 0 (56)
0

2n o
Re H(elf)cos 6 a0
0

2n ‘
f Re H(el®)sin 6 ao
0

Adjustment of Re H(elf). - If the values of Re H(el®) from
equation (48) do not satisfy equations (56), (57), and (58), the
values must be adjusted until the conditions are satlsfied One
method for adjusting the function is to define Re H(el ) by

1
(o]

(57)

"
o

(58)

Re f(e!f) = Re H(eif) - 5 L Re h, -2 Re by cos 6 -2 Inm hy sin 6

(59)

vhere Re hy, Re hy, and Im hy are given by equations (52),

(53), and (S4), respectively. The modified function Re A(e19)
will then satisfy equations (56), (57), and (58). This method of
modifying Re H(elb ), however, changes the velocity distribution
all along the profile and, if the correction terms in equation (59)
are not small, these changes in the velocity may be extensive
because

2q -
+ A/1+§2 N/

where a denotes the new velocity. In some cases, consequently,

(; Re h0+2Re hl cose+21mh1 sin 6)

Re H(ele) can best be adjusted to satisfy the requirements by
adding to Re H(el®) o0dd and even functions that have nonzero
values only in small neighborhoods of the points 8 = 0 and

@ = -n. The particular functions to be added to Re H(eie) and
their range of values depends on the specific problem; no general
method can be given for determining the functions. :
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Determination of Im H(eie) - After Re H(eie) satisfying

equations (56), (57), and (58) is obtained, the functlon Im H(ele)
is given by Poisson's integral (reference 5)

2n , |
Im H(elf) - 51; Re H(elT) cot (1;—@)& (60)
o

where the constant term in Poisson's integral has been taken as
zero so that

2on
Imho=—n1— Im H(e1) as = 0
0

as required by equation (55). Hence, H(eie) ‘is determined for
points on the unit circle by :

H(elf) = Re H(e1®) + i Im H(e1f)

Adjustment of g(e%ﬁ), - By use of these values of H(eie)
in equation (46), g({) is determined for points on the circle,

[;_ei(et-efln e[%(eie) + (2 cosh 2k - 2 cos 26) ﬁ(eieﬂ

g(elf) =
(61)

‘Because of the adjustments in- H(eie), g(eie) ‘may no-longer

satisfy condition (5d). If g(e 16) does not satlsfy the inequality
for points on the circle, then the values of g(f{) can be adjusted
to satisfy the inequality by changing the second or higher harmonic
terms in H({) or by other methods. It should be noted that if

the velocity along the profile is finite then g(g) satisfies the
inequality. 1In fact, if the prescribed conditions are theoretically
attairable, then no modification is necessary, not even in Re H(elf).

Blade Coordinates
By use of the values of g(eie) that satisfy all conditions,

the blade coordinates are obtained from integration of equation (3),
that is ' 4 .
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| - -1 1 2 _ek + k
z = fg(ﬁ)(g-ek) Yty at - % f F'() (é(t))(L.e )at

P
which on replacing F'(eie) by v(e)e‘i(e*g) and writing

g(e19) = g (o) o'€2(%)°

reduces to

- 2 5 o i[? n 9]
g. () (e219_32k) 1 (6 (e219_ezk) o +2+g2( ) 2
1 4g, (6

(62)

COMPUTATIONAL PROCEDURE

- An outline of the procedure for computing the blade shape is
as follows: ‘ . :

(1) obtain @.(s) and I, from equations (10) and (11),
respectively.

(2) Compute Re A, Im A, and Im B by equations (27), (25),
and (30), respectively.

(3) Obtain k as outlined in the text. Compute ®;(6) and
v(6) by equations (35) and (38), respectively.

(4) Plot @.(s) and ®;(6). By comparing the abscissas for

equal values of these potentials, obtain s as a function of 6,
which permits writing the prescribed velocity q as a function of

8, aq =q(6).

(5) Compute Re H(elf) by equation (48) and determine Re hg,
Re hy, and Im by by equations (52), (53), and (54), respectively.
If these values are not zero, then adjust Re H(eie) either by
equation (59) or by addition of functions so that Re H(eif) satis-
fies equations (56), (57), and (58).

. (6) obtain Im H(el®) by equation (60) using the adjusted
values of Re H(elf),

e81t
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(7) obtain g(el®) vy equation (61). The function g(elf)

must satisfy inequality (5d4) for points on the circle. If g(eie)

does not satisfy the inequality, adjust g(eie), as suggested in
the text.

(8) After g(el®) has been adjusted to satisfy all conditions,
the blade shape is obtained by integrating equation (62). .

DISCUSSION

The magnitude of the dimensionless velocity along the blade
cannot be entirely prescribed arbitrarily as a function of the arc
length, but is subject to some restrictions in addition to the con-
ditions imposed on H({) previously discussed. The magnitude
must be finite everywhere along the profile and by the method given
here the velocity can be zero in at most two places - the leading-
edge and trailing-edge stagnation points. By a limiting process,
however, the method can be extended to provide for additional stag-
nation points. The zero of q at the trailing edge is of the
order %, where & 1is the included trailing-edge angle of the

blade. Thus, for a cusp at the tail, ® 1is zero and q need not
be zero at the trailing edge.

Another restriction is imposed on the velocity distribution
when the spacing of the cascade, as well as the turning, is speci-
fied in advance because the distribution must be selected so that -
I, will satisfy equation (12).

If a velocity distribution is selected to satisfy these con-
ditions but otherwise is arbitrary, the resulting profile may not

"be a physically real blade but may result in a blade with zero or
negative thickness in some portions of the blade. The negative
or zero thickness is caused by specifying too low velocities along
parts of the blade and a physically real blade can be obtained by -
increasing the prescribed velocity along the blade.

CONCLUSION

_ By use of the assumption that the pressure-volume relation
is linear, a method has been given for computing the blade shape
in a straight cascade of identical blades having a prescribed
velocity distribution along the blade and given upstream and
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downstream velocities in a potential flow of a compressible per-
fect fluid. If the prescribed wvelocity is not theoretically
realizable, the method gives a way of modifying the distribution

so as to obtain a blade shape. Whether the resulting blade is
practical will depend on other considerations. The applicability
of the method is limited only by the accuracy of the linear approxi-
mation to the pressure-volume relation.

Lewis Flight Propulsion Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, June 7, 1949,
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Figure 1. - Cascade in z-plane.
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Figure 2. - Paths of integration in Z-plane.
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