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COMPARATIVE FOAMING CHARACTERISTICS OF

AERONAUTICAL LUBRICATING OILS

By W. W. Woods and J. V. Robinson

SUMMARY

Comparative data are presented on the volume of fosm and the
stability of foams of aeronautical lubricating oils (new and used)
produced at 100° C (!2@ F) by the air-b~bbling method. All of the
data were obtained using the ssme fosm meter, by a standard technique
and at various rates of air flow. The percentage volume increase,
when foams are produced by the beating method at 250 C, has been
included for comparison, as obtained from the previously reported
frothing volumes.

A function V = 34(1 - e-at) is proposed to relate volume increase
during bubbling V, rate of air flow A, and continued bubbling
time t. The constants k and a sx’ediscussed and calculated for
several oils from averaged experimental data. The constant k appears
to be an inverse function of the bubble size and a is related to the
rate at which the steady state of foam volume is reached.

T@e fosm-st~ility function L~~ (where Lg is the average

lifet= of the gas b the fosm and & is the increase in height of

the fosming system due to the inclusion of air at the instant bubbling
ceases) has been investigated using carefully selected experimental
data and is shown to be nearly linearly related to the rate of air flow.

It is shown that aeronautical oils froth more than do medicinal
paraffin oils, as would be expected from their higher viscosities.
The volume of froth produced by beating is 10 times greater and the
lifetime of the gas in the fosm, even divided by the volume of foam,
is definitely greater. Bubbling does not exhibit such a wide difference
as beating, but, even so, the volumes of foam produced by aeronautical
oils are msmy times greqter than those obtained from medicinal paraffin
oils ●

The aeronautical oils definitely differ from ea~ other, and even
different batches from the same copqymy may be msrked3y different. The
percent volume increase on beating ranges from 72 to 127, and on bubbling
shows as great a range; beating and bubbling do not give parsllel values,
nor does either follow the same order as the stability of the foam
produced.
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Reproducibili_&yof the bubbling method using porous stone and
fritted-glass bubblers is discussed, and impromments are suggested.

INTRODK!lTON

Oil-foaming troubles are,greatly aggravated by flying at altitude;
the effects of these troubles qre well known, but the control of them
is incomplete. Study o~these problems includes the study of anti-
foaming agents and the study of refinement of oils so as to make them
nonfoaming. As part of the general problem, the present paper compares
data on the foaming characteristics of various new and used aeronautical
lubricating oils and some medicinal paraffin oils.

- This work was conducted at Stanford
and with the financial assistance of the
Aeronautics.
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SYMBOLS

University under the sponsorship
National Advisory Committee for

rate of air input to bubbler at 95° C, cubic
per minute

constant for a given oil and a given rate of

base of natural logarithms

centimeters

air input

increase in height of foaming system due to inclusion of
air (i.e., height at any time t– of top of fosm
above original oil level), centimeters; note that this
is not the ssme h used by Brady andRoss (reference 1)

value 05 h at the instant bubbling ceases (i.e., in all
these tests, 8 min. after bubbling connnences)

constant for a given oil and given rate of air input

average lifetime of gas in fosm, seconds

time while air is bubbled into foaming system during
formation of foam, minutes

increase in volume of foaming system due to inclusion of
air, cubic centimeters; in a uniform tube this is
equal to h times horizontal cross section of foam
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percentage volume increase, O being volume of oil used

# foam stability

APPARATUS AND EXPERIMENTAL MET!EClll

The apparatus used was the fosm meter diagramed in figure 1,
consisting essentially of a jacketed Pyrex glass tube about 30 inches
long and having an internal cross section of 7.84 square centimeters.
Metered air was bubbled into 50-cubic-pentameter oil samples at 100° C
through a porous stone sphere.(Cenco “gas diffusing stone”) connected
to a delivery tube having an external cross section of 0.28 square centi-
meter. In one series of tests a Pyrex vertical-~ej fritted-glass, gas-
dispersion tube of !2&KLU.imeter disk dismeter and ‘rcoarse”porosi~ Was

substituted for the Cenco stone sphere. me rate of air flow was
computed from the pressure drop across a calibrated capillary tube in
the air supply line.

The experhental procedure consisted of noting the rise in the
level of the top of the foam at definite time intervals up to 8 minutes
after bubbling commenced. At the end of 8 minutes the air was shut off
and the uppermost level of the collapsing fosm noted at definite time
intervals, usually
experiments showed
steady-state value

The data from
tables I to 111.

15 seconds, until-no ~osm remained. Preliminary
that the fosm height was within 10 percedt of its
after 8 minutes.

the

RESULTS

measurements upon oil foams are summarized in

The volume increase was related to the air input and duration of—

bubbling by the function V = kA(l - e-at). The parameters k and a
are dependent upon the rate of air input A.

The dependence of foam stability upon rate of air input was
likewise studied.

The findings from these investigations are reported as follows:
Constant k against air input (fig. 2), constant a against air input
(fig. 3), and fosmstabiliti L~& against air input (fig. k).
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Reproducibility of Foam Tests

Tables I and II were made up considering all available experimental
data. Where several determinations have been made, the extreme range of
values is reported. It shouldbe noted that there is an over-all
variation of about 75 percent in the foam-stability measurements and
of about n percent in the fosm-mlmne measurements. The reproducibility
of these measurements appears to be governed primarily by the condition
of the porous stone bubbler. Any reduction in the effective number of
pores (resulting from clogging with oil, additives, residues, etc.)
tends to produce larger bubbles which sre less stable. Ordinary cleaning
methods, such as washing with petroleum ether, are often not effective,
and drastic treatment such as burning out the contamination In an air
stream occasionally results in small cracks and may leave a residual
ash. The constmction of the Cenco bubbler (a metal stem cemented into
the porous stone) prohibits the use of acid oxidizing agents in cleaning.
Consequently, the condition of the stone bubbler is indeterminate except
by empirical comparisons on a reference oil, and not controllable except
by selection of bubblers.

A Pyrex, fritted-glass, gas-dispersion tube was substituted for the
Cenco porous stone sphere in a series of five successive tests on
Aeroshell 120 designed to compare the reproducibility of the two bubbler
types. The resulting expertiental data were converted into percentage
volume increase and values of L~& by the calculations explained

below, and the results presented in table 111 for comparison with
similar data obtained using the Cenco bubbler.

Except for the difficulty of cleaning the stone bubbler, the
experimental,factors affecting reproducibility are readily controlled.
The data in table III indicate that, with a fixed bubbler condition,
the variation in either percentage volume increase or fosm stability
is less than 10 percent. The much greater ease of cleaning the fritted-
glas~ disk makes its use preferable to that of the stone sphere. Partial
clogging of the pores of the stone sphere may cause a change of nearly
100 percent in foam stability.

The
increase
bubbling

Treatment of Data

foam height used to calculate the values of percentage volume
listed in tables 1, 11, and 111 was measured 8 minutes aPter
commenced. The volume increase at any given time is equal to

the height increase (in cm) multipliedby the &~ular cross section
(in sq cm) of the tube occupied by foam. The percentage volume

100Vincrease ~ is 100 times the ratio ofvolume increase to the

original oil volume,
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. The ratio L~&, as reported in tables 1,

derived unit representing foam stabili~, and is
data) to be independent
average lifethne of the

following diagrsm, with

of the amount of-exposed
fosm Lg was determined

.

.

h-..-— — ----- _____ ___

5

II, and III, is a

known (from unreported
fosm surface. ‘IShe
as shown in the

The area S
experimental
calculation,

Time since bubbling ceased

was calculated by means of Simpson’s rule $rom the
foam heights measured during collapse. To simplify the
the fosm heights were measured at 1~-second intervals:

hence the equation for this area becomes
.

s

An attempt
of air flow was
stone bubbler.

r.15 l+h2+h2+h3+h3+h4+
2 2 )2“””

mathemat ical.lyto relate foam
subsequently made, using data
Because of the aforementioned

with rate and duration
obtained with the porous
lack of ~rimental.

reproducibility, it was found necessary to average the data (to obtain
“average volume increase”) from a large nuiber of fosm tests‘on each
oil (in the case of Aeroshell 120, 61 foam tests were used). These
data were first plotted as shown in the following diagram.
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Average
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of system,
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Bubbling time, t
~B (rein)

8

6

4

2

1

●7

Air rate at 95° C, A, cc/rein

Sections such as B-B (see diagram) indicate the volume increase at
different bubbling times for any rate ofiair ixrputi It was found that,
for any such section as B-B, rate ofiair input, volume increase, and

dwation of bubbling couldbe related by’the function V = lul(l- e-at).

.

u

The constants k and a were computed for each rate of air
input (i.e., a particular section B-B) by successive trial and
approximation, assming v~ues of a at-0~05 ln~~~s ~d then

..-.

calculating the value of k for each bubbling time indicated on
the preceding diagram. When a was correctly assured, k remained
constant for all values of- t. The degree of constancy was determined
by the average percentage deviation from the mean k. For the selected
values of a, the corresponding values of k didiot vary more t~n
10 percent. Data on three Navy 11.20specification oils and one
synthetic oil were treated in this manner. !lhevariation in the

constants k and a with air input for these oils treated in this
manner are shown in figures 2 and 3, respectively.

Table I indicates that inmost cases foam stability (expressed
as L~~) decreases with increasing rates of air input during foam

formation. As the over-all experimental reproducibility for L~~

was poorer than for foam volume, and as less data were available, it
was considered impractical to average values of L~~ as was done

in the case of values of percentage volume increase. Therefore, only
those foam data were selected for which the foam volume was within

.

.
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u percent of the aversge (8-minute) foam value for that air flow.
Using this procedure, and defining “nearly awrage” volume increases
as those within 12 percent of the actual.average, selected measurements
of ~~ on Aeroshell.120 were obtained. These data are plotted in

figure 4, wAich shows that the variation of L~& with rate of air

flow is nearly linear.

DISCUSSION

In considering the function V = kA(l - e-at), it should be

noted that as t tends toward infinity kA@ - e-at) becomes kA;
hence k is the determining factor in equilibrium foam height. The
e~onent a, on the other hand, is related to the the required to
reach equilibrium.

Previous experience in this laboratory has indicated that, for a
given oil, steady-state foam volume is a function of bubble size as
well as of rate of air input. At a certain rate of air input, small
bubbles will form a definite foam, but lager bubbles will not. The
factor k, therefore, appears to be a function of bubble size. Small
bubbles form more fosm than slightly larger bubbles; hence, as btible
size decreases, k increases. The Cenco gas diffusing stones used in
this study do not produce bubbles of the ssme diameter for all rates of
air flow. At low rates there is a tendency for all of the air to lass
through the larger pores, and at high rates considerable bubble
coalescence on or near the surface of the stone is encountered.
Consequently, at either high or low air flows, there is a higher
proportion of large bubbles thsn at intermediate air flow. This
explains the maxfmum in the k-curve of figure 2. Furthermore, at
high rates of air flow, moderate turbulence occurs in the fosm
column, a condition favorable to bubble coalescence into larger
and less stable bubbles.

Figure 2 indicates that the arrangement of oils in the order of
their foaming volume may be altered by changes in the rate of air flow.
The best reproducibility is given,by the lowest air flow that produces
a satisfactory head of foam, since turbulence in the column is avoided.

.—

An air flow of approximately 100 cubic centhneters per minute produces
a maximum of foam with little turbulence (compare fig. 2).

It is apparent that the bubbling method at 100°’C using the
Cenco bubbler must be rigorously controlled to achieve reproducibility.
Experience in this laboratory has indicated that even new stones vary
markedly when compared on a reference oil. Table III indicates that
Pyrex fritted-glass bubblers maybe substituted for the porous-stone
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type and yield nearly
tie Fyrex-bubbler can
the customary solvent

the same amount of fosm with better reproducibility.
be easily cleaned with acid oxidizing agents after
treatment, whereas proper cleaning of the Cenco

bubbler is extremely difficult.

The data of table I indicate some interesting facts. The
nonhydrocarbon liquids - ethylene glycol, glycerol, and castor oil -
fosm much less than the lubricating oils, even making allowances for
the viscosity differences. However, only the ethylene glycol does
not foam; the axiom “pure liquidsdo not foam” (meaning single chemical ‘
species) demands the assumption that the glycerol and castor oil were
not pure liqqids, which seems very likely for the glycerol and certain
for castor oil.

Of the three synthetic oils, two of’which are hydrocarbon in
nature, two fosm less thsa the MO-grade military aeronautical
lubricating oils (see table I-concluded) and one (hydrocarbon)
foams more. The nonhydrocarbon oil was of much lower viscosity, so
the lesser foaming of it is partially accounted for on that basis.

The medicinal oils fosm less than the lubricating oils (see
table I-Concluded),but-this is accounted forby the difference in
viscosities, as has been previously pointed out (fig. 5, p. 1352,
reference 1).

Table I-Concluded indicates that the foaming characteristics of
the aeronautical lubricating oils usedby the armed services vary
within extremes that have approximately a twofold range, both as to
fosm stabili~ and foam volume.

Table II shows that less froth is produced from used oils, either
by beating or by bubbling; but the stability of the froth so produced
is in eveq case greater. The volumes of froth produced from used
oils differ more than those from oils before use, but the fou
stabilities become shilarly high.

CONCLUDING REMARKS

Data on the comparative foaming characteristics.oflubricating
oils, both new and after use, have been redetemnined and calculated
by a standard procedure. They are found to differ significantly from
each other. This comparison is believed to be much more reliable
than previously made ones.

For the most reliable foam measurements on oils, the beating
method at room temperature and the bubbling method at 100° C using

.

.

.

.

.
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.
the fritted-glass-diskbubbler, as specified, are recommended. It is
believed that much of the variation in the results reported for the
bubbling method at 100° C would be eliminated by redetermination using
the fritted-glass disk in place of the porous stone sphere actually
used.

Am empirical expression has been developedby which the rate of
fosm rise may be predicted from a known rate of aeration, by making
use of two parameters characteristic of the oil. It is believed that
this expression might be adapted to engineering calculations on
foaming volume.

Stsnfordlhi.versity
Stanford Universe@, Calif., June 25, 1947

.

.
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1. Brady, A. P., and Ross, Sydney: The Measurement ofiFoam Stability.
Jour. Am. Chem. SOC., vol. 66, no. 8, Aug. 1944, pp. 1348-1356.
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VOlvJ= Incre.me
(percent) Fo@Jn A9MI.ity, L&j

Sample Alr-bubblm mthod at 100° C
air-bubblin8 mathod at K@ C

for ah flow of - Beating fclr*flL7w0f-

. method

100 c+irl lx Ccjmim m cc/rein
at @ c 100 cc/mh 1~ cc/rein m cc/mJl

Et@lane .@yml o o.~ --..-”-

Pm-265 SyJrthatica
-------

:
--------

4 -f.o 6.6 2.6 1.5
MdkwOn’ B Eydml % 6.0 1.9 1.9
RFM Aviation 120 (9/19/&)b m & 130 3.0 ;.; ZQ.g 2:;
S.@bb mlnerd ofl

Glycerol
23.0 340 ILO l.k 1.3

m 340 qo 6.0 3:0 1.9 1.3

wet-w oil m 330 3-fo 17.0 1.7 1.3 1.4

%&iv%%% (1.g4@ ‘
m 23.0 1.8

g %
1.4

390 83.0
3.i
(b ?;7 pi

TexaCo 120 (1944) 430 b% -p.o
AeMBkuY1.1~ 3P-5W 420-633 420-300 J.lyLo 2.6-4.0 2.;:;.4 1.8:3.7

M2ffett Field (1943 Yemco 3.20) 4COWJ30 470-730 47Cg&o g8.o 2.3;.1 2.1-3.0 1.7-3.2”
-n Grimlw 60 J.$Q.O 2.3

5%?%20
1.9

ME Airllne 1.20 6$-% 1.C6.o 3:3
45&

2.6 2.2

TeX8co lXI (1942) 480-740 U1..o %1-3.6 2.0-3.1
McClallanField (1942) m

2.1-2.9
;0 IJ.l..o 3.2 3.0 2,9

Noffctt Flald (l$J44Gilamre 120)
NFM Aviation I&U (6/Xl/44)b

62U 7442 9-2,0 2.4
% 610 104.0

?;;
(b) ?$4

NXA Refemme oil 120 (~ W) 6~70 7Y3;80 &?zy g.: 2.8-3.2 2.3-2.7
mall Formtla IIb

. .
,1.2

Stmdard Aviation 1.20 @J-7cQ 6Y2-970 740-loa3 lq:o 2.4-3.3 A.9 2.2:;.4

BkLndara Synthetic 1.20 810 m m L1.g.o 2.0 1.7 1.4

WIIS ofl is not cca@arabl.a with the obbar synthetics, having abnommX1.Y low viscosity.
b~~e We - w ~~ ~IIB h tk iid tiwn to c&mn adtitiveu. W Aviation (lgk!) and Shell Forml.a II weka te6t.ed without

aEY clef- such m is now oft-m added by mnufactumrs .8, for axamle, in FZM Aviation (9/15/44). MM Aviation lKI (I@@
and (qXl/M) dram rapiwy, laaviw * f- of .w=at Bmiuw.

T

I-J
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TMIIE 1.- COMPARATIVE FOMCRG CHARM!O?.RISTICS C@ UNLEiED AERONAOTIML OILS - Concluded

Sample

McKesson’s Ey3rol

Squibb mineral oil

Aeroahell 12Q

Gulf Ahllne 120

McClellan Field (1942)

Gilmore 120 (Moffeti Field, 1944;

Standard Aviation 120

Texaco I.XJ (Wffett Field, 1943

!kXaCO 120 (@+2)

Texaco I.xl (1944)

WA Reference Oil 120

Volume Increase

(percent)

Air-bubbling method at 1000 C

for air flow of -

,00 cc/mln I

60

100

370-590

k%)

4s’0

500

52-9-700

4oo-5&l

450-6Q0

b

630-670

.% cc/mir

IIM

230

4.20-650

580-620

550

620

650-970

470-730

480-740

430

750-7@

. ,

00 cc/rein

200

340

k20-8oo

6%8%)

570

740

7pm20

470-8(XJ

540-840

k%

~+o

eating

method

t 250 c

6

11

105

106

IJ.1

92

12-/

93

ml.

72

93

Fo~ B“&bil.i~, ~~j

air-bubbMng ndihod at K@ C

for air flow of -

.00 cc/ld.n

1.9

2.3

2.6-4.o

3.3

3.2

2.5

2.4-3.3

2.5-3.1

2.1-3.6

3.4

2.8-3.2

.X cc/Idn

1.9

1.4

2.3-Lo

2.6

3.0

2.k

2.6-2.9

2.1-3. o

2.0-3.1

3.2

2.3-2.7

00 cc/nri.n

1.3

1.3

1.8-3.7

2.2

2.9

2.1

2.2-3..k

1.7-3.2

2.1-2.9

2.8

2.2-2.4

P
N)
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TABLE rl. - BFFECTOFI.IHEIN AIRFUtE FLIGHT ON FONLtNG CEARAC’EBISITCS QF

AEROIVAU!tTCAL I.IJBR~A!CJXG OHS

Volume increa6e
(percent) Foeln stablH~, L~~;

air-bubbling nthod at 100° C

San@e Ale-bubbling method at 100° C for atc flow of -

for air flow of- Beating

tithed

100 cc/rein 150 cc/rein ao cc/mln
at 25° c

100 cc/rein 150 cc/udn 200 cc/nlhl

I.kClellaf Field (GuM); new (1942) 4$0 5%3 570 1.11 3.2 3.0 2.9

KsClel&n Field (Gulf); used (1942) 42s3 470 490 MM 3.6 3.4 3.3

kffett Field (Texaco); new (1943) 400-% 470-730 47’fM3cn3 98 2.5-3.1 2.1-3.o 1.7-3.2

b&ffett Field (Texaco); ueed ~ hours 360 420 420 --- 3.7 3.2 3.4

(1943)

Mofi?ett Field (Texaco); ueed 25 hours 330 34’0 360 91 3.4 3.6 3.5
(L943)

bbffett Field (GlluKJre)j w (1944) 500 6m 740 92 2.5 2.4 2.1

!WYett Field (GilMore) j ueed 370 390 410 79 3.1 3.0 3.0
29.5 hours (3.944)
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TABLE III.- COMFARISON OF BUBBLER TYPES, USING

AEROSBELL 120 AS A REFTRENCE OIL

Bubbler

Pyrex fritted-
glass disk

Cenco porous
stone sphere

Volume increase at air f
of 200 cc/rein

(percent)

546

624

593

640

Mean 593 ~ 31

609

671

818

702

Mean 700 k 60

Foam stability, ~glho
Foam produced by air flow

of 200 cc/rein)

2.77

2.61

;.30

2.42

2.53 L 0.14

2.77

2.42

2.63

2.34

2.54 ko.16
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Condenser

Pressure -reducing Flow-meter
capillary capillary

Needle
valve !

Manometer

Oilsample

Bubbler

Water

Burner

\

Figure l.- Foam meter.
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2.0 x.#
I

, \,Aeroshell 120
1.8

1.6

1.4 r

1.2

a 1.0 L A

Texaco
1120

.8 \

.6
.

1
I

.4 s
1,

‘ Standard Aviation

.2

n
o 50 100 150 200 250 300 350

A, cc/rein

Figure 3.- Constant a against rate of air input at 95° C. V = MI(1 - e-at).



18 NACA TN 2031 ●

4.0

Qc)ti. u

3.6 o
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o
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0
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1 I
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I I I I
A.U

I I I I
J.. U

I I I I :!?5
1.4- “ \

0

1.2
v ‘.

1.0
0 100 200 200 400

A, cc/mi.n

Figure 4.- Foam stabilityagainstrateofairinputat95° C forAeroshell.120.
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