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TECHNICAL NOTE 2042

TIME-DEPENDENT DOWNWASH AT THE TAIL AND THE PITCHING
MOMENT DUE TO NORMAL ACCELERATION AT
SUPERSONIC SPEEDS

By Herbert S. Ribner
SUMMARY

The time-dependent downwesh behind a wing in a supersonic stream

is analyzed for the case when the angle of attack varies linearly with
time. The result is applied to the calculation of the contribution of
the horizontal tail to the pitching moment and 1ift due to normal accel-
eration of the airplane. The method employs an extension of an unpub-
lished solution of the linearized potential 'equation for unsteady flow
by Clifford S. Gardner. The pitching moment due to normal acceleration,
together with the damping in pitch, determines the damping of the short-
period mode of longitudinal oscillation for an airplsne.

INTRODUCTION

The investigations of Garrick and Rubinow (reference 1)} and others
have shown that a two-dimensional wing may experience certain unstable
torsional oscillations at low supersonic speeds. These oscillatiolis are
in pitch without coupled vertical oscillations of the center of gravity.
The same behavior mey also occur with three-dimensional wings. More
generslly, coupled oscillations in these two degrees of freedom, termed
"short-period" oscillations, may be expected. The damping of these
osclllations is governed by the sum of the demping-in-pitch deriva-
tive Cmq and the pitching-moment coefficient due to the normal-acceler-

ation derivative Cm&, where & 1s the time rate of change of angle of
attaeck. The sum Cmq + Qm& is therefore of great significance, inas-
much as its sign determines whether the motion is stable or unstable.
An unsteble sign usually arises from the component ‘.

The derivetive Cpg for an airplene is compounded of a contribution

from the wing and another from the horizoantal tail. At low subsonic
speeds the wing contribution is a negligible factor, but at supersonic

T



2 _ NACA TN 2042

speeds it may become significant. The relevant theory for the wing at
supersonic speeds and some calculations for specific plan forms are
given in references 1 to T.

The contrlbution of the horizontal tail to Cms, depends to a large

extent on the time-dependent downwash field of the wing when the angle
of attack varles with time. Standsrd technigues based on the solution
of Laplace's equation (that is, the assumption of incompressible flow)
have been used for low subsonic speeds. These methods fail at higher
speeds when the compressibility of the air must be teken into account.
Then this time-dependent downwash, in the theory of small disturbances,
must satisfy the time-dependent form of the--Prandtl-Glauert equation.
(See equation (1) herein.) In the present paper a solution of this .
problem is obtained for supersonic speeds, and some considerations are
given for subsonic speeds.

The evaluation of the time-dependent downwash employs an exten-
sion of an unpublished paper by Clifford S. Gardner of New York
University. (The relevant part of his work is set forth in an erratum
sheet that was issued for reference 6 and is repeated in the body of
the present paper.) It is shown that the problem of calculating the
pressure distribution due to the time rate of change of angle of
attack & can be reduced to the well-known problems of calculating
the pressure distributions due to steady angle of attack and to steady
pitching. Gardner's velocity potential applies only ahead of regions
affected by the trailing edge of the wing. The necessary modifica-
tlon for these regions, particularly the region behind the trailing
edge, is considered herein.

The time-dependent downwash obtained in this manner 1is applied to
the galculation of the contribution of the horizontal tail to the
normel-accelerstion derivatives Cm& and CL&. The derivetion is

limited to the case where the tail lies in the chord plane of the wing
(z = 0). In addition, formulas for the contribution of the wing to
these derivatives, eveluated from Gardner's work, are given for
convenience.

SYMBOLS

X, ¥, 2 rectangular coordinate system fixed In horizontal wing:
x-axis chordwise; y-axis spanwise; z-axis upward
t time

v gtream veloclty, directed parallel to x
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Xgr
m, V1, V1

speed of sound Iin free stréam

stream Mach mumber (V/a)

veloclty potential

angle of attack
(essumed constant herein)

angular velocity of pitching

anguler frequency (sinusoidsl motion)

l,a=a=20

value of ¢ for ¢
velue of § for a=1, g=6& =0
part of X associated with tralling vortex system of wing

X-, ¥-, and z-velocity components of specified potentisel
flow (see text)

upwesh due to angle of attack (aX;) for z =0
upwesh due to pitching (q#%) for z =0

local pressure on lower surface of airfoil minus local
pressure on upper surface (Lift/Unit area)

density of air
1ift

pitching moment

1ift coefficient L
1 2

pltching-moment coefficient i—Jiﬁ——
5 pv=sc
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ot = (32
La 3o a—0
—BCL—
]
L \2V/{&-—0
-BCL—
| \eV/q—0
Camg, %n |
o(Z ,
| 140 R
S : airfoil ares
€ airfoll mean aerodynemlc chord .
i airfail incidence relative to x-sxis
1 x~coordinate of reference point in tail (tail arm)
A - local sweep angle along trailing edge (A(y))

Py (x,y) = %93 E(Yg) _ x(lL) ;-XTEvMOQ cosa‘A --l . lexjpx Vir o

vp? | \a° o WMo cos A Mo Y oV
Fi(l) average of Fy(x,y) over tail span for x = 1
Fo() average of~ Fo(x,y) over tail span for x = 1
(1) average of w(x,y) over tail span for x = 1

ﬁé(z) average of wq(x,y) over tail span for x =1
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Subscripts:
TE wing trailing edge
T tail (horizontal)

When x, y, z, or t are used as subscripts, the respective
partiel derivative is indicated. For example,

¢x = gg
3¢
et = 5o
ANALYSIS

The linearized partisl differential equation for unsteady
supersonic flow is

32¢xx By - Pzz + g Bxt + 5; g = O (1)

The boundary condition on a wing experiencing a constant time rate of
change of angle of attack 1s

@z = -aVt (z—0) (2)

The disturbance potential for small disturbances must satisfy both
equations (1) and (2).

In an unpublished paper Clifford S. Gardner has shown, in effect,
that a suitable solution is

to
5| &

2
v+ (t ] Mvgz_)x (3)

where V¥ is the steady-state potential corresponding to & unit
pitching wvelocity about the y-exis, and X 1is the steady-state
potential corresponding to a unit angle of attack. (See also the sec-
tion entitled "Discussion.") The fact that equation (3) 1s a solution
can be verified by direct substitution into equations (1) and (2).

ede.
I



6 NACA TN 2042

Thus, Gardner has shown that the time-dependent potential for an angle
of attack ot mey be compounded of two time-free or steady-state
potentials, one for a constant angle of attack, and the other for
steady pitching. (Equation (3) is limited in direct epplication to
flow regions uninfluenced by the trailing edge. This limitation will
be elaborated later.) The first-order treatment of sinusoidael oscilla-
tions in reference 5 (equation (19) and the interpretation therein)
leads to a relation corresponding to equation’'(3). The relation in
reference 5 is derived, however, as an approximation for slow oscilla-
tions; whereas Gardner's relation 1s exact for a constant accelera-
tion (& = constant). Equetion (3) is also contained, in effect, as a
special case of a solution for a more general unsteady motion given in
reference 8. The plan forms for which the derivation in reference 8
is applicable are not completely general in contradistinction to those
considered herein.

The lift distribution at time + = O for the angle of attack &t
is obtained from the upper-surface potential by the linearized
Bernoulli equation for unsteady motion,

20 (V8 + Bt)zeso | ()

AP =
2 2
AP = 2pVg gg- Vx - ggéf *x - ;%5)
: 2
AP = ;3%@2(@) - M—%—-}E(AP)C,Fl- _20£{ (5)

where (AP) _; 1s the 1ift distribution for unit steady pitching
velocity about y-axis, (AP) a=1 is the 1ift distribution for unit

the implicit
steady angle of attack, and equation (4) contains 1 )
assumption that (@ ) = —(%)Z 10" The choice of time %t = 0 elimi

nates the 1lift due to angle of attack and leaves only the increment
due to time rate of chenge of angle of attack.

Integration to obtain the 1lift and moment and reduction to
coefficient form yields \
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Mo? M2 8 X
oy = B g+ g - ] § ©)

2 2
- [ 5(GE) @ mel e o
a~=1

where the integrations are carried over the wing plan form.

Equations (6) and (7) provide an evaluation of the acceleration
derivatives Crs and Cpg for the wing in terms of quantities that

are presumed to be known for the pitching wing and the wing at an angle
of attack. The application of these equaetions is limited to wings with
supersonic trailing edges. (The component stream velocity normal to
the trailing edge is supersonic.) The reason for this limitation is
shown later.

Time-Dependent Upwash at Tail

Wings with supersonic trailing edges.- For the evaluation of the
contribution of & horizontal tall to Cry and Cpg, it is first

necessary to evaluate the instantaneous upwash velocity ¢z at the
tail location. Differentiation of equation (3) would afford this
quantity if equation (3) were still valid behind the wing trailing
edge. Equation (3) as applied behind the trailing edge still satisfies
the differential equation (1) end the boundary-condition equation (2)
(Limited to the wing surface) if the values of ¥ and X therein
assume values appropriate to the region behind the wing, including the
contribution from the trailing vortex sheet. Equation (5), however,
shows that the 1ift fails to fall to zero there as it should: the
terms in ¥, and ?59 with ¥ and X as previously defined, are
known to vanish but the remaining term in ¥ does not vanish.

Thus equation (3), in its presgent form, leads to a spurious 1ift
behind the wing of amount -2pXa/BS per unit area. The situation may
be corrected, however, by an application of Lagerstrom's concept of
cancellsetion of 1ift. There is superposed behind the wing an additional
flow uy, vy, w3 that gives rise there to an equal lift of opposlte

sign. Note thet this 1ift is independent of time. The value of wuj
along the upper surface (z = +0) of the trailing vortex sheet is then
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uy (%,,+0) = % (8a)

according to the steady-state linearized Bernoulli equation, which is
equation (4) with @i = 0. The further evaluation of u; and wp
(vi 1s not needed) is limited at first to the relatively simple case
where the trailing edge of the wing 1s supersonic.

Bquation (8a) and its counterpart for the lower surface constitute
a boundary condition on wj. The distribution of wu; in space (z # 0)
must be such that the corresponding potential satisfies the steady-
state linearized potential equation, which is equation (1) without the
time-dependency terms. (This potential, being time free, will also
satisfy the complete equation (1).) By differentiation of equation (1)
with respect to x, uj = gg is seen to satisfy the same partial
differentisl equation as @ does. The part of X,Xy, that can be
ascribed to the tralling vortex system of the wing satisfies the same
boundary condition at z = %0 (with the factor «/VE?) and the same
partial differential equation. The solution can be shown to be unigue,
and thus uj may be identified with Xi,&/VB® everywhere without
restriction to 2z = 0. Behind the wing X = X;,. for z = 0 but
does not for other values of z. Equation (8a) is thus generalized to

ul(x.vy,z) = v%érg (8b)

In what follows, however, the small difference between X;, and X
behind the wing is neglected to simplify the calculation.

Assoclated with this additional u-velocity wuj 1s an upwash
veloclity wj. This upwash may be determined from the irrotationality
condition _

owp _ dug
x 3z

By vittue of equation (8b) with X in place of ¥Xi, this upwash is
¥ _ &

For 2z = 0 there results upon integration

. X
W =W g * -\-T‘;_f’JIE Xp, dx (10)
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The quentlty V1,TE is the upwash induced Just behind the trailing
edge of the wing (leading edge of the superposed flow) by the superposed
flow. This edge has been assumed supersonic; hence, in its vicinity
the Ackeret two-dimensional flow équations may be spplied to the flow
components normasl to the edge (that is, simple sweep theory may be
applied). The following equation is obtained:

. _ R.P.\/Mg2 cos? A - 1 (2 = +0)
= M,m® cos A -

where A = A(y) is the local angle of sweep of the trailing edge.
(The real part designation R.P. is superfluous here but has & later
use.) By use of equation (8a) this relation may be incorporated in
equation (10) in the form '

. 2 2 x
R.P. A-1
vy = w(x,5,0) = ‘_,:2 (‘X‘m \/M(c)osczs +J‘TE dex) ()
z=+0

Equation (11) gives the upwash componeﬁt w] of the
flow wuy, vy, w3 that was superposed to cancel the spurious lift

behind the wing. This equetion applies to points behind the wing and
in the same plane. The upwash w; 1is to be added to that computed
as @, from equation (3).

Wings with subsonic trailing edges.- The foregoing development
for w1 bas been limited to wings with supersonic trailing edges. A
rigorous determination of the superposition flow uy, vi, wi for wings
with subsonic trailing edges 1s much more difficult and the process is
only indicated herein. For the wings with subsonic trailing edges, the
steady potential flow wuj;, vy, w; to be superposed must satisfy the

boundary condition, equation (8a), (and its counterpart for =z = -0)
behind the trailing edge, and must, in addition, satisfy the condi-
tion wj = O on the surface (z = £0) shead of the tralling edge within
the region of the trailing-edge disturbance. A flow of this kind may
itself be built up by superposition of simpler "mixed-wing" flows in a
variant of the manner eleborated in reference 9. '

A rigorous evaluation of wj may not be necessary for practical
applications, however, 1f the region of the wing influenced by subsonic
trailing edges 1s not large. A suitable approximaste velue of Wy may
be obtained by a modification of the procedure leading to equations (10)
and (11). Equation (8a) relating the surface value of u) to the
surface value of x 1s still true for wings with subsonic trailing edges.
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The generalization for values off the surface (equation (8b)), however,
no longer holds rigorously. The assumption is now made that an equa-
tion of the form of equation (8b) holds approximately with X in place
of Xtr. Then it follows that, to this approximation, equation (10)
applies to wings with subsonic trailing edges.

For this application, the value of wy at the trailing
edge, V1,TE> is teken to be zero. This fact follows from the boundary

condition w; = O ahead of the wing tralling edge, together with the

observed fact that— wy must be continuous across a boundary on one
side of which_ w) is specified and on the other side of which u; 1is
specified, both of these velocities being finite. Equation (11) may
now be recognized to apply for both subsonic and supersonic trailing
edges because of the restriction of the radical to its resl part (R.P.).
Thus, the term conteining the radical, which 1s ¥1,TE» automatically

vanishes for subsonic trailing edges.

Remarks on wings in a completely subsonic stream.- The partial
differential equation (1) applies equally well at subsonic and super-
sonic speeds. Thus, equation (3) as epplied to subsonic speeds is
still a solution of equation (1) that satisfies the boundary condition
of equation (2) on the wing but yields a spurious 1lift in the wake.
Again an additionsl flow wuj, vy, w3 1is required to cancel this spurious
1lift-behind the wing. The boundary conditions for this cancellation
flow are specified as for wings in a supersonic stream with subsonic
trailing edges, butin the present case the region of tralling-edge
disturbance covers the entire wing. Accordingly, the incremental 1ift
corresponding to wuj affects the entire wing surface. Equations (5)
to (7) do not include this important contribution.

The values of ¥ and X specified in equation (3) are potentials
obtained from lifting-surface theory. Expressions obtained from
lifting-line theory, however, may be applied in the region behind the
wing. These expressions should serve for the calculation of ‘the time-
dependent upwesh at the tall location.

Angle of attack at the tail.- The angle of the local flow relative
to the tail chord is compounded of the tail incidence 1p, the airplane
vl

geometric angle of attack &bt; and the upwash angle T% + o

. ¢z w1
GT=1T+G't+_\T+'\T

The component @, is obtained by differentiating equation (3) (any z),
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and, for z =0, w3 1s given by equation (11). In the following
discussion, consideration is limited to the case where the taill lies
in the chord plane of the wing (z = 0). Then, using equations (3)
and (11),

-X — - 5 +
v VMg< cos A

——f 2 ax ) (12)

The term X; in equation (12) may be identified as the upwash due
to & unit wing engle of attack, and the term V¥, may be identified as
the upwash due to a unlt wing pitching wvelocity. It will be convenient
to replace X, and ¥, by means of the definitions:

M2 Pa[My2 cos® A - 1
GT=1T+&,G<1+ %;’*(\vz X,  XmR-P\[Mo? cos

o= Xz
vV
(13)
Yo _ Lz
Q¢ = T
Then
= ip + atl + = +&M°26(w—9-)-x(1) XTERPJMOQCOSQA'1+
ap T ( cz.V) =0 vB2 qg, av, VMO cos A
1 fx W :i
—_ L ax (14)
2 aV
MO = z=4+0
Abbreviate this to
ap = ip + &t Fi{x,y) + a Fa(x,y) (15)

Tail Contribution to Cpg

Equation (14) or equation (15) glves the instantaneous angle of
attack at any point (x,y) of a tail located in the z = 0 plane
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relative to a system of axes with origin in the wing., The effect of

the variation of owp 1in the y-direction may be presumed for the

present purpose to be adequately teken care of by forming the arithmetic
average over the span of the tail. Denote this average by means of a
bar above F1 and Fp and above w and wg in Fy and ¥p. The
variation of ap in the x-direction is more significant.” For practical
application, however, it will suffice to use, in effect, an average in
the x-direction also. Thus, the angle of attack

ap = ip + at F1(1) + & Fp(2) {(z = 0) (16)

where x 1is teken equal to the tail arm 1, is presumed to apply
uniformly over the entire tail area. The tail arm 1 i1s measured
from the origin to some reference point on the tail, such as the tail
center of gravity or the elevator hinge line.

Equation (16) forms the basis for obtaining the first approximation
to the tall contribution to the derivatives Crg and Cpg. Thus, the

tail 1ift at.time +t = O may be written

oLt,. i
i - B + e

where ar = g;z. The choice of time t = O eliminates the 1ift due

to the airplane angle of attack and leaves Jjust the Iincrement due to
time rate of change of angle of attack. By virtue of equation (16)
the tail lift may be written

Ly = g%(“fl) + %(lT + aFp) (17)

Then, upon differentiation with respect to &,

%gz = gé% Fi o+ gg% o

The pitching moment of the tail sbout its own reference axis is assumed
in the present approximation to be small compared with the wing pitching
moment. The only moment derivative with respect to & contributed by
the tail 1s therefore the component

T
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Also, the & 1ift derivative contributed is the component

AL Eo
ol

In nondimensional coefficient form, these several equations become

af4 T

Oy = (o), o+ (e )y o ¥ 72)

oC Fic =
- (ol B (na)y o)
2VST1 CLp
Mm& = - SEE T (19)
oC
201y = g (20)

Note that (CLQ,,)T and (%)T ~are merely the velues of Cr, snd Crg

computed for the isolated tail considered as a wing in an undisturbed
flow. The lift-curve slope CLy, may be computed or estimated by well-

known methods, and a formula for the evaluation of CrLg 1s given in
equation (6). The functions Fi and Fp are defined in equations (13)
to (16). The upwash parameters w/aV and wq/qE therein may be

plotted once and for all for a glven wing for use in calculations of
the present type.

DISCUSSION

Downwash Charts

The contributlon of- the horizontal tail to the derivative Cmg,
is seen to depend on a knowledge of the wing downwash due to angle of
attack -w/oaV and of the wing downwash due to pitching —wq/qE.
(Furthermore, the tail contributions to the better-known deriva-
tives Cp, and Cmq depend, respectively, on the same two quantities.)
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Calculations and charts of -w/aV are already available for several
types of wings at supersonic speeds (references 10 to 15), but data

on Wg/q€ or its average over the tail span Wg/a€ are lacking. This
guantity 1s small compared with ﬁVaV and the following simple con-
sideration is sufficient for its estimstion.

It is easy to show that far behind the wing (compare references 10
and 11)

I
T (x = 9 (21)

if the shape of the span loading curves for pltching and angle of attack
are the same. For differing shapes, equation (21) will at least provide
the order of magnitude of ﬁd/qél The ratic Cf, ECLG is usually only

a fraction of unity: for rectangular wings piltching about the midchord
line the maximum value i1s 1/6; for triangular wings pitching about

the %—chord line a representative walue is_l/8. In the expression

for Fp(1) (equations (1k4) and (15), with bars added) ﬁh/qc is

multiplied by ¢ and w/uV by x = 1. Since the tall axrm 1 1is
ordinarily two or three times the chord ¢, the term in ﬁQ/qE is seen

to be quite small in comparison with the term in ﬁ/mV. Accordingly,
the term in ﬁ/qé‘ may frequently be neglected. In any event, equa-
tion (21) should provide a sufficiently good approximation.

Some Limitations on the Results

The finel equations (14) to (20) are not rigorous. The approxima-
tion was introduced in the evaluation of the upwash wj associated
with the cancellation flow for the spurious 1ift—in the wake. The
epproximation lies in the integral that occurs in Fp as defined in
equation (14). The simulation of the exact integrand by w/cV was
made there to render the calculations more tractable. For wings with
supersonic trailing edges, the exact integrand is g%(zgz); this
integrand is believed to differ only slightly from w/aV. For wings
with subsonlc trailing edges, the exact integrand has not been obtained
because of the difficulty. The exact integrand is believed not to
differ greatly from w/aV, provided the trailing-edge disturbance does
not envelope a large proportion of the wing surface.

An error also occurs in equations (6) and (7) for Cr, and Cpg
for the wing when the trailing edges are subsonic, The magnitude of

~~
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the error 1ikewise depends on the proportion of the wing surface
enveloped by the trailing-edge disturbance.

The method of derivation used herein employs the assumption that
the angle of abtack varies linearly with time. The airplane, however,
mey be expected to experience sinusoldel variatlons of angle of attack
with time, and e sinusoidal variation is assumed in solving the equa-
tions for dynamic stability. The values of Cpg and CL& obtained

herein are believed to be satisfactory epproximations for sinusoidal
motion so long as the square of the reduced frequency wE/QV is small

compared with BL/MA. This result is inferred from the fact that
equation (3) is still approximately true for slow sinusoidal motions.
This ‘result was proved in reference 5 (equation (19) and following
discussions therein). An examination of the terms omitted therein in
the power expansion in o leads to the criterion for @ previcusly
noted.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronsutics
Langley Air Force Base, Va., December 2, 1949
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