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TECHNICAL NOTE 2042

TIME-DEPENDENT DOWNWASH AT THE TAIL AND TEE PITCHING

MOMENT DUE TO NORMAL ACCELERJITIONAT

SUPERSONIC SPEEDS

By Herbert S. Ribner

suMMARY

The time-dependent downwash behind a wing in a supersonic stream
iS analyzed for the case when the angle of attack varies linearlY ~th __
time. The result is applied to the calculation of the contribution of
the horizontal tail to the pitching moment and lift due to normal accel-
eration of the airplsne. The method employs an extension of an unpuh-
lished solution of the linearized potential ’equationfor um.teady flow .
by Clifford S. Gardner. The pitching moment due to normal acceleration,
together with the damping in pitch, determines the damping of the short-
period mode of longitudinal oscillation for an airplane.

INTRODUCTION

The .investigationsof Garrick and Rubinow (reference 1) and others
have shown that a two-dimensional wing may experience certain unstable
torsional oscillations at low supersonic speeds. These oscillatiofisare
in pitc& ‘tithoutcoupled vertical oscillations of the center of gravity.
The sane behavior may also occur with three-dimensional wings. More
generally, coupled oscillations in these two degrees of freedom, termed
“short-period” oscillations, may be expected. The damping of these
oscillations is governed by the sum of the dsmping-in-pitch deriva-
tive c% and the pitching-moment coefficient due to the normal-acceler-

ation derivative ~, where & is the time rate of change of angle of

attack. ‘es& ~+%i is therefore of great significance, inas-

rmch as its si~ determines whether the motion is stable or unstable.
Am unstable sign usually arises from the ccunponent ~.

The derivative Cm for an airplane is compounded of a contribution

from the wing and another from the horizontal tail. At low subsonic
speeds the wing contribution is a negligible factor, but at supersonic
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speeds it may become significant. The relevaat theory for the wing at
supersonic speeds and some calculations for specific plan forms are
given in references 1 to 7.

The contribution of the horizontal tail to C% depends to a large

extent on the time-dependent downwash field of the wing when the angle
of attack varies with time. Standard techniques based on the solution
of Laplace~s equation (that is, the assumption of incompressible flow)
have been used for low subsonic speeds. These methods fail at higher
speeds when the compressibility of the air must be taken into account.
Then this time-dependent downwash, in the theory of small disturbances,
must satisfy the ttie-dependent form of the--Prandtl-Gl.auertequation.
(See equation (1) herein.) In the present Taper a solution of this
problem is obtained for supersonic s~eds, and some considerations are”
given for subsonic speeds.

The evaluation of the thne-dependent downwash employs an exten-
sion of sm unpublished paper by Clifford S. Gardner of New York
University. (The relevant part of his work is set forth in an erratum
sheet that was issued for reference 6 and is repeated in the body of
the present paper.) It is shown that the problem of calculating the
pressure distribution due to the the rate of change of angle of
attack & can be reduced to the well-known problems of calculating
the pressure distributions due to steady angle of attack and to steady
pitching. Gardner’s velocity potential applies only ahead of regions
affected by the trailing edge of the wing. The necessary modifica-
tion for these regions~ particularly the region behind the trailing
edge, is considered herein.

The the-dependent downwash obtained in this manner is applied to
the @culation of the contribution of the horizontal tail to the
normal-acceleration derivatives CM and CM. The derivation is

limited to the case where the tail lies in the chord plane of the wing
(z = o). In addition, formulas for the contribution of the wing to
these derivatives, evaluated from Gardner’s work, are given for
convenience.

SYMBOLS

XY Y) z rectangular coordinate system fixed in horizontal wing:
x-axis chordwise; y-axis spanwise; z-axis upward

t time

v stream velocity, directed parallel.to x

.
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speed of sound in free stream

stream Mach number

velocity potential

angle of attack

(V/a)

(assumed constant herein)

angular velocity of pitching

angular frequency (sinusoidal motion)

value of @

value of #

part of X

X-, y-, and

for q=l, a=&=O
●

for a =1, q=&=o

associated

z-velocity
fiow (see text) -

upwash due to angle of

upwash due to pitching

local pressure
pressure on

density of air

lift

with trailing vortex system of wtng

components of s~cified potential

attack (CLXz)for z = O

(q*z) for z = o

pitching moment

lift coefficient

on lower surface of airfoil minus local
upper surface (Lift/Unit area)

(i-s-\

()Mpitching-moment coefficient ~
~ pv%C
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●

s’ airfoil area

E airfoil mean aerodynamic chord

i airfoil incidence relative to x-axis

L x-coordinate of reference point in tail (tail arm)

A local sweep angle

Fl(x,y)= 1 +%

along trailing edge (A(y))

L A

Fl(z) average of Fl(x,y) over tail span for x = Z

F2(Z) average of- .F2(x,y) over tail span for X = 2

v(z) average of w(x,y) over tail span for x . Z ‘“

Gq(z) average of wq(x,y) over tail span for x = Z

.

.

I

‘.
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Subscripts:

TE wing trailing edge

T tail (horizontal)

When x, y, z, or t are used as subscripts, tk respective
partial derivative is indicated. For example,

@x-t?@=—
axat

ANALYSIS

The linearized partial differential equation for unsteady
supersonic flow is

b

~2$f=-~-@zz+&Lt+*$tt =0 (1)

The boundary condition”on a wing qrienctig a constant time rate of
change of angle of attack is

@z=-&Vt (Z+o)

The disturbance potential for small disturbances
eq,,tions (1) and (2).

ti sn unpublished paper Clifford S. Gszxlner
that a suitable solution is

(2)

must satisfy both

has shown, in effect,

(3)

where ~ is the steady-state potential corresponding to a unit
pitching velocity about the y-axis, and X is the steady-state
potential.corresponding to a unit angle of attack. (See also the sec-
tion entitled “Discussion.”) The fact that equation (3) is a solution
can be verified by direct substitution into equations (1) and (2).
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Thus, Gardner has shown that the time-dependent potential for an angle
of attack at may be compounded of two time-free or steady-state ●

potentials, one for a constant angle of attack, and the other for
steady pitching. (Eqpation (3) is limited in direct application to
flow regions uninfluenced by the trailing edge. This limitation will
be elaborated later.) The first-order treatment of sinusoidal.oscilla-
tions in reference ~ (equation (15?)and the interpretation therein)
leads to a relation corresponding to equation’. The relation in
reference 5 is derived, however, as an approximation for slow oscilla.
tions; whereas Gardner’s relation is exact for a constant accelera-
tion (& = constant). Equation (3) is also contained, in effect, as a
special case of a solution for a more general unsteady motion given in
reference 8. The plan forms for which the derivation in reference 8
is applicable are not cmpletely general in contradistinctionto those
considered herein.

The lift distribution at time t = O for the angle of attack k%
is obtained from the upper-surface potential by the linearized
Bernoulli equation for unsteady motion,

AP= 2P(v@x + @t)z=+o (4)

(5)

where (CJ?)q=l is the lift distribution for unit steady pitchm

velocity about y-axisj (~)~1 is the lift distrlbution for unit

steady angle of attack, and e uation (k) contains the implicit
assumption that (d)z=-o ‘ -(?) The choice of time t = O eltil-

Z=+o●

nates the lift due to angle of attack and leaves only the increment
due to the rate of change of angle of attack.

Integration to obtain the liftiand moment and reduction to
coefficient form yields

.

.
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(6)

wher~ the integrations

Equations (6) and
derivatives CM and

are

(7)

%%

carried over the wing plan form.

provide an evaluation of the acceleration
for the wing in terms of quantities that

are preswed to be known for the pitching wing and the wing at an angle
of attack. The application of these equations is limited to wings with
supersonic trailing edges. (The component stream velocity normal to
the trailing edge is supersonic.) The reason for this limitation is
shown later.

Time-Dependent Upwash at Tail

Wings with supersonic trailing edges.- For the evaluation of the
contribution of a horizontal tail to ~ and ~, it is first

necessary to evaluate the instantaneous upwash velocity @z at the
tail location. Differentiation of equation (3) would efford this
quantity if equation (3) were still vslid behind the wing trailing
edge. Equation (3) as applied behind the trailing edge still satisfies
the differential equation (1) and the boundary-condition equation (2)
(limited to the wing surface) if the values of $ and X therein
assume values appropriate to the region behind the wing, including the
contribution from the trailing vortex sheet. Equation (5), however,
shows that the lift fails to fall to zero there as it should: the
terms in ‘& and X= ~th ~ ~d X as preciously defined, are
known to vanish but the remaining term in x does not vanish.

Thus equation (3), in its ?resent form, leads to a spurious lift
behind the wing of amount -2pXa/B2 per unit area. The situation may
be corrected, however, by an ap@ication of Lagerstrom’s concept of
cancellation of lift. There is superposed behind the wing an additional
flow Ul> VI) WI that gives rise there to an equal lift of opposite

sign. Note that this lift is independent of time. The value of U1
along the upper surface (z = +0) of the trailing vorkex sheet is then
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.
Ul(x,y,+o) = =

@
(8a) *

according to the steady-state linearized Bernoulll equation, which is
equation (4) with #t = O. The further evaluation of U1 and WI

(v1 is not needed) is limited at first to the relatively simple case
where the trailing edge of the wing is supersonic.

Eqyation (8a) and its counterpart for the lower surface constitute
a boundary condition on u1. The distribution of U1 in space (z #O)
must be such that the correspondingpotential satisfies the steady-
state linearized potential equation, wfich is equation (1] without the
time-dependency terms. (This potential, being ttme free, wilJ.also
satisfy the complete equation (l).) By differentiation of equation (1)

a$
with respect to x, u~ = ~ is seen to satisfy the same partial.

differential equation as @ does. The part of x,~r that can be
ascribed to the trailing vortex system of the ~ satisfies the same
boundary condition at z = *O (~fi the factor @~) and the sane
partial differential equation. The solution canbe shown to be unique,
and thus U1 may be identified with X@@B2 everywhere without
restriction to z = Ml. &hind the wing X = ~rforz=~ but

b

does not for other values of z. Equation (8a) is thus generalizedto
a

(8b)

In what follows, however, the small difference between ~r and X
behind the wing is neglected to simplify the calculation.

Associated with this additional u--velocity U1 is an upwash
velocity ~. This upwash may be determined
condition

* alq
F=T

By viitue of e,quation(8b) with x in place

awl “

. F =-#z
For z = O there results upon integration

I

x

‘1
.Vl,m+$ ~

from the irrotationality

of ~r lihisupwash iS

(9)’

.

~ax (lo) i
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The quantity WI,~ is the upwash induced just behind the trailing
edge .ofthe wing (leading edge of the su~rposed flow) by the superposed

flow. This edge has been assumed supersonic; hence, in its vicinity
the Ackeret two-dimensional flow equations may be applied to the flow
components normal to the edge (that is, simple sweep theory may be
applied). The following equation is obtained:

~2 COS2A - ~

‘l)m = -h)m cos A

where A =A(y) is the local angle of sweep of
(The real part designation R.P. is’superfluous
use.) By use of equation (8a) this relation may
equation (10) in the form

I

i

(z = +0)

the trailing edge.
here but has a later
be incorporated in

,

nx \

(‘L-% R.P. @z COS2 A -1
WI = Wl(x,y,o) +Jm xz~) (U) -

~2 cos A
z.+Cl

Equation (n) gives the upwash component W1 of the
flow Ul, VI) WI that was superposed to ~cel the spurious lift

behind the wing. This equation applies to points behind the wing and
in the same plane. The uywash ~ is to be added to that computed
as @z frcm equation(3).

Wings with subsonic trailing edges.- Th& foregoing development
for WI has been limited to wings with supersonic trailing edges. A
rigorous determination of the superposition flow u1, vl, ~ for wings

with subsonic trailing edges is much more difficult and the process is
only indicated herein. For the wings with,subsonic trailing edges, the
steady potential flow ul, vl, wl to be superposed must satisfy the

boundary condition, equation (&), (and its counterpart for z = -O)
behind the trailimg edge, and must, in addition, satisfy the conti-
tion ~ = O on the surface (z = *O) ahead of the trailing edge within
the region of the trailing-edge dist~buce. A flow of this kind may
itself be built up by superposition of simpler “mixed-wingt’flows in a
variant of the manner elaborated in refer-ence9.

A rigorous evaluation of ~ may not be necessary for practical
applications, however, if the region of the wing influenced by subsonic
trailing edges is not large. A suitable approximate value of W1 may
be obtainedby amodificatiomof the procedure leading to equations (10)
and (11). Equation (8a) relating the surface value of U1 to the
surface value of x is still true for wings with subsonic trailing edges.
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The generalization for values off the surface (equation (8b)), however,
no longer holds rigorously. The assmption is now made that an equa-
tion of the form of equation (8b) holds approximately with X in place
of Xtr. Then it follows that, to this approximation, equation (10)
applies to wings with subsonic trailing edges.

For this application, the value of wl at the trailing
edge, wl,~, is taken to be zero. This fact follows from the boundary

,
condition WI = O ahead of the wing tra$.lingedge, together with the

observed fact thatiw~ must be continuous across a boundary on one
side of’-hich. WI is specified and on the other side of which U1 is
specified, both of these velocities being finite. Equation (n) may
now be recognized to apply for both subsonic and supersonic trailing
edges because of the restriction ofYthe radical to its real part (R.P.).
TIIUS, the term containing the radical, which iS W1,~j auto~tica~Y

vanishes for subsonic trailing edges.

Remarks on wings in a completely subsonic stream.- The partial
differential equation (1) applies equally well.at subsonic and super-
sonic speeds. Thus, equation (3) as applied to subsonic speeds is
still a solution of equation (1) that satisfies the boundary condition
of equation (2) on the wing but yields a spurious lift in the mike.
Again anadditionsl flow ul, vl, WI is required to cancel this spurious
lift-behind the wing. T&boundary conditions for this cancellation
flow are specified as for wings in a supersonic stream with subsonic
trailing edges, butrin the present case the region of trailing-edge
disturbance covers theentire wing. Accordingly, the incremental lift
corresponding to U1 affects the entire wing surface. Equations (5)
to (7) do not include this important contribution.

The values of $ and X specified in eqmtion (3) are potentials
obtained from lifting-surface theory. Expressions obtiined from
lifting-line theory, however, maybe applied in the-region behind the
wing. These expressions should serve for the calculation of’the time-
dependent upwash at the tail location.

Angle of attack at the tail.- The angle of the local flow relative
to the tail chord iscompounded of the tail-incidence iT, the airplane

@z w~
geometric angle of attack &t-,–andthe upwash angle ~ + ~:

$. W1
.iT+at-+y+~9“

The component @z is obtainedby differentiating equation (3) (w z),

-.
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and, for z = O, WI is given by equation (11). In the following
discussion, consideration is limited to the case where the tail lies
in the chord plane of the wing (z = O). Then, using equations (3)
and (11),

q ( 3Z.+S(-.-’?-*”P”5CP=iT +&l+

The term
to a unit wing
the upwash due
to replace Xz

(12)

/z=+o

& in equation (12) may be identified as the upwash due
angle of attack, and the term ‘#Z may be identified as
to a unit wing pitching velocity. It will be convenient
and $Z by means of the definitions:

Then

%r ( az=o+%+iiw%)-=iT+&tl+

Abbreviate this

1ax

Z=+o

to

(13)

COS2 A-1
+

~’ COSA “

%P= iT + ~t Fl(x,y) + aF2(X,Y)

(14)

(15)

Tail Contribution to C%

Equation (14) or equation (la) gives the instantaneous sngle of
attack at any point (x,y) of a tail located in the z = O plane
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system of axes with origih in the wing. The effect of
of ~ in the y-direction may be presumed for the

present purpose to be adequately teken care of by forming the arithmetic
average over the span of the tail. Denote this average by mesms of a
bar above F1 and F2 sad above w and Wq in F1 and F2. The

variation of q in the x-direction is more significanti- For practical
application, however, it will.suffice to use, i.neffect, an average in
the x-direction also. Thus, the angle of attack

(16)

where x is taken equal to the tail arm Z, is presumed to apply
uniformly over the entire tail area. The tail arm Z is masured
from the origin to some reference point on the tail, such as the tail
center of gravity or the elevator hinge line.

Equation (16) forms the basis for obtaining the first approximation
to the tail contribution to the derivatives CM and ~. Thus, the

tail lift at,time t = O may be written

%
‘here ~ =%-” ‘e choice‘f
to the airplane singleof attack
time rate of change of angle of
the tail lift--maybe written

the t = O eliminates the lift due

and leaves just the increment due to
attack. BY virtue of equation (16)

(17)

Then, upon differentiationwith

&T
x-=

about its own reference axis is assum?dThe pitching moment of the tail
in the present a~roximation to-be small compared with the wing pitching
moment. The only moment derivative with respect to & contributed by
the tall is therefore the component

●

1.

8

i.
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Also, the & lift derivative contributed is the component

In nondimensional

()Note that C% ~

A%

coefficient form, these several equations become

c%= (Q g’.+(’%)JT+-a)

%= (%),%+(%),‘2 (18)

(19)

2VST ‘~
(20)AC% = ~’~

()
and Q ~ are merely the values of ~ and Q&

computed for the isolated tail considered as a wing in & undisturbed
flow. The lift-curve slope C% may be camputed or estimated by well-
known metliods,and a formula for the evaluation of ~ is given in
equation (6). The functions ~1 and ~2 are defined in equations (13)
to (16). The upwash

plotted once and for
the present type.

—
&rameters w/aV and w~qE therein may be

all for a given wing for use in calculations of

DISCUSSION

Downwash Charts

The contribution of-the horizontal tail
is seen to depend on a lmowledge of the wing

to the derivative Cm,

dotiash due to an~e-of
attack -w/aV and of the wing downwash due-to pitching -wa/qC~

(Furthermore, the tail contributions to the better-hewn de~iva-
tives Cm and C% depend, respectively, on the same two quantities.)
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Calculations and charts of -w/aV are already available for several
types of wings at supersonic speeds (references 10 to 15), but data
on w~q~ or its average over the tail span ii~qE are lacking. This

quantity is small compared with W/aV and the following simple con-
sideration is sufficient for its ‘estimation.

It is easy to show that far behind the wing (compare references 10
and 11)

%=%-E
qc 2C& aV

(x=+ (a)

if the shape of the span loading curves for pitching and angle of attack
are the same. For differing shapes, equation (21) will at leastiprovide
the order of magnitude Of w~q~. The ratio ~J2~ is usually only

a fraction of unity: for rectangular wings piic~g about the midchord
line the maxhmmvalue is 1/6; for triangular wings pitching almuti

the ~-chord line a representative value is 1/8. In the expression

for ‘~2(Z) (equations (14) and (15), with bars added) ti~qc is

multiplied by F and w/cN by x = 2. Since the tail arm 1 is
ordinarily two or three times the chord ~, the term in G~qE is seen

to be quite small in comparison with the term in G/aV. Accordingly,
the term in i?/qE may frequently be neglected. In any event, equa-
tion (21) should provide a sufficiently good approximation.

Some Limitations on the Results

The final equations (14) to (20) are not rigorous. The approxima-
tion was introduced in the evaluation of the upwash ~ associated
with the cacell.ation flow for the spurious lift- the wake. The .
approximation lies in the integral that occurs in F2 as defined in
equation (14). The simulation of the exact integrand by w/aV was
made there t-orender the calculations more tractable. For wings with

()~xt~ -
supersonic trailing edges, the exact integrand is ~ ~ ; this

integrand is believed to differ only slightly from w/aV. For wings

with subsonic trailing edges, the exacirintegrsmd has not been obtained
because of the difficulty. The exact integrand is believe&.not to
differ greatly from w/aV, provided the trailing-edge disturbance does
not envelope a large proportion of the wing surface.

An error also occurs in equations (6) and (7) for C% and ~

for the wing when the trailing edges are su%sonic. The magnitude of
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the error likewise depends on the proportion of the wing surface
L enveloped by the trailing-edge disturbance.

The method of derivation used herein employs the assumption that
the angle of attack varies linearly with time. The airplane, however,
may be expected to experience sinusoidal variations of angle of attack
with ttie, and a sinusoidal variation is assmed in solving the equa-
tions for dynamic stability. The values of C% s.nd ~ obtained

herein are believed to be satisfactory approximations for sinusoidal
motion so long as the square of the reduced frequency u@2V is small

compared with B4/M4. This result is inferred from the fact that
equation (3) is still approximately true for slow sinusoidal motions.
This-result was proved in reference 5 (equation (19) and following
discussions therein). An examination of the terms omitted therein in
the power expansion in o leads to the criterion for u) previously
noted.

Langl.eyAeronautical.kboratory
National Advisory Committee for Aeronautics

Langley Air Force Base, Vs., December 2, 1949

,
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