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MACH NUMBERS OF FLAT SWEPT-BACK WINGS WITH SUBSONIC EDGES

By Harold J. Walker and Mary B. Ballantyne

SUMMARY

A method, which is based upon the concept of the superposition of
conical and quasi—conical flows, is presented for calculating the pressure
distribution and damping in steady roll at supersonic Mach numbers of thin,
flat, swept—back wings having all edges straight and subsonic. Although
it can be adapted to wings having negative rake at the tips, the method is
developed only for wings with streamwise tips. As outlined, the analysis
is rigorous and somewhat complicated; however, several possible simplifica—
tions are suggested which considersbly reduce the amount of computation
without introducing significant error. The method then closely parallels
a previously published method for calculating the pressure distribution.
corresponding to & condition of steady 1ift.

To illustrate the application of the metheod, calculations of the
pressure distribution and the damping derivative of an untapered swept—
back wing and of the damping derivative of a tapered swept—back wing are
included. From a comparison of the results obtained by both the rigorous
and the shortened methods for the untapered wing, it is concluded that for
most practical purposes the shortened method will yield sufficiently
accurate results. A comparison of the wvalues for the untapered wing with
those obtained by means of a method based upon strip theory 1s also
included; and, although it is shown to be considerably in error in pre—
dicting the pressure distribution in the regions adjacent to a subsonic
trailing edge or tip, the strip method gives a good approximation of the

damping derivative.
In general, the method i1s formlated in accordance with the usual

assumptions and limltations of the linearized potentisl theory.

INTRODUCTION

The pressure distribution and damping in steady roll at supersonic
Mach numbers have been calculated for many of the commonly used wing
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configurations. These include triangulsr wings (references 1 and 2),
rectangular and trapezoidal wings (references 3 and 4), various forms

of swept-back wings (references 3, 5, anrd 6), and wings of somewhat
arbitrary shape but having supersonic leading edges (reference 7). The
particular class of swept—back wings in which all the edges are subsonic
is the prinecipsl subject of this report. This class has not been fully
treated heretofore, although an approximate method of analysis for wings
with streamvise (subsonic) tips is glven in reference 6.

Where subsonic trailing edges (or tips) exist, the effects of changes
in flow occurring in the vicinity of those edges are propagated over the
surface of the wing and therefore influence the pressure at points within
the region defined by the wing boundaries and the Mach.lines from the sapex
of the trailing edge (or from the tips of the leading edge). Hence,
wheregs the pressure distribution over the wing is in general govermed
principally by the sweep of the leading edge, the variation of pressure in
the vicinity of a subsonic trailing edge (or tip) is additionally influ—
enced by the flow around the trailing edge (or tip). In the following
report, a procedure for calculating the pressure dlstribution near a sub—
sonic edge is presented which consists first, in the evaluation of a basic
distribution associated with an infinite trianguler wing having leading
edges which coincide with those of the swept-back wing, and second, in the
correction of these basic values for the effect of having introduced
excess pressures in the wake and outboard of the tlps of the swept—back
wing. The corrections to the basic pressure in the second step are cal—
culated by superposing sectors of conical and gquesi—conical pressure along
the wing boundaries in order to cancel the excess pressure in the wake and
outboard of the tips. The derivative for the damping in steady roll is
calculated in an anslogous menner. In general, the method follows closely
that developed in reference 8 for calculating the 1ift and pitching moment
of a swept-back wing, but with the difference that, where the basic
pressures corresponding to 1ift are conlcally distributed, those corre—
sponding to roll are quasi—conically distributed (i.e., vary linearly
along reys passing through the apex of the leading edge).

The anslysis ie otherwlse confined to the usual assumptions and
limitations of the linearized potential theory for supersonic flow.

NOTATION

The quantities listed in the following are assumed to have con—
sistent units and all angles are given in radians:

a slope of any ray through origin divided by slope of Mach

lines <% L )
X
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a, velue of & corresponding to m, =1

[a _ _1~(ps/com)(1-m) ]
l 1~(Bs/mycom) (1-m)

ag : upper limit of a corresponding to a specified point x,y

|:on tip, a4 = Bs 5 on trailling edge,

- x+B(y-s)

By+c ~x
= m, I CoX
%o T Tt By+c°m.b—X]

ay slope of ray through the tip of the trailing edge divided by
Bs
slope of Mach lines —F%
< Cot £2
m
b wing span
Co root chord of wing
ct tip chord of wing
c constant factor used in derivetion of pressure canceling
function
C, rolling—moment coefficient (qiSb)
damp ; i ]
c —in—roll derivative | ————
’p e [a(pb/z\r)
ACy corrective term for basic damping derivative
Y
F pressure canceling function (F3+Fs)
Fqi,Fo suxiligry functions éorr95ponding to the coordinates
£1,m2 and E5,m2, respectively
L basic rolling moment
m ] slope of leading edge divideﬁ. by slope of Mach lines

(B cot A)
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slope of ray through point A(xA,yA) and tip of leading

s
edge divided by slope of Mach lines (B JA—)
(Bs/m)‘xA

slope of tip divided by slope of Mach lines

slops of trailing edge divided by slope of Mach lines
free—stream Mach number

steady rate of roll, radians per unit of time

pressure difference between upper and lower surfaces of wing

pressure coefficient <éq£>

pressure coefficient corresponding to steady 1lift

pressure coefficlent for steady 1ift at point A(xp,y,)

correction term for basic pressure coefficlents for steady 1lift

pressure coefficient corresponding to steady roll

pressure coefficient for steady roll at point A(xA,yA)

correction term for basic pressure coefficient for steady roll

dynamic pressure <-;-pv2>

EI2E (Vi) —13_:1—2K(V1—m2)

semispan of wing

wing area

slope of ray through points x,y and =xp,ypA divided by

slope of Mach lines (B m)

x—xA

slope of ray through points x¥,y' end £3,m and points x' y'

end &5,m2, respectively, divided by slope of Mach lines

(B yi—n1 8 ¥yl
=ty Pt
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v free—stream velocity

x,¥,z rectangular coordirates (fig. 1)

x',y! coordinates defined by =X, and y-yp, réspectively

Xps¥y coordinates of point A on trailing edge_or tip ‘:on trailing

myCo IO Bs :
edge, X5 = = =m—— o on ti Xp = — =8
£8, A mt_a, Ja Blmi—a) 3 D, A 2 JA

Y1s¥2 lever arms of increments of force due to conicael and quasi-— ...
conical pressures, respectively, exerted on an element of
wing area

Ym ¥ coordinate of intersection of trailing edge and center

line of an element of area at tip

puneb-2-D))

Z force due to basic pressures in z direction

L7, correction term for 2 B
pb .

> helix angle of wing tip in roll

-b2

5 aspect ratio

H(a),H'(a)

R(a),R'(a) _

g(a),8'(a) | runctions defined in text

h(a):h'(a)

r(a),r*(a)

s(a),s'(a)

a angle of attack, radians

B Ve

& factor used in strip-~theory calculations

iﬁ&nl coordinates In x and y directions, respectively, defining

€o,72 the origins of a series of superposed canceling sectors
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X1,X2

K( ¥/1-m2)
E( v1-m2)
(k)
E(k)
K(k*)
E(k')

F(¥,kt)

upper limits of 13
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and Tnz, respectively, corresponding to
a(x*—By!)

) '..ﬁ d
& specific point x,y ['llo = B(1e) ’ "o~ Bg-mtyj )]

angle of sweep of leading edge

mass density of air

a /9Pr
& (2w

argument of inverse-cosine terms in canceling functions

values of X corresponding to +t;3

end +tp, respectlvely

Superscripts

trailing-edge functions (except as noted in text)

tip functions (except as noted in text)

Subscripts

conical pressure canceling sectors

quasi-conical pressure canceling sectors

complete
complete
complete
complete

complete

Elliptic Functions

elliptic
elliptic
elliptic
elliptic

elliptic

integrel of first kind, modulus Ye-m2
integral of second kind, modulus N1-m2

integral of first kind, modulus k
integral of second kind, modulus k

integral of first kind, modulus k!

complete elliptic integral of second kind, modulus k!

incomplete elliptic integral of first kind, modulus

k?,am Ly
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E(¥,kt) . incomplete elliptic integral of second kind, modulus k!,sm ‘¥
X [(m—eo)(1-m)

om(1+e,)
kt N 1-k2

— /[ 8o(mx+By)
¥ sin ﬁsi a.o+m5

METHOD OF ANALYSIS

In reference 1, it is shown that the pressure distribution! in steady
roll of flat trisngular wings is quasi-conlcal (i.e., varies linearly
along rays passing through the apex of the leading edge). Although con—
fined to triangulsr plan forms, the results of the analysls can be applied
readily to swept—back wings which have supersonic trailing edges and tips.
Where the wing edges are all subsonic, as shown in figure 1, the method of
reference 1 cennot be directly spplied since within regions I, II, and
III, the pressure distributions are no longer quasi-conical. The configu-
ration in figure 1 has been treated previously for the conditions of
steady 1ift in reference 8. Since the cases of steady 1ift and steady
roll differ only in boundary conditions, the present method of analysis is
Pundamentally the same as that in reference 8.

The pressure distribution of the swept—back wing i1llustrated in
figure 1 may be derived from that of an infinite triangular wing having
coincident leading edges. A basic pressure distribution is first calcu—
lated, using the simple expression for the triangular wing; and then
seversl terms, representing primsry and secondary corrections of the basic
pressure on the wing resulting from the cancellation of the excess pressure
not contained within the boundsries of the swept—back wing (shaded areas),
are added to the pressure in regions I, IT, and TII. The cancellation of
the excess pressure 1s accomplished by superposing varlous sectors of
conical and quasi—conical pressure along the tralling edge and tips.

The orthogonal coordinate system shown in figure 2 is chosen. The
plane of the wing lies in the =x,y plane and is therefore fixed at zero
angle of attack®. The x axis, which is thé axis of roll, is then a
principal body axis with an origin at the leading-edge apex. For this

Throughout the text the terms "pressure” and "pressure coefficient"
(1.e., Ap/a) are used interchangesbly. All quantities in the
analysis are therefore dimensionless.

Zings at other than zero engle of attack may be treated by superposing
the individual results for the cases of steady lift and steady roll.
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system, the pressure at a polnt x,y on the surface of the triangular
wing in steady roll and having subsonic leading edges is given in
reference 1 ss

Ap b\ A4m? 1 '
&) - B Er s (1)
9 /o1l 2V/ BQ B J/mP—p?

where

Q = _—'FE('V )- K( /' 1-2)

g =8 %

The variation of pressure along any ray a 18 seen to be directly pro—
portional to the spanwise location y/s, and, as such, conforms with the
definition of the term quasi-conical. For plan forms having supersonic
trailing edges and tips (except tips with positive rake), the damping
moment corresponding to the pressure distribution given by equation (1)
can be readily calculated since the flow over the wing is completely
independent of that in the wake and outboard of the tips. On the other
hend, where these edges are subsonic such that the various regions of
flow are interdependent, the effect on the damping of canceling the
pressure. in the wake and outboard of the tips must also be taken into
account.

Cancellation of Basic Pressure in the Wake

In figure 1, regions I and III on the surface of the wing are seen
to lie within the Mach cones of pressure disturbances occurring on and
behind the trailling. edges, and therefore asre the areas of pressure that
will be influenced by the cancellation of pressure in the wake. The
function for a field of pressure which may be superposed on the wake to
cancel the basic pressure mist fulfill the following conditions:

1. Cancel the pressure at the trailing edge in order to comply
with the Kutta condition.

2. Represent a field of quasi—conical pressure that conforms with
the pressure in the wake given by equation (1).

3. Be zerao outside the Mach cone enclosing the region of pressure
to be canceled.
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k. Have a complementary function for downwash velocity that
reduces to zero on the surface of the wing In order that the plane of
the wing remein flat,

5. Satisfy the equations for lineasrized potential flow and
1lrrotationality.

The function, which fulfills each of these conditions, is composed of

both conlical and quasi—conical components which can be developed independ—
ently.

Conical component of canceling function.— The following funotion
glven in reference C for the case of a swept-back wing in a steady lifting
attitude, namely (r.p. to indicate real part),

dAPp = ~r.D. i‘- <i§—i-‘bﬁ> ds cos *

. X = (1~a) (t—my ) ~(mi—a) (1-t)
(1mg ) (t—=)

satiafies each of the prescribed boundary conditions except the second.
‘As illustrated in reference 8, this function, in which the term %
defines a ray similar to a but having 1ts origin at a point A(xp,¥yp)
on the trailing edge, represents & sector of pressure (fig. 3) in which
the pressure is conlcally distributed rather than quasi—conically dis—
tributed. The function, as shown in figure 4, in effect cancels a field
of pressure which has the constant value (d.PI,A/da)da, within a sector
having an apex at the point A ‘and sides along the ray a and the
trailing edge my (i.e., a<t<mt), and which diminishes on the wing
from d.PLA/da.)da along the trailing edge to zero along the Mach line
from A (i.e., m;$t<1). The downwash associated with each sector is
shown in reference 8 to be zero in the range m;St<1 and finite in
the range -1 'b<mt , thus complying with condition k. A series of
these pressure fields can be distributed along the trailing edge such
thet their integrated magnitude will cancel the portion of the pressure
in the wake of the wing in steady 1lift in excess of the pressure at the
trailing-edge apex.

If the term (d.PLA/da.)da. is replaced by (dPRp/da)da and APy by
APRl' in the above equation,® that is,

dAFg, ' = 1( dif:.A> da _cos—l X (2)

3
It will be understood that only the real part of the equation applies.
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where

o _ (3-a)(t-ms)—(m-a)(1t)
(1) (=)

then a field of pressure conically distributed in the wake from points
along the trailing edge of & rolling wing will be canceled. Equation (2)
alone, however, will not cancel all the pressure in the wake, since there
8till remains to be canceled an sdditional component field of pressure
assoclgted with the linesr increase of pressure along rays originating at
the trailing edge. The function for this additionsl quasi-—conical com—
ponent may be developed through s further application of the principle of
superposition of-conical flows.

Quasi-conical component of canceling function.~ The function for a
gquasi-—conical field of pressure, which complises with all the prescribed
boundery conditions, can be derived by superposing the conical fields
given by equation (2). Thus, two independent -auxiliary functions, which
define flelds of pressure that—vary linearly with respect to both x and
Y, can be obtalned first, by integrating a series of sectors of infini-—
tesimal conical pressure with their origins spaced along the ray t = a,
and second, by Integrating these sectors spaced along the ray t = my.
These two new functions will not individually satisfy the two known
boundary conditions: (1) that the function define a field of pressure
which varles linearly along the ray t = a with respect to y only in
order to be consistent with equation (1), and (2) that the function reduce
to zero along the ray + = my along which a1l the pressure is canceled by
the filelds of conical pressure alone. However, they can be employed simul—
taneously to deduce a single resultant functlon for a field of pressure
which does fulfill these two conditions, and therefore cancels the remain—
ing gquasi—conlical pressure in the wake.

Referring to figure 5, let £5,m1 be the coordinates, originating
at A, of the apexes of the conical sectors to be integrated along the
ray &a. Defining a constant linear rate of increase of pressure in the

N direction as
o dn[( ) da]

vhere ERA is given by equation (1) at the point A (i.e., y = ya), then

the expression for a single element of the series of conical pressure
fields to be superposed may be written

irF; = % dn, cos™t ¥,
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x. _ (3-e)(ti-m)~(m-a)(1-t)

=

(1-m ) (t1—=)
o Y
tl h B x‘-—§l
g =8 2_:.
' =¥Tps X' =xXy
_ c 8 % = mtCo
AT Blma) P (ma)

The rearwardmost sector, identified by the ordinate M1y that can

influence the point P(x,y) on the wing corresponds to the ray ti1 = 1,
that is,

1
tl =1 = B _L—ﬁ—
x'= g M1
3 ' ) x!—By?
*o B(1-a)

The first quasi—conical function 1s then found by integrating d4dF,
between the limits O and N1gs that is,

N1ig

F, = %f cos™t X1 dn,
o
='_l a(l-m ) (By'-ax*) Y ~arvry- 3
" [ 25 (mga) (1=) X' cosT™ X 1-X >:l (3)
where
<t = (1-a)(t—m; )~{m;—a)(1-t)
(1~mg) (t—a)
t HA
t =P =B

A
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In a similar menner, the second function Fz can he obtained by
integrating fields of infinitesimal conical pressure having the apex
coordinates £5,nm2 along the line t+ = my. Thus,

1]20
Fp ‘:‘ f cos™* X5 dno

o
= %&—z——)—(zy;;i:') (cos"l Xt - */i—_XTE) (4)

where
X, = (1-8)(tz-m )~(m—a)(1~t2)
(1-m ) (tz-e)
tz =B Yi___g_::ﬂz
m = B o
_my(x'—py')
20= T 5Ty

Equations (3) and (4) can now be combined in the following manner %o
give the desired resultant function F, which reduces to zero along the
trailing edge, t =m. ILet F be defined as

F=F, +CFz (C = constant)

Then along the ray—t = my, the factor C becomes*

A (Fl)t=mt _ a.(l—mt)'
o pom, | 25602)

and the function F,

~t 1 —
F=-g7' %%: <°°5_1 X ‘%}'ﬁtr'r-:?' 1—’"2>

*In the region a<tS<my, cos * X !=x,
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then, along the ray a this equation reduces to

Py == == 7 g [(T2) ]

As required in boundary condition o Por the rolling wing, the following
proportion can be written:

o i [ Gl o
=)=

and. therefore the desired quasi—conical form,

| (Fliug = ( dPRA) da

is obtained along the ray a.

Hence the quasi—conical component of the function for canceling the
basic pressure in the wgke mey be expressed as

1 / dFRr -t
-3 (PP (- o

A sketch of the sector of pressure represented by equation (5) is shown
in figure 6.

Complete function for canceling basic pressure in wake.— The
complete " function daPR!'! for canceling the basic pressure in the wake can
now be formed by combining the individual functions for the conical and
quasi—conical components. Thus,

dAPR? = GAPR, ! + dAPR,!
1 (9FRy A 1 /4R ¥y, & m—t
=- % (—55‘ da cos™ X! — 2 (*a;“) S Toe

<cos"l Xt — % %—:%11 Jl—X'Z) (6)
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A sketch of the conbined fields of pressure represented in equation (6)
is shown in flgure T.

The primary correction for the basic pressure in region I and
region III in part (fig. 1) can now be found by integrating equation (6)
elong the trailing edge. If ay, (defined by t=1) denotes the ray to
the outermost sector that can affect the pressure at the point P(z,y),
the correction at P becomes

_ __fao (dﬁ{A)[cos_J‘ xt, T 9 8 Tt

Yo tmge
(o - 2 A ) o

where

dPRy, /TB\ Mfy, 1 [ a m ]

&  \F R Vi | @es a(mt—e.)

end

6 = m LIICGE

1% By+mtco—x

A graphical method of integration 1s suggested. BSeparate terms repre—
senting the conical and quasi-conical components are retained in equa—
tions (6) and (7) for the purpose of showing their relative magnitudes
later in the report. It will be shown then that the quasi—conical terms
may be dropped in most practical applications without introducing signi—
ficant error.

Cancellation of Basic Pressure Outboard of the Tips

A suitable function for canceling the basic pressure outboard from
the tips can be deduced directly from equation (6). It is observed in
figure 8 that the tips lie in the negative range of t of each super—
posed sector, in which case it is necessary to substitute -a, -—t,
and -mg for a, t, and m;, respectively. For example, in the case
of a wing with zerc rake at-the tips (i.e., mg=0), equation (6) transforms
to
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dAPR" = dAPRl“ + dAPRzu

- % <——Ad?;> de cos™t X "— %(ﬁ‘l ds T: I:cos—l X "= ttzia Jl—X"z:l

(8)

where
t-=

IA-=%, yA =8

The fie:la.d of pressure defined by equation (8) is schematically shown in
figure C.

The expression for & tip with negative rake can also be dedueced
directly from equation (6). Tips with positive rake, on the other hand,
do not come within the scope of this report, slthough they may be treated
through an adaptation of the method glven in reference 9 for the case of
steady 1ift.” In application, however, the present analysis will be
limited to wings with zero rake at the tips.

The primary correction for the pressure at & point P(x,y) near
the tip (with zero rske) due to cancellation of basic pressure outboard
of the tip can be found by integrating equation (8) slong the tip between
the limits a=-m and a=a,, where

In performing such an integration, it is noted that the term d.PRA/da.,
appearing after equation (7), becomes infinite at the leading edge (a=-m).
Reference 8 presents a method for treating the singularity et this upper
limit. The method leads to the following expression in which the conical
and quasi—conical parts sre again retained as separate components for
comparison of their magnitudes:

no(22) ki 1 ao(ey) [ p% da
AR <2‘T) B x () & [l;(ﬁy—ax) V(w2—e2) (1+8) (s-5o) i

/ | = ] (9)
80 agllta) (By-ax) ¥/m2-a2)(1+a)(a-a,)
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An analytical solution to the conical part (first integral) is given in
reference 8 as

no_ pb ho® 1 ____2[3(5"7)
4," =\Z) m x|/ aleray) SF T
/;ZZ—{FW L) [_ _ K(k)E(k')} + K(k)E(\lf k* )} (10)

where
_ (m-agy)( 1~m)
- lta,
K'= & 1-k2

'qf = Sin_l .a_‘Q._mfiy—
N s(ay+m)

The guesi—conical pert has been solved in a similar mamner, resulting in

" 78 " hm2 1] Ltag /ao(s—'y)
( ARy (EV B x 8o 5

{ = / Wi ) {um)x(k)'zﬂ(k)]} (12)

Equations (10) end (11) together, therefore, constitute the primary
correction to be added to the basic pressure st each point . in regions
IT and III in figure 1.

An interesting result is obtained in evaluating the primary correc—
tion for the pressure at points lying elong the tip Mach cone. For
these points, ag=m and k=0, and equations (10) and (11) reduce,

respectively, to
APR. " = ~ pb\ 2m
1 > l+m5is ) (12)
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and
AP, " =0

Thus, an abrupt reduction of pressure resulting from the cancellation of
the conical portion of the basic pressure outboard of the tips is observed
to occur along the Mach line from the tip of the leading edge. No such
change, on the other hand, is introduced along the Mach lines from the
apex of the trailing edge by either the conical or the quasi—conical com—
ponents of the correction due to the cancellstion of the besic pressure in
the wake (see equation (7)), since both components diminish continuously
to zerc on the Mach line. The abrupt reduction of pressure at the tip was
encountered also in the case of steady 1ift in reference 8.

Secondary Corrections

Cancellation of secondary pressure.— Although the basic pressure
ocoutside of the boundaries of the swept-back wlng 1s completely canceled
by means of equatioms (7), (10), and (11), some residual secondary
pressure still remains to be canceled if a complete solution is desired
in certain regions. Reference to the right—hand half of the wing shown
in figure 9(a) indicates that, as a result of supsrposing canceling -
pressures along the trailing edge; & small amount of pressure is again
introduced in the shaded region beyond the tip. Similasr pressures exist
along the trailing edge, as shown in the shaded region on the left—hand
half, as a result of canceling the basic pressure outboard of the tip.
For wings of very low aspect ratio, the region of secondary pressure in
the wake may even extend onto the surface of the opposite half of the
wing. (See fig. 9(b).) These secondary pressures are no longer conically
or quasi—conically distributed with respect to a fixed point, hence, in
order to cancel them, i1t would be necessary to superpose & series of
sectors having different origins. Such secondary canceling sectors would,
in turn, add still further but smsller extraneous pressures, which for a
more precise anslysis would likewlse have to be canceled, and so on. The
numericel method of canceling these additional pressures is more fully
described in references 8 and 9; but, because the process is complicated
end the effects are relatively small in comparison with the effects of
canceling the basic pressure, only an approximate method of canceling the
secondary pressures will be considered in this report, the method being
sufficiently accurate for most practical applications. Thus, where these
uncanceled pressures exist, the calculated pressure on the trailing edge
or tip will have been reduced to a negative value instead of zero.
Knowing the megnitude of this error (namely, the amount of the tip correc—
tion along the trailing edge, and the amount of the tralling—edge correc—
tion along the tip, both in region III) end also the extent to which the
adjacent region of the wing is influenced by the uncanceled pressures
(defined by reflected Mach lines, see left half of wing in fig. 10), the

~
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correct distribution of pressure near the boundary can be easily esti—
mated using as s guide the trends of the primary corrections. Thise is
most conveniently accomplished by sketching one or two chordwise pressure
distributions near the tip. This procedure is illustrated in the exam—
ples which follow. 1In some cases, a more accurate estimate of the loading
at the tip is desireble in calculating the rolling moment, since the
moment arm 1s greatest at the tip. o

In wing configurations having large angles of sweep and high aspect
ratio, some of the Mach lines from the trailing edge may intersect the
leading edge such that a portion of the sectors of pressure used to
cancel the pressure in the wake near the center of the wing will lie
upstream from the leading edge as shown in figure 9(b). The pressure
flelds required to cancel these minor pressures in the lifting case are
developed in reference 9; but, since they produce only slight reductions
of the basic pressures on the surface of the wing, thelr inclusion here
is believed to be unwarranted in view of the amount of additional computa—
tion that would_be required in a practicasl application.

Secondary downwash effects.— One of the boundary conditions that has
been imposed on the function chosen for the canceling procedure is that of
producing no downwash velocity components on the surface of the wing.
Equation (6) when applied to either the trailing edge or tip does, in
general, comply with this condition, since each superposed sector has zero
downwash between the wing boundary and the Mach line extending across the
wing as shown in reference 8. However, between the wing boundary and the
opposite Mach line (t= =1 at points on the trailing edge) the downwash 1s
finite. It will be observed that these Mach lines of the trailing—edge
sectors at small values of a will Intersect the opposite half of the
wing, thus introducing some overlapping downwash on the wing, and
therefore violating the flat=plate boundary condition. Since only small
regions of the wing are affected, and since the downwash components
approach zero when the canceling sectors lie close to the root chord
(a=0), it 1s concluded that the resultant error would be insignificant -
and mey therefore be neglected.

Tllustrative Examples

To 1llustrate the application of equations (7), (10), and (11), the
pressure distributions along two chordwise and three spanwlse sections of
the configuration shown in figure 10 (alsc used in reference 8) have been
computed and are plotted in figure 11. Separate plots of the conical and
quasi—conical terms are shown for comparison. The secondary corrections
were estimated where necessary, as previously pointed out, in order to
fulfill the boundary conditions at the edges. It is immediately apparent
that the quasi—conical components are for the most part insignificant,
and In most applications mey be neglected entirely. The meximm error
involved in the ebove example is less than 7 percent. By omitting the
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quasi—conical terms, the method then closely parallels that of reference
8, except that the term dERA/da is used in place of dELA/da.

A good approximstion of the pressure distribution in roll can
therefore be made in the following four steps:

1. Calculation of the basic pressure-distributioﬁ (equation (1)).

2. Addition to basic pressure between a subsonic trailing edge and
the Mach line from the trailing-edge apex of the primary correction,

APR,' (equation (2)).

3. Addition to the basic pressure between & subsonic tip and the
Mzch line from the tip of the leading edge of the primary correction,

ABRl“ (equation (10)}).

4, Estimation of the smaller secondary corrections for the pressure
between edges adjoining regions of uncanceled secondery pressures and the .
secondary reflected Mach lines, using as guides the trends of the correc—
tions in steps 2 and 3.

Some .indication of the magnitude and extent of the estimated second—
ary corrections are also revealed in the sbove example, the regions
effected in general being small.

Calculation of the Damping Derivetive

The corrected damping moment, or the damping derivative, in steady
roll may likewise be calculated, first, by determing the basic value for
the over—ell swept-back plan form, and then, by adding corrective terms
to account for the effect In regions I, ITI, and IIT of canceling
pressures beyond the trailing edges and tips. As before, a comparison of
the maggnitudes of the conlcal and quasl~conical terms can be made by
determining their effects separately.

Bagic derivative for damping in roll.— The basic rolling moment is
readlly obtained from the known distribution of pressure. The increment

of force dZ (refer to fig. 12), exerted on an element of wing area
(dS/da)da and based on the average pressure given by equation (1) is

ON

2 (o) kE¥a__1 (@ﬁ) g
2) B 5 Jabar \

az

]
ra
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where (PR)ma.x is the meximum pressure along the ray & at the point

A(x,,7,). With the center of pressure located at (3/4)y,, the corre—
ATA A
sponding increment of rolling moment becomes

The demping derivative, which by definition is

o . X
bp T 3(pb/v)

mey be written for a single element of wing area as

ac; = —i— dl
P  pb/av g5b

since the pressure coefficient and the parameter (pb/2V) are linearly
related in the linearized potentlal theory. From figure 12 it is evident
that in order to obtain the moment on half the wing an integration of

4L must be made over two ranges: first, O0<a<ai, for which

mtcoa as mi2cg?

A" B(mg-a)’  da  2B(mp—e)®

and, second, ay<a<m, for vhich

2

R

g

=-8 is— =
JA 3 ae.

B

The following expressions for the basic damping derivative, after substi—
tution and integration, have been Getermined for the two cases m # my
and m = my!

m# m

-3 () [5G (-
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/ma_a’bz
2(n®-m %)% (m—ey)®

[Emtz(mz—mté)2+mt(mt2—6m2)(ﬁz—mtz)(mt—a_) +

(m—ey) 2( 6m4+10m2m.t2'—mt4‘) ] +

ey o & e Ty |
m = m
“lp =TP_% (j{——t_ ( o) [ 105(m—at)4 (8n°—32uay, +
Senmy2-13e:%) - 355 ]} | ()

Where C3p 1is to be computed for more than one Mach number, it is simpler
to substitute in squations (13) and (1%) W, &f, and T for m, a4,
end mi, respectlively, where :

==

B
&g
% T F
_=ﬂ_
™=

With the exception that the term mic /Bs must be replaced by meey/s,
the transformed equations are otherwise identical to equations (13) and

(1k).

Primary correction resulting from cancellation of basic pressure
in wake.— The ‘effect on the damping of canceling pressures in the wake
can be calculated by a twofold integration: one, to determine the effect
in the region of the wing between the trailing edge and Mach line of =
single canceling sector; and the second, the combined effect of all the
sectors. Thus, in figure 13, the incremesnts of force corrésponding to
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the conical and quasi-conical pressures exerted on an element of wing
area (dS/dt)dt are (from equation (6))

.2 (ZRa —“xr (8
dAZy 7 & da cos™— X T
dAZ ot = E i <d:_PRA> dsa o <c g~ 1 xi. ‘t—e. l_mt ly/l._‘)(_12> (9.%) at
3 de Yy t-mg—a t—mt 1-a _ dt,

in which the average quesi—conical pressure is two—thirds of the maximum
value at the point yp = 8. Noting that the two respective moment arms
are

37_1'=YA+'§'(5"'.YA)
T2 = ya + £ (s7a)

the correction due to the cancellation of basic pressure in the wake of
both halves of the wing may be written as

dACy ' = Ayt + daCy !
1p' = Wy iz,

2 e ale=s t “tpt — t
e DAV AV It
) (o] —
Substituting

ds  Pm;3s® (a.-l-,--e,)2 1
dt"'-‘- 2%2 (m'b"a‘)z t‘?

and integrating with respect to - gives

o S () [ (@2 (e 3 A
e S E® [ (R DEE) 2

[ e 2,mc(l_ﬂ/ - ]da (15)
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where, as before,

dPRp _(m hm2 T 1 a me
ds, o7 BQ 8 ,\/mP_az [m—a. .a.(mt—a.)]

A grephicel method of integratlion with reaspect to a 18 regquired as
before in calculating the pressure distribution. The integrands of equa—
tion (15) contain indeterminate factors at a = 0, for which the follow—
Ing expression may be used:

S O OO

In those cases in which the Mach lines from the pressure fields super—
posed along the trailing edge near the root chord intersect the leading
edge, the rolling—moment integration of each sector must then be made over
the two regions <t <my m, <t<1l, where m, designates the ray
passing through EFxA,yA) and the tip of the leading edge, that is

(AC

S~¥

m =
e~ P The/n)x,

When & exceeds the value g, (determined for m, = 1), where

1—(Bs/c m)(1-m)
*1 7 I(Bs/myme,) (1-m)

then the range my<t<1 no longer exists, and only equation (15) is
required. If, for 0<ac<sa;, subscript r identifies the region
m <t<my and subscript f +the region mg<t<1l, then

2t m=u
S )0 ( 5252)

(The terms (dS/dt), amd (37), were previously given in the derivation
of equation (15).) Since, as #111 be shown later, the effects of the
quasi—conical component of the pressure in the wake in most ceses can be
neglected, only the correction corresponding to the conical component
will be considered. Then, for a<a;

(1)
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. 2 i pleg -
(ACZP )asaz = (Pb 72V)QSb o (:4 %(yl)r C‘%) cog 1 Xt <%‘%>r at +

E%(?l)f(%) cos™L Xt <%S¢>f dti] da. (16)

while the correction for a;Sa<a; 1is given by equation (15). An ana—
lytical integration of (MIP')a<aZ with respect t¢ t is gilven for

the cases m # m; and m = m in Appendix A, but, as in equation (15),
a graphical method is required for the integration with respect to a.

Primary correction resulting from cancellation of basic pressure
outboard of tips.— An analogous procedure may be used to calculate the
damping corrections due to the cancellstion of pressure outboard of the
tips. The increments of force (see fig. 14 and equation (8)) associated
with the conical and quasi-conical canceling sectors are, respectively,

dPr (
n _ 9 A =1 ot as
QAZ, . <——d.a. de cos™ — ¥ X dt

—~5 t-a [ o2 as
aazo" = %% (———dzA de ymé [005—1 X M- t(1+a l—X"a] (a—t' dt

in which. .
TS Tt /11 '
s my—t a EI
is Bmtzsz 1 1)2
at  2(m~t)Z \ay &

The corresponding moment arms are
pa— 2
i =8+ 3 (y%)
¥z = 8 + ¢ (3y08)

such that the resultant correction for both tips after integrating over
the region ~1<t<0 becomes
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ACy

1t = M 1 + M n
D 'p, p

2
- SE (T o 28522 (2 aa

where H(a) and R(a) are listed in Appendix B. Since the term
(dPR,/da)ds. is infinite at the upper limit of integration, it is desira—
ble to rewrite the sbove equation, as outlined in.reference 8, in the
following more suitable form for a graphical solution:

5 o m .
Ay = (%—2-) —_t_ng,l [Ea(m) cog™t % + . E!(a)H'(1 aif_;im_). da]+

(‘) —sa—[ﬂ'(m) cos ™ £ 4 I: E%La(mda] an

where H'(a) = dH(a)/da and R'{a) = dR(a)/da. The expressioms for
HEt(a) and R'(a), together with the particular forms of H'(m) and
R'(m) for the untapered wing (m = m¢), are given in Appendix B.

Secondary corrections.— Equations (15) and (17) (and equation (A1)
or (A2), if required, in Appendix A) therePore comprise the primary
correctlons to be added to the basic damping derivative. A complete analy—
8is, however, would next require an evaluation of the effects of canceling
the secondary and smaller pressures previously described. As before, the
calculation of these effects are not warranted in most applications in
view of their mathematical complexity, but, where necessary, approximate
secondary corrections to the damping derivative can be deduced from the
secondary pressure corrections discussed previously. It is observed that,
slthough they are small and are effective over only small portions of the
wing, the secondary pressures in some cases may give rise to rolling
moments which are not trivial, since they are distributed at large dis—
tances from the rolling axis. In such cases, the net change in loading
near the tips associated with the estimated secondary correctlons for the
pressure together with the corresponding moment arm to the center of
gravity of the loed correction can be easlly approximated.

Illustrative examples: The damping—in—roll derivative for the
unteapered— and tapered—wing configurations shown in figures 10 end 15,
respectively, has been computed by the above method, and the results,
which for the untapered wing include the separate corrections resulting
from the cancellation of the conical and quasi-conical components of
pressure, are listed in tables I and II. As before, in the calculation
of the pressure distribution, it is evident from teble I that the effects
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of the guasi-conical terms are so small that their computation would not,
in general, be Justified.

An estimate of the correctlon resulting from the cancellation of the .
secondary pressures along the trailing edge and tips of the untapered wing
of figure 10 1s also included In table I. The 7 3—percent magnitude of
this correctlion may be of significance in some applicatlions. Inclusion
of the secondary corrections for the tapered wing (fig. 15) at the lower
Mach numbers, at which the Mach line from the trailing-edge apex inter—
cepte the leading edge, ia not wlithin the scope of this report; however,
on the basis of the reésults given in reference 9 for the case of 1ift,
the correction that would result from the cancellation of the secondary
pressure upstream from the leading edge is believed to e negligible. AL
all the Math numbers, the uncanceled secondary pressure outboard of the
tips and in the wake was also neglected, since for the tapered plan form
only small portioms of pressure distribution on the wing are affected by
their presence.

The quantities listed In table II for the tapered wing are shown
plotted ageinst Mach number in figure 16. The spacing between the curves
for the basic and the corrected values gives an indication of the over-all
reduction of the damping moment due to the subsonic trailing edges and
tips, particularly for high angles of.sweep and low Mach numbers. It is
noted that the corrected damping derivative increases with Mach nunber
until the trailing edge becomes supersonic (about M=1.65), and then
decreases.

Thus, by retaining only the conical terms in the corrections, the
method for calculating the damping derivative is reduced to the following
steps:

or (1h4}).

2. Correction of the basic wvalue for the effect of a subsonic
trailing edge (conical terms (ACI ') in equation (15) and in equation

(16), if required).

3. Correction of the basic value for the effect of both subsonic tips
(conicel term (AC;PZ') in equstion (17)).

L, ERetimation of the secondary corrections based on the amount and
locstion of uncanceled pressure existing on the wing after canceling the
baesic pressure in the wake and outboard of the tips.

1. Celculation of the basic damping-in—roll derivative (equation (13)
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Calculation of the Pressure Distribution and
Damping in Roll by Strip Theory

A direct correlation between the pressure distributions due to steady
1ift and to steady roll can be made along chordwise strips in soms regions
of a swept—back wing. Thus, irn the basic equations for the itwo cases,

PL=a hp® 1
B E(71—m2) P2 .

B = (EEE Py 1
XN/ BQ 8 NWpEg®

1t is seen that the pressure due to roll is related to that due to 1lift
in the following manner:

Pr =8 L Py

where

5 . (B0/20) E(V1-2P)
& Q

This reletionship is valid in those regions thet are not affected by the
existence of pressure in the wake 'end outboard of the tips, but elsevhere
(regions I, II, snd ITI in fig. 1) the strip theory will not yield correct
values, since from equations (6) and (8)

TRy 4 Ta L
e ’ B aa

where y, 1s & function of a. The extent of the error introduced by
the strip method is shown in figure 17, which includes the pressure dis—
tributions as calculated by both the strip and the conical—flow methods
along sections A-A and B-B of the wing in figure 10. Since the mag—
nitudes given by the two methods differ by a&s much as 40 percent near the
subsonic boundaries, it is concluded that the strip theory 1s generally
not satisfactory for calculasting the pressure distribution near a subsonic
edge. These differences in pressure, however, when integrated to deter—
mine their moment about the rolling axis, are much less significant, the
velue as calculated by strip theory being only sbout 2-1/2 percent less
than the value given in table I. A good approximation of the damping—in—
roll derivative therefore may often be calculated by means of strip
theory.
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CONCLUDING REMARKS

A method of-analysis based upon the usual assumptions made in the
linearized theory of potential flow has been presented for calculating
in & supersonic flow the pressure distribution anrd damping in steady roll
of flat swept=back wings having all edges straight and subsonic. Although
restricted to wings with zero rake at the tips in the applications consid~—
ered herein, the analysis can be readily adapted to the treatment of nege—
tively raked tips. Tips with positive rake, although not within the scope
of this report, can be analyzed through an adaptation of the method given
in reference Q@ for the case of steady lifts Although complete solutions
for configurations in which the Mach lines from the apex of-the tralling
edge intersect the leading edge are not Included, it—is believed, on the
basis of the results given in reference 9, that the method will yield
values which are sufficiently accurate for most practical spplications.

It is demonstrated that-from e practical standpoint the analysis, as
outlined, can be simplified considerably by omitting several minor terms
in the complete solutions. The procedure for ‘calculating the pressurs
distribution and damping in roll is thereby shortened to the extent that
it closely parallels the method presented in reference 8 for the case of
steady lift. The maximum error involved in applying the simplified
analysis to an untapered wing of low aspect ratio is shown to be less than
T percent of the total pressure at any point sni less than 3 percent of
the damping derivative. A parallel computation of the pressure distribu—
tion in roll can therefore be made when the 1ift distribution is being
evaluated. '

Although strip theory can be used to correlate the pressure distri-—
bution in roll and the 1ift distribution over & swept—back wing having
trailing edges and tips which are supersonic, it is found to be inaccu—
rate in-the vicinity of a subsonic boundery. However, a close approxime—
tion of the damping—in—roll derivative can be cdlculasted by means of
strip theory.

-

Ames Aeronautical Lsaboratory,
National Advisory Committee for Aeronsutics,
Moffett Field, Calif., Jan. 6, 1950.
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APPENDIX A

CALCULATION OF PRIMARY CORRECTION FOR DAMPING
DERIVATIVE — DUE TO CANCELTATION OF EXCESS
PRESSURE IN WAKE

The demping correction (AC;. %) < for the range 05ala; due

to the cancellation of pressure in the wake of a swept—back wing (from
equation (16)) is as follows:

m# mg
LIS CO R COHE S

1 (ﬁ'ﬁ) 1 (1-8) (me—mt )~(mp—e) (1-ma)
- (1) (mg—a)

(mge)(1-a) o 2mg-ma(lém) :I+
o mg (1-mg )

AalH

dPRA> 7, (me)2a2 1 {m V(1-8)(mp—a) (my—my ) (1-mg)
da / 3 82m® 8° x(mg—m) (mt~m) ( 1~m)

(l—a)(mt—a) |: . m(l—a)(zﬁh—m)+m(l—m)(m_t—a)}
(1~m) (my—m) 2(my—m) (1-m)

l cos—1 {37m) (me-me ) —(me—m) (1-mg) _
(1-my, ) ( my—m)

- CO8

(m-e)(m(n —e)ta(m-—m)] 1 (1-2)(m —m )—(mi~e)(1~m, )
(o) (Gm)2  * (1) (za—a) da

(A1)

The correction for the entire trailing edge is

ATy = t
= e, 00 <o
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m = my

ez S [ G (G- DEES 0

D8 ot (1-8)(mp—mp){(m—a)(1-m,)
Mg, (1-my ) (my—e)

1 [(mg—e)(l-e) =1 2m—mg ( 1+m;, ) ]
- [~——————coB +
o o Iﬂa(l—mt)

<_Aﬂi (m—a)"“ <dPRA>{[ (ma—m)(m—a) i

(m-a)(2mg—m) = m2a ]cos"l (mg—m)(1-a)—(m-a)(l-m)
3e(mg—m) 2 3a(ma) (my—a) (1-m)

Al

2 [1 ,rea m(me)
32 9a(mg—m)

2m(m—a)] ¥/(mg—m) (11 ) (m-e.) (1~s.) }] (a2)

98,(1-m) (me)(1-m)( ) (mg—m)
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APPENDIX B

CALCULATION OF PRIMARY CORRECTION FOR DAMPIRNG
DERIVATIVE — DUE TO CANCELLATION OF EXCESS
PRESSURE OUTBOARD OF TIPS

The expressions for H(a) and R(a) in the tip corrections to the
demping derivative (p. 25) are as follows:

CRCERERR IR
Re) = @' B i‘)a{ﬁl? * 1e) = T T /ﬁi .

3mt<_1_ 1 [ 1 1 / a(l+a)’
2 \a  a; 3w s(a) — omy (1+my )2(1+a) mt(l+m.bf]}

where

__1 a(l+a) '
gla) mt_a[/mt(mt)_ 1]

n(a) = —— [(mt—ea) ola) — o2ty [ allta) ]

2(1+m.) & my( 1+mg )

_ 3+8mt+8mt2 a(l+a)
2h(1+m )2 & my(l+mg) J

1 3a®—3am +m; 2 (3a—m ) (1+2my) / a(l+a)
() = 5= [_ ;mt g(a) - _Efmhmt) = mt(l+mt)]




32 NACA TN 2047

The terms H'(a) and Rt'(a) in equation (17) are

aria) - - 2 (2o 2)[E 4 o]+ (;——— {ee) - B [E v nw)| +

3 (2-2) v
(e = (3 - 2 [ -r® e A ]+

2
3 (r_ L I 1 a(l+a)
a? (a az) [ m ~ 2e) * T (T o Ry ]
4
3mp /1 1 . 1 a(l+a)
T(; = Q [5 (@) + e (Trag)e(ra) W o (Trmg) ] -

6mg (1 _ AN T 1 _ 0y = 1 [a(Tra)
?-(a a,) [31% 5(8) = G (iom, ) 5 1m) mt(1+mt)}

where

' -1 2a+1
g'(e) Y [ 2 Vam (1+a)(1+m; ) ¥ 8(3)}

(1+2m¢ ) (1+22) J

l:(mﬁa)z'(a) - 2g(a) + h(a) — —h(l+mt) 7amt(l+&)(l+mt')

h'(a) =

1)

! = — ' - (3+8my +8my ®) (2a+1)
ot(a) = 2 [s(a) #1(8) — o ]

ri(e) = g [ rle) - Z2EEE gi(a) - (2emm) () -

(2a+l) (3a~2m; ) (1+2m, ) 1+2m, a(1l+a) :l
12(1+my ) Vam (1+mg )(1+a)  2(1+mg) & my(lvmg)
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Expressions for H'(m) and R'(m) for the untapered wing are as
follows: _

-3 () -]

(-3 P 3 G-2) ]

__3m l_i> 3 i(.l__1_> _ 1
Ri(m) = -3 <m ay/ 128e2(1#m)* 2 \m ag/ Ba(imm)Z
where

em+l

glm) =- m

- 3
B(m) = -1+ e
s(m) = S 2

3m  L48m(1+m)3

_ 3+0m+8m2

r(m) b (1+m)2

g'(m) =

8m2( 1+m) 2

1

Bf(m) = 8m2(1m)®

5

> = - e

4+17m+12om2

wH(m) = - 2ym(1+m)3
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TABLE I.~— CAICUILATED DAMPING DERIVATIVE F(OR

UNTAPERED WING SHOWN IN FIGURE 10

35

Quantity Magnitude Peigﬁ of
c,_p (basic wmcorrected value) | —0.2978 171.0
ACZP' (T.E. conical) .0235 -13.5
ACZP' {(T.E. quasi-conical) .0010 -6
ACIP" (tip conical) .1076 —61.8
ACIP" {tip quasi—conical) .00h2 2.k
Estimated secondary corrections - 0127 T.3
C1y (corrected) ~.17ke 100.0
SNAGA
TABLE IT.— CAICULATED DAMPING IERIVATIVE FCR
TAPERED WING SHOWN IN FIGURE 15
u Lo, (wasto) o1 sz'(T.E. ‘conical) ACzp"(tip conical)
L) (corrected) Magnitude Per%g%g,lof Magnitude Per%g%;f: ff
1.2 -0.3238 -0.2521 0.0413 —16.4 0.0304 -12.1
1.3 ] —-.3196 —. 2614 .0308 | -11.8 027k | -10.5
1.k —.3154 —.2690 .0213 -7.9 .0251 -9.3
1.5 —.3112 —.2761 .0115 4.2 .0237 -8.6
1.6 -.3070 —-.2828 .0020 -7 .0222 -7.8
1.7 -.3028 —.2817 0 0 .0211 7.5

'
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Figure 2.— Coordinate system and Mach line configuration.
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Figure 3.~ A seclor of infinitesimal canceling pressure, corresponding

to a ray a, to be superposed on field of excess pressure in
wake of wing in steady lift.



Figure 4.~ One seclor of field of conical pressure used fo cance/
basic pressure in wake of wing in steady Jift.
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Figure 5~ One seclor of series of fields of conical pressure fo be suyper-
posed along ray a in derlvation of quasi-conical pressure fleld,
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Figure 6 .- One sector of field of quasi-conical pressure used
to cancel prassure in wake of wing in siteady roll .
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Figure 8- One sector of combined fields of conical and quasi-confcal pressure
used fo cancel basic pressure outboard of tip of wing in steady rall.
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(a) At small sweep angles or at high Mach numbers.

Figure 9.— Regions of secondary pressure (shaded areds} introduced
in wake and outboard of lips as result of cancéling basic pressure.
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(b) At large sweep angles or at low Mach numbers.

Figure 9.— Concluded,
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Figure 10.— [llustra tive untapered wing plan

‘form and Mach line configuration .
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Figure Il.~ Chordwise and spanwise pressure distributions of Illustrotive
untapered plan form (fig. 10) in steady roll,
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Figure /l.— Continued,
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Figure /f.— Concluded.
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Figure 12.~Force due fo basic pressure on element of wing area.
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Figure 13.— Forces on &lement of wiing area corrésponding 1o conical
and gquasi-conical components of single saecfor of canceling pres-
sure in wake.
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Figure 15.— Hlusirative fapered wing plan form ond Mach line configuration.
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Figure 6.~ Var/aﬂon with Mach number of components of demping-in-roll derivative
of illustrative tapered wing (fig 15).
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Figure [7.- Comparison of chordwise pressure distributions on illustrative
untapered wing as calculated by means of strip theory and of

conical-flow method,
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