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SUMMARY

EWES

A method, which is based upon the concept of the superposition of
conical and quasi+onical flows, is presented for calculating the p!ressure
distribution amd damping in steady roll.at supersonic &ch numbers of thin,
flat, swept+ack wings having all edges straight and subsonic. Although
it can be adapted to wings having negative rake at the tips, the method is
developed only for wings with streamwise tips. As outlined, the analysis
is rigorous and somewhat complicated; however, several possible simplifica–
tions are suggested which considerably reduce the amount of computation
without introducing significant error. The method then closely parallels
a previously published nsthod for calculating the pressure distribution,
corresponding to a condition of steady lift.

To illustrate the application of the mthod, calculations of the
pressure distribution and the damping derivative of an untapered swept-
back wing aud of the damping derivative of a tapered swept+ack wing are
included. From a comparison of the results obtained by both the rigorous
and the shortened methods for the untapered wing, it is concluded that for
most practical purposes the shortened mthod will yield sufficiently
accurate results. A comparison of the values for the untapered wing with
those obtained by means of a mthod based upon strip theory is also
included; and, although it is shown to be considerably in error in pre
dieting the pressure distribution in the regions adjacent to a subsonic
trailing edge or tip, the strip method gives a good approximation of the
qing derivative.

W general, the msthod is formlated in accordance with the usual
assumptions end LhMtations of the linearized potential theory.

The pressure
Mach nuuibershave

INTRODUCTION

distribution and damping in steady roll at supersonic
been calculated for many of the comnonly used wing

v
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configurateions. These include trkn@lar whgs (references 1 and 2),
rectangular antitrapezoidal wings (references 3 and 4), various forms
of sweTt-back wings (references 3, 5, and 6), and wings of somwhat
arbitrary shape but having supersonic leading edges (reference 7). The
particular class of..swept+ackwings in which all the edges are subsonic
is the yrincipal subject of this report. This class has not been fully
treated heretofore, although an approximate mthod of analysis for wings
with streamwise (subsonic) tips is given in reference 6.

. .

;

.

Where subsonic traillng edges (or tips) exist, the effects of changes
in flow occurring in the vicinity of those edges are propagated over the
surface of the wing and therefore influence the pressure at points within
the region defined by the wing boundaries and the Mach.lines from the apex
of the trailing edge (or from the tips of the leading edge). Hence,
whereas the pressure distribution over the w~ is in general governed
principally by the sweep of the leading edge, the variation of pressure in
the vicinity of a subsonic trailing edge (or tip) is additionally influ-
enced by the flow around the trailing edge(or tip). In the following
report, a procedure for calculating the pressure distribution near a sub-
sonic edge is presented which consists first, in the evaluation of a basic
distribution associated with an infinite triangular wing havimg leading
edges which coincide with those of the swept+ack wing, and second, in the
correction of these basic values for the effect of having introduced
excess pressures in the wake and outboard of the tips of the swept+ack -
wing. The corrections to the basic pressure in the second step are cal-
culated by superposing sectors of conical aud quasi+onical pressure along
the wing boundaries in order to cancel the excess pressure in the wake ad

r

outboard of the tips. The derivative for the damping in steady roll is
calculated in ~ analogous mamner. In general, the meth~ follows closely
that developed in reference 8 for calculating the lift and pitching mommt
of a swept-back wing, but with the difference that, where the basic
pressures corresponding to lift are conically distributed, those corre-
sponding to roll are quasi-conically distributed (i.e., vary linearly
along rays passing through the apex of the le~ding edge).

The analysis is otherwise confined to the usual assumptions and
limitations of the linearized potential theory for supersonic flow.

●

NOTATION

The quantities listed in the following are assumed to have con-
sistent units and all.angles

a slope of-any ray

—
are given in radians:

through origin divided by slope of Mach



ITACA TN 20k7 3“.

i

.

*

.

*

a2 value of a corresponding to ~ = 1

[

1-(~s/com)(l-m)
ax =

l-(13s/qcom) (14 1
a. upper limit of a corresponding to a specified point x,y

[
on tip, a. =

$s
. on trailing edge,

X+p(y-s) ‘

py+co-x
a. = % py+co~-x 1

at

b

co

C*

c!

slo~e of ray through the tip of the trailing edge divided by

dope of Mch lines
(+)

wing span

root chord of wing

tip chord of wing

constant factor used
function

in derivation of pressure canceling

roll-merit coefficient
()

L
@5

dc~ corrective tern
P

t

derivative
[a(%v) 1

for basic damping derivative

F pressure canceling function (FIWZ)

F1,F2 auxiliary functions corresponding to
~I,qz and &2,T12, rf=p=ctiwdy

L basic

m slope

(P

rolling mamnt

of_leading edge

cot A)

the coordinates

divided by slope of Mach lines
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slope of ray through point A(xA?YA) and tip of leading

edge divided by slope of bhch

slope of tip divided by slope of Mach lines

slope of trailing edge divided by slope of Wch lines

free-stresm Mach nurtiber

steady rate of roll, radians per unit-of time

pressure difference between

()

AP
pressure coefficient

T

upper and lower surfaces

pressure coefficient corresponding to steady lift

of wing

pressure coefficient for steady lift at point A(XA}YA)

correction term for basic pressure coefficientifor steady lift

pressure coefficient corresponding to steady roll

pressure coefficient for steady roll at point A(XA,YA)

correction term for basic pressure coefficient-forsteady roll

()dynamic pressure &

semispan of wing

wing area

(m)

sloye of ray through points x,y and xA,yA dividedby

slope of Wch lines
(%)

of-ray through points xt,y~
~2,72, respectively, divided

Yt-Vl

2)

Y’+12
—P—
x?+~’ xt+

.

T

.

M

.

and ~l,TI1and points xl yt .

by slope of Mach lines

f
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free43tream

rectangular

coordinates

coordinates

edge, ~A

5

velocity

coordinate (fig. 1)

defined by X-XA and y-yA, respectivel~

of point A on trailing edge or tip
[
on trailing ,

. %Co 7A . %Coa— . on tip, ~A = ~, ~A=8-
mt-a’ ~(mt+) ‘ 1

lever arms of increments of force due to conical and quasi- ----
conical.pressures respectively, exerted on an element of
Wi~ area ,

Y coordinate of intersection of trailing edge amd center
line of an element of area at tip

{“41-%(:-31}

force due to basic pressures in z direction

correction term for

helix angle of wing

aspect ratio

z

tip in roll

E(a),H~(a)
R(a),R?(a)

1
g(a)>g’(a) f~ctions defined in text
h(a),ht(a)
r(ajjrt(aj
s(a), st(a) J
a amgle of attack, radians

P ~

5 factor used in stri~theory calculations
.

!1>71
and

1

coordinates in x and y directions, respectively, defining

~a,qz the origins of a series of superposed canceling sectors

-.
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K( =)

E( ~)

K(k)

E(k)

K(kf)

E(k?)

F(V,k?)

upper limits of ~1 @ qz, respectively,

[

a(x~-py’)
a specific point X,y ‘ ~lo =

‘~

angle of sweep of lead’ingedge

mass density of air

argument of inverse-cosine terms in

values of X

trail~dge

tip functions

corresponding to

Superscripts

functions (except

(except as mted

Subscripts

NACATN 2047

corresponding to

,20 = .%%.]

canceling functions

and ta, respectively

as noted in text)

Ln text)

conical pressure canceling sectors

.

*

quasi-onical pressure canceling sectors

Elliptic Functions

complete elliptic integral of first kind, nmdulus G

complete elliptic integral of second kind, modulus m

complete elliptic integral of first M.@, modulus k

complete elliptic integral of second kind, modulus k

complete elliptic integral of first kind, mdulus k’

complete elliptic integral of second kind, modulus kr
.

incomplete elliptic integral or first kind, modulus kt,am-l~ 7
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.incomplete elliptic integral of second kind, nmiulus k~,m-~

METHOD

reference 1, it is shown
flat triangular wings is

cm ANALYSIS

that the pressure distribution~ in steady
quasi-conical (i.e., varies linearly

along rays passing-through the apex of the lead= edge)c ~tho~ co~
fine~ to-tr&ng&r plan-forms, the results of the analysis can be applied
readily to swept-back wings which have supersonic trailing edges and tips.
Where the wing edges are all subsonic,as shown in figure 1, the mthod of
reference 1 cannot be directly applied since within regions I, II, and
111, the pressure distributions are no longer quasf+onical. The configw
ration in figure 1 has been treated previous~ for the conditions of
steady lift in reference 8. Since the cases of steady lift and steady
roll differ only ti boundary conditiom, the present mthod of analysis is
fundament~ly the sam as that in reference 8.

The pressure distribution of the swept+back wing illustrated in
figure 1 may be derived from that of an imfinite triangular ~ havx
coincident leading edges. A basic pressure distribution is first calcw
Iated, using the sfmple expression for the triangular wing; and then
several terms,representing primmy and secondary corrections of the basic
pressure on the wing resulting from the cancellation of the excess pressure
not contatied within the boundaries of the swept+ack wing (shaded areas),
are added to the pressure in regions I, 11~ sad III. The cancellation of
the excess pressure is accomplished by superposing various sectors of
conical and quasiaonical pressure along the trailing edge and tips.

The orthogonal coordinate system shown in figure 2 is chosen. The
plxme of the wing lies in the x~y plane and is thsrefore fixed at zero
emgle of attack2. The x axis, which is the axis of roll, is then a
principal bo& axis with an origin at the lead~dge a~x. For this

.

u

%!hroughout the ted the terms “pressure” and “pressure coefficient”
(i.e., Ap/q) are used interchangeably. All qumtities in the
analysis are therefore dimensionless.

%ings at other than zero angle of attack msybe treatedby superposing
the individual results for the cases of steady lift and steady roll.
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system, the pressure at a point x,y on the surface of the triangular
wing in steady roll and having subsonic leading edges is given in
reference 1 as

(1)

where
,

,

a= $5

The variation of pressure along smy ray a is seen to be directly pr~
portional to the spawise location y/s, and, as such, conforms with the
definition of the term quasi-ccmical. For plan forms having supersonic
trailing edges end tips (except tips with.positive rake), the damping
moment corresponding to the pressure distribution given by equation (1)
can be readily calculated since the flow over the wing is completely
independent of that in the wake and outboard of the tips, On the other
kd, where these edges are subsonic such that the various regions of
flow are interdepadent, the effect on the damping of canceling the
pressure in the wake and outboard of the tips must also be taken into
account.

Cancellation of Basic

In figure 1, regions I and 11X

Pressure in the Wake

on the surface of the wing are seen
to lie within the I&ch cones of pressure disturbances occurring on and
behind the trailing.edges, and therefore are the areas of pressure that
will be influenced by the cancellation of pressure in the wake. The
function for a field of pressure which may be superposed on the wake to
caacel the basic pressure must fulfill the following

1.
with the

2.

Cancel the pressure at the trailing edge in
Kutta condition.

Represent a field of quasi~onical pressure
the pressure in the wake given by equation (l).

3. Be zero outside the Mach cone enclosing the
to be canceled.

conditions:

order to comply

that conforms with

region of pressure

.

u
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4. lime a
reduces to zero
the wing remain

complementary function for
on the surface of the wing
flat.

downwash velocity that
in order that the plane of

~. Satisfy the equations for linearized potential flow and
irrotationality.

The function, which fulfills each of these conditions, is composed of
both confcal emd quasi~onical components which canbe developed independ–
ently.

conical Comportentof canceling function.— The following funotion
given in reference 8 for the case of a swep~ack wing in a steady lifting
attitude, namely (r.p. to indicate real part),

● ~ . (1-a)(t~)-(m~)(l+)

(l*)(t*)

x

satisfies each of the prescribed boundary conditions except the second.
As illustrated in reference 8, this fuuction, in which the term t
defines a ray similar to a but having its originat a point A(XA,YA)
on the trailing edge, represents a sector of pressure (fig. 3) in which
the pressure is conically distributed rather @an q~si-conically dis-
tributed. The function, as shown in figure 4, in effect cancels a field
of pressure which has the constant value (~A/~)da within a sector
having an apex at the point A ‘and sides along the ray a and the
trailing edge mt (i.e., a~t<mt), and which diminishes on the wing
from (wA/da)& along the trailing edge to zero along the l&ch line
from A (i.e., mt<t<l). The downwash associated with each sector is
shown in reference 8 to be zero in the range ~<t<l and finite in
the range –l~t<~, thus complying with condition 4. A series of
these pressure fields can be distributed along the trailing edge such
that their integrated magnitude will cancel the portion of the pressure
in the wake of the wing in steady lift in excess of the pressure at the
trailingyedge apex.

If the term (~A/da)da is replacedby (~A/da)* W ~ by
+1 ~ in the above equations that is,

()d%?=’=+ .2 . -’*’da cos (2)

‘It wilJ be understood that only the real part of the equation applies.
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where

XL( l-a)(t~)-(w -a)(l-t) ‘
(M@(-)

then a field of pressure conically-distributedin the wake from points
along the trailing edge of a rolling wing will be canceled. Equation (2)
alone, however, will not cancel all the pressure in the wake, since there
still remains to be canceled an additional component field of pressure
associated with the linear ticrease of pressure along rays originating at
the trailing edge. The function for this additional quasi-conics3 com-
ponent may be developed through a further application of the yrinciple of
superposition o&conical flows.

Quasi-onical component of canceling function.- The function for a
quasi-conical field of pressure, which complies with sll the prescribed
boundary conditions, can be derived by super~osing the conical fields
givenby equation (2). Thus, two independent-auxiliaryfunctions, which
define fields of pressure that-vary linearly with respect to both x and
y, can be obtained first, by integrating a series of sectors of infini-
tesimal conical pressure with their origins spaced along the ray t = a,
and second, by integrating these sectors spaced along the ray t = mt.

These two new functions will not &dividually satisfy thatwo knowR
boundary conditions: (1) that-the function define a field of pressure

.

which varies linesrly along the ray t = a with res~ct to y only in
order to be consistent with equation (1), and (2) that the function reduce
to zero along the rqy t

#
= mt along which all the pressure is canceledby

the fields of conical pressure alone. However, they canbe employed simul-
taneously to deduce a single resultant function for a field of pressure
which does fulfill these two conditions, and therefore cancels the remaiti
ing quasi-conical pressure tithe wake.

Referring to figure 5, let ~l,ql be the coordinates, originating
at A, of the apexes of the conical sectors to be integrated along the ,
ray a. Defining a constant linear rate of increase of pressure in the
v direction as

‘=+[G’!.‘al
where ~A is given by-equatimn (1) at the point A (i.e., y =yA), then

the expression for a single elermnt of the series of conical pressure
fields to be superposed may be written
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8 xl . (l+(tp+(lll+(l-tl)

(l+lt)(t~+

yA = .3!& XA

= q+fJ

(lrp)

The rearwardmst sector, identified by the ordinate

influence the point P(x,y) on the wing corresponds
that is,

7J10, that can

to the ray tl = 1,

The first quasi~onical function is then foundby integrating dF1
between the limits O and TIO, that is,

o

=- !z
x [

COS-l Xl dql

a(l~)(13yf-ax:)

where

~, . (Pa)(t+-q+(l-t)

(l+(t+

t= +=BZ
A

(3)
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In a similar manner, the second function Fz can be obtained by
integrating fields of infinitesimal conical pressure having the apex
coordinates E2j T12 along the line

=;= (..s-. x, - q (1+,

where

~ . (1-a)(t2-l@-(m@(l-t2)

(1-@(te)

t-
tz = P-

% .9*

(x’+Yt )
720‘ % p(l-mt)

Equations (3) and (4) cam-nowbe conibinedin the following nmner to
give the desired resultant function F, which reduces to zero along the
trailing edge, t = ~. Let F be defined as

F= FI + C!F, (C = constant)

Then aLong the ray-t = mt, the factor C beco~s4

(Fl)t=% = _ a(l-mt)
c
= - (F=)t% 2mt(l%3) “

and the funotion F,

a ~-t

(
-~ xt - t-

la
F. -:7’ 7%% Cos q=

r)~-xf2

41n the region a St ~~, Cos-lX f=X.

.

.?

.

●
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then, along the ray a this equation reduces to .

- [(~) .](F)t== - C@= -Y’ $

As required in boundary condition 2 for the rollm wing,
prol?ortion can be written:

‘, ~[(~)b] .y-~.

%A da

()

y

da

13

the followiIlg

.’

and therefore the desired quasi<onical. form,

is obtained along the ray a.

Hence the quasi-onical. component of the function for canceling the
basic pressure in the wake my be e~ressed as

A sketch of the sector of pressure represented by equation (5) is shown
in figure 6.

Complete function for csncel@ basic pressure in wake.- The
conq?letefunction ~~ for canceling the basic pressure in the wake csn
now be formed by co?ib&ng
quasiaonical components.

~’ = *=’ + dAp&’

the individual
Thus,

functions for the conical and ,

~ @A ~ cos_=xt
=--—

3-(()Tir

( _=&!tCoS-=x’~ l-a
(6)



A sketch of the conibinedfields
is shown in figure 7.

The primary correction for
region 111 in part (fig. 1) can

I?ACATK 2047

of pressure represented in equation (6)

the basic pressure in region I and
now be found%y integrating equation (6)

along the trailing edg;. If a. (deflnedby ‘t=l) denote= the ray to
the outermost sector that can affect the pressure at the point P(x,y),
the correction at -P becomes

ml+

(7)

.

I

-.

where

py+co-x
a. = % 13y+mtco-x

A graphical ~thod of integration is suggested. Separate terms repre-
senting the conical and quasi-conical components are retained in equa-
tions (6) and (7) for the purpose of showing their relative magnitudes
later ‘inthe report. It will be shown then that the quasi-conical terms
may be dropped in most practical applications without introducing signi-
ficsat -errore

Cancellation of Basic l%essure outboard of the Tips

.

.=

A suitable function for canceling the basic pressure outboard from
the tips canbe deduced directly from equation (6).- It is observed in
figure 8 that the tips lie in the negative range of’ t of each super-
posed sector, in which case it is necessary to substitute -a, +,
and * for a, t, and mt, respectively. For example, in the case
of a wing with zero rake at-the tips (i.e., ms=o), equation (6) transforms ●

ta

.
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%/’ = 9.” + %&’

where

a+t+2at
x“=~

XA.=EE, yA . ~

The field of pressure defined by equation (8) is schematically
figure 8.

shown in

The expression for a tip with negative rake can also be deduced
directly from equation (6). Tips with positive rake,on the other hand,
do not com witti the scope of this report, although the~ may be treated
through an adaptation of the method given in reference 9 for the case uf
steady lift.’ h a~plication, however, the present analysis will be
limited to wings wtth zero rake at the tips.

The primary correction for the pressure at a point P(x,y) near
the tip (with zero rake) due to cancelhtion of basic pressure outboard
of the-tip can be foti-by integrating equation (8) along the
the limits a=m and a=ae, where

$6
a. = X+p(y-s)’

In performing suoh an integraticm, it is noted that the term

appearing after equation (7), beco~s infinite at the leading
Reference 8 presents a methcd for treating the singularity at
Mllit. The mthod leads to the following expression in which

tip between

dx@a,
edge (a=m).
this upper
the conical

end quasi+onical parts are again retain8d as separate components for
comparison of their magnitudes:

(9) -
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An analytical solution to the conical part (first integral) is given in
reference 8 as

r2p(s~)
— K(k) -
m(x+~y)

where

k=

The

#

quasi-onical. part has been solved in a similar manner, resulting in

(U)

Equations (10) and (11) together, therefore, constitute the primary
correction to be added to the basic pressure at each point b regions
II and 111 in figure 1.

~ interesting result is obtained in evaluating the primary correc-
tion for the pressure at points lying along-the tip Mach cone. For
these points, ao=m and k=o, and equations (10)
respectively, to

and (n) reduce,

(12)

.

.4
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and

‘R2° =0

!I%us,an abrupt reduction of pressureresulting from the cancellation of
the conical portion of the basic pressure outboard of the tips is observed
to occur along the Mach line from the tip of the leading edge. ~o such
change, on the other hsud, is introduced along the Mach lines from the
apex of the trailing edge by either the conical or the quasi~onical COW
ponents of the conection due to the cancellation of the basic pressure in
the wake (see equation (7)), since both components diminish continuously
to zero on the Mach Mne. The abrupt reduction of pressure at the tip was
encountered also in the case of steady lift in reference 8.

Secondary Corrections

Cancellation of secondary pressure.- Although the basic pressure
outside of the boundaries of the swept-%ack wing is completely canceled
by mesm of equations (7), (10), and (11), some residual secondary
pressure still remains to be canceled if a complete solutlon is desired
in certain regions. Reference to the right-d half of the wing shown
in figure 9(a) indicates that, as a result of superposing canceling
pressures along the traiMng edge, a small.amount of pressure is again
introduced in the shaded region beyond the tip. Similar pressures exist
along the trailing edge, as shown in the shaded region on the left-hand
half, as a result of canceling the basic pressure outboard of the tfp.
For wings of very low aspect ratio, the region of secondery pressure in
the wake may even extend onto the surface of the opposite half of the
wing. (See fig. 9(b).) ~ese secondary pressures sre no longer conically
or quasi-conically distributed with respect to a fixed point, hence, in
order to cancel them, it would be necessery to superpose a series of
sectors having different origins. Such secondary canceling sectors would,
in turn, add still further but smaller extraneous pressures, which for a
more precise analysis would likewise have to be canceled, and so on. The
numerical method of canceling these additional pressures is more fully
described in references 8 and 9; but, because the process is complicated
and the effects are relatively small in comparison with the effects of
canceling the basic pressure, only an approximate mthod of canceling the
secondary pressures will be considered in this report, the method being
sufficiently accurate for most practical applications. Thus, where these
uncanceled pressures exist, the calculated pressure on the trailing edge
or tip will have been reduced to a negative value instead of zero.
Knowing the magnitude of this error (namely, the amount of the tip correc-
tion along the trailing edge, and the amount of the traili~dge correc–
tion along the tip, both in region III) and also the extent to which the
adjacent region of the wing is ’influencedby the unca?.iceledpressures
(clefined by reflected Mch Mnes, see left half of wing in fig. 10), the
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correct distribution of pressure near the boundary can be easily esti-
mated using as a guide the trends of the primaiy corrections. This is
most conveniently accomplished by sketching one or two chordwise pressure
distributions near the tip. This procedure is ilhstrated in the e~
pies which follow. In some cases, a more accurate estimate of the loading

‘ at the tip is desirable in calculating the rollhg moment, since the
moment arm is greatest at the tip.

In wing configurations having large angleG of sweep and high aspect
ratio, some of the Mach lines from the trailing edge may intersect the
leading edge such that-a portion of the sectors of pressure used to
cancel the pressure in the wake near the center of the wing wiJJ lie
upstream from the leading edge as shown in figure 9(b). The pressure
fields required to cancel these minor_pressures in the lifting case are
developed in reference 9; but, since they produce only slight reductions
of the basic pressures on the surface of the wing, their inclusion here
is believed to be unwarranted in view of the amountimf additional computa-
tion that would.be required in a practical application.

Secondary downwash effects.- One of the boundary conditions that has
been imposed on the function chosen for the canceling procedure is that-of
producing no downwash velocity components on t% surface of the wing.
Equation (6) when applied to either the trail- edge or tip does, in
general, comply with this condition, since each su~rposed sector has zero .

dowmwash between the wing boundary and the Mach line etiending across the
wing as shown in reference 8. However, between the wing boundary and the
opposite &ch line (&--l at points on the trailing edge) the downwash is

.

finite. It willbe observed that these Mach lines of the trailing-edge
sectors at small values of a will intersect the opposite half of the
wing, thus introducing some overlapping downwash on the wing, and
therefore violating the flat=plate boundary condition. Since only stil
regions of-the wing are affected, and since the downwash components
approach zero when the “cancel@ sectors lie close to the root chord
(a=O), it is concluded that the resultant error would be insignificant -
and may therefore be neglected.

Illustrative Examples

To illustrate the application of equations (7), (10), and (11), the
pressure distributions along two chordwise and three spanwise sections of
the configuration shown in fi@re 10 (also used in reference 8) have been
computed and are plot,tedin figure 11. Separate plots of the conical and
quasi<onical terms are shown for comparison. The secondary corrections
were estimated where necessary, as previously pointed out, in order to
fulfill the boundary conditions at–the edges. It-is inmdiately apparent
that the quasi-conical components are for the most part insignificant,
and in most applications may be neglected entirely. The maximum error

involved in the above example is less than 7 percent. By omitting the

.

w

I
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quasi-conical terms, the mthod then closely parallels that of reference
8, except that the term d%A/da is used in place of ~A/da.

A good approximation of the pressure distribution in roll can
therefore be made in the following four steps:

1. Calculation of the basic pressure distributiori(equation (l)).

2. Addition to basic pressure between a subsonic trailing edge smd
the J@ch line from the trailin~dge apex df the primary correction,
*1’ (equation (2)).

3. Addition to the basic pressure between a subsonic tip and the
Mach line from the tip of the leading edge of the primary correction,

6; (equation (10)).

4. Estimation of the smaller secondary corrections for the pressure
between edges adjoining regions of uncanceled secondary pressures and the
secondary reflected”llachlines, using as guides the trends of the correc—
tions in steps 2 and 3.

Some indication of the magnitude and extent of the
ary corrections sre also revealed in the above example,
affected in general being s-n.

Calculation of the Damping Derivative

estimted second-
the regions

The corrected damping moment, or the damping derivative, in steady
roll nay likewise be calculate~first, by determingthe basic value for
the over-all swept~ack plainform, and then, by adding corrective terms
to account for the effect in regions I, II, and III of canceling
pressures beyond the trailing edges and tips. As before, a comparison of
the mgnitudes of the conical snd quasi-conical terms canbe made by
determining their effects separately.

Basic &erivative for damping in roll.- The basic rolling moment is
readily obtained from the known distribution of pressure. The increment
of force dZ (refer to fig. 12), exerted on an element of wing area
(dS/da)da and based on the average pressure given by equation (1) is

()_@hm2 yA
‘q; —.

2vpQs

da.

()/--< ~ da
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where (m)= is the maximum pressure along the ray a at the point

A(XA}YA)O With the center of pressure located at (3/4)yA, the corre-
sponding increnmnt of rolling moment becomes

The dampimg derivative, whichby definition

may be written for a single elemnt of wing area as

dCzp = - &
pb/2V qSb

since the pressure coefficient and the ~aramter (pb/2V) are linesrly
related in the linearized potential theory. From figure 12 it is evident
that in order to obtain th~ mo~nt on hal~ the wing ~fntegration of
dL must be made over two ranges:

*coa
yA=-

iO%-a)3

end, second, at~a<n, for which

YA =“s3

first, O<a<~, for which

as 2C02

z= 2j3(mt~)2

dsz—=E&
da

The following expressions for the basic damping derivative, after substi-
tution end integration, have been
ad m= mt:

determined for the two cases m# ~

m+%

L

.-

,

.

.
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m

2(m?-~2)3(~~)3 [
~2(m2~2)2+mt(~2+5m2 )(m?*2)(~_) +

1(~-at )2(6m4+10m~2%’) +
J

3~m2(km2+~2)

P(m+’) ~J=

m=%

(13)

yma&13~ ‘) - * 1} (14) -

Where (72
?

is to be computed for more than one Ikch nrmher, it is simpler
to substi ute ~ equations (13) and (14) ~, ~, and ~ for m, at,
and ~, respectively, where

%“
a-tp—=_

With the exception that the term ~co/f3s must be replaced by ~Co/EI,
the transformed equations are otherwise identical to equations (13) and
(14).

Frimary correction resulting from cancellation of basic pressure
in wake.- ‘The”effecton the damping of canceling pressures in the wake
can le calculated by a twofold integration: one, to determine the effect
in the region of the wing between the trailing edge and Mach line of a
single canceling sector; and the second, the conibfnedeffect of all the
sectors. Thus, in figure 13, the incremzmts of force corresponding to
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the conical and quasi+ onical pressures exerted on an elemnt of wing
area (dS/dt)dt are (from equation (6))

()

-A
Ul?=; ~ da cos-lx!

()

g
dt

dt-

() ( )()

2q *A ~ ‘~~a%d ~os-~X,_,~~~ ~ dt
dAZ2? =--

311 da t “-llqj-aYA G

in which the average quasi< onical ~ressure is two-thirds of the maximum
v&lue at the point yA = s. Noting that the two”respective moment arms
are

the correction due to the cancellation of basic
both halves of the wing may be written as

pressure in the wake of

—

~ l_

[[J %1—
‘da= o

Y1 (mw~,a +H Y2 (W2r )t,a

%“ 0 %’
1

Substituting

ds pm~%z (at-a)z 1

z = ~ (m@2 F

and integrating with respect to t gives

“’:’ ‘%$%~($’ L’(?)@’:. (s :[?- “

JGyi]da
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where, as before,

()~= pb &2 yA ~

[

a %——
da E ~ s J*2 m2~2 ‘.a(~-a) 1

——

A graphical method of integration with respect to a is required as
before in calculating the pressure distribution. The integrands of equa–
tion (15) contain indeterminate factors at a = 0, for which the follow– ‘
ing expression maybe used:

In those cases in which the ~ch lines from the pressure fields super-
posed along the trailing edge near the root chord intersect the leading
edge, the rolling-moment integration of each sector must then be made over
the two regions -

7

~t ~~
paSSbg thrO@ AxA>yA)

When, a exceeds the value

then the range
required. If,
~~t~~ and

()M—

aid ~~t<l, where ~ designates the ray
and the tip of the leading edge, that is

‘a =
p ($S;;-AA

al (determined for ~ = 1), where

l-(@/com)(l-m)

= &(lls/qmco)(l-m)

~<t<l no longer exists, and only equation (15) is
for 0<a~a2, subscript r identifies the region
su>script f the region ~~t~l, then

_ xA2(~)2
—

(The terms (dS/dt)r and (~)r were previously given in the derivation
of equation (15).) Since, as will be shown later, the effects of the
quasi-conical component of the pressure ia the wake in most cases can be
neglected, only the correction corresponding to the conical.component
will be considered. Then, for a<a~
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J’&),(%) --’xr ($, U] da (16}

while the correction for at<a<at is given by equation (15). An ana-
lfiical integration of (lW2p~)a<aZ with respect to t is given f~

the cases m# ~ and m= ~ in A~endix A, but, as inequati.on (15),
a gra~ical mthod is required for the integration with respect to a.

Primary correction resultiw from cancellatiomof basic pressure
outboard of tips.- An analogous procedure may be used to calculate the
damping corrections due to the cancellation of pressure outboard of the
tips. The incremnts of force (see fig. 14 and equation (8)) associated
with the conical emd quasi-cmical canceling sectors are, respectively,

‘“ ‘H (%9‘iF[co’-’x%b‘1 G) ‘t

in which. ,

The corresponding moment arms are

yi=s+:(ym-+

z = s +$ (Ym-)

such that the resultant correction for both tips after integrating over
the region -1 <t< O beco~s

.
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where H(a) and R(a) are listed in Appendix “B. Since the term
(m /da)da iS infinite at the upper limit of integration, it is desira-
ble *O rewrite the above equation, as outlined in:reference 8, in the
following ure suitable form for a graphical solution:

“p” =(9*[’’(”’--’:+1:“$”) “1+

where H?(a) = dH(a)/da and R’(a)=dR(a)/da. The expressions for
H?(a) and Rt(a), together with the particular forms of Ht(m) and
R1(m) for the untapered wing (m= n%), are given tiAppendix B.

(17)

Secondary corrections.– Equations (15) and (17) (and equation (Al)

or (A2), if required, in Appendix A) there?ore comprise the primary
corrections to be added to the basic damping derivative. A complete analy-
sis, however, would next require u evaluation of the effects of canceling
the secondary and smaller pressures previously described. As before, the
calculation of these effects are not warranted in most applications in
view of their mathematical complexity, but, where necessary, approximate
secondary corrections to the damping derivative can be deduced from the
secondary pressure corrections discussed previously. It is observed that,
although they are small and me effective over only small portions of the
wing, the secondary pressures in some cases my give rise to rolling
moments which are not trivial, since they are distributed at large dis-
tances from the rolling axis. In such cases, the net change in loading
near the tips associated with the estimated secondary corrections for the
pressure together with the corresponding moment arm to the center of
gravity of the load correction canbe easily approximated.

Illustrative exam les: The dampin@n+oll derivative for the
untapered- and tapered-wing configiu-ationsshown in figures 10 and 15,
respectively, has been computed by the above method, and the results,
which for the untapered wing include the separate corrections resulting
from the cancellation of the conical and quasi~onical components of

. pressure, are listed in tables I and 11. As before, in the calculation
of the pressure distribution, it is evident from table I that the effects

\
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of the quasi-conical terms
in general, be Justified.

NACA TN 2041’

are so small that their computation would not,

An estimate of the correction resulting from the cancelhtion of the
secondary pressures along the trailing edge a@ tips d the untapered.wing
of figure 10 is also included in table 1. The ~.>percent Mgnitude of
this correction may be of significarwe in som applicatbns. Inclusion
of the secondary corrections for the tapered wing (fig. 15) at the lower
I&ch num%ers, at which the Mach line from the tra.ili~dge apex inter-
cepts the leading edge, is not within the scope of this report; however,
on the basis of the x%sults given in reference 9 for the case of lift,
the correction that would result from the cancellation of the secondary
pressure upstream from the leading edge is believed to be n@igible. At
all the M&h numbers, the urnanoeled secondary pressure outboard of the
tips and in the wake was also neglected, since for the ta~red plan form
only small portions of pressure distribution on the wing are affected by
their presence.

.

.

The quantities listed in table II for the tapered wing are shown
plotted against Mach nuniberUgure 16. The spacing between the curves
for the basic sad the corrected values gives ti indication of the overall
reduction of the dsmping momnt due to the subsonic trailing edges and
tips, particularly for high angles of.sweep amd low l%h nunibers. It i6
noted that the corrected damping derivative increaseswith Mach nuniber .
until the trailing edge becomss supersonic (about M=l.65), and thsn
decreases.

.

Thus, by retaining only the conical terms in the corrections, the
method for calculating the damping derivative is reduced to the following
steps:

1.. Calculation of the basic damping-in+roll derivative (equation (13)
or (14)).

2. Correction of
trailing edge (conical

(16), if required).

Correction of
(coni~;l term (ACZP2’)

4. Estimationof
location of uncanceled

the basic value for the effect of a subsonic
terms (AC~pl’) in equation (15) end in equation

the basic value for the effect or both sulmonic tips
in equation (17)).

the secondary corrections based on the amount and
yressure existing on the wing after canceling the

basic presswe in the wake and outboard of the tips..- -. —
.
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.
.

Calculation of
Damping

the Pressure Distribution and
in Roll by Strip Theory

A direct correlation between the pF8ssure distributions due to steady
sad to steady roll can be made along chordwise strips in some regions
swept~ack wing. Thus, in the basic equations for the two cases,

it is seen that the pressure due to roll is related to that due to lift
in the following manner:

where

~ . (pb/~ E(=)
a Q

This relationship is valid in those regions thd are not affected by the
existence of pressure in the wake ‘and outboard of the tips, but elsewhere
(regions I, 11, sad III fn fig. 1) the strip theory will not yield correct
values, since from equations (6) and (8)

where Y* is a function of a. The extent of the error introduced by
the strip ~thod is shown in figure 17, which includes the pressure dis-
tributions as calculated by both the strip and the confcal<low mthods
along sections A+ and I% of the wing in figure 10. Since the mag-
nitudes given by the two methods differ by as much as 40 percent near the
subsonic boundaries, it is concluded that the strip theory is generally
not satisfactory for calculating the pressure distribution near a subsonic
edge. These differences in pressure, however, when integrated to dete~
tie their mment about the rollimg
value as calculated by strip theory
than the value given in table 1. A
roll derivative therefore may often
theo~.

&is, are mch less significant, the
being only about 2-1/2 percent less
good approximation of the dampin@n-
be calculated by mans of strip
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A method of-analysis based upon the usual assumptions made in the
linearized theory of potential flow has been presented for calculating
in a supersonic flow the pressure distribution and damping in steady roll
of flat swept~ack wirigshaving all edges straight and subsonic. Although
restric&d t-owiags w~th zero rake at the tips-in the applications consid-
ered herein, the analysis can be readily adapted to the treatment of nega-
tively raked tips. Tips with ~ositiiverake, although Dot within the SCOP
of this report, can be analyzed through an adaptation of the mthcd given
in reference 9 for the case of steady iii% Although complete solutions
for config@ations in which the Mach lines from the apex of--thetrailing
edge intersect the leading edge are not included, &is believed, on the
basis of the results given in reference 9, that the wthod will yield
values which are sufficiently accurate for most practical applications.

It is demonstrated that from a practical standpoint the @ysis, as
outlined, can be simplified considerably by omitting several minor terms
in the completesolutions. The procedure for-calculating the press-
distribution and @ping in roll is thereby shortened to the extent that
it closely perallels the msthod presented in reference 8 for-the case of
steady lift. The maximum error involved in applying the simplified
analysis to-an unta~ered wing of low aspect ratio is shown to be less than .“

7 percent of the total pressure at any point antilessthan 3 percent-of
the damping derivative. A parallel computation of the pressure distribu-
tion in roll can therefore be made when the lift distribution is being

.

evaluated.
*

Although strip theory canbe use~to correlate the pressure distrl–
hution in roll and the lift distribution over-a swep~ackwing having
trailing,edges and tips which are supersonic, it is found to be inaccu-
rate in-the vicinity of a subsonic boirmlary. However, a close approxima-
tion of the daqpin@n~olld erivative cabe c&lculated by mans of
strip theory.

Ames Aeronautical.Laboratory,
National Advisory Committee

Moffett Field, C!alif.,

.

for Aeronautics,
Jsa. 6, 195o.
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APPENDIX A

.

CALCULATION OF FRIl@Y CORREWT!IONFOR D~
DERIVATIVE - DUE TO CANCELLATION OF EXCESS

PRESSURE IN WARE

The damping correctio~ (ACtpf)a<a~ for the range O Sa ~az due

to the cancellation of pressure in the wake of a swept~ack wing (from
equation (16)) is as fo~ows:

+dRz [a+&mwd ‘ 1

m(l-a)(m +n)+m(l*)(m ~)

1
~o~-. (kwa+d-(mt-m)(kla) ,ii (Ml@+

The correction for the entire trailing edge is

-—

da
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$r’””-’zz)l ‘

[

nWa ~ m(wa)
2 l-i——

Sa ga(~+n) +

(M)

.
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APPENDIX B

CALCUZZ!.TIONOF ERDiART CORRECTION FOR DAl@I~
DERIvATIVE – DUE TO CANCELLATION OF EXCESS

ERESSURE OUTBOARD OF TIPS

The expressions for H(a) and R(a) in the tip corrections to the
-* derivative (P. 25) are as follows:

‘(’’=(:-32{+“(a’ ‘Wwk+h(a’l}

where
.

‘(a’ =zw%w

1s(a) = —
[
r(a) -

m&a :;::;’LE ]

[

ja’-j
r(a) = & -

3‘+’2 ‘(a’ -*kR%]
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The terms Ht(a) and Rt(a) in equation (17) are

Ht(a) =

Rt(a) =

where

gr(a) =

ht(a) =

s?(a) =

~t(~) =

1

[
— (m@a)g’(a) - 2g(a) + h(a) -

(l+2mt)(l+2a)

m@ 4(l+mt)~~(l+a) (l+m+)-1

1

[

(3+8~+8~2) (%+1)
s(a) + r$(a} -

~ 48( I+@2Ah@a)(I+RLJ 1

1

[

3a’-3q+q2

q=ii
r(a) -

3

( 2.+1) (3a-2mJ ( l+2mJ

12(l+q)/q(l+q )(l+a)

g’(a) - (%*) g(a) -

1++

j– 1

a( l+a)

2(l+m J q.(l+r%)
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Expression for H’(m) and R~(m)
follows:

for the untapered wing are as

mxHJi-*]+Ht(~) .-~

where

g(m)
.

h(m)

s(m)

‘-=8%
.–A+ 3

m 8m(~+IE)Z

1=—- 5
3m 48m(l+m)3

r(m) _ 3+8m+8mz

24(l+m)2

gr(m) 1=—
8mz(~+m),

hi(m) 1=—
8m2(l+m)s

sT(m) 5=——
128m2(l+m)4

4+17m+12m2rt(m) =——
24m(l+m)3

33
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TABLE I.- C!AICULATEDIYU&CNG
UNMPERED WING SHOWN IN

IERIXATIVE FCR
FIGURE 10

Quantity

c%(basic

AClp’ (T.E.

%’ ‘T*E”

‘%” ‘tip

E
%“

(tip

(

t

uncorrected value)

conical)

quasi-cwlical)

>onicai)

~uasi+onical)

Estimated secondary corrections

cZp (corrected)

Maguitude

-0.2978

.0235

.0010

.~076

.0042

-.0127

~.1742

Percent of
total

in. o

-13.p

-.6

-61.8

+.k

7.3

100.0

TABLE! II.- CAZCULAT!EDIMIPING IIERIWATIVEFOR
.

TAPERED WING SHCWN IN FIGURE 15

M c% (mSic)
c2P

M!Zpt(T.E.“coniml) M ~“ (tip conical)

(corrected) ~pit~e Pergytitlof ~~tude P-::gff

1.2 *.3238 d.2521 0.0413 -16.4 0.0304 -12.1

1.3 -.3196 –.2614 .0308 -u.8 .0274 -10 ● 5

1.4 –.3154 -.2690 .0213 -7=9 .0251 -9*3

1.5 –.3112 –.2761 .o11.5 -4.2 .0237 -8.6

1.6 -.3070 -.2828 .0020 -*7 .0222 -7.8

1.7 -.3028 –.2817 0

I

o .023.1 -7.5
I

v“



.

.

.

.

.

.



-. .

1 * . .

/

/
/

/

/

/

,/

_.— Y

Figure /.- Regibm of pressure (shoaled areosj to be concehd m hfinite

tnhgvlur JW”W h mkwlotkm of pmsure distrilwtim on swept-kk

wing, OmI regions (1, Z, and ~) of swept-back Wing ~fwfed by

camelhtion process.

!3



-. ..-

z

*

,/ F

i=

\ # v\\

Figure 2.- Coontihati system and Mach line configuration.
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Figure 3.- A sector of MWeshol cuncehg pressure, corresponding

to o ray a, to be superposed on field of arcess pressure in
woke of wing in steudy lift.
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F7gure 4.- One sec~~r of field of conical pressure used to cuncel

boslc pressure in woke of wh?g in sA?ady lift.
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Figure 5- One SUcbr of series of fields of conical pressure

posed olong roy u /h obrlvotkm of WOSI-LWICUI presswre
to be szper-

field.
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figure 6.- One sector of field of quasi-conical pressure used

to concel pressure in wake of wing h steady roll .

G
lo
0

3

, . ,



.

z

Fiire Z-me sector of combined fields of conical ond quoskmnbd pres-

sure used to concel basic pressure In woke of wing In steody roll
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Figure 8.- One sector of combined fiiti of conlcul and quasi%mt’cal pressure

used to cancel basic pressure outbwrd of tip of whg in steady roii.
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(u) At small sweep angles o? ot high Mach numbers.
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(b) At /urge sweep angles of ot low M.ch numbem.

Figure 9.- Concluded.
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F@ure U.– Illus?rtaWe untipered wing plan

form und Mach line” configuration.
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sector of cuncelhg presswe outboard of tip.
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Rgure K- Vorhtion with Moth number of componentsof clomping-h-roll derivative

of illustrfftlve topered whg (flgl~.
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Figure IZ- Comparisonof chordwim mssure distributionsonillustrative
untupered wing os culculoted by means of strr’Ptheory and of
conlcol-flow method.
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