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NATIONATL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 1992

LINEARIZFED LIFTING—SURFACE THEORY FORVSWEPT—BACK.
WINGS WITH SLENDER PLAN FORMS

By Harvard Lomax and Max. A. Heaslet

- SUMMARY

The spanwise and chordwise distribution of loading, the 1ift, and
the induced drag of a swept—back wing of slender plan form are developed
by means of linearized lifting-—surface theory. The results are appli-— -
cable for all free-stream Mach numbers, The term slender implies that
the ratio of the reduced span (equal to.the product of ‘|l — (Mach
number)afl/z and the span) to the over—all length of the wing is small.

INTRODUCTION

Theoretical linearized solutions for the distribution of loading
over lifting surfaces traveling at subsonic or supersonic speeds can be
separated into two classes. One, in which the loading is given and the
twisted surface required to support such a loading is found, can be
expressed mathematically in a form necessitating the evaluation of a
double integral involving doublets of prescribed intensity scattered
over the plan form of the wing. The other, and usually more difficult
problem, in which the shape of the surface is specified and the result—
ing loading is to be determined, can be resolved into the problem of
solving a double integral equation involving doublets of unknown inten—
sity scattered over the wing plan form. It is this latter type of
problem, sometimes referred to as a problem of the second kind, with
vhich this paper is to be particularly concerned. '

In subsonic studies these double integral equations have been
avoided by use of the lifting—line theory introduced by Prandtl. This
simplification reduces the analysis of three—dimensional loading problems
to the study of a single integral equation more susceptible to analysis.
In supersonic studies, on the other hand, many important types of wing
plan forms can be completely analyzed without further simplificatiom.
Outstanding examples of such plan forms are those in which the methods
of conical flow can be used. Effectively, the presence of a conical
"~ flow field reduces the problem one order dimensionally 'so that again
only a single integral equation remains to be solved. There is yet
another type of flow pattern that will reduce the double to the single
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integral equation and it is proposed now to exploit this phase of the
linearized lifting—surface problem,

. The basic linearized partial differential equation for the per—
turbation velocity potential ¢ 1in subsonic and supersonic flow is
known to be-

(1-Mo3) Oxx + Oyy + ®77 = O ’ (1)

where Mo 1s the Mach number of the free stream directed parallel to
the positive X axis. Conditions sufficient to obtain this equation from
the more general equation based on the assumption of a perfect gas in
nonviscous, compressible, irrotational flow are that the induced
velocities and the nondimensional velocity gradients are small, None of
these restrictions explicitly excludes the study of equation (1) when
the free—stream Mach number is set equal to unity and, in fact, for wings
with swept—back plan forms, solutions to equation (1) with Mo=1 can be
obtained that do not violate the assumptions needed to linearize the
equation. In this case the first term of the equation vanishes. There
are, moreover, many applications of equation (1) to aerodynamic problems
in which the free—stream gradient of velocity o¢xx 1s itself small as
compared to the velocity gradients in the other directiomns. Such is the
usual case when the wing plan form is long and slender, that is, when
the length of the wing is large in terms of the span. In this case, also,
the first term of equation (1) may be neglected.

It is possible and even preferable to combine the two conditions
involving, in .the one case, the free—-stream Mach number and, in the
other, the wing geometry into oné condition that will be satisfied by
both or either of the two. This can be done by considering the Mach
number effect to be a stretching factor which elongates distances in the
X direction as the Mach number approaches unity. In this sense a slender
v T1o2] X span

length

wing is.one for which is small and the theory in this

"report is valid for all such slender ﬁings.

It does not matter, then, whether MR 1 or whether the chordwise
gradients are ¢omparatively small; in either case equation (1) reduces
to

Oyy + 077 =0 . (2)
which is simply Laplace's equation for the perturbatlon velocity

potential in a transverse plane,

Since slender wings and slender wing—body combinations are of
increasing practical importance, and since the assumption of slenderness
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together with the simplicity embodied in equation (2) permits the study
of relatively complex aerodynamic configurations, a number of investi-—
gations based upon the resultant methods have already been published.

In reference 1 low—aspect~ratio wings were studied and references 2, 3,
4, and 5 included, respectively, a complete analysis of all the stability
derivatives of a low-aspect—ratio triangular wing, a lifting triangular
wing with an arbitrary body of revolution, a lifting triangular cruciform
combination on an arbitrary body of revolution, and damping—in—roll
calculations for slender swept—back wings and slender wing-body combina-
tions. In references 6 and 7 the load distribution, the lift, and the
drag were calculated for slender swept—back wings with straight leading
edges and with tips cut normal to the free-stream direction. The object
of the present report is to generalize, as far as possible, the plan
forms amenable to slender wing analysis. Thus, leading edges of rather
arbitrary shape are included and particular attention is given to the
effect of tip shape on the load distribution. The aerodynamic charac—
teristics of two families of plan forms will also be included.

A list of the important symbols used is given in the appendix.

ANATYSIS
The means of éatisfying boundary conditions for 1aplace's equation
are classical in nature and only a sketch of the developments to be used
need be given here, The boundary conditions for a lifting surface
without thickness are: :

1. Perturbation velocities vanish at infinity

2. For all points on the Z=0 plane and not on the wing or its
vortex sheet

N0 = ®Z=O+ _®Z=O_ =0

3. For all points on the Z=0 plane

N @99 - ég) -0
9z \0Z/z-04 OZ/7=0-

4., For %;l points on the Z=0 plane, within the boundaries of the
plan form, ( — is specified
9Z /70
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Applying these conditions together with the two—dimensional form of
Green's theorem, it is possible to express (see, for example, reference 7)
the general solution of equation (2) in the form!

S(X
(xym_—:f Méé%gz G

where Y=S(X) denotes the local semispan of the wing. If the wing has a
straight leading edge and if 6 1s the semiapex angle, then

S(X) =X tan 6

In all cases the semispan of the wing will be denoted 3Sg.

At this point in the analysis a convenient change in notation can
bé introduced. Distances in the X direction are divided by the root
chord Cr while distances in the Y and Z directions are divided by the
product of Cr and the tangent of the semiapex angle., Nondimensional
variables x,y,z are thus determined such that

X Y Z

.}(z— T er—— Z = —————
e’ Y "o tansg ’ Cp tan 6

while'at the same time, by definition,

o(X,Y,2) = 0(xCr, yCr tan 6, zCr tan 6) = o(x,y,z)
and

S(X) = s(xCr) = s(x) Cpy tan 6

~

lEquation (3a) is valid provided no point exists within or on the
boundaries of the flow field such that

lim e-§9 £ 0
e—>0 €

where € is'the radial distance from the point,
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Perturbation velocities in physical space will be denoted conventionally
by u, v, w; hence

d . » X

xRV

In the transformed variables

@Q = uCy , QQ = vCy tan 0 , §9-= wCy tan 6
ox dy ; dz

No ambiguity should-arise if wu, v, w are'used as functional symbols
for velocity components in either set of coordinate systems; thus
u(X,Y,Z) transforms into u(x,y,z).

Equation (3a) now becomes

o(x,y,2) = = = M (3b)

—s(x) (FVa)Ee2®

and this can be put in a more useful form by integrating by parts. Thus,
since ¢ must be a continuous function of 2z everywhere except on the
lifting surface and on the trailing vortex sheet,

Ag(—s) = Ag(s) = O

and equation (3b) beéomes

Cr tan 6 S Y=Y ‘
= ——— Av-arc tan d L
o= [ (F2) o (%)

wvhere v 1is the perturbation velocity component in the Y direction and
Av is the -jump in the value of v in the XY plane, Since, moreover,
s and Av are not functions of 1z, the derivative of both sides of
equation (4) with respect to z leads to the result

1 s —y
W = — ——— \ _—L_l___ Av &
on ./;s (y=y1)24z2 = 2

which as 2z approaches zero reduces to the final form
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s(x) .
VAN 4 .
wZ=O = Wo = — _2]1: V(X:yl) Y1 , — 8 < y<s (5)
—5(x) y=yi1

Equation (5) is sometimes referred to as Prandtl's integral equation.

Interest is now fixed on the class of problems for which the
streamwise slope A\ of the surface is given. Vertical induced velocity
wo and )\ satisfy the relation

ME,Y) = ;’—Z = | (6)

which.simply states that the lifting surface is along a stream plane.
The approximation has been made, of course, in equation (6) that the
local slope of the airfoil is the same as the slope of the streamline
passing through the Z=0 plane at the same values of. X and Y, an
approximation usual in thin airfoil problems and consistent with the
linearization of the partial differential equation if the slopes are
small., Combining equation (6) with equation (5) permits the study of a
swept—back wing of arbitrary twist and angle of attack. The case of
greatest practical interest, however, is the one in which the lifting
surface is a flat plate at a constant angle of attack for this case
Wwo 1is independent of X and Y.

‘

Solutions of the integral equation given by equation (5) are well .
known in the studies of aerodynamic problems. (See, e.g., references 8,
9, and 10.) If the restriction is made that

S

Jf Av(y)dy = O

-5

then equation (5) can be inverted to the form

dy; (7)

Ay % 1 fs wo(y1) (s=y1)1/2(y1—(-s) ] /2

(s=y)1/2[y=(=s)11/2 4 yy1

(Equation (7) and, later, equation (8) are written in a form such that
they can be generallzed to the case where the distance to the left edge,
—s, does not necessarily equal the distance to the right edge, s). The
solution represented by equation (7) is extremely useful in application
since it insures that the jump in potential at the extreme edges is
zero. However, it is by no means the most general solution to equation
(5). Under the restriction
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S/

wo(y)dy -0
f_ o (s=9)1/2[y—(=8)]2/2 ~

the inversion of equation (5) can also be expressed in the form

v=2 1/20 0 (—s)11/2 . wo(ya)dy:
av = = (s=y)~/[y-(-s))] f_s Y Py e L= (8a)

to which the additional term®

Ao
(s7)1/2[y—(s) 17/

Av = (8b)

can be added since this term gives zero values of wg in the interval
—s €y <s for arbitrary Ao. In the solution of aerodynamic problems
the choice of Ao 1is usually made by considering additional restrictions
on the physical flow pattern such as the Kutta condition at the trailing
edge of a 1lifting surface.

The solutions represented by equations (7) and (8) present suffi—
ciently strong mathematical tools to provide for the study of a large
class of swept—back plan forms. No attempt has been made here to derive
the most general form of the solution. It must suffice to remark that
the inversion can be accomplished through the application of conformal
'transformations, as was presented by Sohngen in reference 8, or through-
a generalization of the integral operator methods commonly used in the
inversion of Abel's integral equation.

LOAD DISTRIBUTION FOR FLAT SWEPT-BACK WING

The analysis derived in the preceding section is now to be applied
to the study of swept—back wings of the type shown in figure 1. The
family of plan forms is drawn with straight leading edges and with tips
cut off parallel to the free-stream direction since such wings are to be
discussed in detail. In the determination of the properties of these

2Terms such as
Bi
V =
(y+ui) (s®=y

2)1/2'

(where Bi and pj are arbitrary constants (—s < pj < s)) are excluded
by the condition given in footnote 1.
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wings, however, it is not necessary to maintain rigid restrictions on
the geometric parameters during the early stages of the analysis and,
in the interest of generality, an attempt will be made to defer limita—
tions in shape. In particular, discussion of more general types of tip
boundaries will be included. The plan form, therefore, is assumed
symmetrical with respect to the X axis or .free—stream direction, has a
semiapex angle equal to 6, has a leading edge given by the equation
Y=S(X), has a trailing edge of unspecified shape, and is terminated
spanwise by an arbitrary tip. S

The remainder of the -treatment can best be divided into three parts
corresponding to the three regions shown in the figure. Thus, region 1
extends from the apex to the trailing edge of the root chord, region 2
continues streamwise to. the end of the leading edge, and region 3 includes
the remainder of the wing. .

Region 1
In ragion 1 the boundary condition: in the transformed plane
require wo to be a constant for -—s €y £ s. Since along the leading

edge Ap(—s) = Ap(s) = 0, equation (7) provides the complete inversion
and the solution can be written

2Woy

Av =
. [ s2(x)=y2] /2 (92)
for
-sSy<s
or, if a straight leading edge is used,
- 2’Woy
&Y = g2 i/2 - (9p)
for
-xSy<Sx
The jump in potential becomes
Ap = Cr tan %/Py Avdy, = — 2woCy tan @ (s2—-y2)l/2 (10)
5 .

Since the loading coefficient can be written
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Ap _2Au _ 2 A . 2 dAP

Q@ Vo Vo OX VoCr ox

then
Ap _ —lwo tan 6- s(ds/di) . , '
e Vo. (s2y2)VZ | (112)
or, for a straight leading edge,
Ap _ —bwo tan 6 X (11b)

a - Vo (x2—y2)1/2

4
Equations (1la) and (11b) can be transformed finally to the physical

plane and, setting o = — ,

Vo
Ap _ h4as ax
- =

or, for a straight leading edge,

Ap _ LhaX tan2 9

a (X2 tan® g-y2)V2

(12b)

These expressions have been derived in reference 1 for low-aspect—ratio
wings.

Region 2

The boundary conditions in region 2 are considerably complicated by
the presence of the vortex sheet
lying between the trailing edges. If,
as 1n the accompanying sketch, the
trailing edge is at +t(x), then, in
a plane perpendicular to the x axis,
Wo 1s constant between +t and ts,
. and between -t and +t the value
of A9 1is consistent with the load-—
ing on upstream sections of the wing;
that is, the strength and distribu—
tion of vortices trailing from a Y
lifting surface are proportional to -$ -t S
the gradient of the span loading.
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For ly| >ls|, Ap=0 since no 1lifting elements occur outside the span

of the wing. However, since a streamwise increase in Ag corresponds
to a loading, Ap at any point behind the wing must be the same as Ag
at the trailing edge for the same y. If the equation of the trailing
edge is written in either of the forms '

y = t(x) . o :
S (13)
x = t*(y) ‘
then, for x > t* ' | '
CAp(x,y) = Ag(t*,y) | ()

Since Ag(t*,y) i1s a fumction of the single variable y, its derivative
with respect to y may be written in the form

aap(t*,y) - No(t*,y) at* | g t*,)
dy ot*  dy dy

But from the definition of -Aqﬁ, 1t follows that

NQ(t*,y) _ VoCr AP J
ot 2 q x=tx

Introducing now the notation Avy for Av in the vortex wake (i.e., .
for -t <y < t) and Avp for the lateral induced velocity on the plan
form (i.e., for t < |y| < s), it follows that

Ave = L 9A%p(x,y)
Vp = -
Cy tan 8 dy
and
v Ap | dt* : o :
o ple ] ] 5
2 tan 6 q x=t* J x=t*

Thus the lateral induced-velocity in the vortex wake is determined by
the loading on the trailing edge and the value of Avp as the trailing
edge is approached.
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Using equation (5) and invoking the condition that Ag is symmet—
rical with respect to the x axis

.= = L v oyiAvY, _1 5 2y,Avpdy; (16)
° en J ey o L VNP

Furthermore,, if the Kutta condition is to hold, then the loading coef-
ficient Ap/q must be zero on the trailing edge and equation (15)
reduces to Avw:-AvP]x:t*. Thus, if ti* is writtem for t*(y,;) and |

the change in variables

.y2 =
yi2 = . ‘ (17)
2y dy; = dn;
is made, equation (16) becomes
s
Vo = _ 1 ft Avp(ti*,y1)dn, _ 1 fs2 Avp(x,y1)dna (18)
e e 20 J2 N

This is an integral equation in which wgy is known to be a constant in
the interval t2 < n < s2. The solution to equation (18), which corre-
sponds to an arbitrary trailing edge, will be outlined in the discussion
of the third region. Here'attention will be limited to that particular
solution contained in equations (7) and (8) which will make the first
integral of equation (18) give zero and the second integral give —2swwg.
Such a solution is readily found in the form

2
Avp = 2vo -’E'——S;D i (19)

and, in subsequent developments, will prove to be of practical interest.
Since Ap/q has been assumed zero at the trailing edge, and further,
since Avp as given by equation (19) is zero at the trailing edge, then
equation (15) shows that Avy must be zero across the entire vortex

waeke, Physically, such a condition implies- that the span loading is

. constant when -t <y <t for whenh Avy 1is zero it follows that Agy
does not vary with y. This fact will be useful later. S
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From equation (19) the value of App can be determined as

- A 2 +2\ 1/2
b Y12t
Cy tan @ = 2¥o J/‘ <;Z—y1 > dya (20)

Introducing the notation®

kO' = E_ - (1_k°2)1/2
,%l = dn (ko,u) = dn u (21)
dy,; = —sko® sn u cn u du

equation (20) becomes

: | F(Vo ko)- |
A J
2% —2woskeo? cn® u du
Cr tan @ . : .
)
so that finally

“A® . ' = .
——E— = —2wos [E(Vo,ko) — ko'? F(V¥o,ko)] (22)
Cr tan 8

where the elliptic integrals are defined as follows:

' ¥
E(¥o,ko) = f ® (1ko? sin? x)¥/? ax
o )
Yo '
dx
F k =
(Vo,k ) \/C (1kg? sin? x)}/z

3The notation on elllptic ‘functions is taken from Whittaker and Watson
(reference 11) except for the use of F(¥,k) which can be found more
readily in tabulated form. ' .
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the argument Vo 1is

(23)

2_ya\ 1/2
Yo = arc sin <s y)

2_t2

and the modulus - kg is given by equation (21). It will be noted that,
when t 1is zero, equation (22) reduces to equation (10). That is, A®
is continuous in passing from region 1 to region 2. This condition is,
of course, essential,

The loading coefficient on the wing plan form can now be found from
equation (22) through use of the relation

Ap _ _2 g
a4  VoCr ox
In this way
. 12 .
Ap ds y yz—tz dt
@ tan 8 s [E(\Ifo,ko) * E(sz_yz — bko' == F(¥o,ko) (24)

Again, when t 1is set equal to zero, the loading coefficient becomes
that given by equation (1lla). This continuity in pressure between
regions 1 and 2 is by no means essential; in fact it will be seen later
that in passing from region 2 to region 3 an abrupt discontinuity in
pressure occurs.

In deriving equation (18) the Kutta condition was assumed to hold
at the trailing edge. This condition has yet to be applied to the
expression for the loading coefficient in region 2 (equation (24)). So
far, the leading and trailing edges have been expressed in arbitrary
form. The restriction to a straight leading edge is now made and the
trailing edge will be determined by first setting y=t and A@/q:O
in equation (24) and then solving for t as a function of x. This
operation gives . N

dt _ Eo
B = T (25)

T X
E<-2',ko> y Ko = F<§,ko>

and dt/dx is, of course, the slope of the trailing edge. The solution

where

- .
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to this equation that satisfies the condition x=1 when t=0 can be-
written in the form _

tA = — ko' (26)
Eo—ko'%Ko

That this is a solution of equation (25) can.be verified by direct
substitution. Actually, however, the solution was obtained from
equation (22) when the condition already mentioned that the span loading
should be constant between the tralling edges was applied. Equation
(26) gives t(x) explicitly as a function of the ratio t/x from which
a graph of the trailing edge can readily be found (fig. 2). Since
ko'=t/x, equation (26) may be written in the form -

l .
X = —=— : 268
Eg—ko'ZKo , , (26e)

From this form the asymptotic behavior of the trailing edge can be
deduced since x approaches infinity as - ko' approaches unity. Hence
the trailing edge approaches asymptotically a straight line with unit
slope, that is, beccmes parallel to the leading edge.

The asymptonic value of the chord is equal in magnitude to x-t as
X becomes large. When equations (26) and (26a) are used, it follows
that . o T : . .
1-k,!

=t = ———5—
Egko'2Ko

~

vwhich is indeterminate at ko=0. An application of L'Hospital's rule
gives, - however, . P '

(X—-t )x-—> ) :

S

This value is shown as an asymptote in. figure 2.

The solution in region 2 for the jump in potential (equation (22))
and the loading coefficient (equation (24)) have thus been shown to
apply to a wing plan form closely resembling a swept~back constant—chord
*wing except that at the root chord- the trailing edge is smoothly
filleted — a plan form of quite practical design. (Figs. 1(a) and 1(b)
were drawn with a trailing edge given by equation (26).) The loading
coefficient in X,Y,Z space on a plan form with a trailing edge given by
equation (26) can be vritten in the form
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AP _ Y Y2_12(%) J 2 gy }
2 .h tan 6 {#(Wo;ko) + X tan 5 [XE fan? 6-12 K, F(Vo,ko) ((27)

T2(X) X2 tan® g-y2 J /2

ko = [l - _—_—XZ tan2 9} y. ‘Vo

arc sin
- [Xa tan® 6-T2(X)

where T(X)=t(x)Cr tan 6 is the ordinate of the trailing edge (fig. 1(a))
~and can be determined in general from equation (26) for a given wing
geometry and a value of X. The first pdrt of this variation for
0 < t(x) £ 1.2 is shown in figure 2,

When the wing aspect ratio becomes very large, the loading on the
outboard section should approach that of a two—dimensional wing, making
an angle @ with the X axis. Simple sweep theory (see, e.g., refer—
ence 12) gives for the two—dimensional case the formula

where Cp 1s the chord aﬁd Xn 1is a distance, both measured normal to
the leading edge, and p2=|1-Mo2|. For small values of B tan 6, that
is, under the assumptions of slender wing theory, this becomes

- 1/2
qo Xn
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It remains to compare the asymptotic behavior of equation (27) far
outboard along the wing. To this
end, a change is made to the coor—
dinate system (see accompanying
sketch) and expressed through the

A Y transformations

X =1Yn cos @ +'xn sin 6 + R cos @

Y Y=Y, sin 0 — X cos 6 + R sin 6

It is known, however, from the
X previous discussion of the asymp—
totic value of the chord that, for
large values of X, T(X) approaches
the value (¥—C,) tan 6 where C,
4 is the value of the chord at
- infinity and ko approaches zero.
Hence, as R becomes large,

of
S

E(¥0,0) = F(¥0,0)
and in the limit

1/2
Ceo sin 6-X
Xn

<qa’ R-% ©

which is in complete agreement with the result previously obtained from
simple sweep theory.

Region 3

In the initial portion of the following analysis the outer boundary

" of the wing will be considered a function of X, thus

Y = S(X)
or
y =s(x) |
vhere
5(x) = —X)

Cr tan . 9



NACA TN 1992 : 17

This will serve two purposes: Not only will the method be given for
finding the solution to different tip shapes, but also means whereby
the trailing edge in region 2 can be modified will be made evident.

When the discussion is confined to region 3, the part of the plan
form affected by the geometrical form of the tips (see fig. 1), it will
be assumed that the tips are not raked in, that the trailing edge in.
region 2 is given by equation (26), and that the leading edge in region
2 is a straight line, Aside from the restriction just mentioned that
raked~in tips are excluded, the shapes of both edges in region 3 are
for practical purposes arbitrary. An extension to the raked—in case
will be given in the section on vortex drag at which time the variation
of downwash in the wake is calculated.

General solution.— The initial stages of setting up the problem are
identical to those used in region 2. Again the Kutta. condition is
applied at the trailing edge and equation (18) still applies. Suppose, -
now, that Avp consists of two parts such that

Avp = AVy + Avp , (28)

and set

1/
”_t2> i (29)

AV'l = [2wo+28(X)] 32—7]

If Ava(x,y) and g(x) were both zero, this would lead to the loading
coefficient given by equation (24) which becomes, along the trailing

edge y=t(x), | ~

( qa tan 8 = b %E Ed_uko' %E Ko (30)
where
Ko = F (%,ko> , Eo=E (%,ko>
and _ ' '
ko! = i;- ) ko® + ko' = 1

In this case, however, we are considering some specific plan form so that
both t and s are fixed geometrically. Although in region 2 a differ—
ential equation was set up for t(x) in terms of s(x) based on the
condition that loading on the trailing edge vanishes, with the boundaries
specified the loading in equation (30) must be considered as a residue
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to be destroyed by the proper choice of Avo(x,y) and g(x). Operating

on equation (28) to find the pressure at the trailing edge and applying
the Kutta condition leads to the condition

d
lim 3_ f Ava(x,y1)dys = 2(Wotg) <—' Egko! Ko) +
y—=>t X dx

hts % d— (Eo—ko'%Ko) (31)

and Avp must, of course, satisfy equation (18) so that a further con—

‘dition is supplied in the form

t2 s2
1 f Avo(ty*,y1)dny g(x) = — L f AVa(X,y3)dn; (32)
2n . 2n ™N
toz ™ . t2 1

where to, as shown in figure 1, is the distance, measured parallel to

_the y axis, from the x axis to the trailing edge in the plane which
divides region 2 and region 3..

Equation (32) can now be inverted by the use of equation (8a),
provided

/‘,sz an [_l_ ftz Ava(ti*,y1)dn: g] _ o
tg (82—1'])1/2(7]—132)1/2 2% tog ™M ,

that is, provided

" Ava(ta¥,y;1)d
g(X) - = f . (Sz_’:i)]_}g(zé_nz;l/g (33)
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)1/2 dAvZ(tl*)YI)
dT]l

h(n1) = (8021 (38)

and

Equation (36) is a special form of Abel!s integral equation, the unique
inversion of which is :

h(ny) = L& [ _f(eR)awe
m dny a2 (n1—t2) /2
. .

as can be shown by direct substitution.

Using the definition-of h(n;) given by equation (38) and inte—
grating with respect to 1n; from to° to 1,

e ooy 1 N f(tz)dt2.
Ava(t%,y) = = = 2 ftoe =@

It is apparent that equation (33) is also a form of Abelts integral
equation and consequently can be inverted in exactly the same manner as
equation (36). Thus, since g=0 when t=ty, (as Avo(t¥,y) vanishes
when y 1is zero) -

. n 2 2 ‘ '
Ava(t*,y) = 2 Wsge é%\/ﬁ ] g;;_!;; (h0)
- ' to U , .

Equating the two values of Avs(t*,y) given by equations (39) and (40)
yields the relation

ig £(t2) - 0
at®  n(t2-so2)

which can be written, since the expression for f(t2) is given by
equation (37) and since tZ-s0®= — k;%50°,

dg Wotg
2 =
at®  sp2-t°
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This differential equation is easily solved for g “under the condition
mentioned above that g=0 for t=ty so that

sg2—to® \/? _ |
s0?—t2
Placing this 'in equation (40),1it follows that

to? \'/?

Ava(t*,y) = 2wg
s’ 802—1]

and, if this is placed in equation (34), there results finally

v =t % gs&—to?)(n-tZ)']l/z}
e T B {<So2—n> dic=i==-18 ()

The vertical induced velocity on the plan form can be now obtained
by means of equation (28), thus

1/2 '
AVP 2Wo <soz~—«n ' ( 42 )

The velocity potential is (see the development of equation (22) from
‘equation (20))

App y ‘ .
Cr tan 6 = L AVP dyl == 2WOSO[E(‘V2)k2) -_ k2' F(‘L’g,kg)] . ()4-3)
o}
where ' ' ) W

b
]
1]

EOIN

sin™? .EQE:ZE— 1/2
< 802—t02

<=
N
]
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’

and, finally, since 8o and to are independent of x, the equation for
the loading coefficient becomes :

= =0 (45)

It should be noticed that the value of Amp is continuous with that
given for region 2, but that the value of the loading coefficient is not.

Discussion of Results

The qualitative nature of the load distributions resulting from the
application of equations (12a), (27), and (45) to a wing of triangular
plan form and to two wings of swept—back plan forms is shown in figure 3.
The loading in the case of the triangular wing is, of course, the same as
that given in reference 1 and, in fact, differs from the exact solution of
the linearized equation for arbitrary Mach number only by the factor l{E'
where E' is the complete elliptic integral with modulus # 1-82 tan?® g.
The deviation in this case can therefore be assessed accurately. The
.results in figures 3(b) and 3(c) can be compared in a more general manner
with the load distributions for a constant—chord wing obtained in reference
13 for supersonic Mach numbers, These results, shown in figure 4, are
.qualitatively quite similar to those obtained by means of slender—wing
theory. Across the Mach cone from the root—chord trailing edge the
loading in both cases iscontinuous, and falls rapidly in the after portion
until it reaches zero at the trailing edge of the wing. Across the Mach
cone from the leading edge of the tip the loading is discontinuous and
Dbehind it the magnitude of the loading is close to zero. The principal
difference between the results of the present paper and those of refer—
ence .13 appears in the position of the discontinuities, which, in slender—
wing theory, occur at the Mach lines corresponding to a free—stream Mach
number of unity, rather than at Mach lines determined from exact free—
stream conditioms. :

AFRODYNAMIC CHARACTERISTICS OF FLAT SWEPT-BACK WINGS
Span Loading
The span loading for the wings shown in figure 3 can best be studied:

in terms of the circulation function TI(Y). In magnitude the circulation
equals the jump in the velocity potentisl at the trailing edge of the wing

r(Y) = AD

.z )

and total 1lift 1L 1is expressed in the form
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So T.E. So
. f de ApaxX = pvof r(y)ay (47)
So

—So

where L.E. and T.E. stand for leading and trailing edges. Figure 5
shows the spanwise variation of T for the three types of plan forms
shown in figure 3, each having the same wing root chord but with types
(b) and (c) having larger spans. From equation (10) circulation for the

type (a) wing is

P(Y) = 2voa(See-¥2) /2 - (48)

 while for the two other cases equation (22) giﬁes, for 0 < |Y| £ To»

r(y) = zvoaso - | - (k9a)

and, for Tog 'Y' < So,

I(Y) = 2VoaSolE(V¥z,kz) — k'5% F(¥2,kp) ] (4ob)
where

2 y2 \ 1/2 1/2
\l{z = arc sin <&.——Y__> ; ks = (l—k22) / = r;[‘..Q
. 802._!1‘02 SO

The shapes of the curves in figure 5 reveal the differences in the
basic characteristics of the three wings. ‘'First, the triangular wing has

‘an elliptic span loading and therefore will have the least induced drag

for a given span of the three wings. Second, the type (b) wing has a.
span loading close to the elliptic and should have characteristics quite
similar to the triangular wing. Third, wing (c) has the same span loading
as wing (b), but at the same time has considerably more wing area., The
constant span loading given in equation (49a) corresponds, of course, to
the physical conditions implicit in the functional form of ANP as
1ntroduced in equation (19).

Lift

The 1lift on the three types of #ings can be obtained from difect
integration. Substituting from equations (48) and (49) into equation
(47) it follows that
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L =- llwopVoﬂ(ToCr té.n 0 + Il) (50)

where I, is the double integral given by

/ sgz_ye
So ' SOZ;_TOE l—'g )
i 2

To o

But I, can be evaluated by making the substitution Y—gl So &and
changing the order of integration. Thus ’

(l;k22§2)l/2

12 1/2 )
e [ () [
2 k

‘s

Integrating with respect to t1 and using the Jacobian transformation
§=3n(u)k2)

T
= So2k22E — 807k '5(Exk'>%Ko)

Finally, since the. function T given by equations (48) and (49) is
continuous, then at. Y=Ty,

So(Eg—k'g Kg) Cr tan 6
and

= soakgﬁ’f —~ ToCr tan @ (52)

This gives for lift (equation (50))
. 4
-a = 2naSg2 <l - —3 (53)

If the.results for lift are to be given in coefficient form, the
area of the wing plan forms must be calculated. Figure 6, obtained after
a numerical integration, can be used to obtain wing aspect ratio as a
function of semispan for given root chord and semiapex angle. The aspect
ratio A is, of course, given by '
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A - (280)°

S

where S 1is wing area. From equation (53), lift coefficient is
expressible in the form

a tan 0 tan 6 502

CL___x_A _ o2 :
i (1 (Ske)

Equation-(54a) is valid for wings of types (b) and (c¢) and includes
type (a) as a special case. With the information given by figures 2
and 6, the value of Cr/a tan @ can be plotted against A/tan 6 for
these wings as in figure 7. It should be stressed that equation (5kha)

- holds also when T, 1is zero and reduces in that case to

(CL)TO=O = g Aa | - (5Lp)

4

When To equals zero for the type (b) wing, the plan form is triangular
and equation (54b) agrees with the result for that case in reference 1,
When To=0 for the type (c) wing, the trailing edge of the root chord
is behind the leading edge of the tip and, as shown in figure 7, lift
coefficient is then a linear function of aspect ratio. ' This transition
in the lift coefficient occurs at A=2.48 tan 0. -

When the aspect ratio of either the type (b) or (c¢) wing becomes

large, it approaches the value U4Sg2 tan 6/(So2-To2) and the 1lift coeffi-—

cient becomes -

(CL)p —3o= 2ma tan 6 (5kc)

Equation (54¢) corresponds to the exact expressions for 1lift coefficient
of a swept—back infinite—aspect—ratio wing at a free—stream Mach number
equal to 1 and also agrees to the first order with the low—speed 1lift
coefficient of a highly swept, infinite-aspect—ratio wing.

Vortex Drag

The formula for the vortex drag is well known frdm the study of

 incompressible—flow theory where it is referred to as the induced drag.

Its derivation for both subsonic and supersonic theory depends on the

calculation of the momentum transport through a plane perpendicular to the
X axis and infinitely far behind the wing.
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The vortex drag of the wings undef consideration can be calculated
from the expression .
: So . - ot
Cr tan @
Dy = — .’3_1.‘_2__/ (Wo)_ ray ‘ ~ (55)
' . —So o

wo at X=w and where, from equation (5),

j;k/ﬁSO (3r/dY,)ay, (56)

vhere (wo)co is

Cwe) | =
( O)w 2n Y—Y]_

_So

From equation (L49a), for 0 < |Y;] € To

ar
—_— = )
) ax, (57a)
and from equation (49v), for To € ]Yll £ So
4T _ oy ( o A (57)
ay, . . So2=Y;2 ]l T

Placing these expressions in equation- (56), rearranging, and using the

transformation Y, = So:\/ nl, there results
2,¥Y2

—(To/S

[711 (To/So) :l (58)

1 ' dT] N
l—‘f] 1

(wo) =\—[':'Ef P—

and, after direct integration,
Voa |1 T°2_Y2>
© SoP—Y2

~Voa, To< |¥]< So

1/2 :
.J , 0 Y] <1

7 (59)
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This result 1s shown in the accompanying sketch for types (b) and (c)
wings and for triangular wings, the
v ) . ] latter being included as a special
10 ' case in the analysis when To=0.
: Since the induced velocities in an
o X = constant plane are a function
e - only of the vortices streaming through
" Type (a), C tané =100 it (equation (5)), the valuenif w "
“behind the wing is the same in every

0o 70 plane. The quantity (vo) there—

?y . : fore, represents the: downwash in

° regions immediately behind the wing
as well as at points infinitely
distant. With this concept and the

10 ‘ :
results presented in the sketch, we
. Type (b) and are immediately able to verify the
[CAA S. loading results for type (c¢) wings,
W, :

lc) —=—=—:/48

? G tan 8 the loading over type (b) wings being

given, since the sketch shows that

0 .the downwash behind the portion of
o X 10 the trailing edge, which is cut normal
S, . to the free stream, is the same as the

downwash .on the wing itself. Hence,
the boundary condition that w=wg in the plane of the wing is automatlcally
satisfied for any variation in plan form directly behind this edge, and no
loading is required to force the streamlines into a pattern which they
already follow, '

The effect of the instability and resultant rolling up of the vortex
sheet is such that the magnitude and distribution. of downwash.can be used
in computing induced effects off the wing only a short distance back of
the trailing edge. However, since the total kinetic energy is not
changed by this rolling up, the drag of the wing can be determined from
the velocities computed on the basis of the undistorted vortex sheet in
the XY plane. Hence, vortex drag can now be determined from equation
(55) with T as given in equations (49a) and (49b) and with (wo)
obtained from equation (59). The expression for vortex drag then becomes

- TQ ’ T 2—Y2 1/2 -
Dy = 2pVo2a2Cy tan 6 1~ 20— dY + 2pVpZa2I;
o. soz_YZ

where I; has already been determined (equation (52)). The elliptic
integral can be evaluated by the transformation Y=So dn (u,ks) where,
as in equation (h9b),
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The final expression for drag is

b | )
q—d‘;- = So2ks2n — USoCr tan 6 (E!s—k2K',) (60)
where K's and E',; are complete elliptic integrals of the first and
second kind with modulus k'!',. In coefficient form, equation (60) becomes

CDV - A kgzﬂ _ E'g—k22K'2 (61)
a? tan  tan 9 \ k4 . So/Cr tan 6

A plot of equation (61) is shown in figure 8 for all three types of
- wings. For large aspect ratios the vortex drag decreases as aspect ratio
increases and, in fact, it can be shown that Cp, approaches zero as

aspect ratio becomes infinitely ldarge. However, it is also apparent from
the figure that the factor CDV/(CLz/nA) increases slightly with aspect

ratio in the range shown. It is the latter factor that is minimized by
the elliptic span loading of the triangular wing.

Amss Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif,, Oct. 18, 1949,

APPENDIX

TABLE OF IMPORTANT SYMBOLS

A aspect ratio of wing

Cr root chord of wing

Cr, lift coefficient of wing (I/qS)

Cpy . vortex drag coefficient:of wing (Dv/aS)

Dv vortex drag of wing

Eo,Ey complete elliptic integrals of the second kind with moduli ko,k,,
N respectively

E(¢,k) incomplete elliptic integral 'of the second kind

v
{\jﬁ (1-k2 sin? x)l/2 dx]

o)



ko

k?

KO,vKl

t,t(x)

T(X)
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incomplete elliptic integral of the first kind

AY
{u/: (1-%2 si:: x)1/2 }

function introduced in equation (29)

<l t2 1/2 _ <l _ |12 1/2 )

82 s2

(i t2 i/é__ <l .2 \t/2

802 S°2
(-2). (B

8o - S0/ - -
(l—k2)l/2

complete elliptic integrals of the&fifst kind with moduli ko,k,,
respectively

1ift of wing

free—stream Méch nuﬁber’

static pressure

free—stream dynamic pressure <%DV02>

y coordinate of wing tip or wing léading edge (See fig. 1(b).)
[s(x) Cpr tan 6 = S(X)] |

Y coordinate of wing tip 6r wing léading edge (See.f;g. 1(a).)

particular value of s(x) determined by wing-tip location
(see fig. 1(b).) (so Cr tan 6 = So) o

particular value of S(X) determined by wing-tip location
(See fig. 1(a).)

. wing srea

y coordinate of wing trailing edge (See fig: 1(Db).)
[t(x) Cr tan 6 = T(X) ]

Y coordinate of wing trailing edge (See fig. 1(a).)
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to particular value of t(x) determined by wing—tip location
(See fig. l(b)) (to Cr tan @ = To) :

To particular value of T(X}I determined by wing-tip location
(See fig. 1(a).)

u(x,y,z)
v(x,y,z) } transformed values of perturbation velocities in X,Y,Z direc—.
w(x,y,z) tions

u(X,Y,z)
v(X,Y,Z) perturbation velocities in X,Y,Z directions
w(X,Y,2) J o

Vo free-stream velocity
(Wo),, vertical induced velocity at X=w, Z=0
X,Y,z  transformed Cartesian coordinates

(xCr =X, yCr tan @ = Y, zCr tan 6 = 27)

X,Y,Z ' TCartesian coordinates in'physical SPace
o angle of attack of wing

r circulation

n y2

2] - semiapex angle of wing

o} _ frée—stream density '

'Q(x,y,z) transformed perturbation velocity potential
[® (xCr, yCr tan @, zCr tan 8)]

®(X,Y,Z) perturbation velocity potential

ég loading coefficient
d pressure on lower surface — pressure on upper surfacé>
q
AV lateral velocity discontinuities at Z=0
. ] .

Avy,Avy  components of Avp

AP discontinuity in perturbation potential at z=0
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Subscripts

P . pertaining to wing plan form
w pertaining to vortex 'wa.ke
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Regions
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(a) Physical plane.

Regions

(b) Transformed plane.

Figure [ - Dimensions and regions used in discussion of swept-back
wings. '
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Figure 2.— Plot showing trailing edge as given by equation (26).
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LN |; 111 l
|

- -

———_Mach lines

Figure 4- Load distribution over constant-chord swept-back
wing, (reference 13)

Figure 5- Spanwise variation of section circulation for the wing plan
forms of figure 3. : '
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Figure 7- Variotion of lift-curve s/opé with aspect ratio.
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Figure 8.- Variation 'of vortex drag coefficient with aspect rato.
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