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TECHNICAL NOTE 1996

ON INTERNAL DAMPING OF ROTATING BEAMS

By Morris Morduchow
SUMMARY

For a beam rotating sbout a transverse axis and harmonically
vibrating in a dlrection normal to lts plane of rotation, it 1s assumed
that an intermal damping force exists inversely proportional to the
vibration frequency and directly proportional to the time rate of
change of the elastlc load. It is shown that, with such a force, the
internal logarithmic decrement of the beam increases asymptotically
with the principal mode of vibration to the value =g, which it would
have in any mode 1f the same beam were not rotating. The term g in
this value is a dimensionless internal—damping coefficient depending
on the beam material. If the beam performs vibrations in the plane of
rotation, then the internal logarithmlic decrement in the fundamental
mode will be elther equal to, or slightly less than, =g, but will
decrease in the second mode and will then lncrease asymptotically with
the higher modes to the value =ng. Thus, rotation of a beam In general
diminishes the internal logarithmic dscrements.

INTRODUCTION

The purpoée of this investigation is to derive the implications,

)
for rotating beams, of the assumption pz = g— P (ETy")" which was

originally made for nonrotating beams and which has been found to agree
with experimental results for such beams. Such an investligation may be
of particular interést in the design of helicopter blades, propellers,
or turbine blades, which often act llke beams. (See reference 1.)
Internal dampling 1s especlally important in flutter phenomena, where it
increases the stability, and In vibratlons of fixed—ended helicopter
blades in the plane of rotation, where it is of the same magnitude as
the aerodynamic load. Experlmental data on the internal logerithmic
decrements of beams rotating about a transverse axls appear +to be
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lacking, and there is therefore no conclusive empirical check at present
on the basic assumption used here for rotating beams.l

The mechanism of Internal damping in structures appears as yet to
be not—entirely understocd. It is possible, nevertheless, to take
internal damping mathematically Into account_in vibratlon phenomena by
meking simple assumptlons such that the implications will be in accord
wlth experimental evidence.

Numerous experiments (references 2 4o 5) have been made on non—
rotating vlibrating beams, all leading to the conclusion that the
internal logarithmic decrements of such beams are independent of the
frequency, and therefore of the mode, of vibration. In view of these
results Theodorsen and Garrick (reference 6) have, for purposes of
flutter ilnvestigation, introduced a damping force in bending of the

form p4 = igweamFy. Reissner (reference T) more recently has
suggested a damping force of the form pg = dgg 3% (BIy")", where the

coefficient dg 18 to be chosen so that the logarithmic decrements
will be independent of the frequency.2

It will be observed that in hoth of the expressions for p the
demping force 1ls assumed to be 1n phase with the velocities, althoug
the second expression does not contain an imaginary factor. It should
be observed, moreover, that the term (EIy")" represents the unit
elastic load of a rotating, as well as of a stationary, beam, while the
term o 2m'y represents exactly the unit elastlic load of a stationary
beam.but only approximately3 the unit elastic load of a rotating beam.
Although the two basic assumptions discussed here are in this sense not
quite equivalent faor rotating beams, it will be found that in actual
cases they lead to virtually the same results for the logarithmic
decrements. It ls therefore necessary to treat only one of these
assumptions in detall.

11y may be remarked here that in a rotating beam aerodynamic as
well as internal damping forces exist. Consequently, the effect of-
aerodynamlic damping must be taken into account in the interpretation of
any experimental data on the logarithmic decrements of rotating beams.

2previous investigators, such as Sezawa (reference 8), also used
an internal damping force proportional to Jd/3t (EIy")", but for
gimplicity it was assumed that the proportionality factor was a constant,
independent of the frequency of vibration. This led to results which
were not in agreement with experiments.

3Tt can be easily shown that if the centrifugal loads had no
effect on the modes of deflection of a rotating beam this term would
represent the unilt elastic load of a rotating beam exactly.
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This investigation is part of a project carried out at the
Polytechnic Institute of Brooklyn and sponsored by, as well as conducted
with the financial assistance of, the National Advisory Committee for
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The author hereby expresses his thanks to Dr. Paul A. Libby for
his commsnts and discussions with the author. '

SYMBOLS
A cross—sectional area
Ay cross—sectlonal area at root of beam
E modulus of elasticity of beam material
f = (DCD.Q
cn 92
f = we_nz
en Q2K
& dimenslionless intermal—damping coefficlent depending on beam

materlial :
i= \} -1
I moment of inertia of structural cross section of beam
Io value of I at root of beam
EL,
K dimensionless bending—stiffness parameter { ———
274
PARE1

2 length of beam
m! mass per unit length of beam
n mode of vibration
D complex frequency; if p=-R* iw (R and o real)

then w/2x 1s the natural frequency in.cycles per
second, while 2mR/w 1s the logarithmic decrement
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e = p/a
r radial distence of-a beam element from axis df rotation
R radial distance of beam tip from axis of rotation
t time
=31
¥y vibrational bending deflection of beam at any point x
x distance along beam
3! internal logarithmic decrement; logarlthm of ratio of ampli-
tude_ of vibration at one time to amplitude one period
later
£ =x/1
o) density of beam material
1 A
T dimensionless centrifugal—-force parameter J[’ K; %Tdé
£
Q angular speed of rotating beam, radians per second
o natural frequency of vibration of rotating beam, cycles
per 2x seconds
®on natural frequency of vibration of-beam in "nth" mode when it
is stationary (Q = 0), cycles per 2n seconds
Oy natural frequency of vibration of rotating beam In nth mode

if i1t had no bending stiffness (K = 0), cycles per
2n seconds

' = 3/3x at first; ' = 0/dt in equation (3) and thereafter

¢ = 3/dt
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THEORY

Let the internal or structural damping force in a rotating, as
well as a statlonary, vibrating beam be proportional to the elastic
load per unit length of the beam, and let this force be in phase with
the vibrational veloclties. Then the unit damping force py can be
expressed in the form (reference T)

D e g
= — E
pq = &8 S (EI7") (1)

where g 1is a dimensionless internal-—damping coefficient charascter—
istic of the material of the beam, and where dg 1is a factor which, in
accordance with emplricsl data, cen be chosen so that the intermal
logarithmlc decrement of a stationary beam performing harmonic motion
will be independent of the frequency ® of vibration. It can be shown
that dg, thus chosen, must have the value

_1
ds = = (2)

(In reference 7, 45 was incorrectly expressed as dg = w.)

The equation of the small free vibrations of a beam rotating with
angular veloclty & &bout a transverse axls passing through the root
of the beam and pasrsllel to the vibrational displacements y of the
beam cen then be written In the following dimenslionless form:

n e \" -
' I a{I ?‘) -t , AT
K(= + =|l==] —(1y') + ———==0
E7) +exd (£%) -7 5 (3)
where, and henceforth, ' = g—g The term (Ty')' represents the unit

centrifugal load.

For harmonic motion, let

7 = F(&)ePt | (1)
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Then, with the essumption (Justified a posteriori, as 1s shown subse—
quently) that 1 + (pg/w) X 1 + 1g, the following equation is obtained
for F(t) eand q = p/o:

" 2
K2 +10)(£7) - (7 4 2 (B 7 a0 (5)

An expression for the Internal damping in any mode can be obtained
from equation (5) in the following menner. The natural frequency of
any-undamped mode n of vibration, as determined by .eguation (5)
with g = 0, can be expressed, to a satlsfactory approximstion, by
(reference 9)

qon2 = _fenK - fc_n (6)

where f., &and f,, are positive nondimensional quantitles repre—
senting, respectively, the contribution of the elestic resistance (0 = 0)
and the contribution of the centrifugal load (X = 0) +to the natural
frequency of the nth mode.

From equation (5) 1t is seen that—the mathematical effect of
internal dampling here 1s to replace the constant K by the
constant K(1 + ig). It follows from equation (6), then, that the
complex frequency ratio 4n for the nth mode with internal damping
will be gliven by:

qd.n2 = forK(1 + 18) — £ (7)

Assuming, as is actually the case, that g << 1, equation (7) leads to
the following expression for gq4,:

=1 %n _1 x Ffen

where o, 18 the natural frequency of the rotating beam in the nth
undanmped mode and 1s given by:

Wy = O\ TenK + fop (9)
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Observing that

OJen2

22 " Fen
vhere o 1s the natural frequency of the nth mode when the beam 1is

not rota%&lng, it 1s seen that equation (8) can be written as:

2/02
®on lsu)en/ﬂ

=g 38 (10)

From equation (10), one finds

or
2
D _ . 1 Lep
l+—g=<l— g2—>+ 1g
o 2° oom?
Since g <1, 1t l1ls evident that

P
1+ = l1+1
0)88. =4

as was originally assumed.

Equation (10) implies that to a first (and for practical purposes,
sufficient) approximation, internal damping does not affect the natural
frequency of any mode, since the imaginsry part of the complex frequency
ratio q remains unchanged by the damping. However, the damping adds
a negative real part to the value of g, which lmplies the following
value for the logerithmic decrement O, of any principal mode:

2

w Kt

5, = 78 en2 = ng =t (11)
Oon Kfen + fen

where cnen?/cnon2 1s the ratio of the square of the natural frequency
of the beam in any mode n when it 1s not rotating to the square of the

natural frequency in that mode when 1t is rotating.
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Since in general gy s Won, for any mode (Wen = ®Wgy ORLY
if 0 = 0), and since the ratio wgn/won approaches unity as the mode
of vibration increases, 1t follows from equation (11) that the internal
logarithmic decrement of a rotating beam increases asymptotically with
the mode to the value & = ng, which it would have in any mode if the
beam were not rotatlng. Rotatlon of a beam evlidently decreases the
logarithmic decrement-in any mode of vibration of the beam, but this
decrease will in actual cases be found apprecliable mainly in the lower
modes. As can be seen from equation (11), the decrease in the loga—
rithmic decrements ls due to the Increase 1n the natural frequenciles
caused by the rotation of the beam.

If the beam is rotating about & transverse axls perpendicular,
instead of parallel, to its vibrational displacements, so that the
vibrations are in the plane of rotation, then the baslc differemtial
equation remains the same as equation (3) except that the unit centrif-—
ugal load is now represented by an additional term -A/A,Y on the left
side of the equation. The approximate relatiom, eguation (6), remai
valld, although the numerical values of f,, Wwill now be different.
All of the previous reasoning leading to equations (7) to (11) thus
remains valid and, therefore, the general equations which have been
derived here for a rotating beam performing vibrations in a direction
perpendicular to its plane of rotation are valid alsoc for a beam
vibrating in its plane of rotation.

In the latter case, however, the value of f,, 1n the fundamental
mode 18 usually elther zero or very small. Consequently, according to
equation (11), the internal logarithmic decrement of a beam vibrating
in the plane of rotation will have a value of almost =g 1In the
fundemental mode, will decrease in the second mode, and will then
increase asymptotically with the hlgher modes to the value =ng.

It may be noted that all the general relations which have been
developed here are valid regardless of the boundary conditions of the
beam, although the numerical values of fg, depend on the boundary
conditlons.

47t can be shown that if the rotational axis passes through the
root of the blade, then (fon)o = (fon); — 1, where the subscripts 1
and 2 refer, respectively, to vibrations normal to, and in, the plane
of rotation.
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NUMERICAL EXAMPLE

A numerical example may be given to 1llustrate the nature of the
results derived hers. Consider a uniform fixed—ended beam vibrating
normally to its plane of rotation: Then the values of fgp and fop
for the various modes of ¥vibration are given byi

fenl/h = 1-8711-, )4-471, 7¢85, ¢ & 8 fr(2n - l)/2 (approx.)

nz2

fcn=l, 6, 153 s e ey n(EIl—'l)

w

ne 1l

A typical valiue of K for a fixed-ended single—tubul&r—sp&r helieopter
blade is X = 0.004. For propellers and turbine blades, the value of K
may be higher. Figures 1 and 2 show the variatian of &, with the
principal mode of vibration and with the vibration frequenCy, respec—
tively, for the uniform fixed—ended beam with K = 0.005; K = 0.05,

end K = l.

If a uniform fixed=ended beam is vibrating in its plane of
rotation, and iP the axis of rotation passes through its rodt; then the
values of fg, remain as glven, but the values of Iy, are now:

n=0,5, 1, ..., (2 +1)(n=~1)

Figure 3 shows the varlation of S, with the principal mddes of
vibration of such a beam.

CONCLUSIONS

If a beam rotating @bout a transverse axis 1s harmonically
vibrating in a direction normal to its plane of rotation and if it is
assumed that an internal demping force exists inversely proportional
to the vibration frequency and directly proportional to the time rate
of change of the elastic load, then it follows that the intermal loga—
rithmic decrement of such a beam will increase asymptotically with the
mode of vibration and will approach the value =g which it would have
in all modes if the beam were not rotating. The term g in this value
is a dimensionless internal—demping coefficlent depending on the beam
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material. If the beam 1s vibrating in, instead or normally to, 1ts
plane of rotation, then the intermal logarithmic decrement will be equal
to, or will be slightly less than, the value ng 1in the fundamental
mode, will decrease in the second mode, and will then Increase asymp—
totlically with the higher modes to the value wng. Thus, rotation of a
beam in general diminishes the structural logarithmic decrements. The
greatest variation of the logarithmic decrement with the mode will in
general occur In the lower modes. .

Polytechnic Institute of Brooklyn
Brooklyn, N. Y., February 7, 1949
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Figure 1.~ Variation of structural logarithmic decrements with principal mode
of vibration for a uniform fixed-ended beam rotating at angular speed @
about a transverse axis and vibrating normally to the plane of rotation.
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Figure 2,- Variation of structural logarjthmic decrements with vibration

frequency for a uniform fixed-ended beam rotating at angular speed ¢
about a transverse axis and vibrating normally to the plane of rotation.
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Figure 3.- Variation of internal logarithmic decrements with principal mode
of vibration for a uniform fixed-ended beam rotating at angular speed 0
about a transverse axis. through its root and vibrating in the plane of
rotation. ’

NACA-Langley - 12-6-49 - 1000



