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ON INTERNAL DAMPING OF ROTATING BEAl@

By Morris Morduchow

SUMMARY “

For a beam rotating about a transverse axis and harmonically
vibrating in a direction normal to its plane of rotation, it is assumed
that an internal damping force exists inversely proportional to the
vibration frequ=cy and directly proportional to the time rate of
change of the elastic load. It is shown that, with such a force, the
internal logarithmic decrement of the beam increases asymptotically
with the principal mode of vibration to the value fig,which it would
have in any mode if the same beam were not rotating. The term g in
this value is a dimensionless internal+amping coefficient depending
on the beam material. If the beam performs vibrations in the plane of
rotation, then the internal logarithmic decrement in the fundamental
mode will be either equal to, or slightly less than, fig,but will
decrease in the second mode andwiU then increase asymptotically with
the higher modes to the value fig. Thus, rotation of a beam in general
diminishes the internal logarithmic decrements.

INTRODUCTION

The purpose of this investigation is to derive the implications,

g d (EIy”)“ which wasfor rotating beams, of the assumption pa =~~

originally made for nonrotating beams and which has been found to agree
with experimental results for such beams. Suchan investigation may be
of particular interbst in the design of helicopter blades, propellers,
or turbine blades, which often act like beams. (See reference 1.)
Internal demping is especially important in flutter phenomena, where it “
increases the stability, and in vibrations of fixed+nded helicopter
blades in the plane of rotation, where it is of the same magnitude as
the aero@amic load. Experimental data on the internal logsrithud.c
decrements of beams rotating about a transverse axis appear to be
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lacking, and there is therefore no conclusive empirical check at present
on the basic assuqtlon used here for rotating beams.1

The mechanism of internal damping in structures appears as yet to
he notrentirely understood. It 3s possible, ne~ertheless, to take
internal damping mathematically into account.in ~ibration phenomena by
making simple assumptions such that-the i~lications will be in accord
with experimental evidence.

Numerous experiments (references2 to 5) have been made on non-
rotating vibrating be-, all leading to the conclusion that the
internal logarithmic decrements of such learnsare independent of the
frequency, and therefore of-the mode, of vibration. In view of these
results Theodorsen and Garrick (reference 6) have, for purposes of
flutter investigation, introduced a damping force in banding of the

fo~ pd = i@e2m~y. Reissner (reference 7) mor: recently has

suggested a d6.@ng fOrCe Of the form Td = dsg ~ (EIY”)“, where the

coefficient d~ is to be chosen so that the logarithmic decrements
will be independent of the frequency.2

It-will %e observed that in both of the expressions for p
$

the
damping force is a~sumed to b? in phase..with_thevelocities, al bough
the second expression does not contain an i~insq factor. It should.
be observed, moreover, that the term (EIY”) represents the unit .

elasti~ load of-a rotating, as well as of a stationq, beam, while the
term ue2m~y represents exactly the unit elastic load of a stationary
besmbut only approximately the unit elastic load of a rotating beam. .

Although the two basic assumption discussed here are in this sense not
quite equivalent far rotati~ beams, it will be found that in%ctual
cases they lead to virtually the sane results for the logarithmic
decrements. It is therefore necessary to treat only one of these
assumptions In detail.

lIt may be remarked here that in a rotating beam aerodynamic as
well as internal damping forces exist. Consequently, the effect of--
aero@namic daqing mustbe taken into account in the interpretation of
any experimental.data on the log=itmc decrements of rotating beams.

Zwevious investigators, such as Sezawa (reference 8), also used
an internal damping force proportional to ~/&t (EIY’’)”,but for
simplicity it was assumed that the proportionality factor was a constant,
independent of the frequency of vibration. This led to results which
were not in agreement with experiments.

31t canbe easily shown that if the centrifugal loads hadno

effect on the modes of deflection of a rotating beam this term would
represent the unit elastic load of a rotatimg beam exactly.
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SYMBOLS

A cross+ectionaJ. area

Ao cross-sectional erea at root of beam

x nmdulus of elasticity of beam material

2
f _ acn
cn Q2

f
Uenz

en=— Q%

3

dimensionless internall+iezuping
material

moment of inertia of structural

value of I at root of beam

dimensionless bending+tiffiess

length of be=

mass per unit length of beam

mode of vibration

complex frequency; if p = +? *

coefficient depending on beam

cross section of beam

()EIoperameter
pA#? $+

~hen U/2-K is-the natural frequency ti.cycles pe~
second,”while 2YcR/m is the logarithmic decrement
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q = P/$-l

r

R

t

? = y/z

Y

x

5

E = x/1

P

T

Q

u

u)en

alcn

t = a/ax
● =a/at
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ratial distance ofia beam element from exis of rotation

radial distance of beam tip from sxis of rotation

time

vibrational bending deflection of beam at any point x

distance along beam

internal logarithmic
tuti.of vibration
later

decrement; logsrithm otratio of am@i–
at one time to amplitude one period

density of beam material

dimensionless centrifugal-forceparametir (~:~;dj

angular speed of rotating beam, radiens per second

natural.frequency
per 2Jrseconds

natural frequency
is stationary

natural frequency

of vibration of rotating besm, cycles

of vibration ofibeam in “nth’~mode when it
(Q = O), cycles per 2Ytseconds

of vibration of rotating team in nth mode
if it had no bending stiffness (K = O), cycles per
2n seconds

at first; * = @ in equation (3) and thereafter

%-
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Let the internal
well as a stationery,

THEORY

or structural.damping force in a rotating, as
vibrating beam be proportional to the elastic

load per unit length of the beam, and let tbls force be in phase with
the vibrational velocities. Then the unit daqing force PA can be
expressed in the form (reference 7)

.

where g is a dimensionless internal+lamping
istic of the uterial of the beam, and where
accordance with empirical data, can be chosen

(1)

coefficient characte~
d~ is a factor which, in
so that the internal

logeritbmic decrement of a stationery beam perfo- hermonic motion
will le independent of the frequency m of vibration. It can be shown
that as, thus chosen, must have the value

(In reference 7, ~ was incorrectly expressed as ds = m.)

The equation of the small free vibrations of a beam rotating with
anguler velocity $2 about a transverse axis passing through the root
of the beam and parallel to the vibrational displacements y of the
beam can then be written in the following dimensionless form:

(3)

a
where, and henceforth, ? s —.

8(
The term (T;’)’ represents the unit

centrifugal load.

For hermo~c motion, let

(4)
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Then, with the assumption (justified a posterior, as is shown subs+
quently) that 1 + (pg/o) X1 + ig, the following equation is obtained
for ~(E) and q~p/Q:

()
II

K(l +-ig) ;~’
()

A p2-

0 ‘-(~~’)’+qn ‘=0 (5)

An expression for the internal damping in any mode can be obtained
from equation (5) in the fo~owing manner. The natural frequency of
anY-un-ed mode n of-vibration, as determined by.equation (~)

with g = O, canbe expressed, to a satisfactory approximation, by
(reference 9)

%n2 =-fenK–fcn (6)

where fen and fcn sxe positive nondimensional quantities repr43-

senting, respectively, the ccmtribution of the elastic resistance (Q = O)
and the contribution of the centrifugal load (K = O) to the natural
frequency of the nth mode.

From equation (5) it is seen that-the mathematical effect of
internal damping here is to replace the constant K 3Y the
constant K(l + ig). It follows from equation (6), then, that the
complex frequency ratio ~m for the nthmode with Internal damping
will be given by:

qdn2 =-fenK(l +

Assuming, as is actually the case, that
the following expression for ~n:

(7)

g <<1, equation (7) leads to

where Uon is the natural frequency of
undaqped mode and is given by:

the rotating beemin the nth

(8)

.

..

(9)
*—

f
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Observing that

2

~ = mm

where Oa. is the natural frequency of the nth mode when the beam is
not rota~<ng, it is seen that

%n=i

From equation (10), one finds

equation (8) can be

p i-—=
m

or

Since g <<1, it is evident that

l+:g

as was originally assumed.

Equation (10) implies that to

ixl+ig

7

written as:

(lo)

a first (and for practical purposes,
sufficient) ap~roximation, internal damping does not affect the natural
frequency of any mode, since the imagimwy part of the complex frequency
ratio q remains unchanged by the demping. However, the dsaq?ingadds
a negative real pert to the value of ~ which implies the following
valu= for the lo&rithmic decrement

.
2

5n ‘en
=fig==

5n of any principal mode:

(U)

where m /
2 ~on2 iS the ratio of the squere of the natural frequency

en
of the bean in any mode n when it is not rotating to the squere of the
natural frequency in that mode when it Is rotating.
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Since in general mm ~ U& for any nmde (Oa = mm cdy

ifo= O), and since the ratio ~en/~ approaches unity a8 the mode
of vibration increases, it follows from equation (11) that the internal
logarithmic decrement of a rotatimg beam increases asyn@oticaJly with
the mode to the vgihe 5 = fig,which it would have in any mode if the
beam were not rotating. Rotation of a beam evidently decrehses the
logarithmic decrement--inany mode of vilratian of!the beam, but this
decrease will in actual cases be found appreciable mainly in the lower
mode~. As can be seen from equation (11), the decrease in the loga-
rithmic decrements is due to the increase in the natural frequencies
caused by the rotation of the beam.

If the beam is rotating about a transverse axis perpendicular,
instead of parallel, to its vibrational displacements, so that the
vibrations are in the plane of rotation, then the basic differential
equation remains the seam as equation (3) except that the unit centrif-
ugal load is now represented~y an additional term -A/&~ on the left
side of the equation. The approximate relation, equation (6), remai
valid, although the numerical values of fa will now be different.r

All of the previous reasoning leading to equations (7) to (11) thus
remains valid and, therefore, the general equations which have been
derived here for a rotating beam performing vibrations in a direction
perpendicular to its plane of rotation ere valid also for a beam
vibrating in its plane of rotatian.

In the latter case, however, the value of fcn in the fundamental
mode is usually either zero or very small. Consequently, according to
equation (11), the internal log=ithmic decrement of a beam vibratimg
in the plane of rotatipn will have a value of almost fig in the
fundamental mode, will decrease in the second mode, and will then
increase asymptotically with the higher modes to the value J@.

It may be noted.that ell the general relations which have been
developed here are valid regardless of the boundary conditions of the
beam, although the numerical values of’ fen depend on the boundary
conditions.

41t can be shown that if the rotational @s passes through the
root of the blade, then (fcn)2 = (fcn)l - 1, wkre the subscript 1
and 2 refer, respectively, to vibrations normal to, and in, the plane
of rotation.

.

‘%

,
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NUMERICAL ~

A numerical example may be given to illustrate the nature of the
results derived
normally to its
for the various

~enl/4 =

fcn = 1,

here.- Consider ~ uniform fixed+ded beam vibrating
plane of rotationa Then the values of f= and fcn
modes of ti@ation We given by~

1.874j 4~71, 7.85, . . ●j n(2n - 1)/2 (approx.)

~>a

6, 15J . . ij n(2n-1)

>1n.

A typical value of K -for a fixed-ended singl-tubul=p~ helic6p*er
blade is k = 0.004. For propellers and turbine blades, the value of K
may be higher. Figures 1 end 2 show the variation of F5n with the
principal mode of’vibration and tith the ~ibration frequency, respec-
tively, for the uniform fixed-ended beam with K = O.OO~J E = 0.05,
and K = 1.

If a Uniform f’ixed%nded%eem is vibrating in its plane of
rotation, ~d if the sxis of rotation passes through its kdbtj then the
values Of fen remain as given5 but the values of fcn are now:

fcn =0, 5, 14, . . ., (2n+l)(n -1)

Figure 3 shows the variation of b,n with the principal ~des of
vibration of such a beti.

CCW.XJEIONS

If abeam rotating about a transverse axis is hammnically
vibrating in a direction normal to its plane of rotation and if it is
assumed that an internal damping force exists inversely proportional
to the vibration frequency and directly proportional to the time rate
of change of the elastic load, then it follows that the internal loga-
rithmic decrement of such a beam will Incre*e asy@otically with the
mode of vibration and will approach the value ng which it would have
in all modes if the beam were not rotating. The tezm g in this value
is a dimensionless internal-damping coefficient depending on the beam
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material. If the beem is vibrating in, instead or nornmUy to, its
plane of rotation, then the internal logarithmic decrement will be equal
to, or will te slightly less than, the value fig in the fundamental
mode, will decrease in the second mode, and will then increase asymp-
totically with the higher modes to the value fig. Thus, rotation of a
beam in general diminishes the structural logarithmic decrements. The
greatest variation of the logarithmic decrement with the mode will in
general occur in the lower modes.

Polytechnic Institute of Brooklyn
Brooklyn, N. Y., February 7, 1949

.

.
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Figure 1.- Variationofstructurallogarithmicdecrements withprincipalmode
ofvibrationfora uniformfixed-endedbeam rotatingatangularspeed o
abouta transverseaxisand vibratingnormally totheplaneofrotation.
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Figure2.- Variation ofstructuralIogarjthmicdecrements withvibration
frequencyfora uniform fixed-endedbeam rotatingatregularspeed Q
abouta transverseaxisand vibratingnormally totieplaneofrotation.
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Figure 3.- Variationofinternallogarithmicdecrements withprincipalmode

.

-ofvibrationfora tiform fixed-endedbeam rotatingatangularspeed 0
abouta transverseaxisthroughitsrootand vibratingintheplaneof
rotation.
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