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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 1988

TRANSIERT BEHAVIOR OF LUMPED-CONSTANT SYSTEMS
FOR SENSING GAS PRESSURES

By Gene J. Delio, Glennon V. Schwent
and Richard S. Cesaro

SUMMARY

The develoment of theoretical equations describing the
behavior of a lumped-constant pressure-sensing system under
transient operation is presented with experimental data that
show agreement with the equations. A pressure-sensing system
consisting of a tube terminating in a reservoir is investi-
gated for the transient relation between a pressure disturbance
at the open end of the tube and the pressure response in the
reservoir. Design parameters are presented that can be adjusted
to achieve a desired performance from such a system when the
system 1s considered as a transfer member of a control loop.

INTRODUCTION

: JIn many control applications, the controlled variables
such as fluid flow, thrust, alrspeed, torque, and temperature
(references.l and 2) may be measured by pneumatic means, Such

a measuring system may incorporate a tube that terminates in

& reservoir having a pressure-sensitive element. An investi-

gation concerned’ with the tramsient relation between the pres-

sure disturbance at the mouth of such a tube and the pressure

response in the reservoir as affected by changes in system

dimensions and gas conditions was conducted at the NACA Lewis
laboratory and is reported herein. A

The transient behavior of linear systems may be described
in various ways. The methods used in the present report employ:
the differential equation describing the system, the transfer
function (reference 3) (the Laplace tramsform of the response
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divided by the Laplace transform of the disturbance), the indicial
response (response to a unit-step disturbance), and the frequency
response (steady-state response to sinusoidal inputs). In synthe-
sizing an over-all control system, the transfer function or
frequency response has greater utility; whereas, in the study of

a gingle transfer member, the transient behavior is easily under-
stood by the use of the indicial-response method.

Considerable research has been conducted on this problem
in fields other than controls. References 4 and 5 report
investigations of this problem as applied to airspeed indicators
and altimeters. In these applications, the effect of the mass
inertia of the flowing medium in the tube is usually so small
as to be negligible; whereas, for controls a design that would
permit the exclusion of the mass-linertia effect reduces the
order of the equations and limits the flexlbility of design. On
this basis, the analyses of references 4 and 5 are not considered
appliceble to the study of pressure-sensing systems used in
controls. '

In the field of acoustics, sound transmission in pneumatic
systems has been thoroughly investigated and is presented in
references 6 and 7. Parts of these analyses are used in the
investigation presented herein. -

Experimental date in the form of indicial responses are
presented to substantiate the analysis. (The symbols used are
defined in appendix A). .

ANALYSIS

If consideration 1s limited to a gas-pressure-sensing
system (fig. 1) in which the volume of the reservoir is large

- compared with the volume of the tube, the capacitance (appendix B)

may be considered a function only of the reservoir volume and
the gas conditions. Also, by restriction of the analysis to the
cagse in which the tube length is short, the dead time (length

of tube divided by the speed of sound) due to transportation lag
may be neglected. As a result of these two restrictions, the
volume flow at any time Is considered uniform along the tube
length. The "inertance" and the resistance (appendix B) are
therefore functions only of the tube dimensions and the gas
conditions. By these restrictions, the analysis is reduced to
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an investigation of a lumped-constant system (reference 8), 8’
system that disregards the space variables and assumes disturb-
ances to occur instantaneously throughout the system with varying
magnitudes. :

General Equations

Differential equation describing pressure transient. -  If an
adiabatic process and small pressure changes are assumed, the
relation between the pressure in the reservoir and the pressure
at the mouth of the tube is described by a second-order differ-
ential equation with essentially constant coefficients:

JCP, + RCp, + P, = Py (1)
or
1 - 2t - _ .
- P. + o Po * P, = Py (2)
wo 0

The definition and the derivation of the coefficients appear in
appendix B.

Transfer function of pressure-sensing system. - By use of
the Laplace trensform, the transfer function for the differential
equation is '

P (s) 1
Fs) = P:(s) "2 et (2)
—é + ® s + 1
W, 0 ’

Indicial response. - The indicial responses in dimensionless
form for various damping ratios (reference ¢) are:
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Case I: Underdamped, 0 S l{ <1
P -logt -1 :
—3=1-e—-———cos<1-§2 o .t - tan -§—2> (4)
2 . l"g

Case II: Critically damped, { =1

P ' - wnt - Wht '
<L-1-¢ 9 _ pte © | (s)
Pgq 0 . '

Case III: Overdamped, t>1

N et GREED R (GRS

(6)

These indicial responses are plotted for various damping ratios in
figure 2.

Frequency response. - The equation for the frequency response
(reference 3) is

1 i¢

F(lw) = > : = Ge _ (7)
- (i”—> +210 & 41

The gain and the phase shift as functions of frequency ratio for
various damping ratios are shown in figure 3.

Variation of Coefficients

In the design of a pressure-sensing system, consideration
must be given to the variation of the coefficients of the differ-
~ential equation describing the system. The coefficients of equa-
tion (2) vary in two distinct ways: (1) with operating pressure
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and temperature (initial pressure and temperature of the transient),
and (2) during a pressure transient. Because the variation is dif-
ferent in each case, the cases must be considered separately.

Variation of coefficients with operating level. - The undamped
natural frequency is a function only of the operating temperature of
the working fluid for a given system:

z | |
o =N 7880 . | (8)

The percentage change in undamped natural frequency with percentage
change in operating temperature is shown in figure 4.

The damping ratio varies with viscosity, temperature, and pres-
sure of the working fluid:

- 4, [TI8RgTo
t= HS %y ()

PoT

Figure 5 shows the percentage-chahge in damping ratio with percéntage
change in operating pressure. '

Because the viscosity is a function of the gas and the tempera-
ture, a general relation showing the variation of damping ratio with
temperature cannot be determined. The variation of damping ratio,
however, can be shown for given gases and system dimensions. The
variation of damping ratio with temperature for air in a system
bhaving dimensions such that the damping ratio is unity at standard
temperature is shown in figure 6. \

Variation of coefficients during pressure transient. - During a
pressure transient, for adiabatic conditions, the undamped natural
frequency varies with the pressure as follows:

2=1
2y
® P .
—90 . <.£> | (10)
®o, initial \Po |

The percentage change in undamped natural frequency with a perceﬁtage
change in pressure is shown in figure 7.
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If a linear variation of viscosity with temperature

p=K +K, T

is assumed, the change in damping ratio is a function of the change
in pressure and the initial temperature, as shown by the following

equation:
21
| P2\” 21
- e Rl (56) py\ %7
| f = = = = <._.> (11)
initial 1+ K T Po

§ ~ The variation of damping ratio with absolute pressure for air at
) standard initial temperature using a linear variation of viscosity
with temperature is shown in figure 8.

APPARATUS AND PROCEDURE

A schematic representation of the experimental apparatus used
to obtain transient pressure data is shown in figure 9. In order
to obtain an approximate step pressure disturbance at the mouth
of the tube, an air stream was interrupted by a revolving slotted
disk. The diameter of the disk and the speed of the motor are
such that the time of travel of a point on the disk across the
mouth of the tube is of the order of 1/1000 second.

i The pressure response in the reservoir at the end of the tube
was sensed by a commercial device for converting pressure to an
electric signal. This unit, consisting of a bellows connected to
a strain-gage bridge, has & natural frequency of 1100 cycles per

| second, The volume flow through the tube due to the movement of

| the bellows’ is negligible as compared with the volume flow due

| to the compressibility of the gas in the reservoir.

; , The bridge was energized with an audio-signal generator supply-

i ing an 8000-cycle alternating-current potential. The bridge unbalance
| was fed directly into a cathode-ray oscilloscope equipped with a
recording camera.

The unbalance of the bridge appeared as an amplitude modulation
of the carrier wave. This modulation was found to vary linearly with
the pressure in the reservoir., The period of the carrier wave pro-
vided a time base.
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RESULTS AND DISCUSSION

In order to determine the validity of the analysis, experi-
mental curves of indicial responses were obtained and compared with
the theoretical responses calculated from equations (4) and (6).
These curves are shown in figures 10 to 12. The damping ratios and
the undamped natural frequencies were varied only by changing the
tube radii,

Close agreemerit between the theoretical and experimental
responses is shown in figures 10 and 11, For these figures, the
volume retios (tube volume divided by reservoir volume) were 0,08
and 0,12, respectively.

The volume ratio was made approximately 0.50 for the data in
figure 12. An examination indicates that the undamped natural
frequency is lower and the damping ratio is higher than calculated.
The volume ratio was made large in order to indicate the magnitude
of the error involved.

If a pneumatic system is to be used as a transfer member of a
control system, & specific transfer function (equation (3)), indi-
cial response (equations (4) to (6)), or frequency response
(equation (7)) will be required. In order to attain the required
response, definite values of undamped natural frequency and damp-
ing ratio are specified. The dependence of the undamped natural

- frequency and the damping ratio on the system parameters are indi-
cated by equations (8) and (9), respectifély. From these equations,
the damping ratio and the undamped natural frequency can be seen to
vary with the operating pressure and the temperature; a system
designed ‘for one operating level therefore may not function properly
at another. Because of these variations, the design must be such
that the deviation of undamped natural frequency and damping ratio
are within acceptable limits over the range of operating pressures
and temperatures for which the system is designed. '

For a gas at given conditions, undamped natural frequency and
demping ratio are functions of ‘the length of the tube, the radius
of the tube, and the reservoir volume. If practical considera- .
tions fix one of these system dimensions, the other two are uniquely
fixed for given values of frequency and damping ratio. When two of
the system dimensions are fixed, the third dimension is determined
by a choice of either frequency or damping ratio.

When design conditions are such that tube length and reservoir
volume are at practical minimums, the undemped natural frequency
can be increased further only by an increase in tube radius. This
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value of tube radius may result in too low a value of damping
ratio. In order to increase damping ratio to the desired value,
additional resistance in the form of a restriction may be intro-
duced into the tube. This effect is demonstrated in the example
shown in figure 13. 1In this example, it is desired to have a
damping ratio of 0.727 and an undamped natural frequency of

571 radians per second. Practical considerations limited the
tube length to 16.75 inches and the reservoir volume to 0.202 cubic
inch. For the desired damping ratio, the radius must be equal to
0.0215 inch. With this radius, the undamped natural frequency is
279 radians per second (fig. 13, curve a). This value is lower
than the desired frequency. Inasmuch as undamped natural fre-
quency is a function of tube length, tube radius, and reservoir
volume and whereas tube length and reservoir volume are at a min-
imum, the undamped natural frequency can be increased to the
desired value by an increase in tube radius only. This increase,
however, decreases the damping ratio to 0.085 for a tube radius
of ‘0,044 inch (fig. 13, curve b).

In order to restore the damping ratio to 0.727 and to main-
tain the undamped natural frequency at 571 radians per second,
added resistance was introduced into the tube while maintaining
the same system dimensions (fig. 13, curve c). A method for
increasing resistance without changing the system dimensions is
the insertion of an orifice, a wire mesh, or other restriction
in the tube. Inasmuch as the system dimensions are unchanged,
the resistance is increased independently of the inertance and
the capacitance.

The damping ratio for figure 13, curve c, could not be cal-
culated from the theoretical equations. It was approximated by
comparing its response to curves shown in figure 2. In this way,
the desired undamped natural frequency and the damping ratio were
obtained, although the tube length and the reservoir volume were
fixed. ‘

SUMMARY OF RESULTS

A gas-pressure-sensing system consisting of a tube terminat-
ing in a reservoir was considered. An analysis, restricted to a
system having dimensions such that it can be treated as a lumped-
constant system, was presented with experimental data. The anal-
ysis assumed that the coefficients of the differential equation
were constant during a pressure transient. The variation of
these coefficients during a pressure transient can be calculated,

- however, and were presented for a particular system.
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Agreement was shown between the theoretical analysis and
experimental data over the limited range of conditions investi-
gated. Because of the large number of variables, determination
of the limits of application of the differential equation was
impractical. It seems unlikely that large errors would be intro-
duced, however, if the basic restrictions were adhered to; the
volume of the reservoir must be large compared with the volume of
the tube, the tube length must be short, and the pressure differ-
ences existing in the system must be small.

Design parameters were presented, which can be adjusted to
achieve the desired transient performance from the system when it
is.considered as a transfer member of a control. The variations
of the coefficients of the differential equaticn resulting from a
change in the operating level of the pressure or temperature were
analyzed and presented.

The method whereby the damping ratio of the system may be
increased without affecting the undamped natural frequency. was
experimentally investigated. The method consisted in increasing
the resistance to flow without changing the system dimensions.
This method results in greater flexibility in design, inasmuch as
a system may be designed to produce the required value of undamped
natural frequency and any damping ratio less. than that required.

Lewis Flight Propulsion Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, May 25, 1949,
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APPENDIX A

SYMBOLS

The following symbols are used in this report:

A area, sq ft
a acceleration, f£t/sec?
C capacitance, £t°/1b
c séund velocity, ft/sec
F(s) transfer function
F(iw) frequéncy-response function
G ’ gain, or amplitude amplification
g gravitational constant, ft/sec?
1 A1
J inertance, 1b-sec?/ft>
Kl’KZ’KS ,K4 constants |
L . length of tube, ft
m mass , 8lugs
Pc(s) Laplace transform of pressure change in reservoir
Pd(s) ‘Laplace.transform of pressure disturbance
P pressure change in reservdir, P,-Pyy 1b/sq £t
Pg | pressure disturbance, " Py-Pgs lb/sq ft |
P pressure drop neceésary to accelerate fluid iﬁfﬁiSe;
J- 1b/sq £t ‘ .
P. ‘ pressure drop in tube due to flow resistance, 1§A§q¥;t

Py initial steady-sﬁate absolute pressure, 1b/sq ft ﬁf‘
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P absolute pressure at mouth of tube, lb/sq ft
Py absolute pressure in reservoir, 1b/sq ft

Q volume displacement in tube, cu ft

R resistance, 1b-sec/ft5

Rg gas constant, £t-1b/(1b)(°F)

r radius of tube, ft

8 éomplex variable

T absolute temperature, °r

To initial steady-state absolute temperature, °r
Ty absolute temperature in reservoir, °R

t time, sec

v volume of reservoir, cu ft

y ratio of specific heats
3 damping constant, sec™t
4 damping ratio '
p ,

phase shift, radians

n ~ absolute viscosity, 1b-sec/sq ft

o density-in:tube, slugs/cu ft

Py initial steady-state demsity in tube, slugs/cu ft
w input frequency, radians/sec

W, ‘ undamped natural frequency, radians/sec
Subscriptsf -

a,b Z operating levels

Dots above the symbols represent derivatives with respéct to time;
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APPERDIX B

DERIVATION OF THEORETICAL EQUATIONS
The pressure-sensing system shown in figure 1 can be treated
as & lumped-constant system and described by an ordinary differ-
ential equation using the following restrictions and method of
analysis.

General Equation

Restrictions. -

(1) The tube length must be sufficiently short so that the dead
time % can be neglected.

(2) The dimensions of the reservoir must be such that the
pressure throughout the reservoir may be considered uniform at
any time. .

(3) The volume of the tube. must be small compared with the
volume of the reservoir. On this basis, the assumption can be
made that the volume flow is uniform throughout the length of the
tube and is the result of the compressibility of the gas in the
reservoir.

Definition of capacitance C (references 1, 6, 7, and 10). -

d:di
dpz

The volume flow into the reservoir is equal to the decrease
in volume of the gas originally in the reservoir.

dQ = - 4V
therefore : ‘ ¢ = - ng.
. dpz

When adiabatic compression is assumed in the reservoir
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7 _
PV =Ky

Vap, + pVtav =0

av . _ -y _ -V
dp -1 1,y
2 pyv 2
Therefore
c =Y
P27

The value of C varies inversely with the absolute pressure in the
reservoir, For small pressure changes, C 1is assumed to be con-
stant,

Definition of resistance R. - When the resistance is assumed
to exist only within the tube, the resistance to flow is defined as
(references 1, 6, 7, and 10)

p

R=—
Q
From the Hagen-Poiseuille law
o ﬂPrr4
=BT
Therefore
R - S
r

The value of R varies with the absolute viscosity, which is
assumed essentially constant for small changes of pressure and tem-
perature, The Hagen-Poiseuille law is valid only for laminar flow.
For small Reynolds numbers, R is constant.

Definition of inertance J. - If the motion of the fluid in
the system is assumed to occur only in the tube, the inertance is
defined as (references 6, 7, and 10)
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7=
Q
= Ia
pJ-A
m = pLA

The accéleration of the fluid in the tube is

a-d
Then
- LAG _'pL
P72 T & Q
Therefore
nr
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The inertance is proportional to the demsity. For small pres-
sure and temperature changes, the inertance is essentially constant.

Differential equation. - The following equation can be obtained

from a pressure balance across the tube:

Py* P+ P =P

Py+Pr + Py~ Py =P - D,

Then'

Py + Pp+ Pc = By

By definition

PJ’= JQ
p. = R}
dpz = %?‘
Jooo =[S
=9

Py = c + K4
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when
Py =P
Q=0
Therefore‘
| . _8_
Pp = Pp =¢ =P,
and
Q
.J‘Q + RQ + :° Pg
or .

JC B, + RC B, + P, = Pg (B1)

The general nature of this equation is so well known that a
detailed discussion is umnecessary. By definition

wg = - (undamped natural frequency)

NIC

o
I

= zR;J (damping constant)

t = L. %,\/—%— (damping ratio)

)

Equation (Bl) reduces to

1l . .
“?pc+2&%pc+pc=pd (B2)

Transfer function. - By use of the Laplace transformation, the
transfer function is (?eferences 3 and 8)

P
F(s) = Pd(r; 1

n (B3)
——+2—s+1
w2 wo

0
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Indicial responses. - For a pressure disturbance Pg equal to

a step input, the solutions of equation (B2) in dimensionless form
are (reference 9):

Case 1: Underdamped, 0 < { < 1:
. o |
Pe e Lo ( / 2 -1 4
—=1-———cos (ALl -{° Wyt - tan = —=2—— (B4)
Pg AL - t2 ° >
Case II: Critically damped, § = 1:

et b_
Ed-r-‘l-e -(.001:‘3'“)0 (BS)

~ Case III: Overdamped, { >1:

P ~lwgt N ez _, (__
L =1-¢e Ao —-—s—-sinh §2-1 wot+cosh !2-1 (oot

a N -1 |
(B8)

Frequency response. - The frequency response is obtained from
the transfer function (equation (B3)) by substituting

s = iw
F(iw) = = 1 - cel? (B7)
W W
- (w—o) + 2.i§ w—o + 1

Variation of .Coefficlients of

Differential Equation

Variation with operating level. -

1. Undamped natural frequency
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) nrz 7Pq
Co=TR" NI T
JC Po
p .
0
— =gRT
Po &Rg'o
w, = o’ 78R T. = ¢ A ‘ (B8)
0 LY g0 LV
wo,a - io,a
®o,b 0,b

2. Damping ratio

® R R |C
§=rb='a'3v:\/"—c=§:\];

¢ = 8uL xr?v
2t VPOl 7P,
Py = =2
0 &R.Ty
4 VL
R N &R T, (B9)

When the working fluid is assumed to be air, and the viscosity
is assumed to vary linearly with temperature and is independent of
pressure (reference 11) :

88.9 x 10”7 4+ 0.548 X 10~° T,
4(88.9 + 0.548 Tg) 107° o=

¢ = 3 T Felo
P, N

B
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For a change in operating pressure,

)

0,b

;

o &~
1
o

0,a

If the system dimensions are such that { =1 at standard tempera-
ture, the magnitude with operating temperature is

: -4
¢ = (1.176 x 107%) (88.9 + 0.548 ) ATy

Variation during pressure transient. - In order to simplify the
1 analysis, the assumption is made that only small pressure differences
| exist in the system at any time.

1. Undamped natural frequency

P
‘ p = g:RzT
g2

i

i 2
nr

wo = NT7 78RgT2
“o _ |22
Wo,1initial To

If an adiabatic process is assumed during the transient

W Ps \27 ‘
&.).9 =<—§> -(B10)
0,initial \Po .

2. The damping ratio is
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assuming
u = Ki + Kz T2
§=4(EL+K2T2) EgRT
3 194 g2
P2r
during a transient
1

¢ =K1+K2Tz<gg><T_z>5
binttiar B2 * %2 To \P2/ \"

assuming adiabatic conditions during a transiént

21
P2\7 | -(Zil)
Cinitian - +% T 50
For air,
7=
. P 1
g 88.9 + 0.548 |m, 5%) | -(22)

P2
Linttiar %07 ¥ 9.548 To <?o

19

(B11)
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Figure 2. - Dimensionless indiclal response of second-order linear

differential equation with constant coefficients.
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Figure 6, - Variatidn of damping ratlo of pressure-sensing system
with operating temperature of varlous constant values of operating
pressure. Operating fluid, air; damping ratio, 1 at standard
temperature. .
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Figure 7. - Variation of undamped natural frequency of pressure-sensing system with
' change in absolutse pressure during pressure transient.
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Figure 8. - Variation of damping ratlo of pressure-gsensing system with change of
absolute pressure during pressure transient. Operating fluid, air; initilal
steady-state absolute temperature, 59° F,



1988

NACA TN

28

*eqep amssaxd juUATSURI} UTE3q0 03 Pasn snjeredde Tejuswtaadxy - ‘6 amMITA

ToI3u00 BISWE)

=

=
S
e |

J03eIoUd
Teuds-orpny

JSTP PI330TS




29

1988

NACA TN

*80°0 ‘OF3ed aumTOA {UOUT OTQNO ZOZ°0 “SUNTOA JTOAJIdSAL $SaYOUT GL°9T ‘ysdus aqny fyoug
GLTO0 ‘sniped aqny Y oG2G ‘suanjessadweq Tej3jul fLanogsw youyp QQ°*T ‘9ousqunysTp 2anssaad
feqnrosqe Lanoaew s9YOUT Z¢°*6g ‘@anssead TBI3TUT fpuocoas Jed suefped gz ‘Lousnbsaj Teangsu

peduepun

6V -8-8
898€2 -0

*senTeA ps3301d (Qq)

09s ‘q ‘aumyg

*Gg*T JO o138a Jurdwep pajeInoTed Y3Tm wagshks Jo asuodsaa Tejofpul - °*0OT 2434

¥20° 030° 910° 210°* 800° $00° 0
- T T T T T \\iv
\
1ejusuiaedxy — — —— \\\\
\ .
1ed13ed00y] —m8 —— \\\\\\ {5
\\
\\\
\I\l\\\\\\ I.m.
g L
*paodoaa ydea3oT1iosQo (®)
09s ‘q ‘auwtg
veo°* 020°* 910° g10° 800° v00° (o}
T T -

g T : T T

o < O

21

Pd/%d ¢ssuodsaa
Tetotpul

Pd/%4 ¢asuodsaa
TeToTpPUI



3

*2T°0 ‘OTj3ed SUMTOA {YOUT OTqnd Z0Z°0 ‘PUMTOA JITOAJ3SaJd £Sayouyl GL°9T ‘yjdusT aqng fyoug
GTI20°0 ‘snipea aqny £y 0328 ‘sanqeadadweq Tef3Tul fLanodam youj Q0°T ‘9oueqanysip a4nssaad
faqniosqe LInoJdaw SayYouy gg£°*6g ‘aanssaad Tejatul fpuooas gad sueipea gLz ‘Lousnbaal Teanjeu
padurepuy  *.43L°0 JO Opjed Bupduwep psajenoTed YITa wagshs Jo asuodsad TeJOTpPUl - °*TT 24nItd
*sanTea paj3301d (q)
09s ‘g ‘amyg
020° 910° 210° 800° ¥00° 0
H
| T T e 1 )
o
B
183uewtaedxXy — — — 49 w W
Te9}30409Y ] — 9 = o0
\ . .
- - e
\\ d mo o
\\ .y
(=}
o ¥
6v-8-8 *pIooaa ydeadoTTTos0 (®)
698€2 "D
020° 9T0°* g10°* 800° v00°* 0
r T T (| 1 ;|
H
®
g
o g%
s
mo - W-U
g'1 M«Wt
e}
xR o
&

NACA TN




N *0S°0 ‘Ofjed auMTOA fYOUT OTqNO Z0Z*0 “SUMTOA JTOAJISSAJI £83YOUT GL*9T ‘uzdust aqny fyoug
i ¥P0°0 ‘snipea aqny Y 063G ‘sanjesadwey Tey3Tul fAanodsw Youjp QO°T ‘9ouUsBqIn3sIp aanssoad
faqnTosqe Aanogew S3YIUT Z¢*6g ‘adanssaad Tef3jul fpuodes Jeod suelped LG ¢Lousnbaa] Teanjzeu

padwepuy *gg0°*0 JO Of73ed Supdurep pajeTnoTed Y3jm we3shs Jo asuodsad Te[OTpul - *2T aan31y

*senTeA pa3301d (q)

298 ‘g ‘auwg

¥20° 020°* 9T0° g10° 800° . ¥00°* 0
| 1o T 1 ] T T
183usufIadxy — — — — £
Te2]39J00] 1v
p L
>
. =
Tl o~
e SRS 12°1T
i
-0°2
6v-8-8 *paooaa ydeaBoTTfos e
0LBEZ*D - " 2 g
$20° 020° 910° g10* 800° v00°* 0
T T T 1

T

1988

NACA TN

Pd /%4 ¢asundsaa Teropul

Pd/ % ¢‘gsuodsaa
TeToTpuUl



35

1988

NACA TN

*youyl oTqnd gOg°0 ‘eumioA JTOAJ8Sed fs0YUOUT GL°9T ‘yadusT eqny
‘g 082S ‘eanjsaedwe] TBJITUT {Aandodsw YoUuT QO°T ‘eouBquniysip eanssead {e4nyosys

Lanodsw s9YdUT g 62 ‘oanssoead [BIITUI °oQqng U] 60UBJE[ES6J TBUOTITPDPE FUTIJIESUT

Jo 3238338 Bup3wvaysnyl} sesuodeea [BIOTPU TBIUSW[J9dXe pUB [BO[3OJI08YL - °*QT oJInT]J

$10° 210° ot0*

098 ‘g3 ‘fauwlg
800° 900°

¥00°*

<00 *

P

ey

7

>
\\\

4

\\\““““\

/
7/

=< A
AN
]

=—FX_|

N

N\
Y

\

Hmucwsapwaxm|||
Ted135400Yyy —

148 L3L" ¥50° . © N /A\\\\
T4S - G80° ¥¥0° Q P> A
642 L2L°0 GI80°0 ® a
‘noww\owaoapv ] (*Uug) oaan)

Og 03384 R

Lousnbaayg Bujdweqg sugpped

TeJdn3su aquy,

padurepup

m-

21

9°1

0°3

Pd/d ¢osuodsed TETOTPUI

NACA-Langley - 12-20-49 - 1000



	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34



