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TECHNICAL NOTE 2132

THE CALCULATION OF MODES AND FREQUENCIES OF A MODIFIED
STRUCTURE FRQM THOSE OF THE UNMODIFIED STRUCTURE

By Edwin T. Kruszewski and John C. Houbolt
SUMMARY

A method is developed for the calculation of the natural coupled or
uncoupled frequencies and modes of a structure with modifications, such
as the addition of concentrated masses or springs, directly from the
known modes and frequencies of the unmodified structure. The modes of
the modified structure are expanded in terms of the modes of the unmodi-
fied structure. A characteristic equation and a frequency determinant,
the order of which is twice the number of modifications, are derived by
the use of the Galerkin method. Numerical examples are presented to show
the accuracy of the method and the number of modes and frequencies of the
unmodified structure necessary for agreement with exact solutions.

-

INTRODUCTION

The calculation of the natural modes and frequencies of an airplane
structure is usually required for various loading conditions. The varia-
tion of conditions may be brought about by changes in pay load, changes
in the amount of fuel carried, the addition of tip tanks, and so forth.
These changes may be regarded as modifications ‘to a primary structure.

In addition to weight changes, the addition of elastic restraints, such
as spring supports which may be used in ground vibration tests, may also
be considered as modifications. Thus, in this paper the basic or primary
structure is known as unmodified, and the structure after masses and
springs are added is known as modified.

Present methods of calculating modes and frequencies require a sepa-
rate and independent calculation for each modification to the primary
structure. In order to simplify the calculations of these modes and fre-
quencies, a method is developed in this paper that allows, with very
little extra work, the calculation of the modes and frequencies of a modi-
fied structure directly from -the modes and frequencies of the unmodified
structure.
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The paper presents both a theoretical analysis and numerical
examples. In the theoretical analysis a frequency determinant and the
modal functions are derived. The order’ of the frequency determinant is,
in general, twice the number of modifications to the primary structure.
Fach element of the determinaent is a series having terms that are func-
tions of the modal shapes and frequencies of the primary structure. The
numerical examples illustrate the convergence of the series and the accu-
racy with which the frequencies and modes of the modified structure can
be calculated.

SYMBOLS

EI flexural stiffness

GJ torsional stiffness

" deflection of elastic axis of modified beam

o) angle of twist of cross section of modified beam

Yn deflection of elastic axis of unmodified beam in nth coupled
mode normalized to give unit tip deflection

Pn angle of twist of cross section of unmodified beam in
nth coupled mode

w a ﬁgtural frequency of modified beam

@, natural freqpéncy of unmodified beam in nth coupled mode

M magnitude of concentrated mass at station xj

aj spring constant of spring at station x4

an proportion of nth mode of unmodified beem present in a

modified-beam mode

e distance between center of gravity of cross section of beam
and elastic axis; positive when center of gravity lies
forward of elastic axis

distance between elastic axis and center of gravity of con-
centrated mass or distance between elastic axis and spring
(see fig. 2); positive when center of gravity of mass or
spring lies forward of elastic axis

€4

k radius of gyration of cross section of beam about elastic axis
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ki for & mass, radius of gyration of mass about elastic axis; for

a spring, ey
m mass of unmodified beam per unit length
x spanwise coordinate measured from center line
Eﬂi lateral load caused by mass or spring at station x5
Bﬂi torque about elastic axis caused by mass or spring at
station x4

™l
B
[N

1

- 4 ([ s + 1l o)
=Ky (ei Frls + %1® o] i)

L
- 2 2
N, = u/‘ m(%n + 28y, @, + kawn_>dx

=l
B
-
I

-L
L semispan of beam
= Miw? for concentrated mass at station xj
4 = -ai for spring at station xy
f frequency coefficient

8(x - xi) function such that its value is zero at every point except
argument x; and its value at this point is infinity in

L

such a way that f 8(x - x3)dx = 1
-L
Subscripts:
i, J integers referring to locations of concentrated masses or springs
m, n integers referring to modes of unmodified beam

A, B, C locations of masses in example 2

THEORETICAL ANALYSIS

Development of characteristic equation.- Figure 1 illustrates a
typical structure that is to be considered in the development of the
method presented in this paper. It consists of a primery beam of any

e e ——
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spanwise variation of flexural stiffness EI, torsional stiffness GJ,
and mess m. The modifications to the primary structure are the addi-
tion of any number of concentrated masses of magnitude My, MQ"'

at stations xj, Xp, . . ., respectively, and any number of springs with

spring constants A5y Ay « . . at stations X5 Xgs - . ., respectively.

The method developed in this paper is based on the assumption that
the coupled modes Yy, eand @,, normalized to give a unit tip bending

deflection, are known for the primary structure. If the uncoupled modes

of the modified structure are desired, uncoupled modes of the primary
structure mst of course bhe used.

The procedure presented in this paper is based upon the Galerkin
method (reference 1). The differential equations for the modified beam
in free harmonic coupled vibration, vibrating at a natural frequency w,
are

0 " (1a)

2
L ) - Py e - > Bl - %)

&= i

and

i
(@]

(1b)

L6 %) v mBlor 2 + D [5G - %)
i

vhere y and ¢ are the maximum coupled bending and torsional deflec-
tions of the modified beam, respectively, and [P]; and [T]; are the

concentrated loads and torques, respectively, caused by the modifications
at station xy and are defined as

Ki([ﬂi + ey [‘ﬂi)
Ki<ei[y]i + ke[c'p]i) (1=1,2,...)

[];
1,

where

M;af

= ~-a; for springs

for concentrated masses

a
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ey distance from the elastic axis to the center of gravity of
concentrated mass or, in the case of a spring, to the center
line of the spring (see fig. 2)

kg radius of gyration of mass about elastic axis for concentrated
messes, or, in the case of a spring, €5

8(x - xi) a function such that its value is zero at every point except
' the argument x; and its value at this point is infinity in

L
such a way that f 5(x - xj)dx = 1

The coupled bending and torsional deformations y and ¢ can be
expressed in terms of the coupled modes of the unmodified beam by
infinite series

® )
y=8ayo tayy +. . . = :EE::: 8mm
=0
- g (3)
A STy
m=0 J
where the coefficients a5, &7, . . . can be considered as generalized

coordinates that givé the proportions of the primary-beam modes that are
present in a natural mode of the modified structure.

Since y, and @ are coupled natural modes of the primary
structure, they must satisfy the differential equations

:J_,;_ ET %) = wop(yy + eqy)
' > (k)

E %'@J?—ii‘i)=-mnm2eym+k2q>m) (m=0,1, ...)

and the orthogonality conditions, if m # n,

\/PL my. (y + emﬁ)dx + JF 8 m@mC?am + ey )dax = 0 (5a)
It m\n L n n
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and, if m = n,

L
f , m<ym2 + 2ey @ + k2qam2>dx = Np (5b)

In addition, the primary-structure modes ¥yp and Pn satisfy the same
boundary conditions as the modified-structure modes 7y and Q.

The procedure which is used to obtain the characteristic equation
is based on the Galerkin method and is as follows: The infinite series
for y and o (equations (3)) are substituted into the differential
equations (la) and (1b); then equations (la) and (1b) are miltiplied by
Yn and @, respectively, and are integrated over the length of the

beam. This procedure yields

L g? a2 3%y L 9
ap —=(BI —=Jdx - o an e, )dx -
‘[1. Tn =0 P\ ax? f Tn Z:m=o G + %)

L

. o
> fL ¥a[Pl5Cx - xp)ax = o (n=0,1,2...) ()
i B ) .

and

[LL n i “m %SEGJ %)dx + fL q’nma i: &m(eym + K2, Yax +
m=0 0

A
L N
E [ cpn[T]iB(x - x)dx = 0 (n=0,1,2, ...) (6b)
i L

With the use of the definition of &(x - xj), the differential

equations shown in equations (U4), and the orthogonality conditions in
equations (5), the subtraction of equation (6b) from (6a) can be
simplified to

cata(on? - ) - 2 ([, ], ). fou],) ()
' (n Coe

i}
Q
-
-
-
I\
-
Nr”
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If [?]i and [i]i are expanded in terms of ajyn, &and anQp
(equations (2) and (3)), equations (7) would lead to a set of simmltaneous
homogeneous equations in the coefficients aj,. The order of the frequency

determinant that would result from the dilrect consideration of this set
of equations would be equal to the number of terms used in the deflection
functions (equations (3)). A simplified frequency determinant can be
developed, however, in the following manner.

Simplified frequency determinant.- The solution of equation (7)
for a, gives

ap =

Z([J Bal, + B1:Bal,) ©®)

N (@h

The loads [?] and [?] due to any modification at a particular
station x'j can be written

o

Bl - 2 mf, G-tz -0 O
and
[, - % an@'n]j (3=1, 2 - 1) (9p)
where | \
2], = % (Bady + os[oal,)
> (10)
[2a] 5 = KJGJ [y + &5 E*’n]j) )
The substitution of equation (8) into equations (9) gives
[:#] [:n] [:ﬁ] E?ﬁ] |
Bl = D 1, > S‘ e Z[LZ_T—NH( ! m;-)?m)
[, = Z ®]; Z [ n]J [yn] Z [1], ; NE(DJZE%EID%

(3=1,2,...1)
vhere [P]; and Dﬂj_ are unknowns. ‘
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_Equations (11) can be written for every station at which a modifica~
tion is made; therefore two equations are obtained for every concentrated
mass or spring on the structure. These equations are shown in table 1.

Since these equations are homogeneous in [?]i and. Eﬁ]i, the

determinant of these equations, which is the bracketed part of table 1,
mist vanish in order to have real values of [E]i and [T]i The order

of this simplified frequency determinant ‘is now proportional to the

number of modifications instead of the number of terms in the expansion.
Although each term of the determinaent is an infinite series, for practical
problems it is necessary to include only the first few terms of each
series, each term of which corresponds to a known mode of the unmodified
structure. As the examples show subsequently, at least as many frequencies
and modes of the unmodified beam must be known as the number of frequenciles
and modes of the modified beam desired. The rapid convergence of the
calculated frequencies to the exact frequencies as the number of terms of
the series is increased is shown in the examples.

Calculation of the modes and frequencies.- For most cases perhaps
the simplest method of obtaining the natural frequency  of the modi-
fied beam from the frequency determinant is to evaluate the determinant
for several trial values of - w 1In the expected vicinity of the natural
frequency and plot the value of the determinant against the trial fre-
quency ®. In most cases only three or four points are needed to obtain
the natural frequency.

This method of evaluating the natural frequencies is especlally
advantageous when the effect of several loading conditions in which the
modifications do not change positlion but only magnitude is being studied.
Under this condition the value of each summation in all the elements of
the determlnant change only in proportion to the changes in the values

of Kj.
To calculate the natural mode after its frequency has been established,

the relative values of [P]; and [T]; have to be obtained. In order to

find these relative values, one of the loads is given an arbitrary value
of unity and the resulting set of nonhomogeneous equations is solved
similtaneously for the relative values of the other loads. In the process
one of the equations can be discarded, but it has been found best simply
to add two of the equations together before the solution is magde.

With the values of the frequency and the loads [B]; and [T],
equation (8) is used to evaluate the coefficients a,, and then the modal

functions can be found from equations (3). At least the same number of
primary-beam modes should be included in the calculation of the modified-
beam mode as terms used in the evaluation of the series.
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The convergence of the calculated mode to the exact mode as the
number of primary-beam modes included in the calculation is increased
is shown in the examples.

EXAMPLES

In order to illustrate the method and to show the accuracy with
vhich the frequencies and modes of the modified beams can be calculated,
the uncoupled symmetrical bending frequencies and modes of a uniform
free-free beam are calculated with the following modifications made at
the elastic axis of the beam (see fig. 3):

Example 1 - Equal masses placed at the tips of the beam

Example 2 - Masses placed at the center line of the spen and third
points of the beam

Example 3 - A spring placed at the center line of the beam

Because the masses and springs were placed at the elastic axis, ey
and ki are zero or -

[F]; = % []1 (128)

[ =0 (12p)
Also, because only the symmetrical uncoupled modes are required, only
symmetrical uncoupled modes and frequencies of the primsry beam are used.

Modes and frequencies of the unmodified beam.- The frequencies of
the unmodified uniform free-free beam are

w2 = gk EI
TRk
where L
fol‘ =0 37 = 5,571
g% = 31.28 fuh' = 19,262

£t = 913.6 ' £5* = 49,600
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The constents N are

and, for- n # 0,

1

The modes of the unmodified uniform beam, normalized to give a unit
tip deflection, are given by ﬁhe following equations:

cosh % cos I % ( o i » )
) n = « o o
Yn = 3\ e £, cos f, 7=

Example 1: Calculation of the frequencies and modes of a uniform
free-free beam with concentrated masses at the tips (fig. 3(b)).-
Example 1 illustrates the use of the method-for the case of symmetrical
modifications. The placement of the masses at the tips gives a severe
test of the accuracy of the method. The results obtained for this example
are compared with an exact solution of the differential equation.

Since the modifications are symmetrically placed, that is, x; = %, =L,

Faly = [al,

With the use of this condition and equation (12), the frequency determinant
for equal tip masses can be written as

By

-EE + Eu? - =
=0 Eﬂ@f Y

M

The results obtained from the solution of this frequency equation when
ml

- 4 are given in the following table for

P = P L
- ar
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Mode Number of terms Calculated f2 Exact f2 Percent
in series error
First 3 k.15 k.15 0
First 2 k.17 k.15 .5
Second L 25.0 2k.9 h
Second 3 25.2 2k.9 1.2
Third 6 65.0 64.8 .3
Third 5 65.2 64.8 .6
Third 4 65.8 64.8 1.5

Exemination of this table shows that the use of the series with a
minimm number of terms evaluates the frequency of first three modes
with errors of less than 2 percent, which is sufficient for most uses.

Once the f?equenéies of the modified heam are found, the proportion
of each of the primary-beam modes present in a modified-beam mode is
calculated from equation (8). Because the values of E?]i are equal,

equation (8) becomes

e
Ny (@2 - o)

after [?]i is assumed to be unity.

The comparison of the solution for the first three modified-beam
modes with the exact modes is shown in figure L.

Example 2: Calculation of the frequencies and modes of a uniform
free-free beam with concentrated masses at the center line and third
points of the beam (fig. 3(c)).- Example 2 illustrates the use of the
method when more than one modification is made to the primsry structure.
The results for this example are compared with calculations obtained
from a matrix iteration process which is considered as exact.

The magnitudes of the messes and the assumed geometrical properties
of the beam are shown in figure 3(c). Since, as in example 1, two of
the masses are symmetrically placed, the frequency determinant can be
reduced to
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Fle m,
—:1 + 2 . Kbl§ﬁ]02 g KCE?@lAE?é]c
20 Ma(e? - o?) o Ma(w? - )
. =0
~ afa] Pl 14 T S,
i i % No(wy? - of) ; Mo (? - 02)

The results obtained from the solutions of this frequency determinant
are as follows:

Number of terms . - Percent
Mode in series Calculated o Exact o erTor
First 3 21.8 21.8 0
First 2 22.0 21.8 .9
Second 5 91.4 91.4 0
Second 4 93.0 91.4 1.7
Second 3 - 100.7 91.L4 10.2
Third 5 261.8 261.3 .2
Third 4 269.5 261.3 3.1
For this example equation (8) becomes
1
ap = - GEygl Yle + [Vn]aKa [V] )
(o - D) FalcXeBlc * Falafa[¥]a

when EE]C is assumed to be-unity and the relative value of EP]A s
calculated from the determinant just shown, in the menner previously

described. The comparison of the calculated and the exact solutions for
the first three modes is shown in figure 5.

The large error in the calculation of the frequency of the second

mode with the minimum number of terms is caused by the large peak
deflection that occurs in the second mode nesr.the point where the masses

are placed.
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Example 3: Calculation of the frequencies and modes of a uniform
free-free beam with a spring at the center line.- Example 3 is presented
to show how the method is used when a beam is modified by the addition
of a spring instead of a mass. The results obtained are compared with
an exact solution of the differential équation.

Because only one modification is used, the frequency determinant
consists of only one term

o [yn] o2

1+
n=0 Iqn(‘“ng - "52}

=0

The results obtained from the solution of this frequency equation when
a spring is used with a spring constant

a= 20 EL
1.3
are tabulated as follows for
_ 4 EL
mL’*
Mode | MUmPeT Of TeTmS | cojcumigted £2 | Exact g2 | FeToent
geries X error
First 3 2.49 2.49 0
First 2 2.51 2.49 .8
Second I 7.01 7.00 .1
Second 3 7.02 7.00 .3
Third 5 30.6 30.6 0
Third 4 30.6 30.6 0

The proportion of each of the primary-beam modes present in the
modified-beam modes, as in other examples, is obtained from equation (8),
which can be written

Fnlo
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The comparison of the solutions for the first three modified-beanm o
modes with the exact solutions is shown in figure 6. S o

CONCLUDING REMARKS

The method presented herein can be used once the frequencies and
modes of the unmodified structure are known. Thus the method is
advantageous when the modes and frequencies of the unmodified structure
elther are known or are required along with the modes and frequencies
of the structure with various modifications.

The amount of time necessary to calculate a natural frequency and
mode of a modified structure once the primery-structure modes and
frequencies are known by the method presented herein is generally shorter
than any of the standard methods. Also, in most cases that can be —
encountered, all the calculations necessary can be done with a slide rule.
Most -of the calculations done for one freguency and mode can be used in
the calculations of other frequencies and modes. '

Langley Aeronautical Laboratory
National Advigory Committee for Aeronautics o
Langley Air Force Base, Va., April 2k, 1950 '
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Figure I.— Structure used in theoretical analysis.

c.g.'of mass M;

c.g. of unmodified

structure
Elastic axis— ; Spring @;
———— | — }},
< e—»l : J
-< -H =
< €

Figure 2— Definition of the eccentricities.
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2L

1%
Y
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¢

(@) Unmodified uniform free-free beam.
M M=025mL M

(b) Example |— Addition of masses at tip.

025Ma=Mg=Mc=0942

ET -
ET 5514

(c) Example 2—Addition of multiple masses.

L 1

T,%

(d) Example 3—Addition of a spring.

Figure 3—Unmodified beam with modifications used

in examples.
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Relative deflection

Relative deflection
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T

Exact solution

————=Solufion using 2 modes

T T T T ] 11

!
Ped
N
=

(a) First mode.

\ —— Exact solution

—————Solution using 4 modes
—————Solution using 3 modes

-20- | e

(b) Second mode.

Figure 4—Comparison between calculated and exact solutions in example |
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Relafive deflection

30

20

o

O

19

Exact solution
———— Solution using 6 modes

. . ——— Solufion using 4 modes
A\
\ |

(c) Third mode.
Figure 4- Concluded. .
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1.0
S g- Exact solution
2 ————Solution using 2 modes
= 6
©
o &
2
S 2

10
-2
-4 ~TEA
(@) First mode.

L0 . — Exact solution

8 —————Solution using 4 modes
< ——————Solution using 3 modes
5 /
@
@
o
2 ST
o 8 10
Q
@

W

() Second mode.

Figure 5.— Gomparison between calculated and exact ‘solutions in. example 2.
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Exact solution
—————Solution using 5 modes
Solution using 4 modes

Relative deflection

(© Third mode.

Fiqure 5.-Concluded
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Exact solution .
Solution using 2 modes

Relative deflection

(@]
o
D
o
™
o

x/L ' .

(a) First mode.

Exact solution
Solution using 3 modes

Relative deflection

(b) Second made.

Figure 6.—Gomparison between calculated and exact solutions in.example 3.
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Exoct solufion
Solution using 4 modes

Relative deflection

A{c) Third mode.

Figure ©.- Concluded.
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