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SUMMARY

A method is developed for the calculation of the natural coupled or .
uncoupled frequencies and modes of a structure with modifications, such
aa the addition of concentrated masses or springs, directly from the
known modes and frequencies of the unmodified structure. The modes of
the modified structure are expanded in terms of the modes of the unmodi-
fied structure. A characteristic equation and a frequency determinant,
the order of which is twice the number of modifications, sre derived by
the use of the Galerkin method. Numerical.exsmples sre presented to show
the accuracy of the method and the number of
unmodified structure necessary for agreement

modes an?ifrequencies
with exact solutions.

of the .

INTRODUCTION

The calculation of the natural modes and frequencies of an airplane
structure is usually required for various lo-g-conditions. The varia-
tion of conditions may be brought about by changes in pay load, chsnges
in the smount of fuel carried, the addition of tip tanks, and so forth.
These changes by be regarded as modifications-toa primary structure.
In addition to weight changes, the addition of elastic restraints, such
as spring supports tiich may be used in ground vibration tests, may also
be considered as modifications. Thus, in this paper the basic or pr’imary
structure is known as unmodified, and the structure after masses and
springs are added is known as modified.

Present methods of calculating modes and frequencies require a sepa-
rate and independent calculation for each modification to the primary
structure. In order to simplify the calculations of these modes and fre-
quencies, a method is developed h this paper that ~lOWSY ~th very
little extra work, the calculation of the modes and frequencies of a modi-
fied structure directly from ”themodes and frequencies of the unmodified
structure.

.
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2 NACAm 2132

The paper presents both a theoretical snalysis md numerical
exsmples. In the theoretical analysis a frequency determinant and the
modal functions are derived. The order”of the frequency determinant is,
in genersl, twice the number of modificatims to the primary structure.
Each element of the determinant is a series having terms that are func-
tions of the modal shapes and frequencies of the primsry structure. The
numerical examples illustrate the convergence of the series and the accu-
racy with which the frequencies and modes of the modified structure can
be cskulated.
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SYMBOIS

flexural.stiffhess

torsionsl stiffness

deflection of elastic sxis of modified beam

angle”of’tw&t of cross section of modified besm

deflection of elastic axis of unmodified beam in nth coupled
mode no.ymalizedto give unit tip deflection

angle of twist of cross section of unmodified beam in
nth coupled mode

a natural frequency of modified beam

natural.frequency of unmodified beam in nth coupled mode

magnitude of concentrated maas at statim xi

spring constant of spring at station ~ .

proportion of nth mode of unmodified beam present in a
modified-beam mode

distsnce between center of gravity of cross section of beam
and elastic axis; positive when center of gravity lies
forwsxd of elastic ads

distance between elastic 8x5-sand center of gravity of con-
centrated mass or distance between elastic sxis and spring
(see fig. 2); positive when center of gravity of mass or
spring lies forward of elaatic Ws

radius of ~ation of cross section of bean about elastic axis
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ki for a mass, radius of -zyrationof mas8 about elastic axis; for
a spring, ei

m mass of unmodified beam per unit length

x spanwise coordinate measured from center’line

.

.

[1‘i lateral load

InTi torque about
station ~

caused by mass or spring at station ~

elastic axis caused by mass or spring at

[ii
P

i =Ki(pdi+eil@ai)

[1Tni
(

= Ki ei ~n]i + @2 pd i
)

L
Nn =

f(
m yn2’+ 2eynqn + k%n2)dx

-L

L

[

=

Ki
=

f

5(X -

semispan of beam

Mim2 for concentrated mass at station xi

-ai

xi)

for spring at station ~

frequency coefficient

function such that its vslue is zero at every petit except
srgument xi and its value at this point is infinity in

J
L

such a way that 5(X - Xi)dx = 1
-L

Subscripts:

i) J integers referring to locations of concentrated masses or springs

m, n integers referring to modes of unmodified beam

A, B, C locations of masses in example 2 “

THEORETICAL ANALYSIS

Development of characteristic equation.- Figure 1 illustrates a
typical structure that is to be considered in the development of the
method presented in }his paper. It consists of a primary beam of any

—. ——-— -— --- ———... .—. —~ —--.— --— .—~ .
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spanwise variation of flexural stiffness EI, torsional stiffness GJ,
and mass m. The modifications to the primary structure me the addi-
tion of any nuuiberof concentrated masses of magnitude Ml, ~, ,. . .

at stations xl, x2, . . ., respectively, and any number of springs with

spring constsnts a5, a6, . . . at stations ~, x6, . . ., respectively.

The method developed in this paper is based on the assumption that
the coupled modes yn and qn, normalized to give a unit tip bending

deflection, are kaown for th~ primary structure. If the uncoupled modes
of the modified structure sre desired, uncoupled modes of the primary
structure must of course be used.

The procedure presented in this paper is lm.sedupon the Galerkin
method (reference 1). The differential equations for the modified beam
in free harmonic coupled vibratim , vibrating at a natural,fiequency O,
are

and

(%)*GJ. +

where y and q we
tions of the modified

i

t

m?(ey + k%) + >- Em(x - xi)= o (lb) “ ‘

i

the msximum coupled bending and torsional deflec-
besm, res~ectively, and [P]i and [Tli are the

concentrated loads and torques, respectively, caused by the
at station xi and me defined as

modifications

[1 ( )P ~ = % [Y]i + ei[~]i

}

,

(2)

[TL = Ki(eiEL + k’~],) (i=l,2, ...)

Where

{

. M& for concentrated masses
Ki

= -ai for springs

“

.

.
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ei distance from the elastic axis to the center of gravity of
concentrated mass or, in the case of a spring, to the center
line of the spring (see fig. 2)

h radius of gration of mass about elastic axis for concentrated.
masses, or, in the case of a spring, e“i

5(X - xi) a function such that its value is zero at
the srgument ~ and its value at this

J

L
such a way that Z5(x- Xi).dx= 1

-L

The coupled bending and torsional deformations

every point except
point is infinity in

y andq canbe
expressed in terms of the coupled modes of the unmodified besm by
infinite series ,

m

Y= E4)Yo+alYl+” :”= --o %Ym

m

x
1

(3)

~=ao~o+~~l-+””””= ‘ am~m
m=o

W-= the coefficients SO, al, “ . “ Cm be considered S.Sgener~ized

coordinates that give the proportions of the primary-beam modes that sxe
present in a natural mode of the modified structure.

Since ym and ~ =e coupled natural modes of the primary

structure,they must satisfy the differential equatiom

&’@9=‘*2(eYI.U+.%J ‘
and the orthogonality conditions,

~’ ~~(Yn + %J~ +

if m+n,

/L’%(k%

.

1(4)

(m= O, l,...)

)+eyndx=O (5a)

— --- —— -—
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and, if m = n,

L

J( 2 + 2eymcpm+ k~~ d. = Nmm Ym
-L

(5b)

In addition, the primsry-structuremodes y= and qn satisfy the same

boundary conditions as the modified-structuremodes y and q.

The procedure which is used to obtain the characteristic equation
is based on the Galerkin method and is as follows: The infinite series
for y and q (equations (3)) are substituted into-the differential
equations (la) and (lb); then equations (la) and (lb) are multiplied by
yn snd Qn, respectively, and are integrated over the length of the
besm. This procedure yields

(n = 0,1, 2,...) (6a)
.

A

(-n=O, 1, 2, . . .) (6b)

With the use of the definition of 5(x - xi), the differential “

equations shown in equations (4), and the orthogonality conditions in
equations (’j),the subtraction of equation (6b) from (6a) can be
simplified to

.

(7)

(n = 0,1, 2,...)

— —
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If [P]i and [II]i sre expanded in terms of ~yn and ~~

(equations (2) snd (3)), equations (7) would lead to a set of simultaneous
homogeneous equations in the coefficients ~. The order of the frequency

determinant that would result from the direct consideration of this set
of equatfons would be equal to the number of terms used in the deflection
functions (eqyations (3)). A simplified frequency determinant can be
developed, however, in the following manner.

Simplified frequency determinant.- The solution of equation (7)
for ~ gives

The loads [P] and ~]
station x can be written

J

(8)

due to any modification at a particular

and

c’lj == %r&llj (j=l,2, ...i)
n=o

where

L%Ij=%(x]j ‘ einlj)

~dj=‘tIfSEYIIlj +‘j2PiTj)1
The substitution of ecpation (8) into equations (9) gives

(9a)

(9b) “

(lo)

>(n)

(j=l,2, . .. i)’

—. .—. _.— _ _ .-- —- _— ..— —— . . ———



8 NACA TN 2132 .

Equations (n) can he written for eyery station at which a modifica
tion’is made; thekefore two equations are obta@ed for every concentrated
mass or spring on the structure. These equations are shown in table 1.

Since these equations are homogeneous in [p]i =d [T]i, the

determinant of these equations, which is the bracketed part of table 1,
must vanish in order to have real values of [P]i and ET_Ji. The order

of this simplified frequency determinant‘isnow proportional to the
number of modifications instead of the number of terms in the expansion.
Although each term of the determinant is an @finite series, for practical
prot@ns it is necessary to include only the first few terms of e,ach
series, each term of which corresponds to a known mode of the unmodified
structure. As the examples show subsequently, at least as many frequencies
and modes of the unmodified beam must be @own as the number of frequencies
and modes of the modified beam desired. The rapid convergence of the
calculated frequencies to the exact frequencies as the number of terms of
the series is increased is shown in the examples.

Calculation of the modes and frequencies.- For most cases perhaps ‘
the simplest method of obtaining the natural frequency m of the modi-
fied beam from the frequency determinant is to e&luate the determinant
for several trial vslues of” co in the expected vicinity of the natural
fkequency and plot the value of the determinant against the trial fre-
quency 0. In most cases only three or four points are needed to obtatn
the natural frequency.

This method of evaluating the natural frequencies is especi~
advantageous when the effect of several loading conditions in which the
mo@.ificationsdo not change position but only _itude is being studied.
Under this condition the value of each sumation in sll the elements of
the determinant change only in proportion to the changes in the values
of q. ‘

To calculate the natural mode afier its frequency has been established,

the relative values of [P]i md ~Tli hsxeto reobtained. In order to

find these relative values, one of the loads is given an arbitrary value
of unity and the resulting set of nonhomogeneous equations is solved
simultaneously for the relative values of the other loads. In the process
one of the equations csn be discsrded, but it has been found best simply
to add two of the equations together before the solution is made.

J

With the values of the frequency and the loads [p]i ad cT]i,
.

equation (8) is used to evaluate the coefficients ~, and then the modal.

functions can be found from equations (3). At least the same number of
primary-beam modes should be included in the calculation of the modified- “
beam mode as terms used in the evaluation of the series.
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The convergence of the calculated mode to the exact mode as the
number of primary-beam modes included in the calculation is increased
is shown in the examples.

In order to illustrate the method and to show the accuracy with
which the frequencies and modes of the modified heaps can be calculated,
the uncoupled symmetrical bending frequencies and modes of a uniform
free-free beam are calculated with the following modifications made at
the elastic axis of the beam (see fig. 3):

Example 1- Equal masses placed at the tips of the beam

Example 2 - Masses placed at the center line of the span and third
points of the hem

Example 3 - A spring placed at the center line of the beam

Because the maases and springs were placed at the elastic axis, ei
and ki are zero or

[F’li = Ki [Yli

and

[T]i = O

(12a)

(12b)

Also, because only the symetric~ uncoupled modes are required, only
symmetrical uncoupled modes smd frequencies of the primary beam are used.

Modes and frequencies of the unmodified beam.- The ITrequenciesof
the unmodified uniform free-free beam are

where
fok = o f34 = 5,5P .

flb = 31.28 f$ = 19,262

f24 = 913.6 f54. 49,6Q0
.

——. ~— —. ..._ —.—. .—_.. _
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The constants N are

No=2mL

and, for n # O,

Nn

The modes of the unmodified
tip deflection, are given by the

;InL=—

NACA TN 2132

uniform beam, normalized to give a unit
following equations:

(cosh fn ~
x

)

COB fn —

Y~ = ; ~o~h f
L+ . L (n = 0,1, 2,...)
n Cos fn

\

Exsmple1:
free-freebeam wi
Exsmple 1 illustrates the use of the method for the case of symmetrical
modi-fications. The placement of the masses at the tips gives a severe
test of the accuracy of the method. The results obtained for this example
are compared with an exact solution of the differential equation.

Since the modifications are symmetrically placed, that is, xl=~=L, -

With the use of this
for equal tip masses

K],=[yd2
.

condition and equation (12),”the frequency determinant
can be written as

The results obtained from the solution of this frequency equation when

mL— = 4 are given in the following table for
M .

—.
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Mode Number of terms Calculated f2 Exact f2 Percent
in series error

First 3 4.15 4.15 0
First 4.17 4.15 .5
Second t 25.0 24.9 .4
Second 3 25.2 24.9 1.2
Third 6 65.0 64.8 .3
Third 65.2 64.8 .6
Third . “; 65.8 64.8 1.5

Examinatioriof this table shows that the use of the series with a
minimum number of terms evaluates the frequency of first three modes
@th errors of less than 2 percent, which is sufficient for most uses.

Once the frequencies of the modified beam are found, the proportion
‘ofeach of the primary-beam modes present in a modified-beam mode is
calculated from e~ation (8). Because the vslues of [Pji me ecp~j

equation (8) becomes

after [1Pi is assumedto be unity.

The comparison of the solution for the first three modified-beam
modes with the exact modes is shown in figure 4.

Example 2: Calculation of the frequencies and modes of a uniform
free-free besm with concentrated masses at the center line and third
yoints of the beam (fig. 3(c)).- Example 2 illustrates the use of the
method wherimore than one modification is made to the primary structure.
The results for this example are compared with calculations obtained
from a matrix iteration process which is considered as exact.

The magnitudes of the masses and the assumed geometrical properties
of the beam-me shown in figure 3(c). Since,aa in example1,
the masses are symmetrically placed, the fkequency determinant
reduced to

.

two of
can “be

.. —.. ....! —-— ~.. .—-— ---- -. .—— — —— .——. ——— ——-
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[

-1+2

2

The results obta-d from the solutions of this fre@ency determinant
are a8 follows:

Mode
Number of terms

‘Calculated u) -Exact u
Percent

in series error

First 3 21..8 z.8 o
First 2 22.0 =.8 .9
Second 91.4 91.4 0
Second V 93.0 91.4 1.7
Second j. 100.7 91.4 ~ 10.2
Third 5 261.8 261.3
Third 4 269.5 261.3 3::

For this example equation (8) becomes

~=-
N ~%~ ~2)f[YIilC’CIYlC + [YIilAKAEYJA)
n-

calculated from the dete~ant just shown, in the manner previously
described. The comparison of the calculated and the exact solutions for
the first three modes is shown in figure 5. . .

The large error in the calculation of the frequency of the second
mode with the mini-mm nunber of terms is caused by the large peak
deflection that occurs in the second mode neer.the point where the masses

.

are placed.

.

. ——. .—. .
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Example 3: Calculation of the frequencies and modes of a uniform
free-free ‘beamwith a spring at the center line..-Example 3 is presented
to show how the method is used when a beam is modified by the addition
of a spring instead of a mass. The results obtained are compared with
an exact solution of the differential equation.

Because only one modification is used, the frequency determinant
consists of

The results
a spring is

only one term

m

z“ a[yn]02
1+ o

n=O Nn(u# - 02)=

obtained from the solution of
used with a spring constant

me tabulated as follows for

this tiequency equation when

Mode
Numberof terms

Calculated @ Exact f2
Percent

in series error

First 3 2.49 2.49 0
First 2 2.51 2.49 .8
Second 4 7.01 7.00 .1
Second 3 7.02 7.00 .3
Third 5 30’.6 30.6 0
Third 4 30.6 30.6 0

The proportion of each of the pre-beam modes present in the
modified-beam modes, as in other examples, is obtained fiti equation (8),
which can be written

[1Yno”
‘%a=-

Nn(~2 - LD2)

— . -.___—____ ,___ ._. _ — —..—_ —. ——: ——
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.
The comparison of the solutions for the first three modified-beam

modes with the exact solutions is shown in figure 6.

CONCLUDING REMARKS

The method presented herein can be used once the frequencies and
modes of the unmodified structure are known. Thus the method is
advantageous when the modes and frequencies of the unmodified structure
either are known or are required along with the modes and frequencies
of the structure with vm”ious modifications.

The amount of time necesssry to calculate a natural frequency and
mode of a modified structure once the primary-structure modes and
frequencies are known by the method presented herein is generally shorter
than any of the standard methods. Also, in most cases that can be
encountered, all the calculations necessary can be done with a slide rule.
Mostof the calculations done for one frequency and mode can be used in
the calculations of other frequencies and modes.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics .

Langley Air Force Base, Vs., April 24, 1950
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1.

a

.

Figure L- Structure used in theoretical analysis.

C. g. of moss Mi
C. g. of unmodified “

structure

Elastic axis

~

.

0

Figure 2.— definition of the eccentricities.

.
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(a) Unmodified uniform free-free beam.

M M=0.25mL M

(b) Example 1– Add tion of masses at t

Mc

0.25 MA=MB=M~0.942

F
‘r =5.514

mL4

P.

(c) Example 2–Addition of multiple masses.

ii

(d) Example 3–Addition of a spring.

Figure 3.– Unmodified beam with modifications used

in examples.
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Figure 4.—Comparison

Second mode.

between calculated and exact solutions in example 1.
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Exact solution
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——— Solution usrng 6 modes
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.2 .4 \
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x/L .

-lo

-2.0

d
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L
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b
/

-3.0
(c) Third mode.

Figure 4.-Concluded.
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l.o–

,8 -
———– Solution using 2 modes

.6–

4 –

2 -

0

-.2
x/L

-.4

Lo

[
.8 “

(a) First mode.

Exact solution

———– Solution

—–—Solution

=&=’

using 4 modes

using 3 modes
//

/

D

.

-.6L .
{b) Second mode.

Figure 5.— Comparison between calculated and exact ‘“solutions im example 2.
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Exact solution

— Solution using

Solution using
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/

(cl Third mode.

fiaure” S.-Concluded
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Lo

.8
[

Exact solution
— Solution using 2

01 I I I I I 1 I I I 1
0 .2 4.”.6 .8 10

x/L =?%=”

‘ (a) First mode.

.

Figure

1.0

1
Exact solution

.8 ——~ Solution using 3

.6 “

4

2

modes

o 1 I I I I I I
.2 4 .8 1,0

-2 - x/L

-4 -

-.6 -

(b) Second mode.

0.

6.—Comparison between calculated and exact solutions in” example 3.
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Exact solution
——— —. Solution using 4 modes

1,0-
.8 -

E.-
-G
al
~ .2 -

:0 I I 1 I I I I I
> 10.-
g -2 -
w
K -4 -

-.6-

-.8L

,(c) Third mode.

Figure 6.- Concluded.
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