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TECHNICAL NOTE 2191

THEORETTICAL INVESTI&ATI.ON AND APPLICATION
OF TRANSONIC SIMITARITY LAW
FOR TWO-DIMENSIONAL FLOW
By We Perl and Milton M. Klein

SUMMARY
The transonic similarity law for two-dimensional Pflow derived

by von Kérmén has been investigated by an iteration procedure

similar to that of the Rayleigh-Janzen and Ackeret-Prandtl-Glauert
methods. The results, which show that the potential can be expreossed
as a power serles in a single parameter that depends on Mach number,
thicknese ratlo, and ratio of specific heats, are in agreement with
those. of von Kérmin. The iteration procedure has been applied to
obtain the second approximation for the flow past a Keplan section
in similarity form. The exact solution by Kaplan for the second
approximation has been examined and found expressible in the same
similerity form. The exact numerical results to three approximations
obtained by Kaplan for the Kaplan section and the circular arc _have
been reduced to transonic similarity form.

INTRODUCTION

The difficulty of calculating and measuring explicitly fluid
flow patterns past given bodies has led to attempts at extracting
information from the equations of motion without actually solving
them, that is, in the form of similarity laws. A similarity law
glves the solution for a whole class of related bodies at related
conditions if the solution for only one of these bodies at ome set
of conditions is known. A well-known example of & similarity law
is the Prandtl-Glauert rule, which relates potential flows past thin
airfolls at low subsonic speeds. .

Similarity rules for two-dimensional steady-state poten‘l}ia.'l,.
flow in the transonic speed range have been derived by von Karman
in reference 1. The treatment has been extended by Lin, Reissner,
and Tsien in referemnce 2 to include unsteady two-dimemsional
transonic potentiael flows. These derivations utilized small-
perturbation methods in the physical plane in which two basic
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simplifying assumptions were made: namely, (1) that the effect of

stagnation points, if these exist in the flow field, was negligible .
in the region of interest in the flow field; and (2) that the
boundary condition of zero velocity cqmponent normal to the body
contour could be satisfied near the body rather than on the body
itself. The first assumption is also made herein. The validity of
the second assumptlion was investigated at the NACA ILewls laboratory
and 1is reported -herein.
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A rigorous Justification of the assumption that the exact
houndary condition may be replaced by another one would appear to
require the study of the bshavior under these varlous boundaery
" conditions of an explicit solution of the equatlions of motion. An
explicit solution, however, is Just what the similarity analysis
purports to do without. A dilemma is thus apparent. That this
dilemma is nontrivial is illustrated by the fact that the preceding
boundary-condition agsumption has been known to lead to substan=
tially incorrect results in the case of slender bodies of
revolution in the subsonic speed range (see, for example, refer-
ences 3 to 6), although, as is well known, this general assump-
tion ylelds correct results in this speed range for two=-
dimensional airfoils.

The explicit class of solutions that may therefore be needed
to establish a similarity law does not, however, render superfluous
the similarity law contained implicitly therein. The expression of
these solutions in a form that brings out the similarity features .
is both useful end significant, as is evident from the example of
the Prandtl-Glauert rule. Accordingly, an explicit solution for
the two-dimensional, continuous, potential flow past thin alirfolls
at high subsonic speeds is herein rigorously derived from the point
of view of the possibility of expressing this solution in the form
required by the transonic similarity law (reference 1). The
limiting form of the solution is found to be expressible in this
form as the airfoil thickness ratio approaches zero and the free-
stream Mach number approaches unity. Hence, the boundary-condition
assumption in question, underlying the derivations of references 1l
and 2, is validated for the two-dimensional case treated herein.
Such a validation, based on the particular solution for the Kaplan
section given in reference 7, has already been indicated in
references 8 and 9.

The method of analysis used herein is based on a conventional
iteration procedure similar to that of the Rayleigh-Janzen method
(reference 10) and the Ackeret-Prandtl-Glauert method (reference 7). \
The Rayleigh-Janzen method expresses the potential as a power series
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in the Mach number, whereas the Ackeret-Prandtl-Glauwert methed yields
the potential as a power series In a parameter characterizing the
body thickness. The present method expresses the potential as a power
series in a paramgter that depends on all the physical parameters of
‘the problem, namely, thickness ratio, free-stream Mach number, and
specific heat ratio. The form of thls dependence is not specified:
initially. Instead, by going to the simnlteneous limit of zero
thickmess ratio and free-stream Mach number unity 1In each step of

the lteration procedure and reteining only highest-order terms, a
power-series parameter (1f it exists) is obtalned as some combination
of the previously mentioned physlicel parameters. The method thus
constitutes a unification of the Rayleigh-Janzen and Ackeret-Prandtl-
Glauert procedures in the smell-perturbation transonic limit.,.

The preceding method of analysis turns out to be convenient for
numerical application. Accordingly, as a by-product of the investi-
gation, such application is made to the Kaplen section, and the
results are compared with those of references 7 and 8. 'In particular,
a value of the previously mentioned parameter of expansion of the
power series for the potential is derived, which is estimated to repre=~
gent a boundary value between convergence and dlvergence of the series.
The significance of such a boundary value is dlscussed in reference 11
in connection with the so~called potential~limit phenomenon.

ANATYSTS

General formulatlion. - The partial differential equation for
the potential of an irrotational compressible, two-dimensional flow
with free-stream velocity U 1s, in Cartesian coordinates x,y
(fiso l) . -

[az - (U+u)2:|cpxx + -(az-vz)cpyy - 2(U-g-u)wpm =0 (1)

The following notation has been used: (A more complete list of
symbols is glven in the appendix.)

a local speed of sound

U+u resultant velocity in x direction

v  resultant velocity in y direction

Q@ perturbation potential, defined by u =94, v = Py-

The subscriﬁts denote differentliation.
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The local speed of sound a .is related to the free-stream speed of
sound ag, +the ratio of specific heats 7, and the local velocity
by the Bernoulli equation

1379

a? = ag? - 1;—]-1 (20u+udsv?) (2)

In accordance with the Ackeret-Prandtl-Glauert type of procedure,
equation (1) will be written in a form in vhich the linear terms appear
on the left-hand side of the eguation and the nonlinear terms on the
right-hand side. A solution will be sought for high subsonic free-
stream velocity and small lateral-distance ratlio such that the flow
pattern obtained by inclusion of the nonlinear terms will differ by
only a small amount from that obtained with only the linear terms.

The coefficient of @y, in equation (1) is therefore expressed,
with the aid of edquation (2), in the form

@ - - o 2 (3] 2t (5] 0
where ‘

My free-stream Mach number (=U/a) )

p% = 1 - MyZ (42)

Ty = Mg? (1 + 22 Moa) (4v)

For convenience the free-stream velocity is taken as the unit of
velocity, so that u/U and v/U may be written as u and v,
respectively. The differential equation (1) can now be expressed

in the form
(52(93*%) E.- 2'.;_]; MOZ (2(px+cpx2+q)y2):] =EM(2¢x+q?z2) + Z'z_'_]_; Mo4cpyz] P +
Mo2y 20y + 2Mo? (1495)0 Py (5)
The boundary conditions of the problem are that the perturba-

tion velocities vanish at infinity and that the flow follow tb,g .
contour of the body. Thus, at ,

—_— .
- ~—— v p———m— —— == s e —————— - e ————y —— =~
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Px =9y.=0 (8)
The body is defined by
¥ = Ta(x) (7a)
On the body,
Py = T(l+gp)ay © (M)
where
T lateral distance ratio of body

g(x) function characterizing shape of body and together with
its derivative gy 1s of order of magnitude unity

and all lengths are expressed in terms of the chord ¢ of the body
as unit,.

The lateral distance ratio T, introduced in‘equation (7a) to
yield the order of magnitude unity for g(x), 1s a parameter to be
regarded as including both thickness ratio and angle of attack. Thse
parameter T reduces to thickness ratio for a symmetrical airfoll
at zero 1lift, to angle of attack for a flat plate with 1ift, and to
camber retio for a fore and aft symmetrical curved plate at zero
angle of attack.

In order to-obtain the lLaplaclan on the left-hand side of
equation (5), the affine transformetion

1 =By (8a)

Ty
F(xﬂl) = ;2" P(x,y)° (8b)

18 introduced. The trensformetion from ¢ to F in eguation (8b)
is made in order to incorporate the factor I'y/B2 indicated by
equations (5) and (8a) into the solution for the potemtlal. The
differential equation (5) thus becomes ) ’
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ZMO'ZEE 1+-‘12-F)FF (9)

where AF 1is the Iaplacian

\

AF = Fyy + Ty (10)

In terms of the new variables, the boundary cond:'c‘bions (8) and (7)
become at o,

Fy=F =0 (11)
and on the body (subscript b)
1, = BTg(x) (12a)
Tgx TI‘M
Fa-F Tz & (12b)

The formulation of the problem is thus far exact. A solution
is now sought applicable in the limiting case T—0, P—0; this
1imit will be referred to as ™the small-perturbation transonic limit."
*In the range of values of . T and P considered, the perturbation
velocities will be assumed small compared to free-stream veloclty,
|u|,]vlccl. The right-hand side of eguation (9) is thus con-
gldered as producing a small perturbation from the linear case so
that a solution to the systems (9), (11), and (12) will be sought
in the form

1 2 3
F=F+PFP+F+.+. (13)

in which each term is of a lesser order of magnitude than the
preceding one. Accordingly, as the equivalent of boundary condi-
tions (11) and (12) the following boundary conditions on

1 2

F,F.o. ﬁllbetakenath

1379
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n n
Fx-—-Fn =0, n=l, 2,\3 « 9o o (14)
on the body
Np = BTg(x) (152)
1 1 I
T Ty
R Rl (15D)
n T n
F,]-ngrx=o (n#£1) (15¢)

In order to obtain a solution of the systems (9), (14),
and (15), equation (13) is.inserted into the differential egua-
tion (9) and a typical Laplacian term on the left, such as

n
AF, 18 equated to the sum of those terms on the right that

satisfy the following two conditions: (&) The superscript n-1 is
present; and (b) any or none of the superscripts n-2, n-3 , . . 1
are present. I’.Ehe resulting solution of the non-homogeneous Iaplace

equation for F consiste of a sum of terms of which, for a range
of Mgy near unity and T near zero, same will be of highest order

of megnitude, These terms constitute the solution for F 1in the
small-perturbation transonic limit. It will be showm that if T
and -8 are allowed to approach zero in a particular mgnner then

the remaining terms will va.nish_ and the solution for F will have
& unidque finilte limit,

Transformation to elliptic coordinates. - The Cartesian coor-
dinates x,n are sultable for obtaining the flow past a two-
dimensional profile that is periodic with respect to x (for
exanple, & wavy wall) but are inconvenient in problems involving
isolated airfoils. In order to obtain explicit solutions Ffor the
flow past an isolated two-dimensional body, it is convenient to
introduce a system of elliptic coordinates (referemnce 12, p. 156).
The transformation from Cartesian coordinates x,n to elliptic
coordinates s,t is givemn by (fig. 1)

X + in = cosh (s+l%) (18)

The real end imeginary parts of equation (16) yield

B e U - ———— e—
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x =cosh s cos © (17a)
n =pinh 5 sin t (1)

The curves s = constant, t+ = constant are confocal ellipses and
hyperbolas, respectively, with the common focl at x =1+ 1, 1 = 0.
The values of s range from O to », whereas + varies between O
and 2. The Iaplaclan AF is, in elliptic coordinates,

¢}

Fgg + Fiy

J(s,t (28)

AR =

vhere J(s,t), the Jacobien of the transformetions (17), is given
by

I(s,5) = x50y ~ X4lg (19a)
Ssinh® 5 + sin® t (191)
= cosh? 5 - cos® (19¢)

Trensformations from derivatives with respect to x and 1
to derivatives with respect to s and + will be needed for the
subsequent analysis. From the trarsformation equations (17) these
relations are -

1

. Fx =5 5% (sinh 8 cos t Fg - cosh s sin t Fy) (20)
1

Fy =5 5% (cosh & sin t Fgy + sinh s cos © Fy) | (21)

First approximation. - The solution for the first approxima-
1

tion F satisfies the homogeneous laplace egquation

11 1
AF = Fgg + Fyg = O (22)

and the boundary conditions (14), (15a), and (15b), which in
elliptic coordinates are at «

1379
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1 1 .
3-‘(;1—.57 (sinh s cos & Fg -~ cosh s sin t F) = 0 (23a)
2
1 1 1
K1) (cosh s gin t Fg + sinh s cos & Fg) =0 (23b)
on the body
Ty = Brg(x) (242)
1 1 1
J—.(s—’t-y(coshssinth+sinhseostFt)-
T -1 1L 1 «L
-ngm-)-(s:lnhscosth-coshssintF.b)=_s§1_gx

(241p)

A solution of equation (22) that satisfies the boundary condi-
tions (23) is

1 1 1 1
F=/ (8 sin nt + B, cos nt)e™S 40t (25)
n=

It 1s necessary to exclude the positive exponentials e®® from
equation (25) because, from eguations (23) and (19b) , the order of
1 1

1
Fg afd Fy et Infinity must be less than e®. The constants Ay,
and B, In equation (25) are determined from the boundary condition

on the body (equations (24a) and (24b)). The constant % is sub-
sequently determined to yield a circulation around the body by a
Kutta-type condition (such as rear stagnation point at trailing
edge). Small-perturbation analysis usvally neglects the term in

1 . )
Fx occurring in equation (24b). This term will therefore be agsumed

negligible, an assumption to be Justified subsequently on the basis
of the resulting solution.

In obtaining the small-perturbation transonic limiting solu-
1 .
tion for ¥, equation (25) is inserted into the limiting form, for
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1
8,—>0, of equation (24b) with the Fy term neglected. The
1imiting forms of eguatiocns (18), (20), and (21) a8 s—0 are

1im J(s,t) = ein? % (28)
s—0
lim F Tt (27)
x= -
s8—>0 sin
lin F s (28)
q -
8—>0 sin t

1
and the resulting equation for determining the constants A,
1
and Bp 1is

Zn(%n sin b + B cos mt) = - '%‘SH g(x) sint  (29)

n=

The more rigorous alternmative process of inserting egquation (25)

1
into equation (24b) with the F; term dropped and only then going
to the limit s,—0 y.leldslthe seme equation (29). Evaluation of

the boundary condition for F on the axis, that is, by eavation (29),
1

will therefore yleld the correct limiting solu{:lon for F. It may be

noted that in order to obtain a solution for ¥ 1t is necessary that
the quantity TI'y/BS in equation (29) be finite in the small-

pverturbation transonic limit T—0, B—0.

Equation (29) does not conbain the variable s inasmmch &as
the limiting form of gx(z) as 8-—0 is understood to be sub-

stituted into equation (29). The right-hand side of equation (29)
may now be expanded into a Fourler series In + and the coef-

ficlents of corresponding functions on both sides equated. The
) 1 1

resulting solution for A, and B, may be indicated as

1379
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1 1
A, = an(b)K (30a)
11
B, = by(b)K (30p)
where
n .
K = T—Bf (31)

1 1
"~ end an(b), b,(b) are functions of the body shape. (The symbol b

within parentheses denotes the numerical coefficients characterizing
the body shape, including angle of attack, that arise 1n expressing
gx(x) as a trigonometric series in t.) Numerical evaluations

]s_uoh as {or the Kaplan gsection to be made herein indicate that
a,(b), bn(b) are of order of magnitude unity.

1
The solution for F is thus by equations (25) and (30)

1 =\ 1 1 1
F=K i (ay 8in nt + b, cos nt)e™@8 4+ ot (32)
n=

1 1 1
in which the substitution C = Kc(b) _has been made, where c(b)

may be considered of order unity if ay(b), b,(b) are of order
unity.

The functions :n and %n do not depend on the coordinates s,
becanse they were obtained from equations evaluated on the axis of
the body (s, = 0). The reduced potential function F therefore
depends on s only through the exponential e™22, wvhich is nearly
constantlfor small velues of s eand approaches wnity for s—>0.

Hence, F approaches a finlite limiting solution as T and B bdboth
approach zero g.-n such & wvay that K 1is kept finite., -This limiting

solution for F holds for & class of profiles with a common-shape
factor g(x) and for a fixed value of K, so that a similarity
rule exists. If the limiting solutions for T, PB—>0 in the
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higher approximations can likewise be expressed in terms of the one
paramster K, it will then be possible to say that a transonic
gimilarity law exlsts for two~dimensional flows.

The horizontal and vertical dlsturbance velocities are, from
equations (8), (20), (21), and (32),

L.

1 BZ 1 T 1 1 . 1 -ne
q)x=i.-§ Fy=-3 K O] sinh s cos ¢ i n(a, sin at+b, cos nt)e™8 4+
. n
o«
1 1 1
cosh s sin % E n(a, cos nt-b, sin nt)e™@® + ¢ (33)
n= .

1 .31 T Z‘” 1 1 ,
L] =5 F,q= “TGET) cosh s sin & > n(a, sin nt+b, cos nt)e s -
2

v M n=0
® .
1 1 1 '
sinh s cos 5 n(a, cos nt-b, sin nt)e™® + ¢ (34)
n=
1
The total disturbance velocity A 1is defined by
X
1l 1l 2 1.z :
A = (1) +Qy | -1 (35)

The trigonometric and exponential functions occurring within the
summation signs in eguations' (33) and (34) are of order unity and
it is reasonable to assume that 'bhe resu_'l.ts of summation will be

of the same order. The ratio of cpy to cpx is of order B ®so
that the quanti'by CPy 1; negligible with respect to cpx in the
small-perturbation case @, <<1l. The disturbance veloclity k is

therefore approximated by %x' In the first approximation given
by equations (8), (31), (33), and (34), the similarity rule is

1379
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therefore simply the well-known proportionallty of the resultant
perturbation veloclty to thickness ratio and angle of attack

(represented by the symbol T) and to 1/, which is the
Prandtl-Glauert rle.

' 2
Second. approximation.- - The second approximation F 1is a
solution of the non~homogeneous Laplace equation

6 1 2 21\11 :
M,2 i“% B 2Ry + 2My2 PB--M (1 + T%a Fx) Fann] (36)
- Ty

which satisfies the boundary conditions (14), (1Sa), and (15¢). As
previously mentioned, in solving equation (36) only those terms on
the right-hand side will be retained that are of highest order of
magnitude in the small-perturbaetion transonic limit T,8—0, K
finite, It is thus flrst noted that the term involving the

1 1
Leplacian factor (F55+Ftt) vanlishes by virtue of the solution

for the first approximation. Secondly, equations (20), (21), -
1

and (32) show that F and its derivatives are of order of magni-
tude K. In the numerical applicatlons hereinafter gliven, the
permissible range of K, 1s approximately 0 < K < 0.5. It is
therefore convenlent to assign the order of magnitude unity to K.
The order of megnitude, as B—>0, of any term on the right-hand
side of equation (36) therefore depends on the power of B occurring
11
in that term, and only one term, involving Fy F,,, does not have a
Pactor of P to some positive power. In the amall-perturbation
transonic limit, a.lll'hems on the right-band side of eguation (36)

-1
except the term in F, F; are therefore negligible. Equation (36)
2
for the second approximation F +thus simplifies to

2 2 11 : ' .
Fog + Fyp = 2J(s,t)Fan (37)
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1
For the solution of equation (37), F is Pirst expressed as

%’ = KR(s,t)

where, by equation (32),

oo
1 1 1
R(s,t) = 2 (an sin nt + by cos nt)e™@8 + ct (38)
n=

The x derivatives of R are given by, fram eguation (20),

Bx:-}(smhscostRs-coshssmtRb) (39)

Bxx = -Jl'z- %:L!:lh2 s cos? tRss + cosh2 s sin? tRyy -

2 cosh s sinh s cos t sin tRyy +

2
BinhBOOShslil'a—c-g.-s——E(sinhzs-sinzt):IRs+

cos ¢ sin b [1 + z—ﬂ’-iﬁi (sinh? s - sin? t)] Rt} (40)

In terms of R, egquation (37) becomes

2 2
Fgg + Fyy = ZKPIR.R.y (41)

where R, and Ry, are obtained from equations (38) to (40). The
right-hand side of equation (41) is now to be expanded in a Fourier
series in t. A typical term of equation (41) has a singularity

at the end points + = O,n for s = 0, because of the factor 1/J,
which 'becozénes infinite at these points. Because the limiting solu-

tion for F for s—>0 1is of principal Interest, it may be neces-
saxry to exclude a small and :Eini’bezregion around the end points

from the domain of definition of F. This objection is not

e r——— e — - - - — = - .- e g ————— ey = 4 —————

1379
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serious, however, because the end points must in any event be
excluded from consideration if stagnation points, which violate
‘the assumption of small perturbations, occur there. When the
right-hand side is expanded in a Fourier series in <+, equa-
tion (41) becomes

I%ss + ‘%"tt = K2 BZ; [bn(s) sin nt + By (s) cos nt] (42)

where hy(s) and h, (s) are functions of s.

2
A solution for F 1is now sought in the form

[-<)

2
= Kz q 43
F né [qn(s) sin nt + qn(a) cos nt] (43)

where qn(s) and G,(s) are functions of s +to be determined.
Insertion of equation (43) in equation (42) ylelds

[~

E [(qn"-nzq_n) sin nt + (g, "-nqy) cos nﬂ = Z (b, sin nt+h, cos nt)
n= n= .
(44)

where the primes denote differentlation with respect to s.
Because equation (44) must hold for each value of n and for all
values of t, the coefficients of corresponding trigonometric
functions on both sides may be equated, which ylelds the oxrdinary
differential equations

ap" - 04y = By (458)
9" - n?a-n = En (450)

Equations (45a) and (45b) are of the same type so that attention
mey be confined, say, to eguation (45a). The solution for gn(s)

. 2 ;
consists of a complementary function, taken as ape™° +to satisfy

the boundary conditions &t infinity, and of a particular .integral
that may be expressed in terms of two indefinite integrals by

e s mwm T m ek e e L A ¢ - Tttt B e —— —— —————— e e
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ry(s) = e":"'e"'/‘eznE dsbfe"'nS b, (s)ds (46)

In order to determine the behavior of the partlicular integral
r,(s) as s—0, the form of bn(s) 1is first examined. Because

a reglon around the end points is excluded if stagnation points

cc:sh2 8 :
occur, the gquantity ————— occurring in equation (40) may be
2
expanded in an absolutely convergent power series in 9_0_9_1_1_22_. The
: cosh® s

right-hand side of equation (41) may now be expressed as a Fourier
series in t. The function hy(s) may therefore be expressed as a
sum of terms each of which has the form cosh¥ se™@8 or

ginh s cosh® se™™® where k and m are integers, m positive, and
each texrm is mmltiplied by a coefficient that depends on a body
shepe and is of order unity. The particular integrals corresponding
to these forms are, from equation (46), expressible as functions
also having these forms. It them follows thet the function x,(s),

corresponding to hn(s), aod its derivatives ry'(s), rp"(s) are
of oxder of magnitude unity and have a finite limit as s—>0.
Writing T,(s) as the particular integral corresponding to 1y,(s)
gives the following solutlion for F:

[- - (-2
2 2 2 2
F = K2 z ;(ane'ns+rn) sin nt + E .,(bne'nsﬁ'h) cos nt + ot| (47)
n= n=

.
A circulation term ct is included in equation (47) in order to
satisfy the Kutta cond:ltion as in the Pirst approximation. The
coefficients an and bn are determined from the boundary condi-
tion on the body (15¢) which, with neglect of the Fy term and by
equation (21), is in elliptic coordinates

2 2
cosh 8 sin t Fy + sinh s cos t Fy; = O (48)

The result of combining equations (47) and (48) and going to
the limit s,—>0 is the same equation as that obtained from

combining equation (47) with the limiting form, as s;—>0, of

______ et e e ——- - .- —— -

1379
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equation (48). It 1s therefore permissible, as in the first
‘approximation, to evaluate the boundary condition on the axis of
the body for which equation (48) becomes

2
Fg = 0 (49)

Substitution of egquation (47) in equation (48) ylelds
(-] ©
2 2 .
(-ne +r,') sin nt + (-nb,+¥,*') cos nt = 0 (50)
n= n=

For equation (50) to hold for each value of n and all values
of &, 1t 1s necessary that

2

-ng, +rp' =0 (51a)
z -—

-nb, + T, ' =0 (51b)

2 2
Solving equations (5la) and (51b) for the coefficients a, and by
ylelds

2

a, =ry'/n (52a)
2
'bn = fn'/n (52b)

2 2
Equations (52) show that the coefficients a, and b, are of.

order of maegnitude unity.

The small-perturbation transonic limiting solution for the

N 2
second-approximation potential F 1s thus proportional to K2
and to a function of body shape and position of order of magnitude
unity, which approaches a finite limit as s—0. The derivatives
2

of F and, in particular %‘x, also have these properties. From
the results obtained thus far 1t is clear that similar solutions
will be obtained in succeeding approximations because the right-
hend side of eguation (9), in the small-perturbation transonic limit,
will always, in any approximation, be mads up of power of K and of

e e e e e e it~ Ay A - - e = W mam e e% mmm el e a m v e
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functions of order of magnitude unity that approach a finite limit

for s-—>0. The various approximations may be conveniently arranged
in the form of a power series In K and the final results indicated
as Pollows: ' '

1379

On the body . B =8y~ 0 i
Fx=-p—2-A=alK+a2K +a.3K3+... (53)
In the flow field s ~1
'y '
FI=E§V=b1K+b2KZ+b315+... (54)
where
A disturbance velocity on body
v disturbance velocity in flow field

87,83 sesy by,bp ¢.. functions of body shape and position of order
of magnitude unity

The velocity on the body and In the f£low fleld in two-dimensional
Yransonic flow past a thin airfoil therefore depends on Mach num-
ber My, specific-heat ratio 7, and lateral distence ratio T

only through the combination K = TI)/B°. The mmall-perturbation
M

transonic limiting form of the parameter K is TI'/ [53, where
P 3im T, =2 mmig 1imiting form of the paramster K is
Mg—1 M2

a simple function of the similarity parameter of reference 1. Thns
the transonic similarity law derived here agrees, in the small-
perturbation transonic limit, with that of referemce 1. It is
apparent that the validlty of the derivation of this law depends
principally upon the properties of the potential in the neighborhood
of the axis.

Finally, the previous assumption that in the body boundary
condition (12) the Fy term could be neglected with respect to

the F11 term will be Justified. Because Fy and Fn are of the
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same order, the ratio of the Fy term to the FTI term in equa-
tion. (12b) is of order T/B. For a transonic flow with the
parameter K of order one, T is of order PBS. The ratio T/B

18 therefore of order B2, which is small compared to unity in
the transonic limit" B—>0. Hence, the neglect of the Fy term

was Initlally permissible.

JILIUSTRATIVE EXAMPLE

Although the prime purpose of the method of analysis was to
verify the transonic similarity law, the method of analysis may
now be used to calculate flows past specific alrfoll sections. As
an 1llustration, the first two approximations for the flow past a
Kaplan section will be obtained in the limiting form given by
equation (53). Theo parametric eguations of the Kaplan section are
(reference 7)

Xp = cos © -% (cos 8 - cos 30)

(3 8in @ - sin 30)

Lol B

Tp =

wheore the parameter © varles between O and 2x and the coordinates
X,3¥ps Iin conformity with the convention of reference 7, refer to
the gemichord as the unit of length.

First approximation. - The slope dyy,/dx;, 1s given to the
first order in T by

Ell=_§1. cos 8 - cos 30
dx, 4 gin €

-3T sin © cos ©

In terms of x;, the slope is then given, to the first order in T,
by

a7, 4’ 2
T, - -3Tx, Al-X; (s5)
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Ir general, the slope is, from equation (72),

%z—% = Tgy(x)

gx(x) = -Sx-b /\’l-x-bz : (56)

The coordinates Xph,Mp are g:.Lven in terms of elliptic coordinates
by equation (17)

so that here

Xp = cosh 8 cos t (17a)
M = sinh s sin ¢ (17p)

Because the boundary condition i1s to be evaluated at & = 0, equa-
tion (17) becomes

X = cos &
M = 0
The function gy(x) 1is therefore given by, at s = 0,
gx(x) = -3 cos t sin (58)

Equation (58) could have been obtained directly from the
expression for g,;(x) in terms of © by noting that, in the
1imit 8—0, the parameter © becames ldentical to the
coordinate <.

1
The first approximation F is, from eguetion (25),

o .
. % = Z (.%n sin nb + %n cos nt)e 018 (25)
n=

1
The boundary condition for F is, from equation (29),

zn(l-'in gin nt + %n cos nt) = -Kgy(x) sin % ' (29)
n=0

(57)
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Inserting the valne of 8x(x) from equation (58) in eguation (29)
yields

[+

1 1 3K
zn(An sin nt + By, cos nt) = 2= (cos t ~ cos 3t)
n=0 4

1 1
The coefficients A, and By are therefore given by

-~

¢ (59)

1
The first approximation ¥ i1s thus .

1
F =% (3™ cos t - 758 cos 3t) (60)

1
The limiting form of F for s—0 is

1 x
F = 0y (3 cos t - cos 3t) . (61)

1
The limiting form of the velocity A for s—30 is s by eaqua-
tions (27), (33), and (35),

Ty

V][9]

K cos 2% (62)

Tl

1 .
The maximum value of /A occurs at the midchord (% = x/2) and is
given by

T ha/e® = 3 1 (63)

—— e ———— - m—— -~ r e e
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) 2
Second approximation. - The second approximation F i1s the
solution of the non-homogeneous Laplace equation (37)

2 2 11 :
Fog + Fyp = 27(8,5)FeFpy \ (37)

1
The x-derivatives of F may be obtalned by successive applicationsg
of equation (20). It is more convenient, however, to first intro-
duce the conjugate complex veriasbles

E=84+1t%
- (64)
C =8 - 1t
Equation (60) becomes, in terms of { and 'f,
% ==% (33'C - -3¢ 4 36~C - 3-5Z) (65)

The derivatives with respect to x are glven in terms of deriva-
tives with respect to { and E by

F F=
Fp = S ' (e6)
sinh { sinh {

-1 . cosh 1 o___ocosh{
B arer o bl Tl il Sy 3 d e 1
2 F (67)
sinh ¢ sinh ¢t
The x-derivatives of % ares, from equations (65) to (67)
%’x = - -;E-K(e"zc + e-ZZ) o (68)

1 3 e-2¢ 020
Fer =5K (69
=2 (sinh ¢ eim T )
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The Jacobian J({,{) and the Laplacian AF({,{) are given in
terms of ¢ and { by ‘ .

J(¢,7) = sinh ¢ sink T (70)

AF(L,T) = 4 Ry . (M)

sinh { sinh ¢

. 2
The differential equation (37) for the second approximation F
becomes

ﬁﬂ = - -?:Kz(e"zc + o°%)(-2¢ sinh To + -2F sinh fo)  (72)

If equation (72) 1s transformed back to s,t coordinates, there
1s obtained
& z O k2 |(e=58 . =38 =58 gog 3t - o~38 -
os *Fpt = 7 (e -e™%) cost + e cos 3t -~ e cos 5t
(73)
In order to solve equation (73), & solutlon is assumed of the

form

2 2 2 2 '
F =§ K2 [ql(s) cos t + qs(s). cos 3t + qg(s) cos St] (74)

Insertion of equation (74) into equation (73) ylelds the Following
ordinary differentiasl eguations for the q functions:

~—

2, 2 '

q.l” - q-l = e—SS - 9-308

2 2

az" - 905 = o~58 ’ (75)

2 2
dg" - 2545 = -e~58

e

The solutions for the differemtial equations (75) are

23

U UU U - v,
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gl(s) = Ele-s + 12'1(5)
g.;r,(s) = 336“33 + 35(5) (76)
35(5_) = Ese"ss + %5(5)

2 2 2
The particular integrals ry(s), rz(s) and rs(s) may be evaluated
by means of equation (46)

r,(s) = ?-mfema ds [ 6% n (s) ds (46)
The result is
:2.'1(5) =gre5s -1 o=38 |
B =Loes b -
5‘5(5) = Tlé- 9-35. ]

2 2 2
The constants A;, Az, and Ag are determined from the boundary
condition (49) which, when applied to egquation (76), yields

‘%1 = 1/6

2

Ay = -5/48 (78)
24

A_ = -3/80

. 2 .
The solution for F i1s therefore

2 9 1 _s_1_-3s,21 .-58 -5 -3 , 1 _-5s
Fnzx‘.z[(-s-e -Ee +-ﬂ-e )cost+(‘z§e +T§° )cosSt+

,'_§_ -58 _}-_ -35) 'b] 79).
(80 e + . e cos 5 (79)
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2
The limiting form of F as s—30 1is

=i no

12 24

2
The limiting form of the velocity A as s—0 1is, by equa-
tions (27), (33), and (35), ‘

= 12-1:2 (—l- cos t - L cos 3t + 1'16 cos 51;) (80)

2
2 Tyh o 2 51 1
_ _9 1 1
Fp = Bz-4smt(lzsint--§sin3'b+-8-sin5t) (81)
2

The maximum value of A ocours at the midchord (t = n/2) and
is given by

2
PMAmax 3 K2

pz %

(82)

COMPARISON OF RESULTS WITH KAPLAN

The first and second approximations for the veloclty potential
for the Kaplan section as obtained by the Ackeret-Prandtl-Glauert
iteration method are given by equations (B-17) and (C-5), respec-
tively, of reference 7. The limiting forms of these expressions
as T—>0 and B—>0 are in agreement with the present results,
(egnations (60) and (79), respectively). Hence the legitimacy in
the present report of obtalning a limiting solution by golng o
the limit in the differentlial equatlion rather than in the final
solution is verified. The first procedure requires, of course,
much less work than the second. It may now also be inferred that
the limiting forms of Kaplan's results in the third approximation
are the same as would be obtained by the present method in the
+third approximation. In particular, the thn'dsapproximation for

the maximum velocity increment (at midchord) Am, gliven by equa-
tion (17) of reference 7, has as limiting form
DA L
Mlmax 87
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Ths small-perturbation trensonic limiting form for the maximum
velocity on the surface of the Kaplan section is therefore given,
to three approximations, by .

Blpay

T

3.3
=§'+ZK+—-K2 (s4)

The meximum velocity increments given in similarity form by
equation (84) and the corresponding values obtained from refer-
ence 7 for several thickness ratios and Mach numbers are plotted
in figure Z as a function of K. It is seen that the results for
the finite thickness ratios do not differ negligibly from those for
the limiting solution, so that some error would be incurred in
extrapolating the limiting solution for zero thickness ratio to a
finlte thickness ratio. For alrfoll sections more closely approxi-
mating the ellipse in shape, however, the effect of thickness ratio
on velocity may be expected to be smaller than for the Kaplan
section. This conclusion is indlicated in unpublished calculations
by the method of reference 1l and mentioned in presenting
reference 9.

The local Mach number M corresponding to a given velocity
increment may be obtained from Bermoulli's eguation which, in
small-perturbation form, is given by (reference 11)

M2-1 = -g2 + 2[yA (85)

Equation (85) can be expressed in the similarity form

. 2
E}:%(“M—B;-) (86)

Curves of constant value of the parameter (Mz-l) / BZ in equa~-
tion (86) have been plotted in figure 2 to indicate the local Mach
number corresponding to a glven velocity increment.

It may be noted that the small-perturbation tramsonlic limiting
value of K derived in reference 8, corresponding to the first
appearance of locally sonic velocity on the Kaplan section, is given
by the intersection in figure 2 of the T= 0 curve with the
(M2-1)/82 = 0 local Mach number contour. In order to obtain local
Mach numbers corresponding to the finite-~thickness-ratio velocities
in figure 2, the exact form of Bermoulli's equation should be

€
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used, rather than the small-perturbation form that leads to equa~
tion (86). Accordingly, contours of local Mach mumber unity,
corresponding to A,,., based on the exact form of Bernoulll's
equation are shown in figure 2(b) for several thickness ratios.

In order to aid in obtalning sonic values of K for other thick-
ness ratios, the interpolation curve AB has been drawn through
the Intersection of these contours with the corresponding velocity
curves. ILocal Mach numbers other than unity for finlte thlckness
ratio may be estimated by comparison with the various contours of
local Mach number unity.

Each velocity curve of figure 2(b) bas been terminated at a
particular upper value of X, Iindicated by a circle. These
values of K, called K,, were obtained from the values of Mo,z
for given T derived In reference 7. The value of MO,Z is the
limiting Mach number above which, for the givem T, +the series
solution for the veloclity may be expected to diverge. The value
of K3 Zfor the limiting solution T-—0 was estimated from equa-
tion (84), as in referemce 7, by Somparisen with the correspaniing

terms of the harmonlic series Z%. The ratio of the terms of
n=

the series solution to the corresponding terms of the harmonic
geries indicated a value of K below which this ratio formed a
decreasing sequence. For a discussion of the significance of these
so~called potential limit quantities, see reference ll.

For convenience in converting the similarity parameters in
figure 2 to more directly usable quantities, such as velocity
increment /A, e plot of the similarity parameter K against
free-stream Mach number M; for several values of the thickness

ratio T 1s presented In figure 3.

The actual values of the velocity increment A, free-stream
Mach number My, and local Mach mumber M at the potential limit
and the first two of these quantities at the oritical Mach number
MO,cr (local Mach number unity) obtained from the data of refer-
ence 7 and shown in figure 2 are presented as functions of thick-
ness ratio T in figure 4. For comparison are included the
corresponding values derived from the similarity parameters for
T=8=0 given also in figure 2. The local Mach number for the
1limiting solution should, for consistency, be calculated from the
small-perturbetion form of Bernoulli's equation (85). In order to
indicate the approximation introduced by equation (85), the local
value of M <for both the critical and potential limit conditions
has been also obtained from the exact form of Bernoulli's eguation.

e e - e S e e~ — —_ —_—
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In order to compare the exact and limiting solutions with regard
to flow-field corditions, calculations have been made of the maximum
lateral extent of the local supersonic region at the potential limit
Mach number for several thickness ratios by means of both solutions.
The results for the exact solution were obtained by the method of
reference 7 (equation (18)), whereas those for the limiting solution
were obtained in’a similer manner by eaustiocns (8a), (60), and (79).
As in reference 7, only the first two approximations were used in
meking the calcilations, because, as noted in reference 7, the
disturbance velocity decreases rapidly with distance from the body.
The results are shown in figure 5, in which the maximum height in
chord lengths of the supersonic region has been plotted as a function
of thickness ratlio. The results for the limiting solution are in
surprisingly good agreement with those for the exact solutlon,
especially in view of the rapld change of lateral extent of the
local supersonic region with Mach number In the neighborhood of the
potential-limit Mach number shown In references 7 and 13. It is
noted that the height Increases rapidly with deorease in thickness
ratio at the small thickmess ratios. This behavior is in conformity
with the similarity law, which gives a fixed value of the nondimen-
sional parameter 17; corresponding to the height of the supersonic
region., The parameter B; approaches zero as the thickness ratio

goes to zero so that the height y; =13/B; (eguation (8a)) cor-
respondingly becomes Infinite.

The results given by Kaplan for the circular arc (reference 14)
mey be anelyzed in e similar memner. The maximum veloclty increment
obtained from equation (18) of reference 14 yields, in the small-
perturbation transonic limit,

-%=4+6K+%4-K2 ] (87)

h

where h is the camber ratio (ratio of maximum height to chord
length), and X = hPM/B . The maximum veloclty increments given

by equation (87) and reference 14 are plotted In similarity form

in figure 6. The velocity increment A and free-stream Mach

number My at the oritical Mach number MO cr Tor both the exact
and limiting solubtions are presented as functicrns of h in figure 7.
In the same menner as for the Kaplan section, the local Mach number
obtained from the exact form of Bermoulli's edquation is included.
The values of A,, for the exact and limiting solutions are in

better agreement for the circular arc than for the Kaplan section.
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CONCLUDING REMARKS

A transonic similarity law for two-dimensionsl flow has been
derived by von Ké.min; In the derivation of this law, the assump-
tion has been made that the boundary condition at the body may be
satisfied on the axis. Thls assumption has been investigated herein
by an lteration procedure similar to the Rayleigh-~Janzen and
Ackeret-Prandtl-Glauert procedures, in each step of which the boundary
confition 1s satlisfled exactly on the body. The resulting solution
is of the form required by the existing tramsonic similarity theory,
thereby validating the boundary-condition assumption. The question
of the effect of stagnation points upon the similarity law, however,
has not been Investigated.

In weing the method, the assumption was made that the small-
perturbation transonic limiting form of a solution of the governing
differential equation is the same as the solution of the limiting
form of the differential eguation. This assumption was verified by
comparison with the exact solution for the Kaplan section.

The present method of analysis offers scme a.dva.n_tageé in
simplicity and amount of computational work as compared to the exact
method in applicatiome to specific airfoils.

Lewis Flight Propulsion Laboratory,
National Advisory Committee for Aeronautics,
Cleveland; Ohlo, May 24, 1950.




30 . NACA TN 2191

APPENDIX - SYMBOLS
The fgllowing symbols are used in this report:
A,,B,,C arbltrary constants (equation (25))
a local speed of sound

aysby,¢  function of body shape (equations (30) and (32))

ag speed of sound in free air
c chord of body
Ty
F transformed veloclty potential (: -EZ-CP)
g(x) function characterizing. shape of body
h camber ratio

LIS functions of s (equation (42))

d Jacoblan
TP M
X similarity parameter |(= =
. B
My free-stream Mach number (= U/ao)

Qp 05 functions of s (eguation (43))

R function defined by equation (38)

Ty partioular integral (equation (46))
8,% elliptic coordinates

U free-gtream veloclity

u disturbance velocity in x direction -
v disturbance velocity in y directlion
X,y Cartesian coordinates

B 1 - M2
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T rid
2
'y M2 (1 + 1;_1- Moz)
4 ratio of specific heats
A Laplaclan
¢ (= 8 + 1t)
3 (= 8 - 1t)
] transformed y-coordinate
A disturbance velocity on body
v dis'burba.nc’e velocity in flow field
T lateral distance or thickmness ratio
[t/ disturbance velocity potential
Subscripts:
b on the body
or critical
) potential limit
max maximum

The symbols X, ¥, 1, 8, and + used as subscripts indicate

differentiation with respect to that variable.

31
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Auax
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Limiting solution, T—»0, p—*0
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Figure 4. - Variation of meximm velocity increment, free-stream Mach number,
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tial 1imit for Kaplan section.
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Figure 5. - Variation of maximum height of supersonic region at potentlal 1imit
. with thickness ratio for Kaplan section.
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Flgure 6. - Variation of maximum velocity increment with similarity parameter e
for circular aro seotion,
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Figure 6. - Concluded. Variation of maximmm veloclity increment with similarity
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Figure 7. - Variation of maximm velocity increment, free-stream Mach number, and

local Mach number with camber ratio at critical Mach number for cirocular arc
section. “

NACA-Langley - 10-8-50 -1000

- - —— .




