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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNT CAT, NOTE 2222

A METHOD FOR THE DETERMINATION OF THE SPANWISE LOAD DISTRTBUTTON '
OF A FLEXTBLE SWEPT WING AT SUBSONIC SPEEDS
By Richard B, Skoog and Harvey H. Brown

SUMMARY -

A method is presented for the determination of the spanwise load
distribution of a flexible swept wing at subsonlic speeds. The method
is based on a relaxation approach utilizing aerodynamic loadings
obtained from previously published work (NACA Rep. 921, 1948) based on
Welssinger's simplified lifting-surface theory together with simple beam
theory. The solution is expressed in a convenient Porm such that the
amount of detalled computing involved when extensive aercelastic cal—
culations for many flight conditions are desired is reduced to that for
a single set of flight conditions. The method is simplified further by
an abbreviated solution to the relaxation process., Sample computing
forms and a numerical example are presented to lllustrate the method,

INTRODUCTION

In the design of wmswept wings, the spanwlse distribution of aero—
dynamic load usually has been considered to be independent of structural
deflections since torsional deflections normally are negliglble at
design operating speeds (usually well below the wing divergence speed)
and bending deflections are not a factor for zero sweep. On a swept
wing, however, the span load distribution no longer may be considered to
be independent of structural deflections since the contribution of
bending to the streamwise change in section angle of attack can becoms ‘
of considerable magnitude as the sweep angle i1s increased. In addition
to this aeroelastic effect assoclated with wing sweep the trend toward
higher operating dynamic pressures causes factors, which were previously
negligible, to assume increased significance.

Several methods have been suggested for calculating the aeroMc
loading of the flexible swept wing, both explicitly (references 1 and 2)
and by iteration (reference 3). The a.pproach in each of these methods

T R T T T ——— — —— . m rer e e e v e = ——— ao—
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hes been to incorporate aerodynamic and structurel theory in an equation
of equilibrium expressing the balance existing between externsl and
internal forces on the wing. To simplify the mathematics involved,
metrix notetions have been employed in two of these methods (references
1 and 2). Although two of the methods (references 2 and 3) indicate how
aerodynamic theory other than strip theory could be employed, it is
apparent that such application increases the mathemetical difficulties

a great deal so that the simplest aerodynamic theory has been used in all
the methods. In addition, although solution of the problem by use of
matrices has the advantage of simplicity in reducing the necessary com—
putations to a routine form, the engineer unversed in this mathemstical
tool encounters a loss in physical appreciatiom.

The present method arose from the effort to f£fill the need for a
mathematically simple approach which can yet Include the aerodynamic
refinements contained in lifting—line or lifting-surface theories. It
was desired, also, to separate the aeroelastic effects associated with
the various rigid—ring loadings so that it would not be nscessary to
perform detailed calculations for each new set of flight conditions.

The method of this report is based on relaxation concepts and employs
aerodynamic span load distributions from previously published work
(reference 4) based on Weissinger's simplified lifting surface theory
together with structural deflections found from simple beam theory.
Sample computing forms and calculated effects for an example wing also
are presented.

SYMBOIS
A wing aspect 'ratio <b§2-> .
a distance from elastic axis to section quarter chord measured

normal to elastic axis (positive measured forward), inches
(See fig. 1.)

Ay ratio of net aerodynamic force along the airplane Z axis
(positive when directed upward) to the weight of the airplane

b wing span measured normal to plane of symmetry, inches

c sec;tion-chord parallel to tile pia.ne of symmetry, linches

ct section chord normal to the elastic axis, inches

average section chord parallel to the plane of symmetry, inches

2

dy
» inches

Je
Jcay

T ‘mean aerodynamic chord(
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Cmg section pitching-moment coefficient due to canber as usually
qc?
c'mo section pitching—moment coefficient due to camber as used in

this report (associated with camber, chord length, and
dynamic pressure normal to the wing quarter—chord line)

Cr, wing 1ift coefficient (%%)

-cLa. rate of change of 1ift coefficient with angle of attack of
root section at plane of symmetry

c1 section 1lift coefficient
cza section 1ift cogfficient from additional—type loading
czb section 1ift coefficient from basic—type loading associated

with built—in structural twist

Cie total change in section 1lift coefficient due to structural

deflection .
bz change in section 1iPt coefficient dus to structural deflec—
€a tion associated with additional loading
c3 change in section 1ift coefficient due to structural deflec—
b tion associated with basic loading

cy change in section 1lift coefficient dus to structural deflec—
ec'mo tion assoclated with torsional moment due to camber loading

cleAZ change in section lift coefficient due to structural deflec—
tion associated with inertia loading

E Young?!s modulus of elasticity, pounds per square inch

€ total change in section angle of attack due to structural
deflection, radians

ecL change in section angle of attack due to structural deflection
associated with additional loading, radians

€€y, change in section angle of attack due to structural deflection
) associated with basic loading, radiens

! change in section angle of attack due to structural deflection
o associated with torsional moment due to camber loading, radians

e em meem e s eE e e s A e - e A =
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change in section angle of attack due to structurel deflection
associated with inerties loading, radians

built—in structural twist of tip section with respect to root
section, radians

change in section a.ngie of attack due to structural deflection
produced by rigid-wing loadings, radians

° change in section angle of attack due to structural deflection

produced by the aerodynamic loading introduced by deflectionm,
radians .

modulus of elasticity 1n. shearing, pounds per square inch.

distance from elastic axis to section center of gravity
measured normal to elastic axis (positive nmeasured forward),
inches

moment of inertia in bending, inches to the fourth power

polar moment of inertia, inches to the fourth power

section 1ift loading, pounds per inch

section 1ift loading plus section inertia loading for chord
sections defined by ct', pounds per inch

bending moment at any position a.long the swept span in a
plane normal to assumed effective root (see fig. 1),
inch-fpou:ad
dimensionless span coordinate [Y/(b/2)] , fraction of semispan
free—stream dynamic pressure, pounds per square inch
wing area (totel), square inches
semispan measured along elestic éxis » inches

torsional moment at any position along the swept span in a
plane normal to the elastic axis, inch—pound

span coordinate, inches
(See fig. 1.) .

torsional moment representing combined contribution of section
1ift, inertia, and moment to the torsional loading about the
elastic axis at any spanwise station, inch—pounds per inch
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v anguler change in slope of the elastic axis due to bending,
radians
0] rotation of wing sections norma.l to the elastic axis due to
torsion, radians
A angle of sweep of the quarter—chord line, degrees
c/4 (See fig. 1.)

Agg angle of sweep of elastic axis (positive for sweep'back) , degrees
(See fig. 1.)

W total airplane weight, pounds
w section structural weight based. on chord sections defined by
c!, pounds per inch
- tip chord
t tio
A wing taper rati (root chord>
THEORY

The method discussed in this report is developed to apply to the
general case of a flexible wing with built—in structural twist, camber,
and with structural inertia. The essential feature of the method is
the application of relaxationl procedures to the physicel problem of
determining the aerodynamic span load distribution for the flexible
wing. In Pormulating the theory in the subsections of the report which
follow, the unknown asrodynamic span load distribution for the flexible
wing expressed in general terms is applied to the wing togesther with
the known load distribution due to inertia. From the bending and tor—
sional deflections associated with this loading, the rotation (or aero—
elastic twist) of wing sections parsllel to the plane of symmetry then
is derived. An implicit equation thus is obtained for the twist dis—
tribution of the flexible wing corresponding to the finsl equilibrium
position of the wing under the combined aerodynamic, elastic, and
inertia forces. To solve the equation, relaxation methods are applied,
- resulting in a series—type solution for the loading change contributed

by structural deflection. As a final step, the lengthy series—type
solution is converted to an abbreviated solution which approximates the
series—type solution very closely

1In reference 5, relazation methods are shown to provide a powerful tool
in solving redundant problems of structural frameworks, electrical
circuits, and vibratory systems. In the present report the relaxation
approach employed is based on the principles of that reference rather
than the exact procedures outlined therein.

U ) S ettt S T e e T R S b | andd .
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In applying relaxation methods to the present problem, the wing is
assumed to be fixzed in position as the rigid~wing loeding is applied to
the wing and then the wing is allowed to deflect under the applied load.
The wing then is fixed in the deflected position, while the loading
corresponding to the afore-mentioned deflection as found from rigld-wing
theory is applied to the wing. The wing then is allowed to deflect
again. In this way successive deflections can be found which are depend—
ent on the loading corresponding to the previous deflection. In the
formulation of the theory, this procedure is used only to develop the
geries—type solution. Actually in practice the abbreviated solution
previously mentioned is used. In order to apply the method most expedi-—
tiously, available methods for the quick determination of aerodynamic
span load distributions for wings of arbitrary twist and arbltrary plan
form (e.g., reference 4) should be used, With any load dlstribution so
determined and a knowledge of where to apply the load, it is then a
simple matter to calculate the amownt of structural deflection (bending
or torsion) dues to that load using well-imown methods of solution.

Before discussing the theory in detall, 1t is desirable_to establish
the conventions which are used throughout the report with regard to span
load distribution. In accordance with the convention of reference 6 the
spanwise distribution of 1ift on the rigid wing 1s consldered to be sep—
arated into an additional 1lift distribution and a basic 1lift distribution
tion, the additional 1ift being proportional to wing angle of attack and
the basic 1ift being dependent only on built—in structural twist. In
this report, the spanwise 1lift distribution on the flexible wing 1is con—
sidered to be separated into (1) the additional and basic loadings as
defined above for the rigid wing, and (2) an aercelastic loading defined
as that due to the section angle—of-attack changes produced by structural

deflection.

The axes referred to in the report are shown in figure 1, The Y
axlis is the reference axis for all aserodynamic span load distributions
with the' 1ift assumed to act at the quarter—chord line. The wing is
assumed to have an effective root perpemndicular to the elastic axis end
located at the intersection of the elastic axis a.nd. the plane of sym-—

metry.

In the followling discussion, the basic theory is developed in the
subsections, Ioading on Flexible Wing, Aeroelastic Twist of Flexible
Wing, and Evalvation of Aeroelastic Integrals. The details of this
development are described in the following steps:

1. TIn the subsectlon, Loading on Flexible Wing, expressions are
presented for the rumming load and rumning torque on the flexible wing

In terms of the component loading involved.
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2. In the subsection, Aeroelastic Twlst of Flexible Wing, a gen—
eral expression is developed for the twist due to structural deflection
based on the wnknown aerodynamlic loading?2 for the flexible wing and the
offect of inertla as presented in the first section, It is also shown
how the general equation may be broken down to lessen the amount of com—
puting Involved when extenslve aeroelastic calculations are desired.

3. In the subsection, Evaluation of Aeroelastic Integrals, it is
shown how the equation resulting from application of the relaxation
method can be abbreviated to provide a simple and direct means of evalu—
ating the implicit twlst equations presented in the previous subsection.

Based on the background developed in these three sections, an equation
is presented in a fourth subsection, Determination of Span Ioading for
Flexible Wing, showing how the span loading for the flexible wing is

determined from the various loadings involved. The application of the
basic theory to determination of lift—curve slope, aerodynamic center,

and divergence speed for the flexible wing also is discussed in subse—
quent subsections.

Ioading on Flexible Wing

The loads which will produce bending of a flexible wing are the
rigid-wring aerodynamic 1lift (additional and basic), the inertia load
normal to the wing, and the increments in aerodynamic 1ift produced by
aeroelastic twyist. The lifting load per wnit span based on streamwise
wing sectlons can be expressed as

1 = (rigid—=ring loading) + (loading produced by wing deflection) |

(1)

(°1a°q+°7.b°Q) + (c-,'ecq)

If it is assumed that the effect of taper on sweep is small enough that
Ag/4 may be taken equal to Agg and if the effects of inertia or dead
weight also are included, the lifting load per unit span along the wing
penel can be expressed as . .

2T setting up the expressions for aeroelastic twist, it is convenlent
to think of the entire flexible wing loading as belng umknown,
Actually all components are known except the component in'broduced. 'by
gtructural deflection.

e e e R e e e e A e ———i = o B e P e e - o
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vy = (czacngbéq) cos Aea+07,e°q cos Aea‘WAZ_ . (2]

~

The aerodynamic and inertis loadings normal to the plane of the
wing will produce & torsional loading about the elastic axis if their
lines of application do not coincide with the elastic axis. If a wing
has camber there will be another torsional loading due to C;no- In this -
report, the contribution of camber has been taken such as to affect only
torsional deflections of the wing since it was felt that values of
pitching—moment coefficient for sections normal to the quarter—chord
line would more likely be available from two—-dimensional tests. In so
doing, however, it is assumed that simple sweep concepts can be applied
to finite-span wings without serious error. The torsional moment repre—
senting the combined contribution of section 1ift, inertia, and moment
to the torsional 1dading about the elastic axis® at any spanwise station
thus mey be expressed as

ty = (rigid—~ring torsiondl loading) + : 7

(torsional loading produced by wing deflection)

[(czacqwlbcq)a cos Agg —WAzh + c'moczg cos* Aea] + P (3)

.

(clecqa cos Agg)

-

Aeroelastic Twist of Flexible Wing

In this section of the report, expressions for the rotation (or
aeroelastic twist) of streamvise sections of the flexible wing are
derived in terms of simple integrals of shear and moment based on

Smhe torsional loading about the elastic axis at 7 =1, .(where 1, is
an arbitrary value of 11) will be a summatlion of loadings in a plane
normal to the elastic axis. Since this plane will intersect the span—
wise line of application of the aerodynamic or inertia loadings at
some point 7 = 72 (where 0z # 11) an error is introduced, which was
ignored in the analysis.
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elementary beam theory. The general case of the twlst due to the load—
ings on the flexible wing given by equations (2) end (3) is discussed
first, followed by discussion of a convenient way of breaking down the
general expression for aeroelastic twist to facilitate computation when

oxtensive aeroelastic calculations for a.large number of flight condi—~
tions are desired. o .

Twist due to loading on flexible wing.~ The bending moment at any
point along the spen due to the flexible-wing loading will be#

m .0
M =82 f f 1y dndn (%)
1.0 1.0 . )
and the torsion will ‘ne"r
|
T = sf by dn - (5)
1.0 ,

From elementary beam theory

n . .
v=s£ %dn (6)

and.
L
‘P=S£ &5 an (7)

For the case of the swept wing, both bending along the elastic axls
and twisting about the elastic axis cause changes in the streamwise

angle of attack. The change in section angle of attack® due to struc—
tural deflection for arbitrary bending and twist may be expressed as

-

4 Again a slight error is introduced (see footmnote 3) because the various
loadings lie along different axes. To be correct the loadings should
be referenced with respect to the elastic axis rather than Y axis.
The effect of drag on bending moment also was neglected in the anal—
ysis and normal Porce was assumed equal to 1lift force.

Spnis involves the assumption of a straight elastic axis. for the unde—

flected wing and ignores the effect of taper in regard to the rotation
of wing sections due to torsion.




S T

10 NACA TN 2222

€ =—9v 8in Agg + @ co8 Agg’ (8)

Tn the case of swept—back wings, the two terms of equation (8) will be
of opposite sign. For swept—forward wings, the terms are of like sign.
Substituting as required in equatiom (8), we have

1 1 A
€ =—88in Agg ]—g-:dq+scos Aeafld:q
o o Gd
. | !
1 [ [ 1y dndn
[ - 1.0 1.0
. = ssinAeaf BT dn + (9)
o
1
N Jip twdn
82 cos Aeaf dq
o GJ J

If substitution is made for 1y and +t; from equations (2) and (3) and
if the terms are arranged in such a manner as to show clearly the
various types of loading which contribute to the streamwise twist of a

flexible wing, the expression for e becomes:S

e

_Equation (10) consists of nine terms. The word description given oppo—
site each term on page 1l merely gives a physical explanation for the
existence of the term for the convenience of the reader.
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sin AQJ
o
i
1
cos AeJ Lo

o

’ U]
1/

(o]

)

cos Aea‘/;

sin Ae%f
o

Yol o

C1504 CO8 Aggdndy

cza

EI

cgqa co8 Aggdn

fTI

1.0"1.0

d
GJ L

clbcq cos Aggdndn

cl_bcqa cos Aggdn

EX

a
GJ 1

f cmoczq cos* Aggdn

nem
"iokho

a
GJ i

wAz4ndn

a
EI 1

a
cos %Jnfl hAz'qn

n M
sin Ae?.-/qrl fl.ofl. cle
(o]

co8 Agg

0

cq cos Agg dndn

yl
J1.0°%1

ET

cqa co8 Agadn

a
GJ g

dn

dn

(10)

I
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I

(1]

[2]

[3]

[4)

(51

[6]

[Tl

[8]

[9]

1

twist due to bend-
ing caused by

additional load of

the rigid. wing

twist due to tor—
sion caused by
additional load of

the rigid wing

twist due to bend—

ing caused by
basic load of

rigid wing

twist due to tor—
sion caused by
basic load of

rigid wing

twist due to tor—
8ion caused by
'%_ of rigid.

g

twist due to bend—
ing caused by
inertia loads

twist due to bor—
sion caused by
inertia loads

twist due to bend—
ing caused by
aeroelastic
loading

twist due to tor—
gion caused by
aeroelastic

loading

It is evident that the first seven terms of the preceding expres—
sion give the twist due to various types of loading of the rigid wing.

The computation of this portion of e

e e e F——— e v s = e — - -

is fairly straightforward; however,
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the last two terms (terms [8] and [9])include 1 (which is a function
of €) so that an explicit solution for these terms is not immediately -

apparent, .

Twist associated with individual loadings.— As already stated, the
purpose of the method presented in this report is to determine the aero—
dynamic spanwise load distribution for a flexible wing. If this load
distribution is desired for only a single set of flight conditions
(involving a specific combination of Cf, q, and A4Ay), the over-all
effect of flexibility is expressed by equation (10). However, normally
i1t 18 desired to examine the aercselastic effects of a wing over a wide
renge of Cp, q, and Ay and for various combinations of these factors.
Therefore, it is usually more convenient to separate c;_  appearing in
terms [8] and [9] into the components €y 3Gy 5 Cq e’ and c,

©g ©bh ecmo eAZ

associated with Clq? %1y c;"o s and AZ,' respectively. The advantage

of solving the problem in this way lies in the fact that only one
detailed computation of the components of c¢3, need be made. This
simplification arises from the fact that (1) -Cleg is proportional
to Cp, (2) ¢y and cy do not depend om Cp, and (3) oy

b °c§n° eAZ
is proportional to Ay (or to Cj for a givem q and W/S).. It is
possible also to perform the calculations for mit built—in twist and
wit camber effect. The terms of equation (10) therefore can be
separated into several components as follows:

1. Tyist for additional losding only.— The aercelastic twist

€gyyassociated with the additional loading, consists of terms [1]
a.nﬁ" [2] of equation (10) plus the portions of terms [8] and [9]
contributed by Clgg® Since the additional loading is proportional

to C1, €cy, can be put into the following form: -
noM (czac
cos Aggdndn
_ 3 nf 1.0 fl .0 cI-"a.v) et
€cy, = Cr,|"Cayd 8°81In Agg BT — dn +
(o] .

¢y C
n (“la’ & Voo Aggdn
1.0 \Ciay Cav o8 an —
GJ

nJ
QCqy 8> €08 Agg L -

czec
1 ( a'>cc:sA dndn
J1 .10 \Cifey o8 an +
BI ’

8 1
 GCgys BIn Agy I

ey e\ :

1 leg, ) Y .
] 1 ! 1.0 (cI.cav 008 fea Cav n a (11)

gcgy 8= co8 Agg ¢ GJ L
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Tn this equation the terms within the brackets are based on unit
Once these terms have been evaluated, eoL may be found for any value
of € simply by multiplying by Cr,.

2. Twist for basic loading only.— The aerocelastic twlst e¢, ,
associated with the basic loading, consists of terms [3] and [4] bo:t‘
equation (10) plus the portions of terms [8] and [9] contributed by
czeb. Since the baslc loading 1s proportional to bullt—in twist,

ee'b - can be put in the following form:
C'L (] )
1 0 D Jeos Agadnd
o s 11fl.o'rl.ca<€'!>1-."a-v sa™ Tld +
ee-b - e'bt —QACqyS S‘l‘.P. Aea. EI T
o
cL.C
th a
> n ‘r;.].o (ebtca‘T)cos fea Toy o
gcg, 282 cos A f dn - ‘
a8, o GJ .
1 .1 :ff’_t:_
cos dnd:
s nfl.of1.0< 'D-l-,caV> fea®nM
gcgys® sin Agg BT - dan  +

o

clebc o .
| e J—— COS d
le / 1.0 (ebtcav Cav Seadn

qCgy282 cos Agg T dn] (12)

In this equation the terms within the brackets are based on unit
structurel twist of the tip section for a given spanwise distribu—
tion of twist. Once these terms have been evaluated for this dis—
tribution, €¢, cean be foupd for any amount of twist having the
seme distribution simply by multiplying by €by e

3. Twist for camber loading only.— The aercelastic twist ec’mo,

associated with the torsional moment due to camber loading, consists
of term [5] of equation (10) plus the portions of terms [8] and [9]
contributed by °lec‘m° « Since the torsion due to canber depends

upon the emount of cember (or the value of cmg),. ec'mO‘ can be put
in the following form, provided the camber is constant across the

span:

(o]

cmem |, premeren e — s memapem— ey e e o I s e Lt e P I
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k! 4
1 J1 0 [0.0l(é—;)z cos Aea.]dﬂ .
[ i -

(o]

S

€y, = -6% {q_cavasz cos Agg

noen (Slech
S f ( = ) cos A, dndn’
dcgys® BIn Agy f e

(o]

dn +

cZec'mo [+]
! a
( Cav > Cav cos Aggdn

"1 .0
Qcav232 cos Aea. £ 57 dﬂ} (13)

In this equation the te}'ms within the brackets are based on a umit
camber equivalent to cpmy, = 0.0l. Once these terms have been
evaluated, €cy may be found for any amount of this type camber
by multiplying by Cmo/0.0l. In the case where a spanwise varia—
tion in camber is employed, the same procedure adopted for €

can be used; that is, calculate the terms within the brackets for
a given camber distribution and then use c'm, &t same representa—
tive section as the scale factor. : .

4. Twist for inertia loading only.— The seroelastic twist €pg,
associated with The Imertis loading, consists of terms [6] anmd [T
of equation (10) plus the portions of terms [8] and [9] contributed
by cleAz' Since the inertia or dead-weight loading is proportional

.to Ag, EA-Z can be put in the following form:

| s 1"1.0 1.0 &Y
€ag = Az ["a.vs sin Aeaf EI dn -~
(o)
n B g
o o nJ1.0 Ty Cay
Cqy- 8- €05 Agg f : dnq -
o GJ

. 1 M c
1 | N (cleA 5 > cos Aggdndn
aCays® 8in Agg f . 10 220 2 E;‘v

o
T 5= &
2.2 Y f:. 0 <—°?3AZ av) Cay C°F A gadn an | (k)
gCgy=8= €08 Agg A T M ,

dn +




NACA TN 2222 15

In this equation the terms within the brackets are based on a
structurael weight at 1lg. Once these terms have been evaluated,
€ may be found for any load factor simply by multiplying by Ag.

Al
It Zshould be remembered that in conmbining the effect of A ven

by this equation and the effect of Cj, given by equation (11), it
is necessary to adhere to the following relation, in order to retain

any physical significance:

Ay = %g-

Evaluation of Aeroelastic Integrals

Swe ac 5.~ As has already been discussed, terms [8] and
[9] of equation %10) are not immediately solvable; however, as shown in
the appendix, the solution of these terms can be expressed as a power
series in q of the followlng type:

Ac(n) = £1(n)q24£2(n)e® + £g(n)a%+ . . . £nlq)g®* (15)

Equations (10) through (14) can be expressed, therefore, in series form
ag: . . . '

e(n) = +£5(n)a+€1(n)a3£2(n)q® + £5(n)a* + . . . £p(n)g® (16)

where the coefficlents are determined by the particular requirements of
the equations (10) through (14) in mind. In this series (equation (16))
the values of successive terms are of opposite sign. If equation (16)
is divided by f£o(n)q, we have

eln) _ 4, £1(n) q+ £2(n)
£5(n)g "~ £o(n) £o(n)

2+ ... (17)

As has been shown by 0. K, Smith in en unpublished Northrup report,?
succeeding terms of the series are very mnearly related by a constant of
proportionality so that equation (17) can be written as:

e(n)

m:l—kq+k2q2... (18)

7 similar approach also is contained in outline form in referemce T
under the section titled Effect of Wing Twist.

e e drmmate mem s n wae mmama = s = e S ——— s e e == J——
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where® :
- f1(n) __ £2(n)

= s ote.
£5(n) £1(n)

As also shown by Smith, the.geries of equation (18) represents an
expansion of 1/l+kq so that e(n) can be written as:

e(q) = i'fﬁ £,(n) (19)

In these equations, £,(n) corresponds to texrms [1] through [7] of
equation (10) (or the first two terms of equation (11), (12), or (1k),
or the first term of equation (13)) with q set equal to wmity. The
Tunetion fl('q) corresponds to the twist produced by the aerodynamic
loading obtained from f,(n) by the method of referemce 4. With £,(q)
.and f,(q) determined, the twist distribution of the flexible wing
e(n) can be quickly determined for any value of g by equation (19).
Then, having e(n), it is a relatively simple matter to get °'I.e("|) by

the method of reference I, which is based on the Weissinger simplified
lifting-surface theory and is generalized to permit determination of
load distribution for a wing of arbitrary plan form and arbitrary con—
tinuous twist distribubtion. The reference can be used to provide
c3,(n) for either a constant 1lift amalysis or a constant angle—of-—

a'b%ack analysis.,

It should be noted that the series represented by equation (16)
will diverge at some value of dynamic pressure, depending on the struc—
tural rigldity. 4n outstanding advantage of equation (19) (in addition
to being brief) is that no such mathematical difficulty will be encoun—
tered so that the aercelastic effect at any dynamic pressure can be
caloulated. :

8n practice, 1t is usually sufficiently accurate to determine Xk as:
_t 1(n)
fo('l)

Since curves of the functions fo(n) and f£3(n) will gemerally not be
of exactly the same shape, the valus of k will vary somewhat across
the span. In the case of the example wing, the best approximation was.
obtained by using the value of k at 1n=1.0 slInce at that station the
twists given by successive twist distributions (as evaluated using the
series—type solution) were almost exactly proporticmal. It should be
noted that the shape of a given e curve as found from the series—type
solution will differ slightly, in general, from the shape given by
fo(n). It has been found, however, that the differences in curve shape
encountered do mot affect c3.(n) significantly.

-
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Swept—forward wings.— The method can be applied with approximately
the same accuracy to a swept-forward wing by rewriting equation (19) so
that a minus sign appears in the denominator of the function contain—

ing q.

The equation then becomes

£o(n) _~ (20)

q
e(n) = Tom
the minus sign arising from the fact that the series for a swept—forward

wing (equivalent to equation (18) for a swept-back wing) is
1+kq+k%®+ , . , which 1is merely an expamsion of 1/1-kg.

Determination of Aerodynamic Span Ioading for Flexible Wing

The- preceding sections of this report have laid the backgrowmd for
determining the aerodynamic span load distribution for a flexible wing.
From equation (1) - . :

2 _ )
T = %l Hopt * 01,° (21)

From equation (19) it is evident that the distribution of c1,C across
the span can be written as .

0140(n) = g £ [ £o(n)] (22)

For g=1.0, this load distribution can be written as
[, o(m)] = =2 [£5(n)] (23)
ze gd= 1.0 1+k »"0

If solution of fF[f,(n)] from equation (23) is substituted in equa—
tion (22) and the resulting expression for C1,C 1s then substituted

in equation (21), equation (21) cem then be written

1 g(1+x)
3= %1a® *OuC * T (c:-,,ec)qﬂ.° (2k)

If the following relation

" Clg = Ol + Ol + czec,mo + czeAZ

is substituted in equation (éll-) and 1f the various terms are written as
loading coefficients, equation (24) becomes

- - e M im t t e e e e v f % et e b e —— e - - = Wt o e — — ——
o . .
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1 B czac . cl.bc . -
3eay ~ \ Gday/) =t oy

- .

Cl, ' C c c
1+k Clog® Clgpt ec le
q:(mq) [ cI_caL )CL + e et (A“"‘LGA Az]-
av ‘ av . “av Zlav Q=1 .0
a (25)

With the various asroelastic loadings evaluated for q=1.0, it 1s a simple
matter to calculate (1/acey)fi) for the flexible wing for any combination
of q 3 CI‘ 2 B.Dﬂ. AZ. :

Stability Parameters for Flexible Wing

Iift—curve slope.- The lift-surve slope for the flexible wing can
be found by either of two methods, depending om whether the viewpolint
adopted originally was that of comstant 1ift coefficient or constant
angle of attack. Both methods are presented here for convenience:

1. Constant lift-coefficient amalysis.— The asrocelastic span
load distribution resulting from a constant 1lift analysis is a
basic—type loading, which yields zero 1lift when integrated. In .
solving for the aeroelastic loading by the method of reference b,
the angle of attack of the wing root ay reguired to obtaln zero
over—all 1ift also is obtained. This angle of attack represents
the angle through which the wing root mist be turped in order to
maintain & given wing 1ift coefficieént for the flexible wing &t all
dynamic pressures. If the lift—curve slope for the rigid wing is .
known, the lift—curve slope for the flexible wing cen be found
graphically by simply laying off the value of ap in the proper
direction Prom the rigid-wing 1ift curve (increasing wing angle of
attack for swept-back wings) at the O3, for which the value of ay
was obtained. This procedure is indicated in the following sketch
for swept—back wings: C s
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v N

The value of o, is made up of (1) the cantribution associ—
ated with rigid~wing additional loeding and (2) the contribution
associated with inertia (or dead weight) loading, since only the
contributions associsted with these loadings are proportional to Cy,.
These conbtributions are given by the velues of o, associated with
Cley (n) and ¢, (M), respectively. These loadings are found from

' eq_ua:bions (11) end (1%) previously presemted. Lift—curve slope for
rigld wings is given directly in reference 4k for a wide range of
plan forms, ’

2, Constant angle—of-attack analysis.— The aerocelastic span
load distribution resulting from a constant angle—of-attack analysis
is similar to an additional-type loading and yields a 1ift when
integrated. For a swepb—back wing, the change in 1ift resulting from
integration of the aeroelastic loading associated with the twist of
equation (19) can be written as )

g, = —2— A0y, (26)

q
1+kq
where

ACy, 1ift coefficient resulting from integration of the asroelastic
loading corresponding to €(7)

Ay, 1ift coefficient resulting from integra.tion of the aerocelastic
loading corresponding to f£o(n)

. C ot v e a2 - R A e —worm e Ser et remee— — —_———
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The 1ift coefficient for the flexible wing (swept—back) therefore
is .

Cr, = Cr,, — Tog L. (27)

Where
cLo 1ift coefficient of the rigid wing

If equation (27) is divided by the erbitrary angle cf attack, the
lift~curve slope for the flexible wing can be written as

(or g = (o), (- i 2 (28)

_ where the subscripts F end R refer to the flexible and rigid
» respectively. In the case of a swept—forwerd wing, equation
(28) becomes ’

(cIu) = (Cr,) ( 1quzI'L: (29) .

Aerodynamic center.~ The accepted definition of aerodyrnamic center »
of a rigid wing is the centroid of all the additionsl loads. It is evi— .
dent that on a flexible wing the 1ift increment due to angle of. attack
includes not only an edditional-type load (in the rigid—wing sense) but
also a varying amount of aercelastic- 1ift. The effective aerodynemic
center of a flexible wing will thus differ from that of the rigid wing
but will still be the centroid of 'all the additionsl loads. Im stability
analyses, it usually is customary to neglect the verticeal location of the
centroid since the effect of drag on stablility normally is negligible.

The varying amount of aercelastic 1lift is made up of (1) the com~
Ponent associated with the additional loading and (2) the component
assoclated with the inertia (or dead weight) loading, since only the
camponents assoclated wlth these loadings are proportional to Cy,.

These components, cz (q) and cZeAZ(q), respectively, are defined by

the twist distributicms given by equations (11) and (1%) previously pre—
sented. With °le () and cle (n) determined, the aerodynamic cen—

ter of the flexible wing can be founﬂ. by any method for determining
centroids, remembering that the chordwise load is assumed to lie along
the quarter—chord line of the wing, The same method is applicable, in
general, whether the analysis adopted is for constant 11ft or com.stan‘b
angle of attack.
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Divergence Speed for Flexible Wing
The ease with which divergence speed can be obtained from equations

(19) and (20) is worthy of brief mention also. IP equation (19) is dif—
ferentiated with respect to q, +the derivative becomes

g <) = ey o) (30)

The condition for divergence is that the derivative (d/dg) e(q) must
equal infinity. To satisfy this condition,

1+ kg =0 (31)

vwhere gp "1s the divergence dynmamic pressure, so that
' 1
9 =— (32)

In the case of a swept—forward wing, differentiating equation (20) and
proceeding as before yields

dp (33)

L [

Equations (32) and (33) show the familiar fact that a swept—forward wing
will diverge at some positive value of q while a swept—back wing will
not diverge abt any positive valus of q.

AFPLICATION
Computing Forms

Computing forms to ald in solving for the change in span load dis—
tribution dve to wing flexibility are presented in table I. The basic
date needed to perform the calculations are shown in table I{a). Tables
I(b), I(c), I(d), and I(e) are for the purpose of computing the functions
(£5(n) and £1(n)) for each of the rigid-wing loadings, amd require essen—
+1811ly the same operations., Any differences noted are merely for ease in
bandling the computaticns for a given loading. Table I(f) is essentially
the same as table I(c) which 1s for basic~type loadings. The only dis.-
tinction between the two forms is that table I(£) is for the aercelastic
loading introduced by wing deflection and table I(c) is for the basic
loading due to built—in twist. With one exception these forms consist of
separate calculations of bending deflection (colums 4 through T) and of
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torsional deflection (columms 9 through 11).- The single exception is
table I(e) for camber loading (cp,) which does not require bending com—
putations for obvious reasons. The last coluwmm (colum 12) in each
case 18 the sum of the bending and torsional deflections in terms of
streamwise angle—of-attack change. This column yields f£,(n) ‘in the
case of tables I(b), I(c), I(d), and I(e) and yields f£i(7) in the
case of table I(f). The column headings are either self-explanatory or
are explained in the computing instructioms following the tables, In
the compubting instructions operation A integrates the rummihg load
normal to the wing to obtaln the shear at designated spanwise stations,
Operation B integrates the shear curve so obtained to determine the
bending moment at the same spanwise stations, Operation D integrates
the ruming torsional load to obtain the torsional moment at the same
spanwise stations. The simmations are performed as indicated from

n =10 to 3 =0. Operation C integrates the M/EL curve to obtain
the slope of the elastic axis at the chosen spanwise stations., Opera—
tion E integrates the T/GJ curve to obtain the twist about the elastic
axis at theo same spanwise stations. The sumations in these two opera—
tlons are performed as indicated from n =0 to 7 = 1,0. The
Integrating operations have been set up in accordance with the trapezoi~—,
dal rule for approximate integration. The spanwise stations used in
the computations, therefore, should be of sufficient number and of
adequate spacing so that the integrations will not be subject to signif—
icant error. i

Tumerical Exsample

The solution procedure indicated in the preceding section of this

"report has been applied to a relatively flexible example wing of moder—

ate sweep and high aspect ratio. Compressibility considerations were
neglected in the present example, since the modifying influence of com~
pressibility is small compared to the isolated, primary influence of
dynemic pressure. The geometry of the example wing is shown in figure 2
together with curves of the structural—stiffness data used in the cal-—
culations. The wing has an aspect ratio of 9.43, a taper ratio of 0.42,
and a sweep angle of the quarter—chord line of 35°. As indicated in
the figure, the elastic axis is located at 38—percent chord.

The rigid-wing loading curves used in the calculations are shown in
figure 3. The aserodynamic loadings (additional and basic) were obtained
from reference 4, neglecting compressibility.® The additional-type

®For the reader interested in including compressibility, it should be
noted that the method of reference U accoumts for compressibility
effects on the basis of linearized compressible flow theory so that
the modifying influence of compreéssibility can easily be included
using that reference by merely following the procedure outlined
therein, ’
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loading corresponds to an over—all wing lift coefficient of 1.0 and the
basic loading corresponds to a linear twlst distribution having 1.0°
washout at the wing tip. The dead-weight shear distribution was obtained:
from welght estimates for the wing. The abrupt shear changes shown are
due to the concentrated masses of the engines. The camber loading was
o})ta.ined assuming constant cember across the span equivalent to _

Cmo = - Ocol- )

Loading.— Computations for the example wing assuming only the addi-—
tional loading to exist and based on a oconstant 1ift analysis are pre—
sented In table IT to illustrate use of the computlng forms, Table
'II(a) presents the gecmetric and structural parameters for the example
wing for specified stations along the semispan. Table II(b) presents
the calculations for the angle—of-attack redistribution from which the
function fy(n) 1s found. The function f£3(n) 1s found from the
angle—of-attack redistribution calculated in table IT(c). In table
II(b), the loading used is the additional loading. In table IX(c), the
loading used 1s the basic loading found from the twist distribhution cal-
culated in table II(b). The functions £f,(n) and £3(n) and the ratio
£3(n)/£o(n) are plotted in figure % against spanwise station 7. The
ratio f;,_?'q) [£o(n) 1s plotted for the purpose of illustrating the
differences in curve shape between the functioms fy(q) and £3(n).

As can be seen from the figure, the distributions of twist (as defined
by the shape of the curves) for fo(n) and f£,(n) are somewhat dif-—
ferent due ta the fact that fo(n) was determined from an additional
loading and £,(n) was determined from & basic loading. In spite of
the difference shown, however, the assumption of proportionality between
successive terms of the series is sufficlently close to provide a good
approximation since basic-type loading is affected very little by dif-—
ferences in curve shape such ag shown In the figure., As can be seen
from the figure, a large variation in f£i(n)/£,(n) - across the semispan
can exlst so that it is important to choose the value of this ratio at
the proper value of 7. As stated earller, the best approximation to
the series—type solution was obtained for the example wing by choosing
the valus of £3(7)/fo(n) at the tip station. These remarks also apply
i1f & constant angle—of-gttack analyeis 1s adopted.

The aeroelastic loadings associated with each of the rigid-wing
loadings are presented in figure 5 for several values of dynamlic pres—
sure as obtained from the constant—1ift emalysis. With the solution in
the form shown in the flgure, the computation of the spanwise load
distribution for the flexible wing can be foumd relatively simple for
eny set of flight comditions and any set of camber and twist distribu—
tion similar to that assumed merely by cambining the loading for the
rigid wing with the proper combination of basic loadings due to deflec—
tion as indicated by .equation (25). As has already been pointed out,
such a computing shortcut 1s made possible by the linear aerodynamic
and struotural theory of the analysis which renders the deflection
loadings (at a given dynamlc pressure) proportional to either Op, Ay,

B T T e e e e e - ———— -
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epyr OF c;no » depending on the rigid—wing loading involved. The aero—
elastic loadings for a constant angle-of—attack analysis are not pre—~
sented since the proper combination of meroelastic loadings is believed
to be iIndicated sufficiently by figure 5. .

Stability parameters.— Since no experimental date were available
with which theoretical span load distributions of a flexible wing could
be compared, the validity of the method was checked to some extent by
comparing predictions of lift—curve—slope change and aerodynamic—center
shift with those predicted by the methoc‘l of reference 1.

The variation in lif'b—curve slope with dynamic pressure for the
example wing, as calculated by the procedures outlined earlier in the
report, is presented in figure 6, neglecting the modifying influence of
compressibility. In the calculations, a rigid—wing lift—curve slope of
0.071 obtained from reference U4 was used. In the Pigure, & curve
showing the slope variation according to the method of reference 1 also
is presented for comparison. As can be seen, agreement between the two

methods is very good.

The spanwise shift in the centroid of the additiomnal loads with .
dynamic pressure for one panel of the example wing 1s presented in
figure T together with the corresponding shift in aerodynamic center
parallel to the plane of symmetry. At a dynamic pressure of 500 pounds
per square foot, the spanwise shift is shown to be inboard by &bout
6 percent of the semispan. The corresponding chordwise shift is ‘shown
to be forward by ebout 20 percent of the mean aerodymamic chord. Good
agreement with the predilction of reference 1 1s shown again.

Amgs’ Aeronautical ILeboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif., July 31, 1950.

; Sm - -
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APPENDIX

DERTVATION OF WING TWIST POWER SERTES

In the text of this report, the streamwise twist of a flexible,
swept wing is given by equation (10) as a summation of terms due to the
various rigid-wing loadings and the aeroelastic loading introduced by
flexibility. Equation (10) can be sumarized as follows:

e(n) = ey(n)+ae () (a1)
where -

€o(n) the twist of the flexible wing dus to the total rigld—wing
loading (as given by terms [1] through [7] of equation (10))

and

Ae(q) +the twist of the flexible wing due to the aercelastic loading (as
given by terms [8] and [9] of equation (10))

As stated in the text, the value of Ae(n) in the above equation
cannot be evaluated directly in any explicit manmmer so that a method of
successive approximations must be employed.

One method for evaluating €(n) 18 to adopt the obvious iterative
approach and compute €(3) by successive approximations to A€(q) wntil
sufficlent accuracy is obtained. A more convenient method, however, is
to apply a relaxation procedure to the determination of A€(n). In this
mothod, the wing is assumed to be fixed In position as the rigid—wing
loading is applied, end then the wing is allowed to deflect under the
applied load, resulting in the streamwise twist distribution eg{q) of
equation (Al). The wing then is fixed in position again and the rigid—
wing loading is removed. The aerodynamic loading corresponding to
€o(n) then is applied to the wing and again the wing is allowed to
defleot (1n accordance with the applied load only), resulting in a new
twist distribution. In this wey successive twist distributlons can be
found which are dependent upon the aerodynamic loading corresponding to
the previous twist distribution. The final twist distribution for the
flexible wing can therefore be expressed as

e(n) = e (n)+Aer(n)+Aea(n) . . . + An_l.(n5 | _ (A.2.)

Comparison of equation (A2) with equation (Al) shows that
A€(n) = Ay (n)+aea(n) . . . + a%(n) - (a3)

T et T T e g -
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Now since ©
A€y(n) = F [clel("):l .o
and
g, (W = 7 :eo(n)j
where
€o(n) =a F -07,("1)-
or - )

€s(n) = q £,(n)
1t is apparent that equation (AlL) ca.-n 'be written as

pea(n) = g2a(n) | (85)
Similarly, : ' : . -

ace(n) = a 3] e, () | . (16)
Where . ;
c105(0) = 2] Al

so that, with equation (A5), it is apparent that

l}ez(ﬂ) = qsfz("]) (AT)
In like manner .

acy(n) = @™ gy(n) (a8)
S these expressicns, the nota.tigms .f [ ] . and F[ ] merely

indicate the general dependence of loading and twist on the associated

twist and loading, respectively. The notation fn[ ] indicates
e specific function.

-~ - .o e - . P
3 2
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It should be noted that for a swept-back wing each new twist dis—
tribution calculation by this procedure will be of opposite sign to the
twist Immediately preceding, since successive asrodynamic loadings will
exert bending moments of opposlite sense due to the benmiing-twist rela—
tionship for a swept-back wing. Summing the successive contributions
to Ae(q) of equation (Al). as given by equatioms (A5), (A7), and (A8),
we have '

Ae(n) = ézf;(n) ¥ q“f’fa(n) + ..o a®en(n) ' (29)

Bubstituting in equation (Al) for eo(n) by the relation given under
equation (A%) and for Ae(n) as given by eguastion (A9), it can be .seen
that the twist distribution for the flexible wing can be expressed as a
power serles in q as follows:

€(n) = afo(n) + a®2(n) +a%=2(n) +. . . a® _,(n) (a10)

P L T T e e s T e
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TARIE TI.— SUGGESTED COMFUTING FCRMS FOR CALCULIATICN CF THE FUNCTIONS

fo(n) and #£,(n) DUE TO WING FIEXIBILITY

(a) Wing parameters
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TABIE I,— CONTINUED

Ot

Ty m—mae =

(b) Additional loading
1 2 3 L] 5 6 7. 8 9 10 11
/2= |
TI .
@n+l-®n. c cos Agg | A| B @XA c @XA D @XA E ®+@
2 ®la " gy . [v 81n A ) > cos Ag
Cr, = 1.0 'q = 1.0 pei
] (¢) Basio loading
I - - 3 5l 5 1 - 6. T 8 91 10 1

G, =0 _ q = 1,0 pei
ebt o = rad..
Note: A refers to indicated colum in table I{a).
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TABIE I.—- CONTIEUED
(8) Dead weight loading
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TABLE I.— CONTINGED

(£) Aerocelastic loading
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TABIE I.— CONCIUDED

(g) Computing Instructions.

A (col. 4)

® - Z:= 1-0.<®n+1 ) ®n+l +®nx®n>

(eol. 5)

© - Z: =1.0 @nﬂ > ®n+l ) @n‘x ®“>

- W

Q

(cole T)

O W CREICNEIGRIGN

D (col. 9)

® - +Z: _ 1.o<n+:|. JON nx ®n>

E (col, 11)

@ = Z:Il:o <®n—1x®n—1 +®nx@n>‘

A
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TABLE Ii.- SAMPFLE COMPUTATION ¥FCR EXAMPLE WING BASED ON ADDITIONAL-TYFE LOADIRG

(a) Geometric 'and, structural perameters.

_ Oh% o
= U Ll

ca:v = l!"TnT in.

1 3 5 _6 T 8 9 10

o Kl?‘EI lo o Ko/ ° coseAea = 2 8 €p
n [Qbdn.2) 5.043 X 10%° | (1b—4n,2) | _2.26h x 1020 ¢ = @ 6av | (zea)

0 |9.84x10%° 0.513 9.70a0%°|  "0.130  |26.7 | 0.983  f0.965 |0.1561 ] 0

.1 19,00 560 T.17 176 2oh.0 | «925 B55 | Jab7e]  L00079
.2 |7.50 . 6T2 h,01 257 191.6 870 755 | .1380| .00168
.3 }5.68 .886 3.35 377 179.3 .813 6611 .1292] .00270
A ]3.93 1.283 0,20 575 '-165.9' 5T STk | -1203] 00387
5| 2.77 1.821 1.58 .800- 54,7 . T0L Joz | 111k | o022
6 | 17T 2,849 1.20 1,053 12,2 U5 - _u_{s 202k | 00682
.7 }1.38 3.654 .90 1.hok 129.6 .588 .346 | .0933] .00873
81 .97 5.199 65 1,945 17,3 | .53 283 | .o845| .o1103
9| oTH 6.815 R 2.669 105.1 MHTT 227 o757| .01385
1.0 | 0.66x10%0 T.641 | 0.28x101° b.51h 92,7 420 176 | 06671 .0MTES
Agg = 35.0° cos Agg = 0,819 8in Agg = 0.5Th U
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(b) Calculstion of the functian £,(7).

1 2 3 k 5 6 T 8 9 10 11 12
A% -

n " ﬁ?g ¢ cos : ’ c R €o

@1; %1y, ca,vAea A 2 @ X.A (v sin Ag,) @ XA D @ x é (¢ oos Ayy) @ +@
o] 0.5 0.897 (0.808 |0.363 | 0.1862 | 0 0.140 |o0.0942| 0.0022 0 0

=l 05 906 . »T18 | .287 «1607 —, 0174 .133 .0805| .0lk2 .0013 - 0151
.2 05 .922 627 [ 220 1478 ~,0328 12y | .0675( .0173 .0029 —.0299
3l .05 93 | o3| 62 | abze | —oums 121 | .o551] .oeo8 0068 | —.okes
o4 .05 .932 Jl | .113 1450 —.0618 - J12 | 0434 0850 0071 —, 0547
Sl .05 .91k 349 | .o73h | .1337 | —.0757 02 | .o3z7| .os62 .0097 | —.0660
6 05 .88 259 | .0k30 1205 1 —.0886 000 | .0231] L0243 0122 —, 0764
Jl 0 W05 023 JATh | 0213 0778 — 07T LO0147] 0206 014k —. 0842
8l .05 <737 ] «096| 00781 .0406 —, 1045 062 | .0077{ .0150 0162 —-,0883
.9 .05 591 030 ] .0015| .0102 —.1070 o5 | ,0023] ,0062 0173 —.0897
1.0 .05 0 0 0 0 1075 0 0 L0176 ~0900
‘cLu;j_.o q = 1.0 pei W
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(¢) Caloulation of the function £1(n).

1 3 4 5 6 T 8 9 10 11 12
.‘}T‘u’g ’ . Asl
- i c | E
N [OW O R R B AW Y J@x@\ p DA 1D+@
2 ‘ey  Cav : TSy BMAeaJV —~— p cos A ™
0 0.05 0,12k o.'0025 —0,01696]~0,00870| O 0,019 |0.00192] 0.00025| 0 o)

Al .05 .116 —,0095| —.01661| —.00930 .00090 | 0171} .0009 | .00002] .00001 .00091
L2 - .05 092 —,0199{ —.01017] .01017 .00187 | .0127 |—.00140| —.00036] —. 00001 .00186
‘3 '05 — -0527 7_.l =L '7".0127977""00171736 .0029? .006'[ —-m237 —-00089 - QOOEBS
o .05 007 -.0300] —.00994| —.01275 ,00416 .0008 |-.0c027l{ —.00158 | —.00019 .00397
5 05 —.032 —.0288) —.0700 | —.01275! .0054% ! ..0036!—.00260| —.00208| —.00037 -00507
6l. .05 ~.061 -, 0P42] ~.0435 | ~.01239 .00670 | —~,0062|-.00211] —,00222| —,00059 .00611
o7 .05 -072 —,0176] —, 0206 | —.00826 L00T73 | —.00661—.001L 7 — 002041 — 00080 -Q0693
.8 .05 —.073 —, 0104 | "—,00086] —.00H4T .00837 | —.0062]|—.00083] —.00161| —.00098 -00739
.9 05 —.067 —.003%| —,00017 —.00116 ,00865 | —.0051}—.0002§ —.00070| —.00110 00755
1.0 .05 0 0 o) 0 00871 | O 0 0 —.0011% 00757
g = 1.0 pei <A
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Figure 6.- Variation in [liff-curve-slope ratio with dynamic pressure for
example wing. ’
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