-

NACA TN 2232

@ https://ntrs.nasa.gov/search.jsp?R=19930082874 2020-06-17T21:51:36+00:00Z

GOVT. DOC.

y’a/vz//s (/2232

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

TECHNICAL NOTE 2232

STRESS AND DISTORTION ANALYSIS OF A SWEPT BOX BEAM
HAVING BULKHEADS PERPENDICULAR TO THE SPARS

By Richard R. Heldenfels, George W. Zender,
and Charles Libove

Langley Aeronautical Laboratory
Langley Air Force Base, Va.

Washington
November 1950

E GO B TAGEBRARY
[:;‘P"U\’ QQ “Ch:_l‘\;{;v‘ M’W

LOGY DEP'T. ,A DEC 1 1950







NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2232
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SUMMARY

A method is presented for the approximate calculation of the
stresses and distortions in a box beam representing the main structural
component of a swept wing with a carry-through section and with bulk-
heads perpendicular to the spars. The outer and carry-through sections
of such a wing can be analyzed by existing methods if some means is pro-
vided for analyzing the triangular section which connects them. In the
method presented the triangular section is divided into free bodies and
then equilibrium and continuity are established between these bodies.
The result is a system of linear equations which can be solved for the
rotations and translations of the three vertical edges of the triangular
section.

The application of the method is illustrated by a numerical example
and the results are compared with previously published test data. The
agreement is fair, with the principal discrepancies being due to the
fact that the method is based on a very simple type of idealized struc-
ture which prevents the appearance of shear lag in the results. Exten-
sion of the basic approach to permit the inclusion of shear lag is
indicated. The effects of the shear and bending flexibility of the
bulkheads bordering the triangular section are investigated and are
shown to be important.

INTRODUCTION

Experimental investigations of swept box beams (references 1 and 2)
have shown that the stresses and distortions in a swept wing can be
appreciably different in character from those that would exist if the
root were normal to the wing axis. The principal effect of sweepback on
the stresses occurs under bending loads and consists in a concentration
of bending stress and vertical shear in the rear spar near the fuselage.
With regard to distortions, the effect of sweep is to produce some twist
under loads that would produce only bending of an unswept wing and some
bending under loads that would produce only twist of an unswept wing.
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A relatively small amount of theoretical work has thus far been
published on the analysis of swept wings of the shell type. Reference 3
presents an energy method for determining influence coefficients of a
swept box beam with bulkheads parallel to the flight path, and refer-
ences 1 and 2 contain a semiempirical method for the deflection analysis
of a swept box beam with bulkheads perpendicular to the spars. No pub-
lications are known to be available on the stress analysis of a swept
box beam with either type of bulkhead arrangement.

The purpose of this paper is to present a method for the calcula-
tion of both stresses and distortions of a swept box beam representing
the main structural component of a swept wing with a carry-through sec-
tion and with bulkheads perpendicular to the spars. The analysis is
based on the four-flange idealized structure illustrated in figure 1.
In a four-flange box beam of this type the carry-through and outer sec-
tions can be analyzed by existing methods for unswept four-flange box
beams if some means is provided for analyzing the triangular section
which connects them.

A method is presented for analyzing an idealized representation of
the triangular section and for establishing continuity between the parts
of the box beam; consideration is also given to the relationships between
the idealized and actual structures and a comparison between the stresses
and distortions calculated by this method and the experimental data of
references 1 and 2. In the discussion, the effects of shear lag, which
the method cannot give, are considered and an extension of the basic
approach to permit their inclusion is indicated; also, the importance to
the analysis of including the shear and bending flexibility of the bulk-
heads bordering the triangular region is demonstrated. A complete
numerical example 1s worked out in an appendix.

SYMBOLS

Principal Concepts

A area, square inches
a,an length of bay, inches
84 j coefficients of matrix

Bn,Cn,Dn arbitrary constants in solution of a differential equation
b width of outer section, inches

b! width of carry-through section, inches
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e depth of box beam or bulkhead, irches
E modulus of elasticity, psi
F force group statically equivalent to a bénding moment, pounds
18 50) 1) warping stiffness parameters
G modulus of rigidity, psi
h width of plate, inches
i moment of inertia, inchesh
J torsion constant, inches
ki stiffness factors of outer and carry-through sections
L length of outer section, inches
l length of beam, inches
M bending moment, inch-pounds
N,N! summations used in appendix B
P axlal load in flange or stringer, pounds
Q area moment, inches3
q shear flow, pounds per inch
R ratio which has the value +1 for symmetrical loads and -1 for
antisymmetrical loads
T torque, inch-pounds
t sheet thickness, inches
U strain energy, inch-pounds
u displacement in the x direction, inches
\'s vertical shearing force, pounds
w downward displacement or deflection, inches
X self-equilibrating, statically indeterminate force group, pounds
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X, Y5 2 rectangular coordinates, inches

<l

distance from front spar to a specified center, inches

a,B,d,€,0 stiffness factors of beams

Y shear strain

&5 nondimensional parameters used in discussion of idealization
0 angle of twist, radians

A angle of sweep, degrees

A effective width, inches

i Poisson's ratio (assumed to be 1/3)
v effectiveness factor

(o] normal stress, psi

i shear stress, psi X

k) stress function

v, joint rotations, radians (see fig. 4)

Subscripts

Subscripts are used chiefly to designate the location of a dimen-
sion, force, or stress, as follows:

b cover of the box beam

c web of the box beam or bulkhead
B front spar or flange (see fig. 7T)
L left-hand end of beam

A along length of beam

1 value at x = 1

(appendix B)
o) value at . x = 0
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j) plate
o Riyr rear spar or flange (see fig. )
R righ£-hand end of beam
X,y coordinate axis
S stringer

1,2,3...n specific locations shown in figures; also, numbers to identify
stiffness factors

The single exception to the foregoing convention is:

e effective when applied to area, thickness, or moment of
inertia
] Superscripts
Superscripts are used to designate stresses and distortions

. produced by different types of action, as follows:

B bending

F F-force group

R rigid-body displacements

i torsion

W warping

X X-force group

o flexure

T shear

ANALYSIS OF THE IDEALIZED STRUCTURE

Basic Assumptions

The type of idealized structure analyzed is shown in filpure s o TE
is a four-flange box beam, which is considered swept back in order to
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avoid ambiguity in the designation of the front and rear spars. The
sweptback parts are made up of two triangulear sections and two rectan-
gular outer sections which are symmetrical about and continuous with a
rectangular carry-through section representing the part of the wing
within the fuselage. The outer and carry-through sections contain bulk-
heads which are placed perpendicular to the spars but the triangular
section contains no bulkheads. All cross sections are symmetrical about
a horizontal plane through the mid-depth of the spars.

The box beam is supported, either rigidly or elastically, at the
four corners of the carry-through section so that the reactions are
simple vertical forces. It is loaded by a series of vertical forces as
shown in figure 1. The resulting stresses are within the elastic range.

The longitudinal direct stress in the idealized structure is assumed
to be carried only by the concentrated areas at the corners of the cross
section, and the side walls (spar webs) and covers are assumed to support
shear stress only. The shear flow in the triangular cover sheets is
assumed to be constant throughout the element (q= in fig. 2). This
assumption implies the existence of uniformly distributed normal forces
on the hypotenuse of the triangular cover sheet but, since the adjacent
carry-through section can carry normal force only at its corners, these
distributed forces are lumped into two statically equivalent concen-
trated forces (P5 in fig. 2) at the ends of the hypotenuse. This
assumption of uniform shear stress in the triangular sheet is approxi-
mately justified by the experimental data of references 1 and 2.

The two bulkheads which border the triangular section are assumed
to be beams with finite shear and bending stiffness in their own plane
but with no resistance to distortion out of their plane.

The relationship between the idealized structure described above
and an actual structure is discussed subsequently.

Method of Analysis

The method of analysis is based on the assumption that the outer
and carry-through sections can be analyzed by existing methods and that
all that is then required is a means of establishing continuity between
them through the triangular section. In order to accomplish this result,

‘the structure is divided into a number of component parts as shown in

figure 2. The forces assumed to exist on the cut sections are also
shown.

The first step in the analysis is to consider the vertical edges of
the triangular section (Jjoints 1, 2, and 3) as free bodies (fig. 3) and
to write equilibrium equations for them. These equations include two
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for moment equilibrium and one for vertical shear equilibrium at each
Joint or a total of nine equations. The number of equations is con-
siderably less than the number of unknown forces, and the problem is
therefore statically indeterminate. The number of equations, however,
is exactly equal to the number of displacements required to specify the
attitude and position of the three joints. These displacements include
two rotations and a vertical translation of each joint, as shown in
figure k.

The next step in the analysis, therefore, is to establish force-
displacement relationships for each component of the structure shown in
figure 2. Through these relationships the forces appearing in the
equilibrium equations can be replaced by the Joint displacements and the
loads applied to the structure. The nine equilibrium equations then
contain as unknowns only the nine Jjoint displacements and can be solved
simultaneously for the displacements. Once the joint displacements are
known, the force-displacement relationships can be used again to deter-
mine the stresses and distortions of the entire structure.

If one, or both, of the bulkheads (1-3 or 2-3) is .assumed rigid
in its own plane, certain relationships among the joint displacements
are immediately evident; thus the number of equilibrium equations needed
is reduced and the analysis is simplified.

In an analysis of this type many of the factors involved depend
upon the nature of the applied load (symmetrical or antisymmetrical,
bending or torsion) and it may therefore be advantageous to make a
separate analysis for each type of load and then superimpose the results
to obtain the desired solution. For convenience in the detailed develop-
ment which follows, however, provisions for both bending and torsion
are included simultaneously but with restrictions that they are either
symmetricel or antisymmetrical about the carry-through section.

Joint-Equilibrium Equations
If the three Jjoints shown in figure 3 are considered as free bodies,
a total of nine equilibrium equations can be written, two for moments
and one for vertical shear at each joint, as follows:

Jolnt 1:

P7-P5—P1COSA=O (l)
Pg + Py sin A = 0 (2)

V1 +clag - a9 - q1) =0 (3)
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Joint 2:
P17 =0 . (5)
Vp + ofay - g4y - ayg) = O )
Joint 3:
Pg + B ‘éos A ~ Py sin A= 0 &)
Bg, =B, = Piigin N =Py COsth =10 (8)
V3+c(q9+qlo-q8+q3)=0 (9)

Inasmuch as the number of unknown forces appearing is greater than
the number of equations, the problem is statically indeterminate. The
principle of consistent displacements will therefore be used to obtain
a solution.

Force-Displacement Relations

The attitude and position of the Joints can be completely described
by nine joint displacements, two rotations, and a vertical translation
at each joint (fig. 4). Thus the number of unknown joint displacements
is exactly equal to the number of equilibrium equations, so that a solu-
tion is possible if sufficient force-displacement relations can be writ-
ten to express all the unknown forces in terms of the nine joint
displacements.

A1l the internal forces (P's and q's) shown in figure 2 can be
expressed in terms of the unknown Jjoint displacements and the loads
applied to the outer section, with the use of the force-displacement
relationships for each component of the structure. All that remain are
the three vertical forces (V's) at the joints which are a combination of
the vertical loads applied to the triangular section and the statically
indeterminate support reactions. Since these forces are dependent upon
the nature of each individual problem, they will be temporarily treated
as known quantities; the modifications required for different types of
supports are discussed in a subsequent section.

The force-displacement relationships for each component can be
written as indicated in the following sections.
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Beams.- The two bulkheads 1-3 and 2-3 and that part of the front
spar 1-2 bordering the triangular section can be analyzed as beams sub-
Jected to end shears and moments plus a running shear along the flanges.
This running shear results from the shear flows in the covers adjacent
to the flanges. The loading and distortion of a beam of this type is
illustrated in figure 5. In appendix A, this type of beam is analyzed
and the following general expressions are obtained for the end loads in
terms of the end displacements, the running shear, and certain stiffness
parameters which include both the shear and bending resistance of the
beam:

@ + W =3
Q.= (@ - (PR > I Fafalpiine R 3 L% €q, (10)
W1, = "p
P, = -aff; + Bfp - (a - Bl oun, ()
PR = -Bfy, + offg + (@ - BYZT—F + b, (12)
where
ool o LB
w\3  Gget12
g ;(_g B hEI)
w\3  get12
1/2
B =5<G—t)
i ;(c_z_)
€ = O\3ET
i g(; P )
I\3  Geti2
and
EI bending stiffness of beam

Get shear stiffness of beam
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Specific force-displacement relationships for each of the beams can
be obtained by application of these general equations with the following

results:

Front spar 1-2:

¥1 cos A + 1 sin A + @o
+

a1

Py

Ps

Il

Bulkhead 1-3:

(@ - B)lg b tan A 2(a - 3)12

LA

—_ 4+ ¢ o]
Dotanth: . 2=t

(13)

wl-w

Wi B w2

_312<¢l cos A + ¢l sin.A> + a12¢2 f (ac ~ B)12 e 512q5 (15)

@1 - ¥3 cos A + ¢3 sin A . R <
Y = (@ B)13 b sec A Hp Phis vRsecy
a3 (7 + o) e
W - W
Pg = -a13¢1 - B13(¢3 cos A - ¢3 sin A) - (a - B)13 blsec 2 i
513 fay + an) '
Vl = V3
P8 = -Bl3¢l - 0‘13(\"3 cos A - ¢3 Sin A) % ((I i B)l3 b—_B—eTK ad
513(37 + ) e
Bulkhead 2-3:
Vo + ¥ '
P)-l\ = -0.23W23 + B23W2 - ('G,. - 5)23 e ————m— T 823(q.)+ o q5) (20)
PyghioBoats Mitogle R =5+ O3(ay - %) e
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In these equations the subscripts 12, 13, and 23 applied to the
stiffness parameters a, B, O, and € refer to the front spar 1-2
and the two bulkheads 1-3 and 2-3, respectively. Several unknown forces,
nemely, q), a5, 97, and qj7, which do not occur in the joint equi-

librium equations, appear on the right-hand sides of equations (13) to
(21); these forces, too, can be expressed in terms of the nine Jjoint dis-
placements when the other structural components are considered.

Triangular cover sheet.- The triangular cover sheet is assumed to
carry a uniform shear flow a5 along its mutually perpendicular edges

(1-2 and 2-3). In order that this element be in equilibrium, shear and
normal stresses are required along the hypotenuse and the corresponding
forces are shown (fig. 2) as a uniform shear flow a11 acting along

that edge and a pair of concentrated forces P5 acting at the joints.
The equilibrium equations are:

Q] = -45 cos 2A (22)

P5

-q5b sin A (23)

Force-displacement relationships are obtained by assuming that the
maximum shear strain in the sheet is equal to the amount by which the
right angle 1-2-3 is changed. In terms of the joint rotations, this
shear strain is:

¥V, sin A - @ cos A -V, @5 - ¢ )
- L - i B v
B S 2( b tan A e o
Then,
= -g—f;g(\kl cos A - 11‘2 cot A - ¢l cos A cot A - .¢2 % ¢3> (25)

and the relations for Q7 and P,
tions (22) and (23).

5 follow immediately from equa-

Outer section.- That part of the structure outboard of bulkhead 2-3
acts as an unswept cantilever box beam supported on a flexible root and,
as such, can be analyzed by existing methods of analysis. The stresses
and distortions at any point can be expressed in terms of the applied
loads, the distortions of the root, and certain elastic stiffness
factors. Then, the force-displacement relationships required to define
the internal forces at the root are:
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P3 = KM 2 keT + k3(f2 - #3) (26)
P1o = kM + kT - kg (¢2 - ¢3) (27)
qp = k¥ + KT + k7<¢2 - #3) (28)
a3 = -kyoV + kgT + ke(fp - ¢3) (29)
Q= kgV + kT - k (¢, - ¢3) (30)

In these equations V, M, and T represent, respectively, the applied
vertical shear, bending moment, and torque (about some reference axis)

at the root of the outer section and the k's represent elastic stiff-
nesses of the outer section. The stiffness factors Jeqs iko s Bkl and

the like are functions of the distribution of the applied loads and the
dimensions and material of the outer section, whereas k3 and kv

depend only on the latter. The quantity @o - ¢3 is a measure of the

warping of the root cross section and is the only root distortion
appearing in the equations, since the others are rigid-body movements
which do not affect the stress distribution. Thus, effectively, the
root bulkhead is assumed rigid in its own plane as far as the outer-
section analysis is concerned.

Any method of analysis can be used to determine the stiffness
factors provided that cross-sectional warping and its restraint are
taken into account. This provision requires a more refined approach
than is made in elementary bending theory. The stiffness factors are
the same for symmetrical and antisymmetrical loadings but, since bending
and torsion produce different types of effects, they have been separated
in the equations. In order to evaluate the torque T, the loads must be
referred to a reference axis. The most desirable axis is one which makes
the stresses at the root due to the bending moment M equivalent to
those given by elementary theory, although it is not generally possible
to achieve this relationship at all stations. The so-called "shear
center” does not locate such an axis. The choice of a reference axis
will be treated at greater length in the section on idealization.

Carry-through section.- The carry-through section, like the outer
section, is a box beam that can be analyzed by existing methods. In
this case, however, the stress distribution is expressed in terms of
only the end distortions since internal end forces are the only loads
applied. The force-displacement relationships are then:

P6 = kll(\l!l + \|!3 sin A + ¢3 cos A )+ kle(llfl - \|I3 sin A - ¢3 COs A) +

k13(v1 + W3> + k1b (W1 - W3) (31),
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Py = kys5(¥ + ¥3 sin A + g3 cos &)+ Kyg(¥y - V3 sin A - B3 cos A) +
k17 (e + w3) + kag(vn - w3) (32)
% = Krgf¥y + ¥g sin A + Pg cos ) + Kok - ¥5 s A - @ cos ) +
dpy (i + w3) + kpp (v - w3) (33)
a7 = ko3 (V1 + ¥3 sin A + f3 cos A )+ kop(¥y - ¥3 sin A - g5 cos A) +
kps (v + w3) + kag(v1 - ¥3) (34)
ag = kpq (i + ¥3 sin A + g cos A) + k(¥ - g sin A - gy cos A) +
tpg (i + w3) + kao(wy - w3) (35)

In these equations, the k's represent elastic stiffness factors, which
depend upon whether the loading is symmetrical or antisymmetrical, as
well as upon the dimensions and material of the carry-through section.
They may be determined by any method of analysis as long as cross-
sectional warping and the shear and bending stiffness of the spars are
considered. The displacements which appear have been so grouped that
they have a particular physical meaning. Thus, the quantities associated
with the first, second, third, and fourth terms in parentheses represent
a bending type of rotation, a warping, a translation, and a torsion type
of rotation of the end cross section, respectively.

Solving for the Joint Displacements

The force-displacement relationships (equations (13) to (35)) are
sufficient to express all the internal forces in the equilibrium equa-
tions in terms of the nine basic joint displacements and the applied
loads. Upon substitution, the nine equations involve only nine unknown

. wl w2 w 3
displacements; namely, Vi, Vo, V3, #1, Po, ¢3, e

and they can then be solved numerically for these unknowns.

The equations obtained by direct substitution have coefficients
containing many terms which are tedious to evaluate; however, a number
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of combinations can be made which substantially simplify the final
equations. Equations (1) to (9) are combined as follows to obtain nine

simpler equations;
[(1) - (8)] sec & - () + (5) tan A
[(2) + (7)] esc A+ (%) + (5) cot A
[y + (6) + (9)]

%(6) tan A

(7) sec A+ (5)

(8) sec A - (5) tan A

%(9) sec A

The resulting system of equations is written in matrix form as

follows:

a1 810 813 &1y 815 216 817 418 ag| | Vi

80] 8pp 823 8ol 8p5 8o 8p7 8pg a9 | | Vo
831 83 833 a3, 835 azg a3y a3g agg | | V3
aly] &y 843 &y a5 ays ay7 ayg alg | |
851 852 853 85 855 856 a5y 8sg asg | |fo =

861 6o 263 8B6L 865 866 267 868 a6y | | P3
wl

a7l &rp 83 a7y ays ar6 ary a8 aqg | |5
wp

281 8g> 283 8L 885 &8s 287 €88 &89 i
W
w3

a9l ag2 ag3 agh- ag5 agh ag7 a98 ag9 b |

&0
820
a 30
&40
850
260
a70
a80

8.90
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The coefficients ajj are given by the expressions in table I.

(36)

(37)
(38)
(39)

(k0)

(k1)
(k2) |
(43)

(4k)

(45)
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The terms in the matrix of coefficients involve the elastic stiff-
ness factors and dimensions of the structure; the constant terms contain
elastic stiffness factors, the loads applied to the outer section, and
the vertical forces at the joints. Each of these joint forces contains
a component of the load applied to the triangular section and, in addi-
tion, V] and V3 contain the support reactions which may be statically

indeterminate. The loads applied to the triangular section are so
divided among the three vertical edges that the resulting forces form a
statically equivalent system. The reactions depend upon the nature of
the supports and are introduced into the analysis as indicated in the
following sectiomns.

Rigid supports.- In the case of rigid supports wj and w3 are
zero and there are thus seven unknown joint displacements which require
only seven equations for their determination. In the matrix, equa-
tion (45), columns 7 and 9, which are the coefficients of w1 and w3,
respectively, can be immediately eliminated. The required seven equa-
tions are then obtained by the elimination of two rows, the logical ones
being rows 3 and 9 since they are derived from equations containing the
unknown support reactions. After the joint displacements have been cal-
culated, V1 and V3 can be determined by substitution into equa-

tions (3) and (9).

Elastic supports.- For the case of elastic supports, all nine equa-
tions arz required but must be modified to include force-displacement
relationships for the supports. The joint forces can be expressed as
follows:

Vl = k3lwl + Vl'

V3 = k32W2 + V3'

where
k support stiffness factor
v component of loads applied to triangular section

Calculating Stresses and Distortions Throughout
the Idealized Structure

The stress and distortion distributions for the complete box beam
have been defined in terms of the applied loads and the nine Joint dis-
placements. Once these joint displacements have been determined by
solving equation (L45), the procedures outlined previously can be reversed
and all of the forces at the Jjoints can be calculated.
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Determination of the detailed distributions is slightly more com-
plicated. For the front spar and the two bulkheads bordering the tri-
angular section, the equations of appendix A can be used. For the outer
and carry-through sections, the complete stress distribution can be
determined from the analysis that was used to obtain the stiffness
factors k1 to k3p0. The effects of rigid body motions, which do not

affect the stresses, must be included in the calculation of distortionms.

The relationships between the computed stresses in the idealized
structure and the actual structure are discussed in the section on
idealization, which follows.

IDEALTIZATION OF AN ACTUAL STRUCTURE

Outer and Carry-Through Sections

The outer and carry-through sections are unswept box beams which
can be analyzed by existing methods of analysis. Since such methods are
by no means standard, however, a definite procedure is presented in
order that the idealization of the complete structure may follow a
consistent pattern.

The basic assumption that the idealized outer and carry-through
sections are conventional four-flange boxes implies that the normal
stress in the walls of the actual box beam varies linearly between
adjacent corners. A generalized stress distribution of this type can
be represented by a linear combination of the two stress distributions
shown in figure 6(a), one of which equilibrates the applied load and is
uniform across the cover, while the other is self-equilibrating and
varies linearly across the cover. The uniform distribution is designated
bending stress because it is obtained from elementary beam theory which
assumes that plane cross sections remain plane after loading. Similarly,
the linearly varying stress is designated warping stress because it is
associated with the warping of the cross section out of its plane.

The normal stresses on the actual cross section are represented by
four concentrated forces at the corners of the idealized cross section.
The total force at each corner consists of two components, one from the
F-force group corresponding to the bending-stress distribution and one
from the X-force group corresponding to the warping-stress distribution,
as shown in figure 6(b). The equivalence between the force group and
the corresponding distributed stress is determined on the basis of over-
all statics of the cross section and the moment applied to each cover.
The effective flange areas of the idealized structure are then chosen so
that the flange stress in the idealized structure is equal to the corner
stress in the actual structure.
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A cross section of the type shown in figure T7(a) can then be
idealized as follows:

(1) obtain the equivalent cover (fig. T(b)) by adding, to the
actual cover and corner flanges, areas representing the moment-carrying

capacity of the webs; that is, %ctr and %th; the area of the

equivalent cover is therefore:
Ap = Afr + %th + Ay + %Ctr « bty + E:: (As), (46)
n

(2) Locate the centroid of the equivalent cover:

] e 1 = J
e 2btb + Ar + 6ctr i E;_ <As b>n (47)

o<

(3) Calculate the moment of inertia of the equivalent cover about
a vertical axis through its centroid:

Ip i 7\° ( i )(_559 It <1_y>2
EE (Af + gctf)<b) + (Ar + gctr 1L b> + 1.é.btb + btp 5 ' Bl +

Y el - 7 (48)

(4) The effective area of each front flange is then:

(a) For bending stresses:

- oI -(-03 (49)

where I 1is the moment of inertia of the entire cross section about
the horizontal axis of symmetry.

(b) For warping stresses:

Ip/b°
= ;/b (50)



18 NACA TN 2232

(5) The effective area of the rear flange in each case is:

\

o'| <

Ay = Ay

o'l

1

3 (51)

o'l

y = hp

1 s

o't

-,

If many equally spaced stringers are used, satisfactory results
can be obtained by treating them as an equivalent sheet and thus
eliminating the evaluation of lengthy summations.

It is important to note that a different effective area is
associated with each type of stress distribution, as should be expected,
since each is associated with a different type of physical action;
therefore, if accurate results are to be obtained, the two types of
stress distributions must be completely separable in the analysis, that
is, they do not appear simultaneously in the evaluation of any one
stiffness factor in equations (26) to (35). This separation is not
generally possible; however, one way to accomplish complete separation
in the outer section will be described. Similar considerations apply
to the carry-through section.

The outer section is an unswept cantilever box beam on a flexible
root and the forces on any cross-section as given in equations (26)
to (30) can be expressed as the sum of: (1) forces that exist in the
loaded cantilever on a rigid root and (2) forces that exist in an
unloaded cantilever having the root warped an amount ($, - $3). Since

root warping produces only warping stresses, the effective areas for
warping stresses (equations (50) and (51)) are used for the determina-
tion of the stiffness factors k3 and k7. The choice of effective
areas for the analysis of the loaded cantilever is more difficult because
the application of vertical loads will, in general, produce both bending
and warping stresses; however, since torque loads produce only warping
stresses, it may be possible to locate some axis along which applied
vertical loads will produce only bending stresses at every cross section;
then, the loading can be divided into vertical forces applied along this
axis and torques about this axis. The stress types are thus separated
and the effective areas for bending stress (equations (49) and (51)) cen
be used to calculate the stiffness factors associated with the vertical
loads (kl, k), , k5, kg and kld and the effective areas‘for warping
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stresses (equations (50) and (51)) can be used to calculate the stiff-
ness factors (ke, kg, and k9) associated with the torque.

An axis of the type described obviously exists for a doubly
symmetrical cross section; such an axis is also known to exist for a
four-flange box beam of constant cross section which is symmetrical
about & horizontal plane (fig. T(c)). The location of this axis, at the
center which might be called the zero warping center of the cross
section, is given by:

ot

o'l

L+ -t e

G f:

no

where

LA -
tp te
§=
ot
tp te

The zero warping center should not be confused with the shear center.
Vertical loads applied along an axis through the shear center will
deflect the box beam without twisting it, if the cross sections are free
to warp, a condition that is not satisfied at the rigid root of a
cantilever. Vertical loads applied along an axis through the zero
warping center will result in a combination of deflection and twist, but
the cross sections of the box will not warp. If the cross-section is
doubly symmetrical, the zero warping center and shear center coincide at
the geometrical center of the cross section.

The preceding discussion has been exclusively concerned with the
problem of converting the actual structure into an idealized structure
that can be easily analyzed. After the analysis has been completed and
the magnitudes of the corner forces determined, the problem of con-
verting corner forces into stress distributions arises. This conversion
of forces is accomplished by determining the stresses corresponding to
each type of force group (F or X) and then summing the stresses to get
the total stress. The relationship between force groups and stress
distributions are shown in figure 6. The type of force group is deter-
mined from physical considerations; for example, equation (26) shows
that P3 1is composed of three forces of which kjM 1is of the bending

type whereas k,T and k3(¢2 - ¢3> are of the warping type.
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With regard to shear stresses, the analysis of the idealized
structure gives the average value of the shear flows in the walls of
the actual structure. A more detailed shear-stress distribution can be
derived from the distributed normal stresses; however, this additional
refinement is probably unwarranted in view of the many approximations in
the basic solution.

Triangular Section

The idealized triangular section consists of three parts: the two
cover sheets which are in a state of uniform shear, and the front spar,
which is assumed to be a beam.

The thickness assigned to the idealized cover sheet should properly
represent the shear stiffness of the actual cover. For unbuckled sheet
alone, this thickness is that of the actual sheet. This value should be
decreased if the sheet has buckled or increased if there are closed-
section stringers which contribute to its shear resistance. Similar
considerations apply to the determination of the shear resistance of
any other element of the structure.

In the calculation of the moment of inertia of the front spar, a
contribution from the sheet and stringers in the cover of the triangular
section must be included to account for their ability to carry direct
stress. For simplicity, the moment of inertia of the idealized front
spar is assumed constant in the spanwise direction and thus may be deter-
mined by treating the triangular bay as a rectangular bay of constant
cross section equal in width to the triangular bay where it joins the
outer section; an effective area may then be assigned to the idealized
front spar by the method recommended for the outer section. This ideal-
ization will result in two moments of inertia, one for bending and one
for warping stress. Again, separation of these two stress systems in
the analysis is desirable but in this case it is only partly possible.

If the load on the outer section is torsion only, only warping stress
will exist in the triangular section and the effective warping area
should be used. If the loads on the outer section are of the bending
type only, both kinds of stresses will exist in the triangular section
and direct separation is impossible; however, the warping stress is
usually small compared with the bending stress and in such cases
satisfactory results can be obtained by using the effective bending area.

Bulkheads

When values of flexural stiffness are assigned to the two bulkheads
bordering the triangular section, consideration must be given to the
fact that bending of these beams is accompanied by extension or
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compression of the adjacent cover sheets. The analysis in appendix B
gives the distortions of a combined bulkhead and cover sheet and the

moment of inertia of a simple bulkhead which has the same distortion.
The results can be summarized as follows:

Tote= THESHEA € £53)
where
I moment of inertia of bulkhead alone, inchesLL
Ie effective moment of inertia of combination, incheslL
v an effectiveness factor plotted igg?igure 8 as a function of
the nondimensional parameter < T e>
c depth of bulkhead, inches
1 length of bulkhead, inches
Esheet
te equivalent thickness of the cover sheet, inches (t E———~———i>
bulkhead
E modulus of elasticity, psi

COMPARISON BETWEEN THEORY AND EXPERIMENT

The accuracy of the method is demonstrated by comparing calculated
stresses and distortions with the test data of references 1 and 2. The
test specimen used is illustrated in figures 9 and 10 and the details
of the calculations are given in the numerical example of appendix C.
The comparisons are presented graphically for each of the four test
conditions, symmetrical and antisymmetrical tip bending and torsion
loads as follows:

(a) Distortions of the outer section in figure 11

(b) Spanwise distribution of spar shear stresses shown in the left-
hand parts of figure 12

(c) Spanwise distribution of flange normal stresses shown in the
right-hand parts of figure 12

(@) Chordwise distributions of normal stress at three spanwise
stations 1in figure 13
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In each case the sign conventions employed are those of references 1
and 2 which are occasionally in conflict with those employed elsewhere
in this paper.

The test data in these figures are presented in the usual manner
and several calculated curves are given to illustrate different theo-
retical approaches, as follows:

(a) A1l figures contain a heavy solid line which represents the
results of the numerical example of appendix C. The area under this
curve is vertically hatched in the stress plots (figs. 12 and 13).

(b) A dash-dot line appears in some figures to show the effect of
superimposing shear-lag effects on the results of the numerical example.
The determination of these effects is described in the discussion.

(c) The stress plots also conﬁain %ash lines which give results
. c Q R
obtained from elementary theory T Toe and 52%).
In general, the results of the numerical example (solid lines) are
in fair agreement with the test data; however, much better agreement is
achieved when shear-lag effects are added where applicable. Elementary
theory gives the least satisfactory results since it does not include
the effects of either sweep or shear lag. The discrepancies between the
calculations of the numerical example and the experimental data are
primarily the result of analyzing an overly simplified idealization of
the actual structure. The assumed idealized structure is incapable of
distorting in all of the shapes assumed by the actual box beam; therefore,
the analysis cannot give completely accurate results. The most signifi-
cant effect of oversimplification is the neglect of shear-lag stresses.
Shear lag appears whenever the webs carry vertical shear stress and it is
characterized by an increase in normal stress in the vicinity of the
flanges with a corresponding decrease in the rest of the cover (see
fig. 14). There is also an associated change in the shear stresses in
the cover.

The effect of shear lag on the stress distribution is most evident
in the chordwise plots of figure 13. It appears in the outer section
for the bending loads and in the carry-through section for the anti-
symmetrical loads. In each case the effect is carried over into the
triangular section because of continuity.

Shear-lag stresses effectively reduce the stiffness of the structure
and thus increase its deflection. The cantilever beam deflection of the
outer section is increased by its own shear lag, but for this specimen
the increase was small enough to be neglected. More important is the
reduced stiffness of the carry-through section under antisymmetrical
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loads which results in an increased rotation of the ends of the carry-
through section. This effect causes only a rigid-body rotation of the
triangular and outer sections since the carry-through section is doubly
symmetrical. The effect of shear lag in the carry-through section was
estimated by reducing the moment of inertia of the carry-through section

(Ie = 0.252I) by the procedure described subsequently in the "Discussion"

with the results shown in figure 11(b) and 11(d). For the antisymmetri-
cal bending load the effect was underestimated whereas it was over-
estimated for the antisymmetrical torsion load.

Some other effects of oversimplification are associated with the
idealization of the triangular section. The actual structure had a
short bulkhead (bulkhead T, fig. 9) in the triangular section which was

neglected in the analysis. Its presence introduces additional restraints

which change the shear stress in the front spar (fig. 12) and the chord-
wise normal-stress distributions in the carry-through section (fig. 13).
Also, a number of approximations were used with regard to the effective
moment of inertia of the front spar which introduce uncertainties in
the analysis.

Another factor that affects the agreement is the flexibility of
the supporting jig used in the tests. This jig was assumed rigid in
the analysis but deflected during the tests. Under symmetrical loads
(reference 1) these deflections amounted to a rigid-body rotation of
the complete structure and it was a simple matter to correct the meas-
ured deflections; however, under antisymmetrical loads, a small amount
of twist remained in the carry-through section after the rigid-body
corrections had been made (reference 2). The method of analysis devel-
oped in this paper was used to calculate the effect of the measured
carry-through section twist on the theoretical stresses and deflections.
For the antisymmetrical bending load the principal changes were in the
shear stresses in the carry-through section, as might be expected,
because of the torque required to twist this section. The warping
stresses also changed throughout the box beam and the deflection of the
outer section increased. For the antisymmetrical torsion load the twist
was small enough to be negligible. In general, these changes improved
the agreement between theory and experiment but were not of sufficient
magnitude to warrant their addition to the calculated results.

DISCUSSION
Determination of Shear-Lag Effects
The method presented ih this paper is for the analysis of a four-

flange box beam which experiences only first-order warping. Thus, the
stress distribution in the actual structure varies linearly between
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corners and consists of the bending and warping stress components shown
in figure 6. An actual structure experiences other types of cross-
sectional warping, a common one being the second-order or shear-lag
type which introduces a departure from linearity in the cover stresses
by superimposing a self-equilibrating stress distribution of the type
shown in figure 1k(a). The experimental data of references 1 and 2
show that shear lag is important in the specimen tested because it
causes an increase in the flange normal stresses which is, in some cases,
larger than the changes caused by first-order warping and increases the
flexibility of the structure which increases the deflections. Some
means for calculating these effects is therefore necessary.

Any method used to calculate shear-lag effects requires the
analysis of a more complicated idealized structure than the four-flange
box beam. Conforming to the previous assumptions regarding the stress-
carrying ability of the idealized structure, the minimum addition is a
single central stringer in each cover as shown in figure 14(b); other
additional cover stringers permit calculation of the effects of third
and higher order warping. These more complicated structures can be
introduced into the analysis in either of two ways: (1) The basic
method can be extended to the direct analysis of the more complicated
structure and thus automatically include shear-lag effects. (2) The
results of the simpler analysis can be corrected by a process which
combines experimental data and individual shear-lag analyses of the
outer and carry-through section. Each of these approaches is briefly
described.

The direct extension of the basic method involves the analysis of
an idealized structure of the type shown in figure 15. The analysis
follows the procedure previously described but two new features are
introduced. First, more joints are involved, for which additional
equilibrium equations are required and thus a larger system of simul-
taneous equations must be solved. Second, force-displacement relation-
ships for the outer, triangular, and carry-through sections must be
modified to account for the new types of forces and distortions of the
idealized structure.

The correction process can take on a variety of forms, two of which
were used to calculate the shear-lag corrections applied to the results
of the numerical example, appendix C, to obtain the dash-dot lines in
figures 11, 12, and 13. The shear-lag corrections for the outer section
were determined by using the single-substitute stringer method (refer-
ence 4) to calculate the shear-lag stresses in the outer section. The
outer section was analyzed as an ordinary, unswept box beam on a rigid
root and a constant empirical multiplying factor was used to obtain
good over-all agreement with the experimental spanwise and chordwise
normal -stress distributions. The multiplying factor accounts for the
root restraint provided the outer section by the triangular section;
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this factor was found to be 0.77 for the symmetrical bending load and
1.28 for the antisymmetrical bending load.

A somewhat different procedure was used to determine the shear-lag
corrections for the carry-through section because it was found that the
shear-lag stresses, caused by the antisymmetrical bending load, could be
approximated by a shear-lag analysis which assumed that the end cross
sections were restrained from warping. This approach, however, was less
satisfactory for the antisymmetrical torque load. The method used
analyzed the cover as an equivalent sheet which carried both shear and
normal stress (reference 5) and it gave better chordwise and spanwise
stress distributions than a similar analysis which used the single sub-
stitute stringer method. The reduced moment of inertia used to deter-
mine the effect of shear lag on the distortions of the carry-through
section was also obtained from this analysis.

From considerations of accuracy, the preferred method for the
determination of shear-lag effects is the direct extension to a more
complicated idealized structure; however, such an analysis requires a
large amount of work. The ease with which the correction process can
be used is a definite advantage, but it can be applied, with assurance
of accuracy, only to structures closely resembling the test specimen
from which the empirical factors were obtained. Even then, the correc-
tion process is only fairly accurate because it cannot adequately
account for the interaction between the various parts of the structure.

Effects of Bulkhead Flexibility

In the analysis of unswept box beams the internal bulkheads are
often assumed to be rigid in their own plane. This assumption yields
satisfactory results except when a discontinuity of structure or loading,
such as a cut-out, introduces large loads into a bulkhead. A study of
the test results presented in references 1 and 2 shows that bulkheads 6
and 8 (fig. 9) of the test specimen were subjected to substantial shear
and bending loads; thus, their distortions may have an important effect
on the structure. The shear and bending flexibility of the bulkheads
bordering the triangular section is included as a basic feature of the
method of analysis presented in this paper although the development
could have been considerably simplified by assuming them rigid.

The effect of bulkhead flexibility on the stress and distortions of
the swept box beam of references 1 and 2 was investigated by solving a
series of numerical examples similar to that of appendix C. These
examples were for symmetrical tip bending and torque loads for the four
cases of bulkhead flexibility listed in the following table (all bulk-
heads other than bulkheads 1-3 and 2-3 (fig. 2) were assumed rigid):
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Case Bulkhead 1-3 Bulkhead 2-3
I Flexible Flexible
IT Flexible Rigid

1 EIETE Rigid Flexible
Iv Rigid Rigid

Selected stresses and displacements calculated for each case are
compared in figure 16. Despite the fact that the bulkheads were con-

structed of l-inch steel plate, appreciable errors occurred when they

8
were assumed rigid in their own plane. The effects of bulkhead flexi-
bility on the stresses were more pronounced for torsion than for bending
loads; however, for each type of load the solution for case IV over-
estimated the warping stress in the outer section. The different root
distortions calculated for each of the four cases lead to slightly dif-
ferent deflections and somewhat greater differences between the rotations
of the outer section.

In general, the results indicate that the flexibility of the bulk-
heads bordering the triangular section has an important effect upon the
stresses and distortions of a swept box beam and should be considered
in the analysis if accurate results are to be obtained.

In addition to the studies of bulkhead flexibility, some investiga-
tions were made of the effect of the number of bulkheads in the tri-
angular section. For example, a numerical analysis which used the
assumption of closely spaced rigid bulkheads, often used in shell
analysis, gave very erroneous results for the stress distribution in
the triangular section. In all the cases considered, the number of
bulkheads in the triangular section had only a small effect on the
stresses outside of the triangular section. The experimental data in
figures 12 and 13 illustrate the effect of an extra bulkhead on the
stresses within the triangular section.

Extension of the Method

The method of analysis in the form presented, is not expected to
be generally applicable to the precise analysis of all swept wings
because of differences in structural arrangement and the degree of
idealization assumed; however, the basic approach can be used in many
situations.

Extension of the method to other types of swept wings is straight
forward if the bulkheads are perpendicular to the spars. The modifica-
tions required to obtain more accurate stress distributions have been
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indicated in the section on the determination of shear-lag effects.
Similar procedures are required for the analysis of multispar box beams,
that is, additional joints are created where the spars cross the
bulkheads.

Application of the basic approach to swept box beams in which the
bulkheads are placed parallel to the flight direction introduces some
new problems. In the first place, a swept wing of this type does not
have an outer section which can be analyzed by existing methods. Exten-
sion of the method of joints, which is a feature of the basic approach,
to the entire structure substantially increases the complexity of the
solution and some other approach may be more desirable. A second prob-
lem is the establishment of force-displacement relationships which cor-
rectly predict the physical behavior of the parallelogram-shaped cover
sheets.

CONCLUDING REMARKS

A method has been described for the stress and distortion analysis
of a swept box beam with a carry-through section and with bulkheads
perpendicular to the spars. The method is based on a simple four-flange
box type of idealized structure and permits an estimation of the first-
order warping stresses that result from sweep but does not permit the
evaluation of higher-order stresses such as shear lag. Agreement with
experiment is therefore only fair; however, extension of the basic
approach to permit more refined analyses, which include shear-lag
effects and other structural arrangements such as multiple spars, has
been indicated.

The method assumes that the outer and carry-through sections are
unswept box beams and thus can be analyzed by existing methods. Con-
tinuity is established between them through the analysis of the tri-
angular section. The analysis of the triangular section isolates the
structural joints as free bodies and gives an equilibrium equation for
each degree of joint freedom. The Jjoint forces are expressed in terms
of joint displacements and a set of simultaneous linear equations, which
completely defines the joint displacements, is thus obtained.

The method takes into account the flexibility, both as regards
shear and bending, of the bulkheads in and around the triangular section.
The results of a numerical study have been presented to show that
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appreciable errors can appear in the calculated stresses and deflections
if the usual assumption of rigid bulkheads is used in this region.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va., August 17, 1950
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APPENDIX A
FORCE-DISPLACEMENT RELATIONSHIPS FOR BEAMS

The beam analyzed is assumed to be of constant idealized cross
section with a web which carries only shear stress and subJjected to the
loading shown in figure 5(a). This loading consists of flange axial
loads Pr, and PR at the ends of the beam, a constant running shear

flow qQ applied to the flanges and a constant shear flow q. 1n the

web. The distorted shape of the beam under load can be described by the
end displacements wy; and wg and the end rotations ¢L and

(fig. 5(Db)).

Consideration of a differential element of the beam (fig. 5(c))
yields the following equilibrium equation

dP x
S e = a0 (A1)

and the following relations between loads and distortion

0 = (¢ - ) e

Horiit (A3)

Substituting equations (A2) and (A3) in (Al) yields

w_ _EL 2%, (a4

dx Get axe Gt

and, since gq. is constant, from equation (A2),

g _ a%w

ax . duce (A5)

Equations (A4) and (A5) have solutions which can be expressed as
follows:

¢ =0Cp+ Cox + C3x2 (A6)

& 1. 2 B T e q
= Clx - §C2x + C3<3x iy ) = Cu = EEX (A7)
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where Cj, Cp, C3, Ci are constants which can be determined from the

boundary conditions. In this case, the boundary conditions are
prescribed as follows:

\
Vxzg = WL
Wx=1 = R
> (A8)
s iy
Tt ¢R
v,

These boundary conditions require that the constants Cp have the
following values:

S
C; = ¢
1
CQ=’1‘<¢R'¢L>-C31
\ (A9)
2y)
=iy L2<WR'WL)-Z<¢R+¢L>_@—€qZ
o 12 2RI
B Get
Cj+=WL

/

An expression for the load P can be obtained from the substitution
| of equations (A6) and (A9) in equation (A3), as follows:

= LET Ly 2x LRT 2x b s s TR Y
¢R<—Z—-—§+C >-¢L<§_T+ >+2<T-l)<-——+—>

- Get 12 Get 12 ! L
cifL, lET
EI\3 Gct12>
(A10)-
Similarly, from equations (A2), (A6), (A7), and (A9),
2 L cl
7(¢R + ¢L> +-;56q,- WR) - 53791
(A11)

fe = clfl . LEI
EI\3  get22
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The applied loads can now be expressed in terms of the distortions
if the foregoing equations are evaluated at the boundaries. These rela-
tions for the loads can be conveniently written as follows:

P, = -affy, + By - (a - B)YI—“—%—EE =B, (Al2a)
Pg = -B + affg + (a - B)YE-%—ZIi + Bqy (A12b)
q. = (o - gL > L T T (Al2c)

where

3 iGetle
B:—]:—g-{—- LLEI
@\ 3 Getll
5 = £(2)
w\Gt/

It is often desirable to express the distortions in terms of the
loads. These expressions can be obtained from a few simple operations
on equations (Al2). Addition of equations (Al2a) and (A12b) gives the
following relationship between end rotations:

PL +PR

PRl e

g, + (L + Bg) (113)
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Substitution of (Al3) into (Al2a) or (Al2b) yields the following
alternate expressions for the difference in end displacements

2
1 P, - PR ¢l
WR-WL=¢LZ+QZ§E+ ot +6EI<2PL+PR)
(A1L)
P e P 2
1 L R el
WR = W, = ¢RZ + g3 EE + ot - 6EI<PL + 2PR)
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APPENDIX B
EFFECTIVE MOMENT OF INERTIA OF BULKHEADS

The contribution of the cover sheets of the box beam to the effec-
‘ tive moment of inertia of the bulkheads can be approximated by an
analysis of the plate-stringer combination shown in figure 17.

In the analysis the plate and stringer are assumed to be of dif-
ferent materials but of constant cross-sectional dimensions. The con-
tribution of the plate is expressed as an effective width which can be
used to determine the area of an equivalent stringer having a total
elongation under load the same as that of the stringer in the combined
structure. The method of least work (page 156, reference 6) is used to

| determine the state of stress in the plate and stringer. The stringer
stresses can then be integrated over the length of the stringer to
determine the total elongation.

The stress distribution in the plate can be defined in terms of a
stress function ¢ as follows:

& &
At %o
TRk
Ve
2
Pl
oy = =% ’ (B1)
ox
e
Xy T TSy
The stresses given by equations (Bl) automatically satisfy equi-
librium conditions; the differential equation which the stress function
must satisfy to fulfill compatibility is

é&% + 2_§59__ + ah® =0

(B2)
ox 5X28y2 5;E

A solution of equation (B2) is given by

. & : Ny L
o = }:: {%n + CnKl - E%%i}e ! gsin 2%5 (B3)

=i
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In this expression Bp and Cn are arbitrary constants which are
determined from the condition that the true stress distribution is that
which makes the strain energy of the combined structure a minimum. If
 the plate width is assumed infinite, the stress function given by equa-
tion (B3) satisfies the boundary conditions that all stresses vanish

at y =« and that ox = 0 when x =0 or 1. The stress function
does not provide zero shear stress along the edges x = 0 and 1;
therefore, in effect the plate has ribs along these edges. This viola-
tion of boundary conditions is considered unimportant since, in the
actual structure, these edges are restrained by the spar flanges. The
strain energy in the plate is given by the expression

00 1 :
" t 2 2 2
Up = Ek/; L/;) EE;[E; + 0,5 - 2uoy0, + 214 H)Txy:]dy ax (BY4)

Making substitutions from equations (Bl) and (B3) and integrating
this expression gives

0 2 2
7 B B C C
Up = %53 E n3< PR s R > (B5)

since

Consideration of equilibrium of plate and stringer gives the
following expression for the load in the stringer

Pg= Py = (Bl = Pz)% ‘o 2t\/ﬁ oy dy (B6)
0

The strain energy in the stringer can be written as

ol PSQ
Us /O T (7)

which, upon substitution from equation (B6) and integration, becomes

242 =
Sl 2 2y o STk Xf: 2p 2 , 2t E n
Ug = B__CES<PO Ry LR ) oy AESZ — n“Bn® + AE Cs E'l) PZ % PQ—_IBn

(BS8)
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The total strain energy of the system is then
U =Up + Usg (B9)

If the total strain energy (equation (B9)) is minimized with respect
to Bn and Cn, two equations are obtained which yield the following
expressions for the constants

NEERE

Bp = (Bloa)
: ponell -+ @)l3 = w) nEﬁ % bt
Ep An(l + p)(3 - 1)
E
Ca = ~Ba(3g)
2 _Bn(l ; “) (B1Ob)
The total extension of the stringer can now be determined as
lp
s S
u = = cbT
0 s
R 0T oo X% [: 2 (-l)%]B (B11)
QAES o 1 AES n
n=i
The effective area of the equivalent stringer is defined as
Bei= 8 + Xtg (B12)

where

E

e

te tEs

The elongation of the equivalent stringer is then
L op
S
u = dx
\/; AgEg

R b
5 2Es(A T xte) (B13)
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Setting equation (Bll) equal to equation (Bl3) gives the following
equation for the effective width

o~ | >

= <Zi\e')(l‘ﬁe)Et3(l ; zg(s i “)jl T (BLk)

where

) n=1,3,5 te ly A
HEE ) (A)ﬂ(l +1)(3 - ﬂ]

Note that the applied loads do not appear in the expression for
effective width.

A similar result can be obtained from an analysis in which the
plate is assumed to be infinitely stiff in the transverse (y) direction.
In that case, the differential equation of the plate is

2 2
u,(3) 2o (815)

e e — =

xe \E/p 3y°
The solution of equation (B15) which satisfies all the boundary condi-
tions for a plate of width h is

) cosh <%> %?(h w 5
.‘ u = é Dl’l P n nrzrx (Bl6)
n=1 <E> nrth
cosh, (= —

With the stresses defined in terms of u displacements as follows

Ox = Ep ?Yz
Txy. = Gp % .(Bl7)

and the strain energy of the plate given by
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u/\h - t(fxg 1525>d dx (£18)
e Pl e v
P 0 L/o e P GP

The procedure previously followed can be used to obtain

T o (B19)
1 <Zte/<zie)%§ . g B19

where

B nnth
g tanh <—> =
P a3l
n=1,3,5 g (lte>l - SR <§) nrh
A/Jn\l + p G P 1

Examination of equation (Bl9) reveals that the effect of finite
plate width h 1is negligible whenever h =21 since the hyperbolic
tangent terms very nearly approach a value of 1. In this case only a
small difference is found between equations (Bl4) and (B19).

The two expressions for effective width (equations (Bl4) and (B19))
have been evaluated for a range of values of A/Ite when p = §
and h = . The results are plotted in figure 18.

The results of the preceding analysis can be presented in a more
convenient form for the analysis of a swept wing. The moment of inertia

of the bulkhead alone can be related to the area of a substitute stringer
as follows:

%Acg (B20)
and the effective moment of inertia is
j Py %xteCQ

= I(1 + v) (B21)
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- )
)

Figure 8 is a plot of v as a function of c2lte/I, the results of equa-
tion (Bl4) being used in the solution.

]
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APPENDIX C

NUMERICAL EXAMPLE

Description of Specimen

The application of the method to an actual structure is illustrated
by an analysis of the untapered, 45° swept box beam of references 1
and 2. Its construction details and principal dimensions are shown in
figure 9. The outer and carry-through sections are of doubly-
symmetrical cross section and are divided into five and three bays,
respectively, by internal bulkheads placed perpendicular to the spars.
It is important to note that the actual structure contains a short
bulkhead (bulkhead T7) within the triangular section and that its presence
is ignored in the analysis because the method of analysis assumes a tri-
angular section with no internal bulkheads. Figure 10 is a photograph
of the specimen under test and illustrates the manner in which it was
supported at the four corners of the carry-through section. In the
analysis which follows these supports are assumed to be rigid.

The dimensions of the three sections of the idealized structure
are summarized in table II and illustrated in figures 19 and 20. The
dimensions of the two bulkheads and that portion of the front spar
bordering the triangular section are given in table III together with
their calculated stiffness factors. The material of the specimen was
24s-T3 aluminum alloy except for the steel bulkheads. These materials
are assumed to possess the following elastic properties:

: E G
Material (psi) (psi)
248-T3 @ ZE 106 40 X 106
Steel 29.05¢ 106 Hles @ >a 106

Loading Conditions

The box beam is analyzed under four different loading conditionms,
symmetrical and antisymmetrical bending and torsion corresponding to
the test data of references 1 and 2. These loads are applied to the
loading bulkhead at the tip of the outer section; the bending being
produced by a vertical shearing force of 2,500 pounds; the torsion by a
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pure couple of 43,420 inch-pounds. For convenience, these loadings
are hereinafter referred to by number as follows:
Loading 1: Symmetrical tip bending load of 2500 pounds
Loading 2: Antisymmetrical tip bending load of 2500 pounds
Loading 3: Symmetrical tip torque load of 43,420 inch-pounds

Loading 4: Antisymmetrical tip torque load of 43,420 inch-pounds

Analysis of the Outer Section

Method of analysis.- The dimensions of the idealized outer section
are given in table II and illustrated in figure 19 which also shows the
notation that will be employed. The stress and distortion distributions
for the idealized structure will be determined as well as the stiffness
factors required for the analysis of the complete structure.

Since the outer section is a cantilever box beam on a flexible
root, the stresses and distortions can be obtained from the superposition
of the following solutions:

(a) Outer section with a rigid root and a tip bending load of
2500 pounds

(b) Outer section with a rigid root and a tip torque load of
43,420 inch-pounds

(c) Outer section with the root warped
(d) Outer section displaced as a rigid body

A simplification of the analysis and the use of elementary theory
in some instances are possible because of the constant doubly-
symmetrical cross section. Further simplification is made by assuming
that all bulkheads are rigid in their own plane, although this assump-
tion leads to a slight violation of continuity because bulkhead 6 is
assumed flexible in the analysis of the triangular section. Figure 21
shows the two types of force groups which appear in this analysis.
Shear flows‘are shown in addition to the concentrated flange forces.
The sign convention used with the warping group is that of reference 7.

Bending of a cantilever.- The outer section is considered to be
rigidly built in at the root and loaded by a central vertical shearing
force of 2500 pounds at the tip as shown in figure 22(a). The internal
forces and stresses are those of the F-group and can be expressed as
follows:
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v
F =5 = 55(L - x) = 178.57(89 - x) (c1)
B = of = %% = g%(L - x) = 97.01(89 - x) (c2)
a.’ = = g% - 178.57 pounds per inch (c3)
B g g
C g
A (Sl =F 2289 psi (ck)

The heam bends without twisting and the deflection of the center line
consists of two components, that due to flexure and that due to shear
deformation of the webs. Thus,

wB = wo 4w (c5)

where

wo = 8%T<3L = x)x2 = 0.43994(267 - x)x2 (c6)
e \4
wT = 2Gctcx = 0.0005723x (c7)

The distribution of stress and deflection is given in table IV(a).

Torsion of a cantilever.- The outer section is considered to be
rigidly built in at the root and loaded by a pure couple of 43,420 inch-
pounds at the tip as shown in figure 22(b). The internal forces and
stresses are those of the X-group plus the shear stresses required to
equilibrate the torque and can be expressed as follows:

T
;R ¢
O'n = T (C8)
T
di T X - X
; BT i ap an n n-1
(Tt)c,n "9 ,n 2be T 9c,n T Zbe % 2an . Aty
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T JE
T S %= X
T _ G 58 Keehran n-1
(T8ln,0 Sl = 20+ W Sipats 2an (c10)

The X-forces are statically indeterminate; however, they can be calcu-
lated by means of the following recurrence relation (reference 7) which
establishes continuity between bays:

i T 1y
fr¥n-1 - (Pn * Pn+1)xn + Tna¥na = =nfn tduaTaag L (e

where
B i i jL i £L>
P =328 " 8Gal\ty  to
f—_—a'__‘.ll.,__c_)
- "6AE " BGal\tp = tc
e l (b ¢
. Behelth it

in which A 1is the effective area for warping stress.

Once the X-forces are known, the twist of one bulkhead relative to
the next can be determined as follows (reference 8):

26,T = (39> + M6p%
n

GJ
JL JE T
SO e (c12)
n
where
2b2c2
=
B e
T c

For the dimensions and stiffness parameters given in table II, the
recurrence relation yields the following set of simultaneous equations
for the X-forces:
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3.57806  0.57511 0 0 o |- Skl ol
0.57511 -3.57806 0.57511 0 0 X5T 0
OO L h I T (G R T 5 0 X7 | = 0
0 0 1.75718 -k.72828 1.75718 X5 0

[ 0 0 0 1.757T18 -2.36k1k | _?6T4 3296.92%J

The solutions are

%t = -1078
X3' = -65.719
x,T = -398.673

XsT = -920.751
Xg~ ==2078.917
The distribution of stress and twist is given in table IV(b).

Warping of the root.- The root of the outer section is warped the
amount shown in figure 22(c). The internal forces and stresses are
those of the X-group which can be determined by the method of analysis
used in the preceding section. The only change is in the boundary
conditions with the warping of the root being related to the X-forces
as follows:

W W (S
The solutions of the system of equations are then
-5612 <¢2 - ¢3>
W
x3" = -34915 (g, - 93)

X" -211615<¢2 B ¢§

ng
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X5" = -488733(5 - ¢5)

X" = -110348u<¢2 - #3) ' .

Table IV(c) summarizes the stress and twist distributions for

<¢2 - ¢3) = % 1072,

Rigid-body displacements.- The outer section is given the rigid-
body displacements shown in figures 22(d) and 22(e). These displace-
ments do not affect the stress distribution but give the outer section
a twist about its center line

R = %? (c1k)

plus a deflection of that center line

W = %Wg + %<¢2 + ¢3>x (¢15)

Superposition of solutions.- The complete stress and distortion %
distributions can be obtained by combining components from each of the
preceding analyses. Since the basic expressions are the same for both
symmetrical and antisymmetrical loads, the stresses and distortions at
any cross section can be written as follows:

Loadings 1 and 2 Loadings 3 and 4
oF oB + oV ol + oV o
OR oB - oW -oT - oW
o _TCB g TCW -TCT _ TCW
Tr TcB B Tcw 'TCT = Tcw % (c16)
b -7’ Ty - Th
5 geiat GR + GT + ew
W wB o+ wB WwR -

The sign convention for the stresses is that shown for the internal
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forces of the outer section in figure 2. Positive deflections and twist
move the front spar downward. Similar expressions can be written for
the forces at the root cross section from which the stiffness factors
given in table V can be determined by inspection. These are the stiff-
ness factors required for the analysis of the complete structure.

Analysis of the Carry-Through Section

Method of analysis.- The dimensions of the idealized carry-through
section are given in table II ard illustrated in figure 20, which also
shows the notation employed. The stress distribution is determined
along with the stiffness factors required for the analysis of the
complete structure.

Since the supports at the four corners of the carry-through section
are assumed to be rigid (wl = W3 = O), the stiffness factors associated
with the deflection and twist of the ends in the plane of the end cross
sections will not be required. The stresses can therefore be obtained
from the superposition of the following solutions:

(a) Carry-through section with the end cross sections rotated out
of their original planes

(b) Carry-through section with the end cross sections warped out
of their original planes

The doubly-symmetrical cross section permits considerable simpli-
fication of the analysis since in such cases the end rotation is a
result of the application of F-forces only and the warping is the result |
of the application of X-forces only (fig. 2l1); however, a few complica-
tions are introduced because the splices in the center bay make it |
stiffer than the other two bays. The bulkheads are assumed rigid in
their own plane despite the fact that in the analysis of the adjacent
triangular section, bulkhead 8 is assumed to be flexible.

Since the analysis depends upon whether the end distortions are
symmetrical or antisymmetrical, the ratio R is introduced in order
that general equations, applicable to both types of loading, can be
written. Then:

R = +1 when the loading is symmetrical

R

-1 when the loading is antisymmetrical

Rotation of the ends.- The ends of the carry-through section are
rotated, symmetrically or antisymmetrically by the amount shown in
figure 23(a). Equilibrium of internal forces requires that:




F - F Fo - F
e e ) 9 _-9 8
qC;9 n qc,lO & a10 3 ag (017)

The forces can now be related to the distortions by means of equations (Al3) and (Alk) as
follows:

Py = 98 - <2EI><F8 + Fo) : (c18)
F - F 2
r 9 10 ca
¥9 £ %10 = Boae = Blpne.y, 2<6EI>10(2F8 + F19) (&
vg - Vg = foag - eatalg 2(6EI>9 (Fg + 2rg) (c20)
and since
F F W
RS FlO 5 ﬁll & 10 y _¢lO b _¢ll (c22)
9 I‘8 W9 ¢§ ¢8
¢8 = %(1];1 L sin A + ¢3 cos A} (ca3)

the following relationships can be obtained:

%Elo + (X 4 R)39]2<‘l!1 + Y3 sin A + ¢3 cos A)

30 5

(cak)

Al

gtge NI VOVN
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Fg = Fg L (c25)

T e e Y
ajlo

F F 1l -R
99 % B 100 Fg a1p + (1 - R)ag (t26)

The stress distribution corresponding to end rotations of the amount
V1 +¥3 sinA +¥3 cos A =1 X lO'6 is given in table VI(a), in which

2
o (F%)n (c27)
F
q

Warping of the ends.- The ends of the carry-through section are
warped, symmetrically or antisymmetrically, by the amount shown in
figure 23(b). Then, since

R = = = -7 =- (c29)
and
Vg = %(wl - w3 sin A - ¢3 cos A) : (Cc30)

the method of reference T can be used to obtain the following equations
for the warping forces:

p9X8 - f9X9 + j9T = i(wl - W3 sin A - ¢3 cos.A) (C3l)

-TgXg + (Bg + P - RE )Xy + (319 - Jg)T = O (c32)

The torque in the carry-through section is statically indeterminate for
antisymmetrical loadings but can be determined from the condition that
one end does not twist relative to the other because of the rigid
supports, that is:

£6g + NB1g + L8711 = O (€33)
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which can be written as follows by use of the equations of reference 8: \
|

B(1 - R)3JoXg ~ M1 - R)(Jg - X (2 (—a— =0 3k 2
(1 - R)igkg = b1 - R)(Jg - h1g)Eg + [(GJ)9+ GJ>1oT (c34)
The stiffness parameters f, Jj, p, and gj have been previously

defined in the section "Analysis of the Outer Section" of this appendix
and their numerical values for the carry-through section are listed in
table IT. These values can be used to obtain the following sets of
simultaneous equations and solutions: .

Symmetrical loads:

3.349163 -2.874949 0.0797693|[kg|  [1.75(¥y - ¥3 sinA - B3 cos A )

F2.874949  3.727325 -.0388418|[Xg| = 0

L 0 0 .0336914{|T 0 ;
Xg = 15&6392(w1 - W3 sin A - ¢3 cos A) :
Xg = 1192759 (‘1’1 - V3 sin A - @3 cos A)
T =0

Antisymmetrical loads:

r3.3&9163 -2.8749k49 o.o79769—§ Xg q.'(s <“’1 - w3 aini 2 ¢3 cos A)

-2.874949 7.096181 -.0388418 x9 = 0
.638154 -.310734 .033691M T_J 0 |
Xg = 1509857(¥; - ¥3 sin A - 3 cos A)

X9 )4-79367 (\lfl - \If3 sin A - ¢3 cos A)

T

1]

-24177260(¢l - W3 sin A - ¢3 cos A)

The stress distribution corresponding to end warpings of
(Wl - W3 sin A - ¢3 cos A) = 1% 1070, is given in table VI(b), in which
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W ' :
& ,-<K)n (c35)
W d {Tn Xy - Xn-l)
b Ass tc,n\Ebc A 28m (c36)

W 1 (Tn %y - Xn-1> )

Tb)n tb,n QbC E 2an

Superposition of solutions.- The complete stress distribution can
be obtained by combining the components from each of the preceding
analyses. The basic expressions are the same for all types of loading;
thus, the stresses on any cross section can be written as follows:

\
oF = oB + oV
UR = O'B - Uw
Tp = -TCB - 'rcw [ (C38)
B W
Tp<tlhen e
Tl = .
bR D

The sign convention for the stresses is that shown for the internal
forces of the carry-through section in figure 2. Similar expressions
can be written for the end forces from which the stiffness factors given
in table VII can be determined by inspection. These are the stiffness
factors required for the analysis of the complete structure.

.

Stiffness Factors of the Beams

The dimensions and stiffness factors of the two bulkheads and the
portion of the front spar which bound the triangular section are given
in table III.

Since the nature of the normal-stress distribution in the
triangular-section cover influences the effective moment of inertia of
the front spar, two values are given. They were determined as follows:

For bending stresses, Ie was taken as one-half the moment of
inertia of the doubly-symmetrical outer section.
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For warping stresses, Ie was determined from the effective
warping area of the outer section; thus,

1

I, =

o = e = %(0.863)(7)2 =L, ¥ dhcken” (c39)

n

The effective moment of inertia of the bulkheads includes a con-
tribution from the cover sheet of the box beam as determined from fig-
ure 8. The equivalent thickness of the aluminum-alloy sheet acting
with the steel bulkhead is given by the relationship

E :
te = tp—onett o.o5o<%9L%) - 0.0181 inches (cko)
bulkhead 9.

Triangular Cover Sheet

The shear stiffness of the triangular cover sheet, which frequently
appears in the general equations, has the following value:

933 z %(u x 100)(0.050)(7)-= 700,000 pounds (ch1)

The shear stiffness per unit width also appears and is

Gtc

s %S(TO0,000) = 23,333 pounds per inch (che)

The Systems of Equations and Their Solutions

Sufficient data have now been obtained to permit evaluation of the
coefficients of the matrix (table I); however, since the supports have
been assumed rigid - (wy = w3 = 0), it will be unnecessary to evaluate
the coefficients of wi1/b and w3/b. Furthermore, there are only seven
unknown joint displacements, which require only seven equations. The
logical equations to eliminate are equations (3) and (9) since they
contain the support reactions V)] and V3, which are statically indeter-
minate for the antisymmetrical loading conditions. The joint force Vo
is zero because the loads are applied at the tips only.

A different set of equations will be required for each loading
condition since the structure responds differently in each case. Thus,
the stiffness factors for the carry-through section are different for
symmetrical and antisymmetrical loads and the effective moment of inertia
of the front spar and the loading terms are different for bending and
torsion. The calculated coefficients are given in matrix form in
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table VIII. Each block in the table has space for four values, one for
each loading condition. If a single values is given, that coefficient

is good for all four loading conditions; when two values are listed, the
upper one is for loadings 1 and 2 whereas the lower one is for loadlngs 5
and 4; and if four values appear, they are for loadings 1, 2, 3, and b,
respectively, when reading from top to bottom.

Throughout the calculations, a large number of significant figures
have been carried, more than are justified by the accuracy of the initial
data; however, the extra figures were carried in order to obtain an
accurate check on the numerical work when the calculated internal forces
are substituted into the original nine equilibrium equations. The solu-
tion of the equations and the calculation of internal forces frequently
involve the differences of large numbers and the final results are apt
to contain several significant figures less than the initial coefficients.

The solution of the systems of equations yields the joint displace-
ments given in table IX. Many methods are available for the solution
of simultaneous linear equations; however, the method of reference 9 is
recommended because of its many practical advantages.

Calculation of Stresses

The flange forces and shear flows in and around the triangular
section can be obtained from the joint displacements by substituting
them back into the force-displacement relationships, equations (13)
to (35). The shear stress is given by the shear flow divided by the
sheet thickness; thus,

T (ck3)

The flange stress in the front spar and bulkheads is obtained from the
flange force and the effective moment of inertia as follows:

Oh = 1 (chlk)

The flange stresses in the outer and carry-through sections must be
determined by summing up the various component stresses, equations (Cl6)
and (C38), since different effective areas are associated with the
bending and warping stresses. The results of these calculations are
given in table X.

The stress distribution in the outer and carry-through sections can
be obtained as described in the analysis of these sections, with joint
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displacements substituted where necessary. The results are given in
tables XI and XII, respectively.

Figure 12 illustrates the distribution of flange normal stresses
and spar shear stresses as calculated in this example and compares them
with the experimental data of references 1 and 2. The distribution of
normal stress in the cover at three selected stations is similarly
illustrated in figure 13.

Calculation of Distortions

The distortions of the outer section can be calculated by adding
up a number of component distortions as provided in equations (C16)
The deflections of the individual spars can be obtained from the
deflection and twist of the box beam as follows:

W =W —6b

(cLs)
1
WR =W - Eeb

The twist of the structure in a plane parallel to the flight path con-
tains a component of the twist perpendicular to the spars and a
component of the rate of change of deflection, but it is most easily
calculated from the deflections of the individual spars.

The calculated results are listed in table XIII and are graphically
compared with the experimental data of references 1 and 2 in figure 11.
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TABLE I.- COEFFICIENTS (ay J) OF THE GENERAL MATRIX

DEFINING THE JOINT DISPLACEMENTS

Coefficient Formula
a.ll Bkls + kl6) - (kll £ klgﬂ sec A + (CI, it B)le cos A
a5 ~(a + B)12 cos A
a3] (k19 + kpq) - (ko7 + kog)
Gt
ay] - -B1p cos A - EC- 81p cos A
8.51 -g% cos A
Gtc 4
agy (o = 6)12 cos A_+-75-(ﬁ2 ¥ 523) sin A
Gtc

3.71 (1{23 + lfgu)813 sec A - 'éb'_‘ 813 cos 2A
agy (kll + kl2) sec A + 9%3 sin A
agy 'Lfl3(k23 + keh) + (k27 + keéﬂ b sec A +

Gt

——2-9(613 cos 2A - €23)
a1, (o + 3)23 tan A
A (o + [3)23 cot A
a32 0
ayo % 6]_2 cot A

ap3 Gtc
as5p 5E§ + 55 cot A
agp (a - 8)23 tan A - g;—c(e]_g + €23)
a7o (o + B)23 + g%ﬁ 613 cos 2A csc A

Gt

agp -(a - 8)23 sec A - 935(613 cos 2A - 623) esc
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TABLE I.- COEFFICIENTS (aij) OF THE GENERAL MATRIX

DEFINING THE JOINT DISPLACEMENTS - Continued

Coefificient Formula

3.13 [:(kl5 - kl6> & (kll = klg)] tan A - (CL 5 B)23 tan A
853 ~l(@y 8)13 cot A -~ (o + B)23 cot A
833 [(k19 - o) - (ko7 - ke8ﬂ Bin A
a,+3 0

Bo3
= o)
263 (o - 6)23 tan A
3 (ko3 - ko )B13 tan A - a3 - (o + By
ag3 (kll - klE) tan A + (a + 8)23 tan A
293 'E13(k23 - kpy) + (kpy - kesﬂb van A v

(o - B)l3 cos A - (a - 6)23 sec A
8y, (o + 6)12 sin A
as), (a0 + B)lQ sin A - (a + B)l3 csc A
8.3)4_ 0
all -B12 sin A + g% 81p cos A cot A
as), % cos A eot-A
agl (o - B)1o sin A - %_c( S b 623) cos A
ar) -813 secuA %— 813 cos 2A cot A
8.8)_'_ -9% COS’A

¥

agl, (o - 5)13 = G—2£(€l3 cos 2A - €23) cof A

NACA
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l
r TABLE I.- COEFFICIENTS (aij) OF THE GENERAL MATRIX
|

DEFINING THE JOINT DISPLACEMENTS - Continued

Coefficient

Formula o]
| a5 -(a + B)lg
‘ 855 (@ + B)y5
a35 0
Gt
8.)4,5 k3 + Cl,lg + -2—.b£ 612
k7 + i
255 T
865 -(1 - 623)k7b tan A + (a - B)1o - Q%E(elg - 623) tan A
a5 -k3 tan A + % 813 cos 2A sec A
ags kg - 2 tan A
895 O.- 623)k7b sec A - 922(613 cos 2A - 623) sec A
816 (k15 - Xa6) - (e - ko)
ang (o + 5)13
8.36 (k19 - keo) cos A - (k27 - k28) COoSs A
al6 k3 - 22€ 81p
_ Gt
856 b
a6 (l - 623)k7b tan A + ggg(ele + 623) tan A
a76 k3 tan A + 613<k23 - kgu) + a3 tan A -
g%g 813 cos 2A sec A
agg kg + (kll - le) " Q%E tan A
896 -(1 - €a3)ipp sec A - |€13(kp3 - Kpu) + (kg - keszlb’f
(a = 3)13 sin A + 9%2(€l3 cos 2A - e23) sec A
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TABLE I.- COEFFICIENTS (aij) OF THE GENERAL MATRIX

DEFINING THE JOINT DISPLACEMENTS - Continued

Coefficient Formula

8.17 Bkl7 b k18> - (kl3 = kl}’llb sec A
oep 0
BT Bkel + Xpp) - (kpg + k_ﬂsoﬂb
ah7 (o = B)lQ cot A
a57 0
367 2(a - B)le cot A
a7 (k25 + k26)613b sec A + (a - 5)13
8.87 (k13 + kl)-l')b sec A

. 2
&97 -El3(k25 + 1{26) + (k29 + k3o‘)_]b sec A +

2(a - B)l3 cos A
a18 0
8.28 0
8.38 0
ang ‘(@ = B)IQ cot A

it

a -(a - B L
58 )23 853
ag8 -2(a - B)1p cot A - 2(a - B)23 tan A
8.88 0
898 2(a - 8)23 sec A
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TABLE I.- COEFFICIENTS (ai,j) OF THE GENERAL MATRIX

DEFINING THE JOINT DISPLACEMENTS - Concluded.

Coefficient Formula
a1g [(kl7 - kpg) - (k3 - kl');):lb sec A
8.29 0
a39 Bkel - kpp) - (kg - k30ﬂb
a)_l_9 0
i
a59 (G, = 3)23 SE:;
269 2(a - B)y3 tan A
8 (k25 - k26) 84D sec A - (a - B)13
agg (k13 - kyy)p sec A
299 -[13(1{25 - k26) + (k29 - k30ﬂ besec A -
2(a - B)l3 cos A - 2(a - B)23 sec A
alo -(kl + kLJM
an0 (kl + kh)M
a3o -%(V]_ + Vo + V3)+ (k5 + klo)V
ayo KM + kT
8.50 -k8V - k9T‘
a60 E%VE + (k5 + €23k8)V o+ (k6 + €23k9)ﬂb tan A
a0 (kM - kT ) tan A
agy klM - k2T
ag0 [--—1-v3 + (ko - cozkg)V - (kg + 623k9)ﬂb sec A

~_NACA =




TABLE II,- DIMENSIONS AND STIFFNESS PARAMETERS OF IDEALIZED

STRUCTURE USED IN THE NUMERICAL EXAMPLE

2teg NI VOVN

Outer section Carry-through section
Ttem {eig. 19) Triangular (fig. 20)
section
Bays 2, 3 and 4| Bays 5 and 6 Bays 9 and 11 Bay 10
Dimensions

b, in. 30 30 30 | e---- | emee-

B e R R T T R et T R S ha A k2.1

¢, in. T i 1 7 o 74

th, in. 0.050 0.050 0.050 0.050 0.0885

te, in. 0.078 0.078 0.078 0.078 0.078

a, in. 22 11 30 9.60 9.76

I, ink 90.2 T SRS A . 122.58 135.15

2. ad i, 0.863 STy b o i Avaciding 0.964 1.229

Stiffness parameters

***p  in, /1b 1.78903 x 10-6| 2.36414 x 1076| ----- 3.349163 x 10~8| 2.062590 x 10-6
. dm, /b OL5HTBLL X 10'6 1.75718 % 10'6 ----- 2.874949 x 10'6 1.684428 x 10‘6
3 per-1b 0:075931 x 10'6 0.075931 % 10'6 ----- 0.0797693 X 10'6 0.0409275 x 10'6
a/GJ, per in.-1b |0.0430112 X 1076 0.0215056 x T e (DY 0.0128T741 x 1076 0.0079432 x 1076
*Includes an allowance for splice plates.

Effective area for warping stress <A = Ap + %ctc + ]6—:btb it % As>

KR
These stiffness parameters are defined in appendix C.

6S
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TABLE III.- DIMENSIONS. AND STIFFNESS FACTORS

OF THE BEAMS

Beam Front spar 1-2 Bulkhead 2-3 | Bulkhead 1-3
Material 24S-T3 aluminum alloy Steel Steel
Stress Bending Warping
Dimensions
D g 30 30 29.25 41.34
c, in. i i 7 7
Lo 0.078 0.078 0.125 0.125
VLS TR | R £ - 6.15 8.01
Lol S 0 SRR et 0.0181 0.0181
2 Ay e S S RS RS S - 9 A it - 4,57
P Sell ot o S el TS e A O 0.60 0.65
Te, in.4 45.1 21.1 9.8k 13.21
Stiffness factors

®, per 1b | 0.575170 x108| 0.743315x 10| 0.338627x 106] 0.332182 X106
a, 1b 3.993615 x100 | 2.400311x 10°| 4.346797x 108 4.427535x 106
B, 1b 0.516384 x 100 [-0.290336 x 108 -1.559397 x 106 | -1.780133x 106
B, An. 11.14498 8.623871 4.295415 4. 51467
€ 0.257002 0.425063 0.706297 0.781584
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TABLE IV.- STRESS AND DISTORTION DISTRIBUTION IN OUTER SECTION

(a) When root is rigidly built-in and tip bending load of
2500 pounds is applied

B B B (o} T B

- b F (o] Tc W w w
{imd) (1b) (psi) (psi) (in.) (1m.) (in.)
1) 88 176 ol SR B R 0.6098 0.0504 0.6602
2 66 4107 2231 2289 .3852 0378 4230
3 Ly 8036 4365 2289 1899 0252 2151
L4 22 11964 6500 2289 .0522 0126 .0648
5 il ¢ 13929 7567 2289 0136 0063 .0199
6 0 15893 8634 2289 0 0 0

(b) When root is rigidly built-in and tip torque of
43,420 inch pounds is applied

o oT TCT TbT Ta/GJT ne% 6T
(psi) (psi) (psi) (radians) (radians) (radians)
1 0 | e ] mesee | feedceses | Aseeamma -0.006840
2 -13 -1328 -2063 -0.001868 0.000003 -.004975
3 -76 =1341 -2043 -.001868 .000017 -.003124
L -L62 -1h422 -1916 -.001868 .000101 -.001357
5 -1067 -1630 -1593 -.000934 .000159 -.000582
6 -2409 -2000 -1015 -.000934 .000352 0

(c) When root is warped by amount (¢2 5 ¢3) =1x 10'6 radians

n oW Tcw‘ Tl AGW ‘ QW
(PSl) (st-) (PSl) "\ro,a:[ans)-‘ (radia.ns)
1 O | ==c==e= | cmceee | emeeeee- Usi3soagy
2 -0.0065 -0.0016 0.0025 0.001705 .333450
3 -.04ok -.0085 .0133 .008900 .324550
L -.2452 0515 .0803 .053668 .270882
5 -.5663 -.1615 2519 .084167 -186715
6 -1.2787 -.3583 5589 2BE S 0

~JAA




62

NACA TN 2232

TABLE V.- OUTER-SECTION STIFFNESS FACTORS

B aees Loadings 1 and 2 Loadings 3 and 4
factor
k1M, 1b 15892.86 0
koT, 1b 0 -2078.91
- k3, 1b/radian -110348% -1103484
k)M, 1b 15892.86 0
ksV, 1b/in. -178.5714 0
kT, 1b/in, 0 156.0246
k7, 1b/in./radian 27943 27943
kgV, 1b/in." 0 0
kg, 1b/in. _ 0 50.7371
K10V, 1b/in. -178.571k 0

~RNAGA




TABLE VI.- STRESS DISTRIBUTION IN CARRY-THROUGH SECTION

(a) When ends are rotated by the amount

(b) When ends are warped by the amount
<W1-+W3 sin A»+¢3 cos A> =1 % lO'6 radians

<Wl - ¥3 sin A - @3 cos A) = 1% 10™ radians

Stress Symmetrical | Antisymmetrical Stress Symmetrical | Antisymmetrical
B : W :
08 , psi 1.3100 0.7303 gg , psi 1.6041 1.5662
B . W
g ., pai 1.3100 0.2460 09 , psi 1.2373 0.4972
o B, psi 1.1882 0.2231 o " psi 0.9705 0.3900
9+ 9+
B 5 W
T s PEi 0 L6177 T , psl -0.2361 -1.2140
Cy c,9
¢ , psi 0 1.6177 3 LB 0 0.1038
e 110 c,10
W
2 5 pat 0.3683 0.2530
b,9
iz , psi 0 -1.0185
b,10

2tec NI VOVN

&9
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TABLE VII.- CARRY-THROUGH SECTION STIFFNESS FACTORS

Stiffness. factor

Loadings 1 and 3

Loadings 2 and 4

ky7, 1b/radian
k15, lb/radian
k5, 1b/radian
k16’ 1b/radian
k1g; 1b/in./radian
Ksq, 1b/in./radian
kp3, 1b/in./radian
k5), 1b/in./radian
Ko7y 1b/in./radian

k8, 1b/in./radian

3277276
-1546392
3277276

1546392

18418

-18418

18418

1827064
-1509857
1827064
1509857
126178
9k691

0

-12651
-126178

94691




TABLE VIII.- SYSTEM OF EQUATIONS FOR EACH LOADING CONDITION

-0.031786
0

0.031786
0

0.015893
-0.0020789

0
-0.0000507

-0.005357
0.0057558

Loading 1 | Symmetrical tip bending load of 2500 lb

Loading 2 | Antisymmetrical tip bending load of 2500 1b

Loading 3 | Symmetrical tip torque load of 43,420 in.-1b

Loading U | Antisymmetrical tip torque load of 43,420 in.-1b

Loading 1

Loading 2 Loadings 1 and 2 . .

Loading 3 Loadings 3 and 4 Losdings 1 to k

Loading 4
7.562904 -5.880185 -3.092785
T.459566 2.787400 -5.80711k 3.189065 -4.510000 -3.01971k o ¥
5.865823 i -5.880185 1.49198k -2.109975 -3.092785 1
5.762485 -5.807114 -3.01971k
-3.189065 g -6.933040 4.510000
_1.49198k 2.787400 5. 434802 _5.235959 2.109975 2.64T7402 0 Vo

1-0.549024 0.260050 o -0.181257 5.357149 -1.36353k =3. 477231 ¥

0.063013 0.201223 0.347587 3.705018 -1.304707 -2.690647 3
-0.016499 1.035295 0.363038 0.016499 -0.004610 0.004610 -1.375000 31
2.935596 5.231885 5.90619k 1.981974 2.556713 0.920518 | -18.766850 do
2.462581 5.114242 1.342586 1.652486 1.038161 | -17.193682
-O'lé7596 _7'13178é 5.614173
-0.080792 -T.15780 4 : 5.588148
0117596 2.787400 7.131781 2. 517U 1.103484 5 613 0 ?3
-0.080792 -7.157806 5.588148
2.9t?802 2.611069 6.627153 >
0.94357 2 .124321 e _ 5.140405 w2
2 9L2805 3. 487400 = E11060 0.494977 1.803484 860715 0 5
0.9435T7h4 6.124321 5.140405

0.015893
0.0020789

~_NACA

0.015893
0.0020789

| e

gfee NI VOVN
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TABLE IX.- JOINT DISPLACEMENTS FOR EACH LOADING CONDITION

: Loading Loading Loading Loading

Displacement 1 o 3 I

V1, radians 0.0003681 | 0.0019304 | -0.0002970 | -0.0005616
V5, radians 0.0029693 | 0.0040942 | -0.0013392 | -0.0015269
¥3, radians 0.0012872 | 0.0024238 | -0.0006535 | -0.0008k41k4
¢,, radians 0.0005019 | 0.0005217 | -0.0003813 | -0.0003817
¢2, radians 0.0055292 | 0.0066615 | -0.0012307 | -0.0014186
¢3, radians 0.0038611 | 0.0050147 | 0.0001279 | -0.0000604
w1/b, radians 0) 0) 0 0
wo/b, radians | 0.0025716 | 0.0037002 | -0.0011Lk05 | -0.0013282
ws/b , radians 0 0 0 0




TABLE X.- CALCULATED LOADS AND STRESSES AROUND THE TRIANGULAR SECTION OF

THE SWEPT BOX BEAM FOR EACH LOADING.CONDITION

Loading 1 Symmetrical tip bending load of 2500 1b.
Loading 2 Antisymmetrical tip bending load of 2500 1b.
Loading 3  Symmetrical tip torque load of 43,420 in.-1b.
Loading 4 Antisymmetrical tip torqué load of 43,420 in.-1b.
Flange Web or cover
Pn On An T
(1b) (psi) (1b/4in: ) (psi)
Loading Loading Loading Loading
n i 2 3 L g 2 3 L i 2 3 4 F 2 3 L
1| 8110| 8148|-1005|-1006| Lho6| Lh26|-116T|-1168| 87.7 86.9| 78.5| T78.5 | 1124 | 1114|1007 | 1007
2|14052|14076| -580| -580| T634| T64T| -673| -673|-132.0| -132.6(118.1(118.1 |-1692 | -1699 {1514 | 1514
3|17734|17710| 580| 580(810767|810739| 6T2| 672| 225.2| 224.6(118.1(118.1| 2887 | 2879|1514 | 1514
Ll 4689| 4656|-19111-1911| 11675| 11593|-4758| -4758| -46.6| -46.0| 88.T| 88.7| -932| -920|17Th | 17T
5| 2342| 2349|-1365[-1365| =====| —ccee|emeaa|aaeaa <1104 | ~110.T1: 64,3 bU.3 {=2206 | 21k i\1nbt | 1287
6(18197| 1816k | -2307 | -2306 | 810501 | 810466 |2-996|2-995| -60.3| 592.0| L.4pLk.1| -773| 7589| 18 |-1848
7| 8077| 8110|-2076|-2076 ap a37la-756|2-757| 60.3 bpod | =Tl =107 - 1205 843| -28 | -19
8 922kl 9p31| 176L| Y761} 1IT107| YT190{ 3266] 3266] -60.3|-1222.51 1.%|158.5| -T73|-15673] 18| 2032
gl-5Ta7| =576kt ~ T10| 7111-10640] -10690] 1317|1319 292.6| 311.5| 26.1| 25:7 L2341 | “24921. 209 | 266
10|14052|14076| -580| -580| #6501| 26528| -672| -6T2| 219.6| 219.4[-39.5|-39.5] 1757 | 1755(-316 | -316
®Indicates a stress composed of a bending and warping component.

- g€22 NI VOVN
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TABLE XI.- CALCULATED STRESS DISTRIBUTION IN THE
OUTER SECTION OF THE SWEPT BOX BEAM FOR

EACH LOADING CONDITION

FLANGES

Sy OR

(psi) (psi)
n Loading Loading

i 2 3 i 1 2 3 N
6 | 6501 | 6528 | -672'| -672 | 10767 | Logho | ‘672 | 672
5 | 6622 | 6634 | -298 | -298 8512 8500 | 298 | 298
4 | 6091 | 6096 | -129 | -129 6909 6904 | 129 | 129
3 | 4298 | L4298 =0 =oi]¢ 4432 4y32 21 21
2 | 2220 | 2220 -4 =l 2242 2242 in 4
WEBS
Tf Tr

(psi) (psi)

= Loading Loading
1 2 3 N 1 2 3 N

6 |-1691 | -1699 | 1513 | 1513 | 2887 | 2879 | 1513 | 1513
5 |-2020 | -2023 | 1411 | 1411 | 2558 | 2555 | 1411 | 111
b |-2203.| 220k | 1352 | 1352 | 2375 | 237h | 1352 | 1352
3 |=2270 |.-2275 | 1329 | 1329:1.2303'{ 2303 | 1329 {1389
2 |-2286 | -2286 | 1327 | 1327 | 2292 | 2292 | 1327 | 1327

COVERS
a1
(psi)
o Loading
1 2 3 N
6-| -932 | -920 | ¥4 |-1TTL
) -420 -415 | 1935 | 1935
4 | -134% | -132 | 2025 | 2025
3 -22 22 | 2061 | 2061
> -} -4 | 2066 | 2066
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TABLE XII.- CALCULATED STRESS DISTRIBUTION IN THE

CARRY -THROUGH SECTION OF THE SWEPT BOX BEAM

FOR EACH LOADING CONDITION

FLANGES
O'F GR
(psi) (psi)
n Loading Loading
1 2 3 L 1 2 3 L4
8 2 36 | -756 | -757 | 10500.| 10466 | -996 | -995
g9- { 1202 ' 112 | -T84% | -257 9300 342 | -968 | -333
g+ | 1587 | 305 | =722 | -238 7939 2903 | -866 | -298
WEBS
Te T
(psi) (psi)
n Loading Loading
i 3 2 3 i ;) 4] 3 N
9 1 -T13 7589 | 18 | -1848 | -773 | -15673 | 18 | 2032
10 0 | 11977 0 | -1948 0 | -11284 0 1932
COVERS
b
(psi)
n Loading
! 2 3 i
9 | 1205 843 | -28 | -19
10 0 | -3301 0 T




TABLE XIII.- CALCULATED DEFLECTIONS AND ROTATIONS OF THE OUTER SECTION OF

THE SWEPT BOX BEAM FOR EACH LOADING CONDITION

Loading 1  Symmetrical tip bending load of 2500 1b
Loading 2 Antisymmetrical tip bending locad of 2500 1lb
Loading 3 Symmetrical tip torque load of 43,420 in.-1b
Loading 4 Antisymmetrical tip torque load of 43,420 in.-1b
Deflection® RotationP
(in.) (radians)
Perpendicular Parallel to
nf x g L Hegr spar to spars flight direction
Loading Loading Loading Loading
1 z 3 i 1 2 3 N 1 2 3 L il 2 3 i
6|0 [0.077/0.110(-0.034 |-0.040|0 0 0 0 0.00257|0.00370[ -0.00114{-0.00133]0 0 0
5/11| .153| .200| -.053| -.061| .067| .080| .006| .005| .00288| .004O1l| =-.00198| -.00216| -=m=-me| cmmcmeu| cmmcmme |aeeem
oo | .252| .311| -Zo72| -.082| .161| .187| .o1k| .010| .00302| .00K15| -.00287| -.00305|======n| ====cee}memmac |—caauo
3| 44| 507 .591| -.112| -.126| .41k| .464| .029| .021| .00311| .00423| -.004T1| -.00489|-.00556| -.00557-.00206 |-.00206
2/ 66| .818| .928| -.152| -.170| .725| .800| .045| .033| .00313| .00425| -.0065T7| -.00676|-.00751| -.00752-.00336 |-.00336
188 1.159]1.293| -.192| -.215|1.065|1.166] .061| .045| .00313| .00425| -.0084k4| -.00862|-.00860| -.00862| -.00468 |-.00468

@positive deflection is downward.

bpositive rotation is front spar downward.

“!ﬂiﬂ!"’
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Joint |

\_Triangular

\_ Carry- \\secﬁon i
through \

section

o

Carry
through
secfion\

Figure 2.- Exploded view of idealized structure showing internal forces
on each component around the triangular section.
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Joint 3

Figure 3.- Free-body diagram showing forces at the joints.

Figure 4.- Positive directions of joint displacements.
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ch ch c t
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(a) Loads.
V=0 Ry S Bet el 1%
, % Qriginal position i 3 —Y
[rpee bl SOk o0 2 el

~\\\\£§FpMcqu§§§ﬁpn
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(b) Distortions.

(c) Differential element.

Figure 5.- Loading and distortions of beam.
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Bending stresses

Warping stresses

(a) Assumed stress distributions in actual structure.

Fe
fr
s
B B
YO
B.B
k=0 Ag

Ar

X=gEAg » G e

~_NACA ~

(b) Equivalent flange forces in idealized structure.

Figure 6.- Assumed distributions of stresses and forces in actual and

idealized structures.
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(a) Actual cross section.

(b) Equivalent cover.

- -
A, AF
Loy =¥ o

" + '

" ¢ TN

(c) Idealized cross section.

Figure 7.- Relationship between actual and idealized cross sections.

1




76

2.8

24

2.0

1.6

% 8 TR
czlte

Figure 8.- Chart for determining the effective moment of inertia of
bulkheads. I =
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_Sheet splice
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used in tests and analyzed in

X4
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Section A-A
\ Figure 9.- Details of sweptback box beam

illustrative example.

| Sy Figure 10.- Antisymmetrical bending test

setup of sweptback box beam.
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. f}Positive rotation
Positive deflection
~—— 25" kips
o
c » 008
s c |
= Ao
2 o Parallel to
g’ 2 504 flight direction
- e
@ ©
= © I X,in
: ° o 40 80
(vl R B nes: e
[°) e ©

-004 Perpendicular to spars

(a) Symmetrical tip bending load.
S Experimental (ref. 1,2)

Theory without shear lag
-——- Theory with shear lag

Positive rotation

Positive deflection

X,in
4
00. el o 'O' ; .8,0, T ] o
N .008
BN
1j o
\b\ N e H Parallel to
& 4 r }\ Rear spar o flight direction
= - 5 ©.004F ©
= a \ Y L
gy \ & &,
Q 8 XA\ o X,in.
0 - o = = ’
&6 1 Leoms \\ SEQT TR
- ront spar L
[ " &
L2 o L
i \ =009 S
R Billetnrion 5 SNACA
1.6 = Perpendicular to spars N\
o
. (b) Antisymmetrical tip bending load.

Figure 11.- Experimental and theoretical deflections and rotations of
sweptback box beam.
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Rotation,radians

4342 in-kips~
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Positive rotation

Positive deflection

008 ; Perpendicular
.004
I Parallel to
flight direction
R b N Ntk
%0 40 80
X, in.

(c) Symmetrical tip torque load.

L o
-2F i
Front spar
£
e-l
A
E’ ;
= 40 ' 80
2 0%
[a] o
Rear spar
L
=ik . /
Front spar /
£ Vi
c -l
K=
2 X, in.
= 40 80
S0 Q SO —.
| Rear spar 2
|

.008F

Rotation, radians

.004

o
o

~43.42in-kips~

TRy

S Experimental (ref.1,2)

Theory without shear lag
-——- Theory with shear lag

Positive rotation

Positive deflection

Perpendicular |
to spars

7

Parallel to
flight direction

e st i) BN

40 80
X,in,

’

‘\ﬁem T

(d) Antisymmetrical tip torque load.

Figure 11.- Concluded.
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(a) Symmetrical tip bending load.

12 o Experimental (ref.|,2)
AR 8 -— Elementary theory
! — Theory without shear lag
oo o 16 -— Theory with shear lag
[ 9 14 /
| 8 12 '
' /

7 or |

S
Spar shear stress & . [ :

|
"%’k Flange normal stress

(b) Antisymmetrical tip bending load.

Figure 12.- Experimental and theoretical spanwise distribution of flange
normal stresses and spar shear stresses of sweptback box beam.
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Flange normal stress

43.42 in-kips ' 43.42 in-kips

(c) Symmetrical tip torque load.

o Experimental (ref.1,2)
-—Elementary theory
—Theory without shear lag
—Theory with shear lag

43,42 in-kips i 7 43.42 in-kips
LN
b

(d) Antisymmetrical tip torque load.

Figure 12.- Concluded.
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2.5 kips 2.5kips

c d [} ; f

(a) Symmetrical tip bending load.

° Experimental (ref.!,2)
—--Elsmentary theory
——Theory without shear lag
97 -—-Theory with shear iag

NN
S

“‘n‘;’r'

'5[ 25kips [ ! K 2.5kips ]
12F .\. 1
\

= ™

3 - Qj\\’\ Lo iy
» Nd o_é

1.0 bl
e S5 e

(b) Antisymmetrical tip bending load.

Figure 13.- Experimental and theoretical chordwise distribution of normal
stress of sweptback box beam.
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43.42 in-kips 43.42 in.-kips

(c) Symmetrical tip torque load.

o Experimental (ref.1,2)
———Elementary theory
——Theory without shear lag
-—-Theory with shear lag

43.42fn-kips

(d) Antisymmetrical tip torque load.

Figure 13.- Concluded.
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(a) Stress distribution (b) Flange forces in
in actual structure. idealized structure.

Figure 1L4.- Shear-lag stresses and forces in actual and idealized
structures.

Joint 3

- Substitute
stringer

U

‘Figure 15.- Type of idealized structure required to include shear-lag

effects in the analysis.
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Joint I\
: Bulkhead
Case 1-3 2-3
I || ]|Flexible|Flexible
I Flexible| Rigid
o m |E| Rigid |Flexible
Joint 3 N e
I || Rigid | Rigid
---- Elementary theory
=
=N
= ZIi=
= ZI=
E =
AE =
— =N
(oF O¢ T T:
3 6 | 5 ((#2@3)
Normal stress Shear siress Distortion
(a) Symmetrical bending.
N N
= Qs gg
7
1 \ N
N , % , . N
|
O3 Og L T5 e 5( 2+¢3)
Normal stress Shear stress Distortion

(b) Symmetrical torsion.

Figure 16.- Calculated effects of bulkhead flexibility on the stresses
and distortions of a swept box beam.
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. Figure 17.- Plate-stringer combination analyzed to determine the effective

width of cover acting with bulkhead.
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Figure 18.- Effective width of plate acting with stringer. (See
appendix B).
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&
‘ ‘ K V,W
i Lt =050 }
‘ t.=.078 b C;7 Lk
b b=30——+ ‘

Figure 19.- Idealized outer section used in illustrative example.

‘L—~6=42.|f——i

~NACA

Figure 20.- Idealized carry-through section used in illustrative example.
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- f —f- ik X X
c a, ch b,n 240, W

Figure 21.- Force groups of outer or carry-through sections used in
illustrative example.

L=89

-

V=2500 Ib

(b) =-43420 in- b
(a)

(c)

(e) S NACA

Figure 22.- Types of individual analyses of outer section used in
illustrative example.
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R=+1 for symmetrical loads ‘
= —| for antisymmetrical loads by i

Figure 23.- Types of individual'analyses of carry-through section used
in illustrative example.
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