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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 2232 

STRESS AND DISTORTION ANALYSIS OF A SWEPT BOX BEAM 

HAVING BULKlIEADS PERPENDICULAR TO THE SPARS 

By Richard R. Heldenfels, Geor ge W. Zender, 
and Charles Lioove 

SUMMARY 

A method is presented for the approximate calculation of the 
stresses and distortions in a box beam representing the main structural 
component of a swept wing with a carry-through section and with bulk­
heads perpendicular to the spars. The outer and carry-through sections 
of such a wing can be analyzed by existing methods if some means is pro ­
vided for analyzing the triangular section which connects them. In the 
method presented the triangular section is divided into free bodies and 
then equilibrium and continuity are established between these bodies. 
The result is a system of linear equations which can be solved for the 
rotations and translations of the three vertica.l edges of the triangular 
section. 

The application of the method is illustrated by a numerical example 
and the results are compared with previously published test data. The 
agreement is fair, with the principal discrepancies being due to the 
fact that the method is based on a very simple type of idealized struc­
ture which prevents the appearance of shear lag in the results. Exten­
sion of the basic approach to permit the inclusion of shear lag is 
indicated. The effects of the shear and bending flexibility of the 
bulkheads bordering the triangular section are investigated and are 
shown to be important. 

INTRODUCTION 

Experimental investigations of swept box beams (references 1 and 2) 
have shown that the stresses and distortions in a swept wing can be 
appreciably different in character from those that would exist if the 
root were normal to the wing axis. The principal effect of sweepback on 
the stresses occurs under bending loads and consists in a concentration 
of bending stress and vertical shear in the rear spar near the fuselage. 
With regard to distortions, the effect of sweep is to produce some twist 
under loads that would produce only bending of an unswept wing and some 
bending under loads that would produce only twist of an unswept wing. 
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A relatively small amount of theoretical work has thus far been 
published on the analysis of swept wings of the shell type. Reference 3 
presents an energy method for determining influence coefficients of a 
swept box beam with bulkheads parallel to the flight path, and refer­
ences 1 and 2 contain a semiempirical method for the deflection analysis 
of a swept box beam with bulkheads perpendicular to the spars. No pub­
lications are known to be available on the stress analysis of a swept 
box beam with either type of bulkhead arrangement. 

The purpose of this paper is to present a method for the calcula­
tion of both stresses and distortions of a swept box beam representing 
the main structural component of a swept wing with a carry-through sec­
tion and with bulkheads perpendicular to the spars. The analysis is 
based on the four-flange idealized structure illustrated in figure 1. 
In a four-flange box beam of this type the carry-through and outer sec­
tions can be analyzed by existing methods for unswept four-flange box 
beams if some means is provided for analyzing the triangular section 
which connects them. 

A method is presented for analyzing an idealized representation of 
the triangular section and for establishing continuity between the parts 
of the box beam; consideration is also given to the relationships between 
the idealized and actual structures and a comparison between the stresses 
and distortions calculated by this method and the experimental data of 
references 1 and 2. In the discussion, the effects of shear lag, which 
the method cannot give, are considered and an extension of the basic 
approach to permit their inclusion is indicated; also, the importance to 
the analysis of including the shear and bending flexibility of the bulk­
heads bordering the triangular region is demonstrated. A complete 
numerical example is worked out in an appendix. 

SYMBOLS 

Principal Concepts 

A area, square inches 

a,an length of bay, inches 

aij coefficients of matrix 

Bn,Cn,Dn arbitrary constants in solution of a differential equation 

b width of outer section, inches 

b' width of carry-through section, inches 
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c 

E 

F 

f ,j,p 

G 

h 

I 

J 

ki 

L 

2 

M 

N,N' 

P 

Q 

q 

R 

T 

t 

U 

u 

V 

w 

X 

depth of box beam or bulkhead, i~ches 

modulus of elasticity, psi 

force group statically equivalent to a bending moment, pounds 

warping stiffness parameters 

modulus of rigidity, psi 

width of plate, inches 

moment of inertia, inches4 

torsion constant, inches4 

stiffness factors of outer and carry-through sections 

length of outer section, inches 

length of beam, inches 

bending moment, inch-pounds 

summations used in appendix B 

axial load in flange or stringer, pounds 

area moment, inches3 

shear flow, pounds per inch 

ratio which has the value +1 for symmetrical loads and -~ for 
antisymmetrical loads 

torque, inch-pounds 

sheet thickness, inches 

strain energy, inch-pounds 

displacement in the x direction, inches 

vertical shearing force, pounds 

downward displacement or deflection, inches 

self-equilibrating, statically indeterminate force group, pounds 
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x,y,z rectangular coordinates, inches 

y distance from front spar to a specified center, inches 

~,~,5,€,m stiffness factors of beams 

r shear strain 

s,~ nondimensional parameters used in discussion of idealization 

e angle of twist, radians 

A angle of sweep, degrees 

A effective width, inches 

~ Poisson's ratio (assumed to be 1/3) 

v effectiveness factor 

cr normal stress, psi 

T shear stress, psi 

~ stress function 

W,¢ joint rotations, radians (see fig. 4) 

Subscripts 

Subscripts are used chiefly to designate the location of a dimen­
Sion, force, or stress, as follows: 

b cover of the box beam 

c web of the box beam or bulkhead 

F,f front spar or flange (see fig. 7) 

L left-hand end of beam 

1. along length of beam 

: ~ :} (appendix B) 

value at 1. 

o value at 

---------

• 

• 
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p plate 

R,r rear spar or flange ( see fig. 7) 

R right-hand end of beam 

x,y coordinate axis 

s stringer 

1;2;3 ... n specific locations shown in figures; also, numbers to identify 
stiffness factors 

The singl~ exception to the foregoing convention is: 

e effective when applied to area, thickness, or moment of 
inertia 

Superscripts 

Superscripts are used to designate stresses and distortions 
produced by different types of action, as follows: 

B bending 

F F-force group 

R rigid-body displacements 

T torsion 

W warping 

X X-force group 

a flexure 

T shear 

ANALYSIS OF THE IDEALIZED STRUCTURE 

Basic Assumptions 

The type of idealized structure analyzed is shown in figure 1. It 
is a four-flange box beam, which is considered swept back in order to 
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avoid ambiguity in the designation of the front and rear spars. The 
sweptback parts are made up of two triangular sections a.nd two rectan­
gular outer sections which are symmetrical about and continuous with a 
rectangular carry-through section representing the part of the wing 
within the fuselage. The outer and carry-through sections contain bulk­
heads which are placed perpendicular to the spars but the triangular 
section contains no bulkheads. All cross sections are symmetrical about 
a horizontal plane through the mid-depth of the spars. 

The box beam is supported, either rigidly or elastically, at the 
four corners of the carry-through section so that the reactions are 
simple vertical forces. It is loaded by a series of vertical forces as 
shown in figure 1. The resulting stresses are within the elastic range. 

The longitudinal direct stress in the idealized structure is assumed 
to be carried only by the concentrated areas at the corners of the cross 
section, and the side walls (spar webs) and covers are assumed to support 
shear stress only. The shear flow in the triangular cover sheets is 
assumed to be constant throughout the element (q5 in fig. 2). This 
assumption implies the existence of uniformly distributed normal forces 
on the hypotenuse of the triangular cover sheet but, since the adjacent 
carry-through section can carry normal force only at its corners, these 
distributed forces are lumped into two statically equivalent concen­
trated forces (P5 in fig. 2) at the ends of the hypotenuse. This 
assumption of uniform shear stress in the triangular sheet is approxi­
mately justified by the experimental data of references 1 and 2. 

The two bulkheads which border the triangular section are assumed 
to be beams with finite shear and bending stiffness in their own plane 
but with no resistance to distortion out of their plane. 

The relationship between the idealized structure described above 
and an actual structure is discussed subsequently. 

Method of Analysis 

The method of analysis is based on the assumption that the outer 
and carry-through sections can be analyzed by existing methods and that 
all that is then required is a means of establishing continuity between 
them through the triangular section. In order to accomplish this result, 
the structure is di vided into a number of component parts as shown in 
figure 2. The forces assumed to exist on the cut sections are also 
shown. 

The first step in the analysis is to consider the vertical edges of 
the triangular section (joints 1, 2, and 3) as free bodies (fig. 3) and 
to write equilibrium equations for them. These equations include two 

• 

• 
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for moment equilibrium and one for vertical shear equilibrium at each 
joint or a total of nine equations. The number of equations is con­
siderably less than the number of unknown forces, and the problem is 
therefore statically indeterminate. The number of equations, however, 
is exactly equal to the number of displacements required to specify t~e 
attitude and position of the three joints. These displacements include 
two rotations and a vertical translation of each joint, as shown in 
figure 4. 

The next step in the analysis, therefore, is to establish force­
displacement relationships for each component of the structure shown in 
~igure 2. Through these relationships the forces appearing in the 
equilibrium equations can be replaced by the jOint displacements and the 
loads applied to the structure. The nine equilibrium equations then 
contain as unknowns only the nine joint displacements and can be solved 
simultaneously for the displacements. Once the joint displacements are 
known, the force-displacement relationships can be used again to deter­
mine the stresses and distortions of the entire structure. 

If one, or both, of the bulkheads (1-3 or 2-3 ) is .assumed rigid 
in its own plane, certain relationships among the joint displacements 
are immediately evident; thus the number of equilibrium equations needed 
is reduced and the analysis is simplified. 

In an analysis of this type many of the factors involved depend 
upon the nature of the applied load (symmetrical or antisymmetrical, 
bending or torsion) and it may therefore be advantageous to make a 
separate analysis for each type of load and then superimpose the results 
to obtain the desired solution. For convenience in the detailed develop­
ment which follows, however, provisions for both bending and torsion 
are included simultaneously but with restrictions that they are either 
symmetrical or antisymmetrical about the carry-through section. 

Joint-Equilibrium Equations 

If the three joints shown in figure 3 are consi dered as free bodies, 
a total of nine equilibrium equations can be wri tten, two for moments 
and one for vertical shear at each jOint, as follows: 

Joint 1: 

(1) 

(2) 

o (3) 
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Joint 2: 

Joint 3: 

o 

Pll = 0 

V2 + C(ql - ~ - qlO) o 

P8 + P4 cos A - P3 sin A = 0 

P6 - P5 - P4 sin A - P3 cos A = 0 

V 3 + c (~ + qlO - q8 + q3) = 0 

( 4 ) 

( 6) 

( 8) 

Inasmuch as the number of unknown forces appearing is greater than 
the number of equations, the problem is statically indeterminate. The 
principle of consistent displacements will therefore be used to obtain 
a solution. 

Force-Displacement Relations 

The attitude and position of the joints can be completely described 
by nine joint displacements, two rotations, and a vertical translation 
at each joint (fig. 4). Thus the number of unknown joint displacements 
is exactly equal to the number of equilibrium equations, so that a solu­
tion is possible if sufficient force-displacement relations can be writ ­
ten to express all the unknown forces in terms of the nine joint 
di splacement s . 

All the internal forces (p's and q's) shown in figure 2 can be 
expressed in terms of the unknown joint displacements and the loads 
applied to the outer section, with the use of the force-displace~ent 
relationships for each component of the structure. All that remain are 
the three vertical forces (V's) at the joints which are a combination of 
the vertical loads applied to the triangular section and the statically 
indeterminate support reactions. Since these forces are dependent upon 
the nature of each individual problem, they will be temporarily treated 
as known quantities; the modifications required for different types of 
supports are discussed in a subsequent section . 

The force-displacement relationships for each component can be 
written as indicated in the following sections . 

J 
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Beams.- The two bulkheads 1-3 and 2 -3 and that part of the front 
spar 1-2 bordering the triangular section can be analyzed as beams sub­
jected to end shears and moments plus a running shear along the flanges . 
This running shear results from the shear flows in the covers adjacent 
to the flanges. The loading and distortion of a beam of this type is 
illustrated in figure 5. In appendix A, this type of beam is analyzed 
and the following general expressions are obtained for the end loads in 
terms of the end displacements, the running shear, and certain stiffness 
parameters which include both the shear and bending resistance of the 
beam: 

where 

and 

EI 

qc 

PL 

PR 

¢L +~ 
(ex, - 13) 2 + 2(ex, - 13) 

-a¢L + I3¢R - (ex, - 13) 
wL 

-i3¢L + ~ + (ex, - (3)WL 

1 (4 4EI ) 
ex, = ill \3 + Gct z 2 

i3 = (J.)! L5.
3 

+ 4EI) 
\ Gct 22 

5 = ~(cit) 

E = ~(~I) 

(J.) - cZ (1 + 4EI) 
EI 3 GctZ2 

bending stiffness of beam 

Gct shear stiffness of beam 

wL - wR 
22 - Eq2 

- wR 
2 - 5q2 

-"WR 
+ 5q2 2 

-- ._------

(10) 

(11) 

(12) 
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Specific force-displacement relationships for each of the beams can 
be obtained by application of these general equations with the following 
results: 

Front spar 1-2: 

Bulkhead 1-3: 

P9 = -~13¢1 - ~13(~3 

°13 (q7 + qll) 

) 
Wi - w3 

cos A - ¢3 sin A - (~ - ~)13 b sec A -

) 
wl - w3 

P8 = -~13¢1 - ~3(~3 cos A - ¢3 sin A + (~ - ~)13 b sec A + 

°13(q7 + ql1) 

Bulkhead 2-3: 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

• 

• 

• 
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In these equations the subscripts 12, 13, and 23 applied to the 
stiffness parameters ~, ~, 5, and E refer to the front spar 1-2 

11 

and the two bulkheads 1-3 and 2-3, respectively. Several unknown forces, 
namely, ~, q5' q7' and qll' which do not occur in the joint equi-

librium equations, appear on the right-hand sides of equations (13) to 
(21); these forces, too, can be expressed in terms of the nine joint dis­
placements when the other structural components are considered. 

Triangular cover sheet.- The triangular cover sheet is assumed to 
carry a uniform shear flow q5 a.long its mutually perpendicular edges 

(1-2 and 2-3). In order that this element be in equilibrium, shear and 
normal stresses are required along the hypotenuse and the corresponding 
forces are shown (fig. 2) as a uniform shear flow qll acting along 

that edge and a pair of concentrated forces P5 acting at the joints. 
The equilibrium equations are: 

(22) 

(23) 

Force-displacement ~lationships are obtained by assuming that the 
maximum shear strain in the sheet is equal to the amount by which the 
right angle 1-2-3 is changed. In terms of the joint rotations, this 
shear strain is: 

Then, 

r 1-2-3 

and the relations for 

tions (22) and (23). 

( 24) 

(25) 

qll and P
5 

follow immediately fram equa-

Outer section.- That part of the structure outboard of bulkhead 2-3 
acts as an unswept cantilever box beam supported on a flexible root and, 
as such, can be analyzed by existing methods of analysis. The stresses 
and distortions at any point can be expressed in terms of the applied 
loads, the distortions of the root, and certain elastic stiffness 
factors. Then, the force-displacement relationships required to define 
the internal forces at the root are: 
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P3 klM k2T + k3(¢2 ¢3) (26) 

P10 = k4M + ~T k3 (¢2 ¢3) (27) 

~ k5V + k6T + k7 (¢2 ¢3) (2S) 

q3 -klOV + ~T + k7 (¢2 - ¢3) (29) 

q4 = kSV + k9T - ~(¢2 - ¢3) (30) 

In these equations V, M, and T represent, respectively, the applied 
vertical shear, bending moment, and torque (about some reference axis) 
at the root of the outer section and the k's represent elastic stiff­
nesses of the outer section. The stiffness factors kl' k2, k4 and 
the like are functions of the distribution of the applied loads and the 
dimensions and material of the outer section, whereas k3 and k7 
depend only on the latter. The quantity ¢2 - ¢3 is a measure of the 
warping of the root cross section and is the only root distortion 
appearing in the equations, since the others are rigid-body movements 
which do not affect the stress distribution. Thus, effectively, the 
root bulkhead is assumed rigid in its own plane as far as the outer­
section analysis is concerned. 

Any method of analysis can be used to determine the stiffness 
factors provided that cross-sectional warping and its restraint are 
taken into account. This provision requires a more refined approach 
than is made in elementary bending theory. The stiffness factors are 
the same for symmetrical and antisymmetrical loadings but, since bending 
and torsion produce different types of eff ects, they have been separated 
in the equations. In order to evaluate the torque T, the loads must be 
referred to a reference axis. The most desirable axis is one which makes 
the stresses at the root due to the bending moment M eqUivalent to 
those given by elementary theory, although it is not generally possible 
to achieve this relationship at all stations. The so-called "shear 
center" does not locate such an axis. The choice of a reference axis 
will be treated at greater length in the section on idealization. 

Carry-through section.- The carry-through section, like the outer 
section, is a box beam that can be analyzed by existing methods. In 
this case, however, the stress di stribution is expressed in terms of 
only the end distortions since internal end forces are the only loads 
applied. The force-displacement relationships are then: 

P6 = kll(*l + * 3 sin A + ¢3 cos A) + k12 (*1 - * 3 sin A - ¢3 cos A) + 

k13 (wl + W3) + k14 (Wl - w3) (31) 

t 

w 
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P7 k15('l\rl + 'l\r3 sin A + ¢3 cos A) + k16('l\rl - 'l\r3 sin A - ¢3 cos A) + 

k17(Wl + W3) + klS(Wl - W3) (32) 

q7 ~3('l\rl + 'l\r3 sin A + ¢3 cos A)+ ~4('l\rl - 'l\r3 sin A - ¢3 cos A) + 

~5 (Wl + W3) + ~6(Wl - w3) (34) 

qs k27 (irl + 'l\r3 sin A + ¢3 cos A) + k2S('l\r1 - 'l\r3 sin A - ¢3 cos A) + 

~9 (Wl + W3) + k30( wl - v3) (35) 

In these equations, the k's represent elastic stiffness factors, which 
depend upon whether the loading is symmetrical or anti symmetrical , as 
well as upon the dimensions and material of the carry-through section. 
They may be determined by any method of analysis as long as cross­
sectional warping and the shear and bending stiffness of the spars are 
considered. The displacements which appear have been so grouped that 
they have a particular physical meaning. Thus, the quantities associated 
with the first, second, third, and fourth terms in parentheses represent 
a bending type of rotation, a warping, a translation, and a torsion type 
of rotation of the end cross section, respectively. 

Solving for the Joint Displacements 

The force-displacement relationships (equations (13) to ( 35)) are 
sufficient to express all the internal forces in the equilibrium equa­
tions in terms of the nine basic joint displacements and the applied 
loads. Upon substitution, the nine equations involve only nine unknown 

wl w2 w3. 
displacements; namely, 'l\rlJ 'l\r2' 'I\r 3' ¢lJ ¢2' ¢3' b' b' and b' 
and they can then be solved numerically for these unknowns. 

The equations obtained by direct substitution have coefficients 
containing many terms which are tedious to evaluate; however, a number 
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of combinations can be made which substantially simplify the final 
equations. Equations (1) to (9) are combined as follows to obtain nine 
simpler equations; 

ITl) - (8U sec A - (4) + (5) tan A (36) 

~2) + (78 csc A + (4) + (5) cot A (37) 

~~3) + (6) + (9~ (38) 

(4) (39) 

(5)~ 
523 

(40 ) 

b (41) -(6) tan A c 

(7) sec 11. + (5) (42) 

(8) sec A - (5) tan A ( 43) 

b (44) -(9) sec A c 

The resulting system of equations is written in matrix form as 
follows: 

all a12 a13 a14 a15 a16 a17 a18 a19 Wl alO 

a21 ~2 a23 ~4 a25 a26 a27 ~8 a29 W2 a20 

a31 a32 a 33 a 34 a35 a36 a37 8.38 a39 W3 a30 

a41 a42 a43 a44 a45 a46 a47 8.48 a49 ¢1 a40 

a51 a52 a53 a54 a55 a56 a57 8.58 a59 ¢2 a50 (45) 

a61 a62 a63 a64 a65 8.66 a67 a68 a69 ¢3 a60 
Wl 

a71 a72 a73 a74 a75 8.76 a77 8.78 a79 b a70 
W2 

a81 a82 a83 a84 a85 a86 a87 a88 a89 

?J 
a80 

a91 a92 a93 a94 a95 a96 897 8.98 a99 a90 

The coefficients aij are given by the expressions in table 1. 
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The terms in the matrix of coefficients involve the elastic stiff­
ness factors and dimensions of the structure; the constant terms contain 
elastic stiffness factors, the loads applied to the outer section, and 
the vertical forces at the joints. Each of these joint forces contains 
a component of the load applied to the triangular section and, in addi­
tion, VI and V3 contain the support reactions which may be statically 
indeterminate. The loads applied to the triangular section are so 
divided among the three vertical edges that the resulting forces form a 
statically equivalent system. The reactions depend upon the nature of 
the supports and are introduced into the analysis as indicated in the 
following sections. 

Rigid supports.- In the case of rigid supports WI and w3 are 
zero and there are thus seven unknown joint displacements which require 
only seven equations for their determination. In the matrix, equa-
tion (45), columns 7 and 9, which are the coefficients of WI and w3, 
respectively, can be immediately eliminated. The required seven equa­
tions are then obtained by the elimination of two rows, the logical ones 
being rows 3 and 9 since they are derived from equations containing the 
unknown support reactions. After the joint displacements have been cal­
culated, VI and V3 can be determined by substitution into equa­
tions (3) and (9). 

Elastic supports.- For the case of elastic supports, all nine equa­
tions ar3 required but must be modified to include force-displacement 
relationships for the supports. The joint forces can be expressed as 
follows: 

where 

k support stiffness factor 

V' component of loads applied to triangular section 

Calculating Stresses and Distortions Throughout 

the Idealized structure 

The stress and distortion distributions for the complete box beam 
have been defined in terms of the applied loads and the nine joint dis­
placements. Once these joint displacements have been determined by 
solving equation (45), the procedures outlined previously can be reversed 
and all of the forces at the joints can be calculated. 
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Determination of the detailed distributions is slightly more com­
plicated. For the front spar and the two bulkheads bordering the tri­
angular section} the equations of appendix A can be used . For the outer 
and carry-through sections} the complete stress distribution can be 
determined from the analysis that was used to obtain the stiffness 
factors kl to k30. The effects of rigid body motions} which do not 
affect the stresses} must be included in the calculation of distortions . 

The relationships between the computed stresses in the idealized 
structure and the actual structure are discussed in the section on 
ideal i zat i on} which follows. 

IDEALIZATION OF AN ACTUAL STRUCTURE 

Outer and Carry -Through Sections 

The outer and carry-through sections are unswept box beams which 
can be analyzed by existing methods of analysis. Since such methods are 
by no means standard} however} a definite procedure is presented in 
order that the idealization of the complete structure may follow a 
consistent pattern . 

The basic assumption that the idealized outer and carry- through 
sections are conventional four-flange boxes implies that the normal 
stress in the walls of the actual box beam varies linearly between 
adjacent corners . A generalized stress distribution of this type can 
be represented by a linear combination of the two stress distributions 
shown in figure 6(a)} one of which equilibrates the applied load and is 
uniform across the cover} while the other is self - equilibrating and 
varies linearly across the cover . The uniform distribution is designated 
bending stress because it is obtained from elementary beam theor y which 
assumes that plane cross sections remain plane after loading. Similarl y } 
the linearly varying stress is designated warping stress because it is 
associated with the warping of the cross section out of its plane. 

The normal stresses on the actual cross section are represented by 
four concentrated forces at the corners of the idealized cross section . 
The total force at each corner consists of two components } one from the 
F- force group corresponding to the bending- stress distribution and one 
from the X-force group corresponding to the warping- stress distribution} 
as shown in figure 6(b) . The equivalence between the force group and 
the corresponding distributed stress is determined on the basis of over ­
all statics of the cross section and the moment applied to each cover . 
The effective flange areas of the idealized structure are then chosen so 
that the flange stress in the idealized structure is equal to the corner 
stress in the actual structure. 

• 
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A cross section of the type shown in figure 7(a) can then be 
idealized as follows: 

17 

(1) Obtain the equivalent cover (fig. 7(b)) by adding, to the 
actual cover and corner flanges, areas representing the moment - carrying 

capacity of the webs; that is, Ectr and ~tf; the area of the 

equivalent cover is therefore: 

(As)n 

( 2 ) Locate the centroid of the equivalent cover: 

(46) 

(47) 

(3) Calculate the moment of inertia of the equivalent cover about 
a vertical axis through its centroid: 

(Af + ~ctf)(~)2 + (Ar + ~ctr)(l - ~) 2 + ~2btb + btb(~ 

L Asn(~n - ~t 
n 

(4) The effective area of each front flange is then: 

(a) For bending stresses: 

-)2 !... + 
b . 

where I is the moment of inertia of the entire cross section about 
the horizontal axis of symmetry. 

(b) For warping stresses: 

(48) 
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(5) The effective area of the rear flange in each case is: 

y 

~ { b 

Y.. 1 b 

l. 
{ { b ---

1 _ f. 
b 

If many equally spaced stringers are used, satisfactory results 
can be obtained by treating them as an equivalent sheet and thus 
eliminating the evaluation of lengthy summations. 

(51) 

It is important to note that a different effective area is 
associated with each type of stress distribution, as should be expected, 
since each is associated with a different type of physical action; 
therefore, if accurate results are to be obtained, the two types of 
stress distributions must be completely separable in the analysis, that 
is, they do not appear simultaneously in the evaluation of anyone 
stiffness factor in equations (26) to (35). This separation is not 
generally possible; however, one way to accomplish complete separation 
in the outer section will be described. Similar considerations apply 
to the carry-through section. 

The outer section is an un swept cantilever box beam on a flexible 
roo~ and the forces on any cross-section as given in equations (26) 
to (30) can be expressed as the sum of: (1) forces that exist in the 
loaded cantilever on a rigid root and (2 ) forces that exist in an 
unloaded cantilever having the root warped an amount (¢2 - ¢3). Since 

root warping produces only warping stresses, the effective areas for 
warping stresses (equations (50) and (51)) are used for the de4ermina­
tion of the stiffness factors k3 and k7. The choice of effectiv~ 
areas for the analysis of the loaded cantilever is more difficult because 
the application of vertical loads will, in general, produce both bending 
and warping stresses; however, since torque loads produce only warping 
stresses, it may be possible to locate some axis along which applied 
vertical loads will produce only bending stresses at every cross section; 
then, the loading can be divided lnto vertical forces applied along this 
axis and torques about this axis. The stress types are thus separated 
and the effective areas for bending stress (equations (49) and (51)) can 
be used to calculate the stiffness factors associated with the vertica.l 
loads (kl' k4, ~, kS and kl~ and the effective areas for warping 

• 
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stresses (equations (50) and ( 51 )) can be used to calculate the stiff ­
ness f act ors (~, k6 ' and ~) associated with t he t orque . 

An axis of the t ype described obvi ously ex i sts for a. doubly 
symmetrical cr oss se ction; such an axis is also known to exist for a 
f our-flange box beam of consta.nt cross section which is symmetrical 
about a horizontal plane ( fig . 7(c) ). The location of this axis, at t he 
center which might be called t he zero warp ing center of the cross 
sect i on, is given by : 

l g + ~(l - ~) (52) 
b b 2tf 

where 

1 1(1 + ~) 
t c 2 tf tr 

b + c 

~ 
tb tc 

b c 
tb tc 

The zero warping center should not be confused with the shear center . 
Vertical loads applied along an axis through the shear center will 
deflect the box beam without twisting it, if the cross sections are free 
t o Wal"p, a condition that is not satisfied at the rigid root of a 
cantilever . Vertical loads applied along an axis through the zero 
warping center will result in a combination of deflection and twist, but 
the cross sections of the box will not warp. If the cross - section is 
doubly symmetrical, the zero warping center and shear center coincide at 
the geometrical center of the cross section. 

The preceding discussion has been exclusively concerned with the 
problem of converting the actual structure into an idealized structure 
that can be easily analyzed. After the analysis has been completed and 
the magnitudes of the corner forces determined, the problem of con­
verting corner forces into stress distributions arises. This conversion 
of forces is accomplished by determining the stresses corresponding to 
each type of force group (F or X) and then summing the stresses to get 
the total stress. The relationship between force groups and stress 
distributions are shown in figure 6. The type of force group is deter ­
mined from physical considerations; for example, equation (26) shows 
that P3 is composed of three forces of which klM is of the bending 
type whereas ~T and k3 (¢2 - ¢3) are of the warping type. 

- ~~~---" 
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With regard to shear stresses, the analysi s of the idealized 
structure gives the average va lue of the shear flows in the walls of 
the actual structure. A more detailed shear - stre s s distribution can be 
derived from the di stributed normal stre sses; however, this additional 
refinement is probably unwarranted in view of the many approximations in 
the bas ic solution. 

Triangular Section 

The idealized triangular section consist s of three parts: the two 
cover sheets which are i n a state of uniform shear, and the front spar, 
which is assumed to be a beam . 

The thickne ss assigned to the ideal i zed cover she et should properly 
represent the shear stiffness of the actual cover . For unbuckled sheet 
alone, this thickness is that of the actual sheet . Thi s value should be 
decreased if the sheet has buckled or increased if there are closed­
section stringers which contribute to its shear resi stance. Similar 
considerations apply to the determination of the shear resistance of 
any other element of the structure. 

In the calculation of the moment of inertia of the front spar, a 
contribution from the sheet and stringers in the cover of the triangular 
section mu st be included to account f or their ability to carry direct 
stre s s. For simplicity, the moment of inertia of the idealized front 
spar is assumed constant in the spanwise direction and thus may be deter ­
mined by treating the triangular bay as a re ctangular bay of constant 
cross section equal in width to the triangular bay where it joins the 
outer section; an eff ect i ve area may then be a ss i gned to t he idealized 
front spar by the method re commended f or the outer section. This ideal­
izat i on will re sult in t wo moments of inertia, one for bendi ng and one 
for warping stre ss . Aga i n, separat i on of the se two stre s s systems in 
the analys is is desir able but in this case it i s only partly possible. 
If the l oad on t he out er section i s torsion only, only warping stres s 
will ex ist in the triangular section and the effect i ve warping area 
should be u sed. I f t he l oads on the outer section are of the bending 
t ype only, both kinds of stresses will ex ist i n t he tr iangular section 
and direct separat ion is i mpossible ; however, the warp i ng stre ss i s 
usual ly small compared with the bending stre ss and in su ch case s 
satisfactory resul ts can be obta ined by using the effective bending area. 

Bulkheads 

When values of flexural stiffness a r e assigned to the two bul kheads 
bordering the tria.ngular section, cons ideration must be given to the 
fact that bending of the se beams is accompanied by extension or 

- l 
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compression of the adjacent cover sheets. The analysis in appendix B 
gives the distortions of a combined bulkhead and cover sheet and the 
moment of inertia of a simple bulkhead which has the same distortion. 
The re sults can be summarized as follows: 

where 

I 

v 

c 

2 

E 

Ie == 1(1 + v) 

moment of inertia of bulkhead alone } inches4 

effective moment of inertia of combination} inches4 

(53) 

an effectiveness factor plotted in figure 8 as a function of 

(c2~te ) the nondimensional parameter 

depth of bulkhead} inches 

length of bulkhead} inches 

equivalent thickness of the cover sheet} inches 
(
t ESheet) 

Ebulkhead 

modulus of elasticity} psi 

COMPARISON BETWEEN THEORY AND EXPERIMENT 

The accuracy of the method is demonstrated by comparing calculated 
stre sses and distortions with the test data of references 1 and 2. The 
test specimen used is illustrated in figures 9 and 10 and the details 
of the calculations are given in the numerical example of appendix C. 
The comparisons are presented gr aphically for each of the four test 
conditions) symmetrical and antisymmetrical tip bending and torsion 
loads as follows: 

(a) Distortions of the outer section in figure 11 

(b) Spanwise distribution of spar shear stresses shown in the left­
hand parts of figure 12 

(c) Spanwise distribution of flange normal stresses shown in t~e 
right-hand parts of figure 12 

(d) Chordwise distributions of normal stre s s at three spanwise 
stations in figure 13 
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In each case the sign conventions employed are those of references 1 
and 2 which are occasionally in conflict with those employed elsewhere 
in this paper. 

The test data in these figures are presented in the usual manner 
and several calculated curves are given to illustrate different theo­
retical approaches, as follows: 

(a) All figures contain a heavy solid line which represents the 
results of the numerical example of appendix C. The area under this 
curve is vertically hatched in the stress plots (figs. 12 and 13). 

(b) A dash-dot line appears in some figures to show the effect of 
superimposing shear-lag effects on the results of the numerical example. 
The determination of these effects is described in the discussion. 

(c) The stress plots also contain dash lines which give results 

obtained from elementary theory (~c, ~~, and ~t)' 

In general, the results of the numerical example (solid lines) are 
in fair agreement with the test data; however, much better agreement is 
achieved when shear-lag effects are added where applicable. Elementary 
theory gives the least satisfactory results since it does not include 
the effects of either sweep or shear lag. The discrepancies between the 
calculations of the numerical example and the experimental data are 
primarily the result of analyzing an overly simplified idealization of 
the actual structure. The assumed idealized structure is incapable of 
distorting in all of the shapes assumed by the actual box beam; therefore, 
the analysis cannot give completely accurate results. The most signifi­
cant effect of oversimplification is the neglect of shear-lag stresses. 
Shear lag appears whenever the webs carry vertical shear stress and it is 
characterized by an increase in normal stress in the vicinity of the 
flanges with a corresponding decrease in the rest of the cover (see 
fig. 14). There is also an associated change in the shear stresses in 
the cover. 

The effect of shear lag on the stress distribution ts most evident 
in the chordwise plots of figure 13. It appears in the outer section 
for the bending loads and in the carry-through section for the anti­
symmetrical loads. In each case the effect is carried over into the 
triangular section because of continuity. 

Shear-lag stresses effectively reduce the stiffness of the structure 
and thus increase its deflection. The cantilever beam deflection of the 
outer section is increased by its own shear lag, but for this specimen 
the increase was small enough to be neglected. More important is the 
reduced stiffness of the carry-through section under antisymmetrical 

J 
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loads which results in an increased rotation of the ends of the carry­
through section . This effect causes only a rigid-body rotation of the 
triangular and outer sections since the carry-through section is doubly 
symmetr ical . The effect of shear lag in the carry-through section was 
estimated by reducing the moment of inertia of the carry- through section 
(Ie = 0 . 2521) by the procedure described subsequently in the "Discussion" 
with the results shown in figure ll(b) and ll(d). For the antisymmetri ­
cal bending load the effect was underestimated whereas it was over ­
estimated for the antisymmetrical torsion load . 

Some other effects of oversimplification are associated with the 
idealization of the triangular section . The actual structure had a 
short bulkhead (bulkhead 7, fig . 9) in the triangular section which was 
neglected in the analysis . Its presence introduces additional restraints 
which change the shear stress in the front spar (fig. 12) and the chord­
wise normal - stress distributions in the carry- through section (fig. 13). 
Also, a number of approximations were used with regard to the effective 
moment of inertia of the front spar which introduce uncertainties in 
the analysis. 

Another factor that affects the agreement is the flexibility of 
the supporting jig used in the tests. This jig was assumed rigid in 
the analysis but deflected during the tests . Under symmetrical loads 
(reference 1) these deflections amounted to a rigid-body rotation of 
the complete structure and it was a simple matter to correct the meas­
ured deflections; however, under antisymmetrical loads, a small amount 
of twist remained in the carry- through section after the rigid -body 
corrections had been made (reference 2). The method of analysis devel­
oped in this paper was used to calculate the effect of the measured 
carry-through section twist on the theoretical stresses and deflections. 
For the antisymmetrical bending load the principal changes were in the 
shear stresses in the carry- through section, as might be expected, 
because of the torque required to twist this section . The warping 
stresses also changed throughout the box beam and the deflection of the 
outer section increased . For the antisymmetrical torsion load the twist 
was small enough to be negligible . In general, these changes improved 
the agreement between theory and experiment but were not of sufficient 
magnitude to warrant their addition to the calculated results. 

DISCUSSION 

Deter mination of Shear-Lag Effects 

The method presented in this paper is for the analysis of a four ­
flange box beam which experiences only first -order warping. Thus, the 
str ess distr ibut ion in t he a ctual structure varies linearly between 
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corners and consists of the bending and warping str ess components shown 
in figure 6. An actual structure experiences other types of cross ­
sectional warping, a common one being the second - or der or shear - lag 
type which introduces a departure from linearity in the cover stresses 
by superimposing a self - equilibrating stress distr ibution of the type 
shown in figure 14(a) . The experimental data of r eferences 1 and 2 
show that shear lag is important in the specimen tested because it 
causes an increase in the flange normal stresses which is , in some cases , 
larger than the changes caused by first -order warp ing and incr ea ses the 
flexibility of the structure which increases the deflections . Some 
means for calculating these effects is there fore ne cessar y . 

Any method used to calculate shea.r - lag effects requires t he 
ana.lysis of a more complicated idealized structure than t he four-f l ange 
box beam. Conforming to the previous assumptions regarding the stress ­
carrying ability of the ideali zed structure , the minimum addition is a 
single central stringer in each cover as shown in figure l4(b) ; other 
additional cover stringers permit calculation of the effects of third 
and higher order warping . These more complicated structures can be 
introduced into the analysis in either of two ways : (1) The ba sic 
method can be extended to the direct analysis of the more complicated 
structure and ·thus automatically include shear- lag effects. (2) The 
results of the simpler analysis can be corrected by a process which 
combines experimental data and individua.l shear- l ag analyses of the 
outer and carry- through section. Each of these approaches is briefly 
described . 

The direct extension of the basic method involves the analysis of 
an idealized structure of the type shown in figure 15 . The analysis 
follows the procedure previously described but two new features are 
introduced . First, more joints are involved, for which additional 
equilibrium equations are required and thus a larger system of simul ­
taneous equations must be solved . Second, force - displacement relation ­
ships for the outer, triangular , and carry-through sections must be 
modified to account for the new types of forces and distortions of the 
idealized structure . 

The correction process can take on a variety of forms , blO of which 
were used to calculate the shear - lag corrections applied to the results 
of the numerical example, appendix CJ to obtain the da sh-dot lines in 
figures 11, 12, and 13. The shear - lag corrections for the outer section 
were determined by using the single - substitute stringer method (refer ­
ence 4) to calculate the shear - lag stresses in the outer section. The 
outer section was analyzed as an ordinary, unswept box beam on a rigid 
root and a constant empirica l multiplying factor wa s used to obtain 
good over-all agreement with the experimenta.l spanwise a.nd chordwise 
normal-stress distributions. The multiplying factor a ccounts for the 
root restraint provided the outer section by the triangular section; 
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this factor was found to be 0.77 for the symmetrical bending load and 
1.28 for the antisymmetrical bending load. 

25 

A somewhat different procedure was used to determine the shear-lag 
corrections for the carry-through section because it was found that the 
shear- lag stresses , caused by the antisymmetrical bending load, could be 
approximated by a shear - lag analysis which assumed that the end cross 
sections were restrained from warping. This approach, however, was less 
satisfactory for the antisymmetrical torque load. The method used 
analyzed the cover as an equivalent sheet which carried both shear and 
normal stress (reference 5) and it gave better chordwise and spanwise 
stress distributions than a similar analysis which used the single sub ­
stitute stringer method. The reduced moment of inertia used to deter ­
mine the effect of shear lag on the distortions of the carry- through 
section was also obtained from this analysis. 

From considerations of ac curacy, the preferred method for the 
determination of shear-lag effects is the direct extension to a more 
complicated idealized structure ; however, such an analysis require s a 
large amount of work. The ease with which the correction process can 
be used is a definite advantage, but it can be applied, with assura.nce 
of accuracy, only to structures closely resembling the test specimen 
from which the empirical factors were obtained. Even then, the correc­
tion process is only fairly accurate because it cannot adequately 
account for the interaction between the various parts of the structure. 

Effects of Bulkhead Flexibility 

In the analysis of unswept box beams the internal bulkheads are 
often assumed to be rigid in their own plane. This assumption yields 
satisfactory results except when a discontinuity of structure or loading , 
such a s a cut-out, introduces large loads into a bulkhead. A study of 
the test result s presented in references 1 and 2 shows that bulkheads 6 
and 8 (fig . 9) of the test specimen were subjected to substantial shear 
and bending loads; thus, their distortions may have an important effect 
on the structure. The shear and bending flexibility of the bulkheads 
bordering the triangular section is included as a basic feature of the 
method of analysis presented in this paper although the development 
could have been considerably simplified by assuming them rigid. 

The effect of bulkhead flexibility on the stress and distortions of 
the swept box beam of references 1 and 2 was investigated by solving a 
series of numerical examples similar to that of appendix C. These 
example s were for symmetrical tip bending a.nd torque loads for the four 
cases of bulkhead flexibility listed in the following table (all bulk­
heads other than bulkheads 1 -3 and 2-3 (fig. 2) were assumed rigid): 
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Case Bulkhead 1 - 3 Bulkhead 2-3 

I Flexible Flexible 
II Flexible Rigid 

III Rigid Flexible 
IV Rigid Rigid 

Selected stresses and displacements calculated for ea ch ca.se are 
compared in figure 16 . Despite the f a ct that the bulkheads were con-

structed of ~-inch steel plate, appreciable errors occurred when they 

were assumed rigid in their own pla.ne. The effects of bulkhead flexi ­
bility on the stresses were more pronounced for torsion than for bending 
loads ; however, for each type of load the solution for case IV over ­
estimated the warping stress in the outer section. The different root 
distortions calculated for each of the four cases lead to slightly dif ­
ferent deflections and somewhat greater differences between the rotations 
of the outer section. 

In general, the results indicate that the flexibility Of the bulk­
heads bordering the triangular section has an important effe ct upon the 
stresses and distortions of a swept box beam and should be considered 
in the analysis if accurate results are to be obtained . 

In addition to the studies of bulkhead flexibility, some investiga­
tions were made of the effect of the number of bulkheads in the tri ­
angular section . For example, a numerical analysis which used the 
assumption of closely spaced rigid bulkheads, often used in shell 
analysis, gave very erroneous results for the stress distribution in 
the triangular section . In all the cases considered , the number of 
bulkheads in the triangular section had only a small effect on the 
stresses outside of the triangular section . The experimental data in 
figures 12 and 13 illustrate the effect of an extra bulkhead on the 
stresses within the triangular section . 

Extension of the Method 

The method of analysis in the form presented, is not expected to 
be generally applicable to the precise analysis of all swept wings 
because of differences in structural arrangement and the degree of 
idealization a ssumed; however, the basic approach can be used in many 
situations . 

Extension of the method to other types of swept wings is stra.ight 
forward if the bulkheads are perpendicular to the spars . The modifica ­
tions required to obtain more accurate stress distributions have been 
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indicated in the section on the determination of shear-lag effects. 
Similar procedures are required for the analysis of multispar box beams, 
that i s , additional joints are created where the spars cross the 
bulkheads. 

Application of the basic approach to swept box beams in which the 
bulkheads are placed parallel to the flight direction introduces some 
new problems . In the first place, a swept wing of this type doe s not 
have an oute~ section which can be anal yzed by existing methods. Exten­
sion of the method of joints, which is a feature of the basic approach, 
to the entire structure substantially increases the complexity of the 
solution and some other approach may be more desirable . A second prob­
lem is the establishment of f orce - displacement relationships which cor­
rectly predict the physical behavior of the parallelogram- shaped cover 
sheets . 

CONCLUDING REMARKS 

A method has been de scribed for the stress and distor tion analysis 
of a swept box beam with a carry-through section and with bulkheads 
perpendicular to the spars . The method is based on a simple four-flange 
box type of idealized structure and permits an estimation of the first ­
order warping stresses that result from sweep but does not permit the 
evaluation of higher -order stre sses such as shear lag. Agreement with 
experiment is therefore only fair ; however, extension of the basic 
approach to permit more refined analyses, which include shear-lag 
effects and other structural arrangements such as multiple spars , has 
been indicated . 

The method assumes that the outer and carry- through sections are 
unswept box beams and thus can be analyzed by existing methods . Con­
tinuity is e stablished between them through the analysis of the tri ­
angular section . The analysis of the triangular section i solates the 
structural joints as free bodies and gives an equilibrium equation for 
each degree of joint freedom. The joint forces are expressed in terms 
of joint displacements and a set of simultaneous linear equations, which 
completely defines the joint displacements, is thus obtained . 

The method takes into account the flexibility, both as regards 
shear and bending, of the bulkheads in and around the triangular section. 
The results of a numerical study have been pre sented to show that 
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appreciable errors can appear in the calculated stresses and deflections 
if the usual assumption of rigid bulkheads is used in this region. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Air Force Base , Va., August 17, 1950 
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APPENDIX A 

FORCE -DISPLACEMENT RELATIONSHIPS FOR BEAMS 

The beam analyzed is assumed to be of constant idealized cross 
section with a web which carries only shear stress and subjected to the 
loading shown in figure 5(a) . This loading consists of flange axial 
loads PL and PH at the ends of the beam, a constant running shear 
flow qr appl ied to the flanges and a constant shear flow qc in the 
web. The distorted shape of the beam under load can be described by the 
end displacements wL and wR and the end rotations ¢L and ¢R 
(fig.5(b)). 

Consideration of a differential element of the beam (fig. 5(c)) 
yields the following equilibrium equation 

dP 
dx qz - qc = 0 

and the following relations between loads and distortion 

qc = Gt(¢ - : ) 

P = EI ~ 
c dx 

Substituting equations (A2) and (A3) in (Al) yields 

dw _ EI d2¢ + ¢ qz 
dx = Gct dx2 + Gt 

and, since qc is constant, from equation (A2), 

(Al) 

(A2 ) 

(A3) 

(A4) 

(A5 ) 

Equations (A4) and (AS) have solutions which can be expressed as 
follows: 

(A6) 

w (A7) 

-~-~.--------~---- - ~.-
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where Cl , C2, C3' C4 are constants which can be determined from the 
boundary conditions. In this 
prescribed as follows: 

case, the boundary conditions are 

wx=o wL 

¢x=o = ¢L 

¢x=2 ¢R 

These boundary conditions require that the constants Cn have the 
following values: 

(A8) 

(A9) 

An expression for the load P can be obtained from the substitution 
of equations (A6 ) and (A9) in equation (A3), as follows: 

P 
c2 (1 + 4EI) 
EI 3 Gct22 

(AlO) 

Similarly, from equations (A2 ), (A6) , (A7), and (A9), 

C2(1 4EI) 
EI "3 + Gct22 

(All) 
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The applied loads can now be expressed in terms of the distortions 
if the foregoing equations are evaluated at the boundaries. These rela­
tions for the loads can be conveniently written as follows: 

PL 

PR 

qc = 

where 

-ex,¢L + 
WI, -

f3¢R - (ex, - (3) z 
WE 

- f3¢L + 
wL - wR 

ex,¢R + (ex, - (3) 
z 

(ex, - f3l
L +¢R WL 

+ 2(ex, - (3) Z 

f3 - 1 ( 2 + 4EI \ 
ill \ 3 GctZ 2) 

- oqz (A12a) 

+ oq7, (Al2b) 

- WE 
- EqZ 7,2 

(Al2c) 

It is often desirable to express the distortions in terms of the 
loads. These expressions can be obtained from a few simple operations 
on equations (Al2) . Addition of equations (Al2a) and (A12b) gives the 
following relationship between end rotations: 

(Al3 ) 
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Substitution of (Al3) into (Al2a) or (Al2b) yields the following 
alternate expressions for the difference in end displacements 

¢L2 + q2 
2 PI, -PH 22 

+ PH) WR - WL Gt + Gt + 6EI (2PL 

¢R 2 + q2 
2 PL - PR c2

2 
( ) wR - wL Gt + Gt - 6EI PL + 2PR 

(Al4) 
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APPENDIX B 

EFFECTIVE MOMENT OF INERTIA OF BULKHEADS 

The contribution of the cover sheets of the box beam to the effec ­
tive moment of inertia of the bulkheads can be approximated by an 
analysis of the plate - stringer combination shown in figure 17. 

In the analysis the plate and stringer are assumed to be of dif ­
ferent materials but of constant cross-sectional dimensions. The con­
tribution of the plate is expressed as an effective width which can be 
used to determine the area of an equivalent stringer having a tota.l 
elongation under load the same a.s that of the stringer in the combined 
structure. The method of least work (page 156, reference 6) is used to 
determine the state of stress in the plate and stringer . The stringer 
stresses can then be integrated over the length of the stringer to 
determine the total elongation . 

The stress distribution in the plate can be defined in terms of a 
stress function ¢ as follows : 

(Bl) 

The stresses given by equations (Bl) automatically sa.tisfy equi­
librium conditions; the differential equation which the stress function 
must satisfy to fulfill compatibility is 

o (B2 ) 

A solution of equation (B2) is given by 

(B3) 
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In this expression Bn and Cn are arbitrary constants which are 
determined from the condition that the true stress distribution is that 
which makes the strain energy of the combined structure a minimum. If 
the plate width is assumed infinite, the stress function given by equa ­
tion (B3) satisfies the boundary conditions that all stresses vanish 
at y = 00 and that ax = 0 when x = 0 or 2. The stress function 
does not provide zero shear stress along the edges x = 0 and 2; 
therefore, in effect the plate has ribs along these edges. This viola­
tion of bounda.ry conditions is considered unimportant since, in the 
actual structure, these edges are restrained by the spar flanges. The 
strain energy in the plate is given by the expression 

(B4) 

Making substitutions from equations (Bl) and (B3) and integrating 
this expression gives 

rc 3t L n3 Bn + BnCn + Cn 00 (2 2) 
22 n=l 2Gp 2Gp Ep 

since 

Consideration of equilibrium of pla.te and stringer gives the 
following expression for the load in the stringer 

The strain energy in the stringer can be written as 

f
2 P 2 

Us = 0 2~s dx 

which, upon substitution from equation (B6 ) and integration, becomes 

(B5) 

(B6) 

(B7) 

2 ( 2 2) rc
2

t
2 ~ 2 2 2t ~ 1t()n "1 Us = bAE: Po + PoP2 + P2 + AE 2 L-- n Bn + AE ~ Ll- l P2 - PillBn 

s s n=l s n=l 

(BS) 
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The total strain energy of the system is then 

U = Up + Us (B9) 

I f the total strain energy (equation (B9)) is minimized with respect 
to Bn and Cn, two equations are obtained which yield the following 
expressions for the constants 

Bn (B10a ) 

= -Bn(l ; . ~) (Blab) 

The total extension of the stringer can now be determined as 

(Bll) 

The effective area of the equivalent stringer is defined as 

(B12) 

where 

The elongation of the equivalent stringer is then 

j L p 

u = a Ae~s dx 

( B13) 
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Setting equation (Bll) equal, to equation (B13) gives the following 
equation for the effective width 

N 

+ 1-1)(3 - 1-1)1 _ N 
32 J 

where 

N 

Note that the applied loads do not appear in the expression for 
effective width. 

(B14) 

A similar re sult can be obtained from an analysis in which the 
plate is assumed to be infinitely stiff in the transverse (y) direction. 
In that case, the differential equation of the plate is 

(B15) 

The solution of equation (B15) which satisfies all the boundary condi­
tions for a plate of width h is 

COSh~(~)p ~rr (h _ y) 
D . ~x 

n Sln --2--

COSh~(~)p _n~h 
(B16 ) 

With the stresses defined in terms of u displacements as follows 

E 
dU 

ax = p dx 

and the strain energy of the plate given by 

( B17) 
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t x ~ f h r I ~cr 2 T 2) 
Up = 2 0 J 0 2" Ep + Gp dy dx (B18) 

The procedure pr evi ousl y fo l lowed can be used to obtain 

~ (A) Nt 
T= He (A\rc3JL~ t 

I t~) 1r~~-2- - N 

(B19) 

wher e 

N' 

00 

L 
t a nh 0(~ )p n~h 

n=1,3,5 

Examination of equation (B19) reveals that the effect of finite 
plate width h is negligible whenever h > I since the hyperbolic 
tangent terms very nearly approach a value of 1. In this case only a 
small difference is found between equations (B14) and (B19). 

The two expressions for eff ective width (equations (B14) and (B19)) 
1 have been evaluated for a range of values of Aj1te when ~ = 3 

and h = 00. The results are plotted in figure 18 . 

The results of the preceding analysis can be presented in a more 
convenient form for the analysis of a swept wing. The moment of inertia 
of the bulkhead alone can be related to the area of a substitute stringer 
as follows: 

(B20 ) 

and the effective moment of inertia is 

= 1(1 + v) (B21) 
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where 

Figure 8 is a plot of V a.s a function of c2 Lte /I , the results of equa­
tion (B14) being used in the solution . 

-l 
• 

L_ .J 
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APPENDIX C 

NUMER ICAL EXAMPLE 

Descr i ption of Specimen 

The application of the method to an actual structure is illustrated 
by an analysis of the untapered, 450 swept box beam of references 1 
and 2 . Its construction detail s a.nd principal dimensions are shown in 
figur e 9 . The outer and carry-through sections are of doubly­
symmetrical cross section and are divided into five and three bays, 
respectively, by internal bulkheads placed perpendicular to the spars. 
It is important to note that the actual structure contains a short 
bulkhead (bulkhead 7) within the triangular section and that its presence 
is ignored in the analysis because the method of analysis assumes a tri­
angular section with no internal bulkheads. Figure 10 is a photograph 
of the specimen under test and illustrates the manner in which it was 
supported at the four corners of the carry-through section. In the 
analysis which follows these supports are assumed to be rigid. 

The dimensions of the three sections of the idealized structure 
are summarized in table II and illustrated in figures 19 and 20. The 
dimensions of the two bulkheads and that portion of the front spar 
bordering the triangular section are given in table III together with 
their calculated stiffness factors. The material of the specimen was 
24s-T3 aluminum alloy except for the steel bulkheads. These materials 
are assumed to possess the following elastic properties: 

E G 
Material (psi) (psi) 

24s-T3 10.5 X 106 4.0 X 106 

Steel 29·0 X 106 11.0 X 106 

Loading Conditions 

The box beam is analyzed under four different loading conditions, 
symmetrical and anti symmetrical bending and torsion corresponding to 
the test data of references 1 and 2. These loads are applied to the 
loading bulkhead at the tip of the outer section; the bending being 
produced by a vertical shearing force of 2,500 pounds; the torsion by a 
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pure couple of 43,420 inch-pounds. For convenience, these loadings 
are hereinafter referred to by number as follows: 

Loading 1: Symmetrical tip bending load of 2500 pounds 

Loading 2 : Antisymmetrical tip bending load of 2500 pounds 

Loading 3: Symmetrical tip torque load of 43,420 inch-pounds 

Loading 4: Antisymmetrical tip torque load of 43,420 inch-pounds 

Analysis of the Outer Section 

Method of analysis.- The dimensions of the idealized outer section 
are given in table II and illustrated in figure 19 which also shows the 
notation that will be employed. The stress and distortion distributions 
for the idealized structure will be determined as well ag the stiffness 
factors required for the analysis of the complete structure. 

Since the outer section is a cantilever box beam on a flexible 
root, the stresses and distortions can be obtained from the superposition 
of the following solutions: 

(a) Outer section with a rigid root and a tip bending load of 
2500 pounds 

(b) Outer section with a rigid root and a tip torque load of 
43,420 inch-pounds 

(c) Outer section with the root warped 

(d) Outer section displaced as a rigid body 

A simplification of the analysis and the use of elementary theory 
in some instances are possible because of the constant doubly­
symmetrical cross section. Further simplification is made by assuming 
that all bulkheads are rigid in their own plane, although this assump­
tion leads to a slight violation of continuity because bulkhead 6 is 
assumed flexible in the analysis of the triangular section . Figure 21 
shows the two types of force groups which appear in this analysis. 
Shear flows 'are shown in addition to the concentrated flange forces. 
The sign convention used with the warping group is that of reference 7. 

Bending of a cantilever.- The outer section is considered to be 
rigidly built in at the root and loaded by a central vertical shearing 
force of 2500 pounds at the tip as shown in figure 22(a) . The interna.l 
forces and stresses are those of the F -group and can be expressed as 
follows: 

-- --- -----
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F ~ = 2Vc(L - x) = 178.57(89 - x) 

B 
qc 

crF = Mc = VC(L _ x) = 97.01(89 - x) 
2I 2I 

F V 
178 . 57 poUl'lds per inch qc 2c = 

B F 
q B 

TC = T ~ = 2289 psi c c 

41 

(Cl) 

(c4 ) 

The Qe am bends without twisting and the deflection of the center line 
consists of two components , that due to flexure and that due to shear 
deformation of the webs. Thus, 

where 

V 2 
6EI( 3L - x)x 

V 
wT = --x 

2Gctc 

2 
0.43994(267 - x)x 

0 .0005723x 

The distribution of stress and deflection is given in table IV(a). 

(c6) 

Torsion of a cantilever .- The outer section is considered to be 
rigidly built in at the root and loaded by a pure couple of 43,420 inch­
pounds at the tip as shown in figure 22(b). The internal forces and 
stresses are those of the X-group plus the shear stresses required to 
~quilibrate the torque and can be expressed as follows: 

(c8) 

(Tt) T = .q T 
c,n c,n 
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XnT 
- Xn_1T 

2an 
(C10) 

The X-forces are statically indeterminate; however, they can be calcu­
lated by means of the following recurrence relation (reference 7) which 
establishes continuity between bays: 

(Cll) 

where 

p 

f 

1 (b c ) 
j = 8Gbc tb - tc 

in which A is the effective area for warping stress. 

Once the X-forces are known, the twist of one bulkhead relative to 
the next can be determined as follows (reference 8): 

where 

DB T n ( Ta) + 68n
X 

GJ n 

J 

(C12) 

For the dimensions and stiffness parameters given in table II, the 
recurrence relation yields the following set of simultaneous equations 
for the X-forces: 

-----~--

.. 
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- 3 .57806 0 · 57511 0 0 0 X T 
2 0 

0.57511 - 3 .57806 0 .57511 0 0 X T 
3 0 

0 0 .57511 - 4 .15317 1.75718 0 X4T 0 

0 0 1 . 75718 - 4.72828 1 . 75718 X T 
5 0 

0 0 0 1.75718 -2.36414 X T 
6 3296 . 924 

The solutions are 

~T -10 . 573 

X T 
3 - 65 . 779 

X4T - 398 . 673 

X T 
5 -920 . 751 

X6
T - 2078.917 

The distribution of stress and twist is given in table IV(b) . 

Warping of the root .- The root of the outer section is warped the 
amount shown in figure 22(c) . The internal forces and stresses are 
those of the X-group which can be determined by the method of a.nalysis 
used in the preceding section . The only change is in the bounda.ry 
conditions with the warping of the root being related to the X-forces 
as follows : 

W 
f 6X5 - P6X6

W 
= ~(¢2 - ¢3) (C13) 

The solutions of the system of equations are then 

X2W -5612 (¢2 - ¢3) 

X W 
3 - 34915 (¢2 - ¢3) 

x4w -2u615 (¢2 - ¢) 
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-488733 (¢2 - ¢3) 

-1103484( ¢2 - ¢3) 

Table IV(c) summarizes the stress and twist distributions for 

(¢2 - ¢3) = 1 X 10-
6. 

Rigid-body displacements.- The outer section is given the rigid­
body displacements shown in figures 22(d) and 22(e) . These displace­
ments do not affect the stress distribution but give the outer section 
a twist about its center line 

(c14) 

plus a deflection of that center line 

(C15) 

Superposition of solutions.- The complete stress and distortion 
distributions can be obtained by combining components from each of the 
preceding analyses. Since the basic expressions are the same for both 
symmetrical and antisymmetrical loads, the stresses and distortions at 
any cross section can be written a s follows: 

Loadings 1 and 2 Loadings 3 and 4 

crF crB + crW crT + crW 

crR crB - crW _crT - crW 

Tf - T B _ 
C T W C 

-T T _ 
C 

T W 
c 

B W T T W (c16) Tr TC - TC - T C c 

-TbW T W 
Tb -Tb - Tb 

e eR + eW 1+ eT 
+ eW 

w 0 +WB 0 

The sign convention for the stresses is that shown for the internal 
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forces of the outer section in figure 2 . Positive deflections and twist 
move the front spar downward. Similar expressions can be written for 
the forces at the root cross section from which the stiffness factor s 
given in table V can be determined by inspection . These are the stiff­
ness factors required for the analysis of the complete structure. 

Analysis of the Carry-Through Section 

Method of analysis. - The dimensions of the idealized carry-through 
section are given in table II ari illustrated in figure 20, which also 
shows the notation employed. The stress distribution is determined 
along with the stiffness factors required for the analysis of the 
complete structure . 

Since the support s at the four corners of the carry-through section 
are assumed to be rigid (Wl = w3 = 0), the stiffness factor s as sociated 
with the deflection and twi st of the end s in the plane of the end cross 
sections will not be required. The stresses can therefore be obtained 
from the superposition of the following solutions: 

(a) Carry- through section with the end cross sections rotated out 
of their original plane s 

(b) Carry- through se ction with the end cross sections warped out 
of their original planes 

The doubly-symmetrical cross section permits considerable simpli­
fication of the analysis since in such cases the end rotation is a 
result of the application of F-forces only and the warping is the result 
of the application of X-forces only (fig. 21); however, a few complica­
tions are introduced because the splice s in the center bay make it 
stiffer than the other two bays . The bulkheads are as sumed rigid in 
their own plane despite the fact that in the analysis of the adjacent 
triangular section, bulkhead 8 i s assumed to be flexible. 

Since the analysis depends upon whether the end distortions are 
symmetrical or antisymmetrical, t he ratio R is introduced in order 
that general equations, applicable to both types of loa.ding, can be 
written. Then: 

R +1 when the loading is symmetrical 

R -1 when the loading is a.ntisymmetrical 

Rotation of the ends.- The ends of the carry-through section are 
rotated, symmetrically or anti symmetrically by the amount shown in 
figure 23(a) . Equilibrium of internal forces requires that: 



r 

qc}9F qc}lOF FlO - F9 F9 - FS ( C17) 

The forces can now be related to the distortions by means of equa tions (A13 ) and (Al4) as 
follows : 

¢9 = ¢S - 2(~~I)(FS + F9) (C1S) 

W9 - wlO 
F9 - FlO (ca2 ) ( \ 

'" ¢9a lO - 2(2Gt) - 2 6EI 2FS + FlO) 
c 10 10 

( C19) 

FS - F9 (ca 2 ) ( \ 
ws - w9 '" ¢9a9 - 2(2Gt

C
)9 + 2 6EI 9 FS + 2F9) (C20) 

and s ince 

ws wll = 0 ( C21) 

FlO Fll wlO ¢10 ¢ll 
R = - '" - = - = --;:;:-- = - rr:::-

F9 FS w9 ~9 ~S 
( C22 ) 

¢S = ~(1Irl + 1Ir3 sin A + ¢3 cos A) ( C23 ) 

the following relationships can be obtained : 
1 2 
2"E10 + (1 - R)a~ (1Irl + 1Ir3 s i n A + ¢3 cos A) 

FS 
(1 - R )2 J 

+ 2 
3 ~ 1 - R~) + (1 

G \tc 10 
_ f.a\ l (ca) ( 2 + R)al 0

2 
(ca ) I 2 

R) ~c)~ + EI 10 3 + 2 EI 9l:10 + ( 1 - R)alOa9 

(c24) 

-I'="" 
0\ 

2: 
f) 
~ 

~ 
f\) 
f\) 
VJ 
f\) 
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1 
FS ------

1 + a9 (1 - R) 
alO 

F F 1 - R 
qc,9 = qc,lO = FS alO + (1 - R)a9 

(C25) 

( C26) 

The stress distribution corresponding t o end rotations of the amount 

Ijrl + 1jr3 sin A + Ijr 3 cos A = 1 x 10-6 is given in table vr( a), in which 

a B 
n (F ~2 t 

T 
B (:nn = c,n (C2S) 

Warping of the ends .- The ends of the carry-through section are 
warped, symmetrically or antisymmetrically, by the amount shown in 
figure 23(b) . Then, since 

R (C29) 

and 

IjrS = Y if - Ijr sin A - ¢ cos A) 2\ 1 3 3 (C30) 

the method of reference 7 can be used to obtain the following equations 
for the warping forces : 

P9XS - fr9 + j9T = ~(\jrl - 1jr3 sin !I. - ¢3 cos !I.) 

- f9XS + (P9 + P10 - RflO)X9 + (jlO - j9)T = 0 

(C31) 

(C32 ) 

The torque in the carry-through section is statically indeterminate for 
antisymmetrical loadings but can be determined from the condition that 
one end does not twist relative to the other because of the rigid 
supports, that is : 

(C33) 
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which can be written as follows by use of the equa tions of r ef e rence 8: 

(C34) 

The stiffness parameters f, j, p, and a GJ have been previously 

defined in the section "Analysis of the Outer Section" of this appendix 
and their numerical values for the carry- through section are listed in 
table II. These values can be used to obtain the following sets of 
simultaneous equations and solutions: 

Symmetrical loads: 

3.349163 -2.874949 0.0797693 X8 1. 75 ('+'1 - '+' 3 sin 1\ - ¢3 cos 1\ ) 
2.874949 3.727325 -.0388418 X9 = 0 

o o .0336914 T o 

X8 = 1546392(~1 - ~3 sin 1\ - ¢3 cos 1\) 

X9 1192759 (~l ~3 sin 1\ - ¢3 cos 1\) 
T 0 

Antisymmetrical loads: 

3.349163 -2.874949 0.0797693 X8 

-2.874949 7.096181 -.0388418 ~ 

.638154 -.310734 .033691 T 

1. 75 (~l - ~3 sin 1\ - ¢3 cos 1\) 

o 

o 

X8 1509857(~1 - ~3 sin 1\ - ¢3 cos 1\) 

X9 479367 (~l - ~3 sin I\.. - ¢3 cos 1\) 

T -24177260 (~l - ~ 3 sin 1\ - ¢3 cos 1\) 

The stress distribution corresponding to end warpings of 

(~l - ~3 sin 1\ - ¢3 cos 1\) = 1 x 10-6 is given in table VI(b), in which 
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(C37) 

Superposition of solutions. - The complete stress distribution can 
be obtained by combining the components from each of the preceding 
analyses . The bas ic expressions are the same for all t ypes of loading; 
thus, the stresses on any cross section can be written as follows: 

aF aB + aW 

aR aB aW 

B W (C38) Tf - TC TC 

B W 
Tr TC TC 

W 
Tb = - T

b 

The sign convention for the stresses is that shown for the internal 
forces of the carry-through section in figure 2 . Similar expressions 
can be written for the end forces from which the stiffness factors given 
in table VII can be determined by inspection . The se are the stiffness 
factors required for the analysis of the complete structure. 

Stiffness Factors of the Beams 

The dimensions and stiffnes s factors of the two bulkheads a.nd the 
portion of the front spar which bound the triangular section are given 
in table III . 

Since the nature of the normal-stress distribution in the 
triangular-section cover influences the effective moment of inertia of 
the front spar, two values are given. They were determined as follows: 

For bending stresses, Ie was ta.ken as one -half the moment of 
inertia of the doubly-symmetrical outer section. 



50 NACA TN 2232 

For warping stresse s ) Ie was determined from the effective 
warping area of the outer section; thus) 

(C 39) 

The effective moment of inertia of the bulkheads includes a con­
tribution from the cover sheet of the box beam as determined from fig­
ure 8 . The equivalent thickness of the aluminum-alloy sheet acting 
with the steel bulkhead is given by the relationship 

Esheet (10 . 5)'. . te = tE = 0 .050 29 0 = 0 . 0181 lnches 
bulkhead . 

(C40) 

Triangular over Sheet 

The shear stiffness of the triangular cover sheet) which frequently 
appears in the general equations) has the following value: 

Gtc 
2 

~(4 X 106)(0.050 )(7) = 700)000 pounds 

The shear stiffness per unit width al s o appears and is 

Gtc 
2b 

1 
30(700 )000) 23)333 pounds per inch 

The Systems of Equations and Their Solutions 

(C41) 

(C42 ) 

Sufficient data have now been obtained to permit evaluation of the 
coefficients of the matrix (table I); however) since the supports have 
been assumed rigid ' (wl = w3 = 0)) it will be unnecessary to evaluate 
the coefficients of wllb and w3/b. Furthermore) there are only seven 
unknown joint displacements) which require only seven equations. The 
logical equations to eliminate are equations ( 3 ) and (9) since they 
contain the support r eactions Vl and V3J which are statically indeter­
minate for the antisymmetrical loading conditions. The joint force V2 
is zero because the loads are applied at the tips only. ' 

A different set of equations will be required for each loading 
condition since the structure responds differently in each case . .Thus) 
the stiffness factors for the carry-through section are different for 
symmetrical and antisymmetrical loads and the effective moment of inertia 
of the front spar and the loading terms are different for bending and 
torsion . The calculated coefficients are given in matrix form in 
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table VIII. Each block in the table has space for four values, one for 
each loading condition. If a single values is given, that coefficient 
is good for all four loading conditions; when two values are listed, the 
upper one is for loadings 1 and 2 whereas the lower one is for loadings 3 
and 4; and if four values appear, they are for loadings 1, 2, 3, and 4, 
respectively, when reading from top to bottom. 

Throughout the calculations, a large number of significant figures 
have been carried, more than are justified by the accuracy of the initial 
data; however, the extra figures were carried in order to obtain an 
accurate check on the numerical work when the calculated internal forces 
are substituted into the original nine equilibrium equations. The solu­
tion of the equations and the calculation of internal forces fre quently 
involve the differences of large numbers and the final results are apt 
to contain several significant figures less than the initial coeffic ients. 

The solution of the systems of equations yields the joint displace­
ments given in table IX. Many methods are available for the solution 
of simultaneous linear equations; however, the method of reference 9 is 
recommended because of its many practical a.dvanta.ges. 

Calculation of stresses 

The flange forces and shear flows in and around the triangular 
section can be obtained from the joint displacements by substituting 
them back into the force-displacement relationships, equations (13) 
to ( 35). The shear stress is given by the shear flow divided by the 
sheet thickness; thus, 

T = ~ 
t (c43) 

The flange stres s in the front spar and bulkheads is obtained from the 
flange force and the effective moment of inertia as follows: 

a (c44) 

The flange stresses in the outer and carry-through sections must be 
determtned by summing up the various component stresses, equations (c16) 
and (C38), since different effective areas are associated with the 
bending and warping stresses. The results of these calculations are 
given in table X. 

The stress distribution in the outer and carry-through sections can 
be obtained as described in the analysis of these sections, with joint 
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displacements substituted where necessary. The results are given in 
tables XI and XII) respectively. 

Figure 12 illustrates the distribution of flange normal stresses 
and spar shear stresses as calculated in this example and compares them 
with the experimental data of references 1 and 2. The distribution of 
normal stress in the cover at three selected stations is similarly 
illustrated in figure 13. 

Calculation of Distortions 

The distortions of the outer section can be calcula.ted by adding 
up a number of component distortions as provided in equations (c16). 
The deflections of the individual spars can be obtained from the 
deflection and twist of the box beam as follows: 

w + !eb 
2 

(c45) 

The twist of the structure in a plane parallel to the flight path con­
tains a component of the twist perpendicular to the spars and a 
component of the rate of change of deflection) but it is most easily 
calculated from the deflections of the individual spars. 

The calculated results are listed in table XIII and are graphically 
compared with the experimental data of references 1 and 2 in figure 11. 
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TABLE 1. - COEFFICIENTS (aij) OF THE GENERAL MATRIX 

DEFINING THE JOINT DISPLACEMENTS 

Coefficient Formula 

all ITk15 + k16) - (kll + klill sec /I.. + (a, + (3)12 cos A 

a21 -( a, + (3)12 cos /I.. 

a 31 (k19 + ~O) - (~7 + ~S) 
Gtc A 

-1312 cos /I.. - 2b 012 cos i~ 

Gtc 
- 2b cos i\ 

(a, - 13 )12 cos /I.. + G~C (E12 + E23) sin /I.. 

(~3 + ~4)013 sec /I.. - g~c 013 cos 2/1.. 

aSl (kll + k12) sec /I.. + G~c sin /I.. 

~l -G13(~3 + ~4) + (k27 + ~~ b sec /I.. + 

G~c (E13 cos 2A - E23) 

(a, + (3)23 ta.n /I.. 

(a, + (3)23 cot /I.. 

o 

Gtc 
2b 012 cot /I.. 

0-23 Gtc 
5 + 2b cot /I.. 

23 

- --------

( Gtc ( ) a, - (3) 2 3 tan /I.. - 2 E 12 + E 2 3 

(a, + (3)23 + g~c 013 cos 2A csc /I.. 

Gtc -(a, + (3)23 tan/l.. -""""2 

() Gte I ) - a, - 13 23 sec /I.. - 2\E13 cos 2/1.. - E23 esc /I.. 

- - ----- -- ------
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TABLE I. - COEFFICIENTS (aij ) OF THE GENERAL MATRIX 

DEFINING THE JOINT DISPLACEMENTS - Continued 

Coefficient Formula 

Qk15 - k1 6) - (kll - k12U tan A - (~ + ~)23 tan A 

-(~ + ~)l3 cot A - (~ + ~) 23 cot A 

[(k19 - ~O) - (~7 - ~8D sin A 

o 

~23 
-°23 

(~ - ~)23 tan A 

(~3 - ~4) 513 tan A - ~13 - (~ + ~)23 

(kll - k12 ) tan A + (~ + ~) 23 tan A 

-t1 3 (~3 - ~4) + (~7 - ~8] b tan A -

(~ - ~)13 cos A - (~ - ~)23 sec A 

a 24 -(~ + ~)12 sin A - (~ + ~)13 csc A 

a34 0 

44 
Q ' A Gtc ~ 

a -~12 Sln + 2b u12 cos A cot A 

a54 g!C cos A cot A 

a64 (~ - ~h2 sin A - G~C ( E12 + E23) cos A 

Gte 
- ~13 sec A + 2b 513 cos 2 A cot A 

Gte -2 cos A 

55 
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TABLE I. - COEFFICIENTS (aij) OF THE GENERAL MATRIX 

DEFINING THE JOINT DISPLACEMENTS - Continued 

Coefficient 

- (a, + [3) 12 

(a, + [3)12 

o 
Gte 

k3 + 0,12 + 2b °12 

-k7 + Gte 
2b 

Formula 

-(1 - ( 23)k7b tan A + (a, - [3h2 - G~C (E12 + (23) tan A 

Gte 
-k3 tan A + 2b 013 cos 211. sec A 

-k3 - G~C tan A 

(1 - (23)k7b sec A - G~C(E13 cos 211. - E23 ) sec A 

a26 (a, + [3)13 

a36 (k19 - ~O) cos A - (k27 - ~8) cos A 

a46 
Gte 

-k3 - 2b °12 

k7 - Gte 
2b 

() Gte ( ) 1 - E23 k7b tan A + ~ E12 + E23 tan A 

k3 tan A + 01 3 (~ 3 - ~4) + 0,13 tan A -

Gte ° cos 2A sec A 2b 13 

a86 k3 + (k11 - k12 ) + G~C tan A 

~6 - (1 - ( 23) k7b sec A - l:13(k23 - ~4) + (~7 - ~8~ b + 

(a, - [3)1 3 sin A + G~C(E1 3 cos 2A - (23) sec A 

_____________________ .....J 
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TABLE 1. - COEFFICIENTS (ai) OF THE GENERAL MATRIX 

DEFINING THE JOINT DISPLACEMENTS - Continued 

Coefficient Formula 

o 

(ex, - 13)12 cot A 

o 

2(ex, - 13)12 cot A 

(~5 + ~6)513b sec A + (ex, - 13)13 

(k13 + k14) b sec A 

. -G13(k25 + ~6) + (~9 + k30Jl b
2

sec A + 

2(ex, - 13)13 cos A 

o 

o 

o 

-(ex, - 13 )12 cot A 

-(ex, - 13)23 ~ 
523 

-2(ex, - 13)12 cot A - 2(ex, - 13)23 tan A 

o 

o 

57 
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TABLE I.- COEFFICIENTS (aij) OF THE GENERAL MATRIX 

DEFINING THE JOINT DISPLACEMENTS - Concluded. 

Coef f icient Formula 

o 

G~l -~2) - (~9 - k30] b 

o 

a 69 2 ( ~ - ~)23 tan A 

a 79 ( k25 - k26)013b sec A - (~ - ~)13 

a89 (k13 - k1 4) b se c A 

a99 - ~l3(~5 - ~6) + (~9 - k30Ub2sec A -

2 (~ - ~)13 cos A - 2 (~ - ~)23 sec A 

alO -(kl + k4)M 

~O (kl + k4)M 

a 30 -~(Vl + V2 + V3)+ (k5 + kIO) V 

a40 k4M + ~T 

a50 -k8V - kslT 

a60 t~2 + (k5 + E2 3k8)V + (k6 + E23~)~ b tan A 

a70 (klM - ~T) tan A 

a80 kIM - k2T 

a90 [~V 3 + (klO - E23k8)V - (k6 + E23~)~ b sec A 

"----- -- - -- --, -- -- -- ---~---
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TABLE II. - DIMENSIONS AND STIFFNESS PARAMETERS OF IDEALIZED 

STRUCTURE USED IN THE NUMERICAL EXAMPLE 

Outer section Carry-through section 

Item (fig. 19) Triangular (fig. 20) 
section 

Bays 2, 3 and 4 Bays 5 and 6 Bays 9 and 11 Bay 10 

Dimensions 

b, in . 30 30 30 ----- -----
b', i n. ----- ----- ----- 42.1 42.1 
c, in. 7 7 7 7 7 
tb, in . 0 .050 0.050 0.050 0.050 *0.0885 
t c , in. 0.078 0.078 0.078 0.078 0.078 
a, in. 22 11 30 9.60 9.76 
I in4 90 . 2 90 .2 ----- 122.58 135·15 , 

**A . 0.863 0.863 0.964 1.229 , sq, In . -----

Stiffness parameters 

***p, in. jIb 1. 78903 X 10-6 2 . 36414 X 10-6 ----- 3 . 349163 X 10-6 2 .062590 X 10-6 

f, in.jlb 0.57511 X 10-6 1.75718 X 10-6 ----- 2.874949 X 10-6 1. 684428 X 10-6 

j, per Ib 0.075931 X 10-6 0 .075931 X 10-6 ----- 0.0797693 X 10-6 0.0409275 X 10-6 

ajGJ, per in.-lb 0.0430112 x 10-6 0.0215056 X 10-6 ----- 0.0128741 X 10-6 0.0079432 X 10-6 
-- - -- - -- - ----- -

~ *Includes an allowance for splice plates. 

**Effective "area for warping stress (A = Af + ~tc + ~tb + % LAs) 

***These stiffness parameters are defined in appendix C. 

~ 
(") 

:t> 

~ 
f\) 
f\) 
w 
f\) 

\Jl 
\D 
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TABLE 111.- DIMENSIONS AND STIFFNESS FACTORS 

OF THE BEAMS 

Beam Front spar 1-2 Bulkhead 2-3 Bulkhead 1-3 

Material 24s -T3 a.luminum alloy Steel Steel 

Stress Bending Warping 

Dimensions 

2, in. 30 30 29.25 41.34 
c, in. 7 7 7 7 
t , in. 0 .078 0.078 0.125 0.125 
I, in.4 ----- ----- 6 .15 8 . 01 
t e , in. ----- ----- 0.0181 0.0181 
c2lte/I ----- ----- 4.21 · 4.57 
V ----- ----- 0.60 0.65 
Ie, in . 4 45 .1 21.1 9 . 84 13.21 

Stiffness factors 

ill, per lb 0 . 575170 Xl06 0 .743315 X 106 0 . 338627 X 106 O. 332182 X 106 

0." lb 3 .993615 X 106 2 . 400311X 106 4 . 346797 X 106 4.427535 X 106 

13, lb 0.516384 X 106 -0 . 290336 X 106 -1.559397)( 106 -1.780133 X 106 
0 , in . 11.14498 8 .623871 4.295415 4.51467 
E 0.257002 0 . 425063 0 .706297 0.781584 

- - .. - -- -- - - - - --- -- -- --- - -
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n 

1 
2 
3 
4 
5 
6 

n 

1 
2 
3 
4 
5 
6 

n 

1 
2 
3 
4 
5 
6 

TABLE IV.- STRESS AND DISTORTION DISTRIBUTION IN OUTER SECTION 

(a) When root is rigidly built -in and tip bending load of 
2500 pounds is applied 

FB B B a .? B x a ,- w w c 
(in. ) (in. ) (in. ) (lb) (psi) (psi) (in. ) 

88 176 97 ----- 0.6098 0.0504 0.6602 
66 4107 2231 2289 . 3852 .0378 .4230 
411- 8036 4365 2289 .1899 .0252 .21.51 
22 11964 6500 2289 .0522 .0126 .0648 
11 13929 7567 2289 .0136 .0063 .0199 

0 15893 8634 2289 0 0 0 

(b) When root is rigidly built-in and tip torque of 
43,420 inch pounds is applied 

aT T T T T Ta/GJ 6eX (iT 
c b 

(psi) (psi) (psi) (radians) (radians) (radians) 

0 ----- ----- --------- -------- -0.006840 
-13 -1328 -2063 -0.001868 0.000003 -.004975 
-76 -1341 -2043 -.001868 .000017 -.003124 

-462 -1422 -1916 -.001868 .000101 -.001357 
-1067 -1630 -1593 -. 000934 .000159 -.000582 
-2409 -2000 -1015 -. 000934 .000352 0 

(c) When root is warped by amount (¢2 - ¢3) -6 1 X 10 radians 

aW T W " 'oW" 6eW eW c 
(psi) (psi) (psi) < ~ a.a:i R.US ) (radians) -

0 ------- ------ -------- lJ.3~::'I~'55 
-0.0065 -0 .0016 0 .0025 0.001705 .333450 

-.0404- -. 0085 .0133 .008900 . 324550 
-.2452 -.0515 .0803 .053668 .270882 
-.5663 -.1615 .2519 .084167 .186715 

-1.2787 -. 3583 .5589 .186715 0 

61 
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TABLE V.- OUTER-SECTION STIFFNESS FACTORS 

Stiffness Loadings 1 and 2 Loadings 3 and 4 factor 

kIM, Ib 15892.86 0 

~T, Ib 0 -2078.91 

. k3' Ib/radian -1103484 -1103484 

k4M, Ib 15892.86 0 

k5V, Ib/in. -178.5714 0 

k6T, Ib/in. 0 156.0246 

k7' Ib/in./radian 27943 27943 

k8V, Ib/in . . 0 0 

k9T, Ib/in. 0 50.7371 

klOV, Ib/in. -178.5714 0 



TABLE VI. - STRESS DISTRIBUTION IN CARRY -THROUGH SECTION 

(a) When ends are rotated by the amount 

(Wl +W3 sin 1\.+¢3 cos 1\.) ::: 1 X 10-6 radians 

Stress Symmetrical Anti symmetrical 

B 
0

8 
J psi 1 . 3100 0·7303 

B 
0 . 2460 0 J psi 1.3100 

9-

0 
B , psi 1.1882 0.2231 

9+ 

B 
1.6177 T , psi 0 

c J 9 

B 
T , psi 

cJ10 
0 1. 6177 

(b) When ends are warped by the amount 

(Wl -1jr3 sin A - ¢3 cos fl.) = 1 X 10-
6 

radians 

Stress Symmetrical Antisymmetrical 

W 
a8 ' psi 1.6041 1.5662 

W , psi 1.2373 0.4972 0 
9-

w , psi 0.9705 0. 3900 a 
9+ 

W 
-0. 2361 -1.2140 T ,psi 

c,9 

W , psi 0 0.1038 T 

c ,lO 

W 
0.3683 T , psi 0.2530 

b,9 

w , psi 0 -1. 0185 T 

b,10 
~- ----

~ 

~ 
:x> 

~ 
rD 
rD 
lAJ 
rD 

<J\ 
lAJ 
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TABLE VII.- CARRY-THROUGH SECTION STIFFNESS FACTORS 

stiffness fac tor Loadings 1 and 3 Loadings 2 and 4 

kll' Ib/radian 3277276 1827064 

k12' Ib/radian -1546392 -1509857 

k15' Ib/ radian 3277276 1827064 

k
16

, Ib/radian 1546392 1509857 

k19' Ib/in./radian 0 126178 

~O ' Ib/in./radian 18418 94691 

~3' 1b/in./radian 0 0 

~4' 1b/in./radian -18418 -12651 

~7' Ib/in./radian 0 -126178 

~8, Ib/in./radian 18418 94691 

"----- - - - --------- ---
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7.562904 
7.459566 2 .787400 5.865823 
5.762485 

-3.189065 2.787400 -1. 491984 

-0.549024 0 .260050 
0.063013 0 .201223 

-0 .016499 1.035295 

2.935596 5.231885 
2.462581 5 .114242 

-0. 117596 
-0 .080792 2.787400 
-0 .117596 
-0.080792 

2 .942805 
0.943574 -3.487400 
2.942805 
0 .943574 

TABLE VIn . - SYSTEM OF EQUATIONS FOR EACH LOADING CONDITION 

Loading 1 Symmetrical tip bending load of 2500 lb 
Loading 2 Antisymmetrical tip bending l oad of 2500 l b 
Loading 3 Symmetrical tip torque l oad of 43,420 in .-lb 
Loading 4 Antisymmetrical tip torque l oad of 43,420 in .-lb 

Loading 1 
Loading 2 
Loading 3 
Loading 4 

-5.880185 
-5.807114 
-5.880185 
-5.807114 

-5 . 434802 

0 

0 . 363038 

5.906194 

-7.131781 
-7.157806 
-7.131781 
-7.157806 

7.611069 
6 .124321 
7.611069 
6.124321 

Loadings 1 and 2 
Loadings 3 and 4 

3.189065 -4. 510000 
1.491984 -2 .109975 

-6 .933040 4.510000 
-5 .235959 2.109975 

-0.181257 5. 357149 
0 . 347587 3.705018 

0.016499 -0 .004610 

1.981974 2.556713 
1.342586 1. 652486 

2.517477 -1.103484 

-0.494977 -1.803484 

. 'Loadings 1 to 4 

-
-3.092785 
-3.019714 0 
-3.092785 
-3.019714 

2.647402 0 

-1. 363534 -3.477231 
-1. 304707 -2 .690647 

0 .004610 -1 · 375000 

0 .920518 -18 .766850 
1. 038161 -17 .193682 

5.614173 
5 .588148 0 
5.614173 
5.588148 

6.627153 
5.140405 0 
6 .627153 
5.140405 

-
~ 

1/11 

1/1 2 

1Jr3 

¢1 

¢2 

¢3 

"'2 
b 

-0 .031786 
0 

0 .031786 
0 

0.015893 
-0 .0020789 

0 
-0 .0000507 

-0.005357 
0 .0057558 

0.015893 ~ 
0.0020789 I 

0.015893 
0 .0020789 

-

,co 

~ 
!l> 
f-'3 
~ 

f\) 
f\) 

LA! 
f\) 

0\ 
\Jl 



66 NACA TN 2232 

TABLE IX. - JOINT DISPLACEMENTS FOR EACH LOADING CONDITION 

Di sp1acement Loading Loading Loading Loading 
1 2 3 4 

*lJ radians 0.0003681 0.0019304 -0.0002970 -0.0005616 

*2J radians 0 .0029693 0.0040942 -0.0013392 -0.0015269 

*3' radians 0.0012872 0.0024238 -0.0006535 -0.0008414 

¢v radians 0.0005019 0.0005217 -0.0003813 -0.0003817 

¢2J radians 0.0055292 0.0066615 -0.0012307 -0.0014186 

¢3J radians 0.0038611 0.0050147 0.0001279 -0.0000604 

W1/b J radians 0 0 0 0 

w2/b J radians 0.0025716 0.0037002 -0.0011405 -0.0013282 

w:/b J radians 0 0 0 0 

.. 
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TABLE X.- CALCULATED LOADS AND STRESSES AROUND THE TRIANGULAR SECTION OF 

Pn 
(lb) 

Loading 

n 1 2 3 

1 8110 8148 -1005 
2 14052 14076 -580 
3 17734 17710 580 
4 4689 4656 -1911 
5 2342 2349 -1365 
6 18197 18164 -2307 
7 8077 8110 -2076 
8 9224 9231 1761 
9 -5737 -5764 710 

10 14052 14076 -580 

THE SWEPI' BOX BEAM FOR EACH LOADING. CONDITION 

Loading 1 
Loading 2 
Loading 3 
Loading 4 

Flange 

4 1 

-1006 4406 
-580 7634 
580 a10767 

-1911 11675 
-1365 -----
-2306 a10501 
-2076 a2 
1761 17107 

711 -10640 
-580 a6501 

Symmetrical tip bending load of 2500 lb. 
Antisymmetrica1 tip bending load of 2500 lb. 
Symmetrical tip torque load of 43J420 in.-lb. 
Antisymmetrical tip torque load of 43J420 in.-1b. 

Web or cover 

an qn 
(psi) (lb/in . ) 

Loading Loading 

2 3 4 1 2 3 4 1 

4426 -1167 -1168 87 .7 86.9 78.5 78.5 1124 
7647 -673 -673 -132.0 -132. 6 118.1 118.1 -1692 

a10739 672 672 225.2 224 .6 118.1 118.1 2887 
11593 -4758 -4758 -46.6 -46.0 88.7 88.7 -932 
----- ----- ----- -110.4 -110.7 64.3 64 .3 -2208 

a10466 a-996 a-995 -60 .3 592.0 1.4 144.1 -773 
a37 a-756 a-757 60.3 42.1 -1. 4 -1.0 1205 

17120 3266 3266 -60. 3 -1222.5 1.4 158.5 -773 
-10690 1317 1319 292.6 311.5 26.1 25.7 2341 
a6528 -672 -672 219 .6 219.4 -39.5 -39.5 1757 

aIndicates a stres s composed of a bending and warping component. 

Tn 
(psi) 

Loading 

2 3 4 

1114 1007 1007 
-1699 1514 1514 
2879 1514 1514 
-920 1774 1774 

-2214 1287 1287 : 
7589 18 -1848 . 
843 -28 -19 

-15673 18 2032 
2492 209 206 
1755 -316 -316 

~ 

~ 
:x> 
f-3 
~ 

f\) 
f\) 
w 
f\) 

0\ . 
......:] 

; 



68 NACA TN 2232 

TABLE XI . - CALCULATED STRESS DISTRIBUTION IN THE 

OUTER SECTION OF THE SWEPT BOX BEAM FOR 

EACH LOADING CONDITION 

FLANGES 

GF GR 
(psi) (psi) 

n Loading Loading 

1 2 3 4 1 2 3 4 
6 6501 6528 -672 -672 10767 10740 672 672 
5 6622 6634 -298 -298 8512 8500 298 298 
4 6091 6096 -129 -129 6909 6904 129 129 
3 4298 4298 -21 -21 4432 4432 21 21 
2 2220 2220 -4 -4 2242 2242 4 4 

WEBS 

Tf Tr 
(ps i) (psi) 

n Loading Loading 

1 2 3 4 1 2 3 4 
6 -1691 -1699 1513 1513 2887 2879 1513 1513 
5 -2020 -2023 1411 1411 2558 2555 1411 1411 
4 -2203 -2204 1352 1352 2375 2374 1352 1352 
3 -2275 -2275 1329 1329 2303 2303 1329 1329 
2 -2286 -2286 1327 1327 2292 2292 1327 1327 

COVERS 

Tb 
(psi ) 

n Loading 
1 2 3 4 

6 -932 -920 1774 1774 
5 -420 -415 1935 1935 
4 -134 -132 2025 2025 
3 -22 -22 2061 2061 
2 -4 -4 2066 2066 
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TABLE XII. - CALCULATED STRESS DISTRIBUTION IN THE 

• CARRY -THROUGH SECTION OF THE SWEPT BOX BEAM 

FOR EACH LOADING CONDITION 

FLANGES 

CJF CJR 

(psi) (psi) 

n Loading Loading 

1 2 3 4 1 2 3 4 

8 2 36 -756 -757 10500. 10466 -996 -995 
9- 1202 112 -784 -257 9300 3424 -968 -333 
9+ 1587 305 -722 -238 7939 2903 -866 -298 

WEBS 

T f Tr 

(psi) (psi) 

n Loading Loading 

1 2 3 4 1 2 3 4 

9 -773 7589 18 -1848 -773 -15673 18 2032 10 0 11977 0 -1948 0 -11284 0 1932 

COVERS 

Tb 

(psi) 

n Loading 

1 2 3 4 

9 1205 843 -28 -19 
10 0 -3391 0 77 



TABLE XIII.- CALCULATED DEFLECTIONS AND ROTATIONS OF THE OUTER SECTION OF 

n x Front spar 

Loading 

1 2 3 

6 0 0.077 0.110 -0.034 
511 .153 .200 -.053 
4 22 .252 ·311 -.07.2-
3 44 .507 .591 -.112 
2 66 .818 .928 -.152 
1 88 1.159 1.293 -.192 

------- --

THE SWEPl' BOX BEAM FOR EACH LOADING CONDITION 

Loading 1 
Loading 2 
Loading 3 
Loading 4 

symmetrical tip bending load of 2500 lb 
Antisymmetrical tip bending load of 2500 lb 
Symmetrical tip torque load of 43,420 in .-lb 
Antisymmetrical tip torque load of 43,420 in. - lb 

Deflectiona Rotationb 

(in.) (radians) 

Rear spar Perpendicular 
to spars 

Loading Loading 

4 1 2 3 4 1 2 3 4 1 

-0.040 0 0 0 0 0.00257 0.00370 - 0.00114 -0.00133 0 
-.061 .067 .080 .006 .005 .00288 .00401 -.00198 -.00216 -------
-.082 .161 .187 .014 .010 .00302 .00415 -.00287 -. 00305 -------
-.126 .414 .464 .029 .02l .00311 . 00423 -.00471 -.00489 - .00556 
-.170 .725 . 800 .045 .033 .00313 . 00425 -.00657 -.00676 -.00751 
-.2l5 1 . 065 1.166 .061 .045 . 00313 . 00425 -. 00844 -. 00862 -. 00860 

'------------- - -- - -

apositive deflection is downward. 
bpositive rotation is front spar downward. 

• • 

Parallel to 
flight direction 

Loading i 

2 3 4 

0 0 0 I 

------- ------- -------

------- ------- -------

-.00557 -. 00206 - .00206 
-.00752 -.00336 -. 00336 
-.00862 -. 00468 -. 00468 

~ 

-.l o 

~ 
f) 
:x> 

~ 
f\) 
f\) 

LA> 
f\) 
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Corry 
through 
section, 

71 

/ Front spar 

Rear spar 

Bulkhead 

Figure 1.- Idealized sweptback box beam. 

Front spar 1-2 

Pz 

Figure 2.- Exploded view of idealized structure showing internal forces 
on each component around the triangular section. 
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Joint I 

V2 Joint 2 

'\ 

\ 

Figure 3 . - Free -body diagram showing forces at the joints . 

• 

• I 

Figure 4.- Positive directions of joint displacements . 
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(a) Loads . 

1-------1 
_ I _Original posLtion I .. X 

L _______ ~ 

_WL-L __ ,,-V ~'~~d~t;O" fu 
z 

(b) Distortions. 

z 

• (c) Differential element. 

Figure 5.- Loading and distortions of beam. 
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Bend ing stresses Warping stresses 

(a) Assumed stress distributions in actual structure . 

B B 
Fr:" 0- AF 

B B 
~::O- AR 

(b) Equivalent flange forces in idealized structure . 

Figure 6.- Assumed distributions of stresses and forces in actual and 
idealized structures. 

• 
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(a) Actual cross section . 

(b) Equivalent cover . 

• 
(c ) Idealized cross section. 

Figure 7.- Relationship between actual and idealized cross sections. 
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Figure 8 .- Chart for determi ning the effective moment of inertia of 
bulkheads. Ie = 1(1 + v ). 
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8 

1-------3It - ------I 

13 spoces ot 2=26 

.050 
1------29-} - ------'-=-.:.-----..,1 

Section A-A 

77 

Figure 9 .- Details of sweptback box beam used in tests and analyzed in 
illustrative example . 

Figure 10.- Antisymmetrical bending test setup of sweptback box beam. 

~ 
L-57584 
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1.6 

X,in. 
40 80 

If) .008 
c 
o 

"0 
o 
~_ .004 
c 
o 
.­
o 
o 
0: o 

- .004 

Pos i tive rotation 

Positive deflection 

D 

fl ight direction 

X,in. 
40 80 

o 0 o o 

Perpend icu lar to spars 

(a) Symmetrical tip bending load . 

X,in. 
40 80 

D 

If) 

c 
o 

.008 

:c .004 
o 

c 
o 

; 0 
o 
0: 

-.004 

D 

Positive rotation 

Pos itive deflection 

D 

D 

D 

Para llel to 
f l ight direct ion 

X,in. 
40 80 

o 
D Experimentol (ref. 1,2) 

-- Theory without sheor log 
--- Theory with shear log 

(b) Antisymmetrical tip bending load . 

Figure 11 .- Experimental and theoretical deflections and rotations of 
sweptback box beam. 
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o 
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o 
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Positive rotation 

Positive deflection 
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to spars 

40 80 
X, in . 

NACA TN 2232 

(c) SymmetricaJ tip torque load . 

/c -...:...... 43.42 in.-kip s ...... 

g Experimental (ref. I ,2) 
-- Theory without shear ,lao 
._. Theory with shear lao 

Positive rotation 

Posi tive deflection 

/ ' .008 
Front spar / ' g 

./5' "1) 
o 
"'~.004 
c 
o 
"0 
"0 
0:: 

40 80 
X,in . 

(d) Antisymmetrical tip torque load . 

Figure 11 .- Concluded . 

.. 
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8 

Flange norma l stress 

2.5 kips 2.5 ki ps 

(a) Symmetr i cal tip bending load. 

Spar shear stress 

W
-- 12 

I II 
I 
I 0 10 

I 9 
I 
I 

18 

16 

14 

12 

10 

I StresS, 8 
a ksi 6 

o 
o 

o Experimental (ref. 1,2) 
-- Elementary theory 
- Theory wifhout shear log 
-- Theory with shear log 

o r 
000·"',\ Flange normal stress 

.~ 

81 

Figure 12 .- Experimental a nd theoretical spanwise distribution of flange 
normal stresses and spar shear stresses of sweptback box beam. 
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2 

Spal shear stres~ Flange normal stress 

2 

43.42 In.-kip. 

I 

(c) Symmetri cal tip torque load. 

Spar shear stress 
-1 -1 

-2 -2 

-3 

2 

43.42 In.- kip, 

o Experimental (ref.l,2) 
~Iementary theory 
-Theory without shear lag 
- Theory with shear lag 

43.42 In.-kips 

(d) Antisymmetrical tip tor que load. 

Figure 12 .- Concluded. 
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12 

16 

12 

2.5 kips 2.5kips 

c 

(a ) Symmetri ca l tip bending load. 

9.7 

o Exper imental (ref. 1, '2) 
---!:elementary theory 
-Theory without lhear lag 
--Theory with .hedr lag 

db~ B~ 
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(b) Antisymmetrical tip bending load . 

Figure 13. - Experimental and theor etical chordwi se distribution of normal 
stress of sweptback box beam. 
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(d) Antisymmetri cal tip tor que load. 

Fi gure 13 .- Concluded. 
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(a) Stress distribution 
in actual structure . 

(b) Flange forces in 
idealized structure -. 

Figure 14.- Shear - lag stresses and forces in actual and idealized 
structures . 

/ Front spar 

Rear spar 

Substitu te 
stringer 

Figure 15 .- Type of idealized structure required to include shear - lag 
effects in the analysis. 
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Case Bulkhead 
1-3 2-3 

I 0 F lexible Flexible 

l[ ~ Flexible Rigid 

lIT ~ Rigid Flexible 

N ~ Rigid Rigid 

---- Elementary theory 

1j 

Normal stress Shear stress Distortion 

(a ) Symmet r ical bending . 

Normal stress Shear stress Distortion 

"" ~:£A~---= 

(b) Symmetrical torsion . 

Figure 16.- Calculated effects of bulkhead flexibility on the stresses 
and distortions of a swept box beam. 
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• Figure 17.- Plate - stringer combination analyzed to determine the effe ctive 
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Figure 18 . - Effective wi dth of plate acting with stringer. (See 
appendix B) . 
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Figure 19 .- Idealized outer section used in illustrative example . 
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Figure 20. - Idealized carry-through section used in illustrative example. 
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Figure 21.- Force groups of outer or carry- through sections used in 
illustrative example . 

(a) (b) 
T=-43f\'2.0 in.-Ib 

(e) 

Figure 22 .- Types of individual analyses of outer section used in 
illustrative example. 
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( a) 

I 
I 

R = t 1 for symmetrical loads 

R= -I for anti symmetrical loads 

NACA TN 2232 

( b) 

Figure 23 .- Types of individual analyses of carry- through se ction used 
in illustrative example . 
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