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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE. 2239

THEORETICAL INVESTIGATION OF TRANSONIC SIMILARITY
.FOR BODIES OF REVOLUTION

By W. Perl and Milton M. Klein

SUMMARY

. A solution for the compressible potential flow past slender bodies A
of revolution has been derived by an iteration procedure similar to
that of the Rayleigh-Janzen and Prandtl-Ackeret methods. The solution
has been analyzed with respect to transonic similarity. The results
obtained are in approximate agreement with those of von Kdrmédn in the
region of the flow field not too close to the body. In the neighbor-

" hood of the body, a different similarity law is obtained. This new
similarity law holds for variations in thickness ratio and Mach mumber,
but not for variations in specific-heat ratio. In addition, this law
appears to be limited in applicabllity to extremsly slender bodies of
"revolution probably outside the range of practical interest. The dif-
ferences between the results of the present investigation and those of
von Kérmén are interpreted in terms of the manner in which the boundary
condition on the body is satisfied and of the nature of the singularity.
of the solution near the axils.

INTRODUCTION

Transonic similarity rules for thin airfoils and slender bodies of
revolution have been derlved by von Kermdn (reference 1). These rules
for the case of two-dimensional flow are verified in reference 2 by an
iteration procedure similer to that of the Rayleigh-Janzen method (ref-
erence 3) and the Prandtl-Ackeret method (reference 4). .

The analogous investigation for bodies of revolution was made at
the NACA Lewis laboratory and is presented herein. A solution for the
compressible potentlal flow past a slender body of revolution is obtained
by the same iteration and transonic limiting procedure used in reference 2.
As in reference 2, 1n each step of the iteration procedure the boundary
conditions were satisfied on the body.

The solution obtalned yielded transonic similarity rules that are,.
in part, different from those of reference 1. The differences appear
to result from the. method of satisfying the boundary condition on the body
and from the nature of the singularity of the solution near the axis.
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As in the two-dimensional 1nvestigation, the influence of stag-‘
nation points has not been considered herein.

- ANALYSIS

General formulation. - The partial differential equation for a
compressible, axially symmetric, isentropic and irrotational flow with
free-gtream velocity U 1n cylindrical coordinates - x,r,6 (fig. 1)
is : :

[:az - (U+u)?]cpn + (az—vzjcprr - 2(U+u)cprcpxr + azch_;r_ =0 - (1)

in'whichithe‘following notation has beenvused:

a local speed.of_sound |

U+u resultant velocity in x-difection

v resultant velocity in r-direction

$. 'perturbation velocity potential défined by u = w., v,= P

(Subscripts denote differentiation with respect to variable noted. )
(A1l symbols used herein are defined in the appendix.) The local speed
of sound a 1is related to the free-stream speed of sound a -~ the
ratio of specific heats 7, and the local velocity by the Bernoulli
equation : ’ ‘ :

2

a® = ay" - Z%i (20u + u

+ vz) (2)
In accordance with the Prandtl-Ackert type of procedure,
equation (1) will be written in a .form in vhich the linear terms appear
on the left side of the equation and the nonlinear terms on the right
side. A solution will then be sought in the range of free-stream Mach
number close to 1.and thickness ratio close to O on the assumption that
the flow pattern.obtained by inclusion of the nonlinesr terms will differ
by only a small amount from that obtained with only the linear terms. .
This assumption will then be made plausible by the resulting form of the
solution. The coefficient of %y 1n equation (l) is therefore expressed,
with the aid of ‘equation (2), in-the form

- (U+u) = p2a? - { [Zu +(5) :] Z—- %)  (3)
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where

M, free-stream Mach number, U/a,

B’Z = l-M02 ) ] (4a)

2 -1y 2 : '
S CEE- 5 (41)

For convenience, the free-stream velocity is taken as the unit velocity
so that /U, v/U, and @/U may be writtenas u, v, and @,
respectively. The differential equation (1) can now be expressed in the
form - '

2 ® e :
(B PoxtPry + "I‘I)E '.Lzl Moz(zq’xwxz*'wrz)]

2 -1 2 22 ‘
= [:I‘M(z'cpx+c;>X ) + Z?'l M04cpr:] Py + My Pp Pppe + 2M02(1+cpx)q>rcpxr (5)

The boundary conditions of the problem are: (1) The perturbation
_velocities vanish at infinity, and (2) the flow follows the contour of
the body. Thus, at infinity,

@x = @r =0 | : ’ | (6)

and on the body,
| ry = Ta(x) (72)
@, = T(14p;) g (x) (7v)

where
T la.téral distance ratio of body

g(x) function characterizing shape of body and of order of magnitude 1
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All 1engths are expressed in terms of the chord of the body as 1.

In order to obtain the Laplacian of ® on the left side of
equation (5), the affine transformation

w=pr NG

is introduced. The differential equation (5) becomes

ap = 22 Moz(zmx%_zwz%z)mp +

F%- (29,49, 2) + Zé'l M04’Q>w2:| Py +M2820 200 + . .
B : .
22 (L By | o
where .the Laplacia.n‘of @ in qylindrical-coordinates is
Q= @ + Pyt % S (lO)

The boundary conditions. (7a) and (7b>) become,

at infinity, - -

P, =@, =0 | ' (11)
on the body, . |
o 0 =18 g(x) ) (12a)
Pw- 3 z 8, (x) @y = sx(x) 3 (12v)

" The formulation of the problem so far is exact. A solution is now
sought that is applicable in the range T and B close to zero (T~0,
B ~0). This solution is referred to hereinafter as "the small-perturbation
transonic limiting solution.” In the range of .T and B under considera-’
tion (T~0, B ~0), the perturbation velocities will be assumed small
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compared with free-stream velocity or |u|<< 1, |v|<<1. Thus, as is
usual in this type of procedure, the right side of equation (9) is
considered to produce a small perturbation from the linear case and a
solution of the system of equations (9), (11), and (12) will be sought
in the form

1 2 3 :
P=Q+Q+ P+ ... . | (13)
in which each term is of & lesser order.of magnitude than the preceding
one. The following boundary conditions on c]{), c% 3 e e e will accord-
ingly be taken as the equivalent of the boundary conditions (11) and (12):

At infinity,

B, =%,=0  n=1,23, ... (14)
On the body,

W = BT g(x) (15a)

S :

Po - ge) e = e lx) , (15b)

By - BI g, (x) F‘px = 0; nél . (15¢)

In order to obtain a solution of the system of equations (9),
(13), (14), and (15), equation (13) is inserted into the differential
equation (9) and a typical Laplacian term on the left, such as Acp, is
equated to the sum of those terms on the right that contain the super-
script n-l and that may also contain any of the superscripts n-2

n-3, . . . 1. The right side of the differential equation for cp con-
sists of a sum of terms ‘of which, for a range of near 1 and T
near zero, some will be of hig,hest order of magnitude. The solution
correasponding to these terms constitutes the small-perturbation tran-

sonic limiting solution for cp

Transformtion to prolate-elliptic coordinates. - For the problem
of the flow past an isolated body of revolution, it is convenient in
satisfying the boundary conditions to use a system of prolate-elliptic
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coordinates (reference 5). The transformation from cylindrical

coordinates x,w to elliptic coordinates  u,A\ is given by .

o]
i}

‘uN lb 3 - (16a)

= JE-1)(14%) (16b)

€
1

'The surfaces A = constant, u = constant are confocal ellipsolds and
Ahyperboloids of two sheets, respectively, the common foci being at

X '= 1, W=0. The values of A . may range from 1 to infinity, wherees u
varies ‘between -1 and. +1.

The Lapla.cian of ® is, in elliptic coordinates 5 -

ap = (AZ“Z){[ u)ﬂp:] [0\2-1)%]} oo

Transfomatlons from derivatives with respect to x and W to
derivatives with respect to u and A will be needed for subsequent
analysis. From the transformation equation (16), these relations are

. p(A%.1) A1)
% = 02at) *72—'“?; : (e)
9y = & 'ZZL)(;)'” L (O, mpu) o - ey

2 2.3

. 2 2
7, = (?\0:1)(1-)11 ) )\(7\2+3u )CP)\-P.(LL +3N )CP:] u( 2 —;;2 CP}\?\*'
T '

sz(i-pz)(?z\z-l)cp N+ 7‘__(2:_&2%%“  (20)
(N 4.?)’ (8% '
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P = (-)?1_2)_3_ {EA Zuzxzmz)(l-ﬁz)éuz(_xz-;)(2-x2-u2)] Apy *
" |

Exzfzuzxzmz)(—xz-l)-xz(l-uzg(z-xz-u"’)] ﬁcpp}+

2 ‘
(X -21>(zl-; ) (x?mx LUt - 20, ) " (21)
(A" ™) ‘

Pr

_Jefnaad | Eﬁ(s,-xz) : pzu-sxz)] o -

(28:2)2 (Ru2)

{ﬂs-ﬁ) : Az(l-sﬁ] 7, +
(A2 4?)

2,2,,2
)

ALy + (Panffulip - il L ()

The variable A has the limiting value 1 on a body of revolution
as the thickness ratio T of the body approaches zero. It will there-
fore be convenient to have the limiting forms, for A —=1, of
equations (18) to (22). Defining & new variable 1 by

1= N8l : (23)

and denoting by ~ the limiting form for A-e= 1, equations (18) to
(22) take on the limiting forms

_cpxu-ﬁ‘t—z- W, e, (24)
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Puw .~ ‘—z—'vz- (zq)z‘l-@“) . _ (25)
(147)
‘ 1l
Pex ~ T2 [2(1+3u )i, - M(3+H )7£P + ap%? Pyt
(l-u ) }
2 2,2
(-0 )lpy, + (1n )fpw] : (28)
Py ~ —=s— | 200, - + 1 (40, - 4 +2) - (e7)
wo "7 @ -y Py - B Q)|
L1/ ’ 2 2 2
——7~ [‘MPI' - (), + 4y, + 2(1w Joy, - w(l-p )cpm;] _
(28)
The boundary condition (14) becomes; in elliptic coordinates,.at
infinity,
% ' | A n Z( 22 ' ]
‘ " >\2-12 %‘F %——2 &u.zo
(A1) (A"-u®) ‘ |
>n.= 1,2,3,... (29)
Z 2y o |
NOE)a?) sm 8
: PP ) =
(A2-uf) AR -

The boundary condition (15) has, as a limiting form in elliptic coordi-
nates, on the body,

1_25282‘
(1-u%)

1, = * (308)
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1/2 '
—Zﬁ- (2q>1 uepp) -5 sx(X)( " mlwp> 7 8 (x) (300)

(1-u7)

1/2
-——ﬁ— (Zqol uco ) - - sx(x) (i lz gzéﬁ) n # 1 (30¢c)

First approximation. - The solution for the first approximation
satisfies the homogeneous Laplace equation

1
®
4

8% = ,[:(1-u2)%;],1 + [(Az-l)é,\]r 0 - (31).

subject to the boundary conditions (29), (30a), and (30b). A solution

of equation (31) appropriate to the present problem is given by (ref-
erence 5)

amM=§%%QMng> (%)
n=

where P,(k) and Q,(A) are the Legendre functions of the first end

second kind, respectively, and the A, are constants. The function
P (u) is a polynomial in p - of degree n, free of singularities for
finite values of p and is given by (reference 6)

Po(w) = 1.
Pl(P) = M
Po(u) = % (3uz-i)
' L a4 pom I (-)I(em2))t o
Pn(u) = ;n_n—'d._u_n (n“-1) =i pt 24 (33)

9=0 273t (n-3)t (n-23)!
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vhere m = n/2 for n even and m = (n-l)/2 for n, odd The
function ¢ (A\) has a logarithmic singularity at A = +1 eand is

given by (reference 7)

QO(A) ; log iﬁilli

>\2-1

3 (A) §A+1)2 | V ’

.le. i 21

%M) = 2 P;(A) log Q+_1)_ | P1(>\)
| aA

2N = B, f 7

: SN pn(x):]

(M1)2  2n-1 _ 2n-5 g -
A2 -1 n-1 Fo- l(x) 3(n-1 Fa-3(%)

(]

1
5 Pn(k) log

(34)

For large values of A, the function Q,(\) hes, as limiting form,
(reference 6)

. , zn(nl)z
WN— (2n+1) AR+l

‘The function Qn(A) land its derivatives therefore approach zero as A
becomes infinite, so that the boundary condition at infinity

(equation (29)) is satisfied. The constants kn in equation (32) are

determined so that the boundary condition at the body (equations (30a)
and (30b))is satisfied. In the nelghborhood of slender bodies, A
approaches 1 so that the limiting forms of Qn(A) and 1ts derivatives

are applicable near the body. These are, from equations (34),

.

Qn('l) ~ - % log 1 , - »(35a)
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2

11
Q' (1) ~- &  (350)
e €

21

where the primes are used to denote differentiation with respect to 1.
- Primes wlll be used, where convenlent, to denote differentiation when
only one variable is involved. The limiting form of the function @Qu(1)

is evidently independent of the subscript n, so that equation (32) has
a limiting form in the neighborhood of the body

1 . |
$u,1) = - % log 1 i A P (n) (36)

n=0

Insertion of equation (36) into the body boundary condition (30b) for
1l )
the determination of A, ylelds the equation

L1/z » Q@ 2,0
’Lﬂg [%Z%nl’n(u) + £ log %2 An'Pn'(u£| +
(l-pz) ‘ n=0 n=0

=, ® @
7 &,(x) [ﬁnga P(s) + 1 208 zbi o 2, (u£| -Le (37)
: n=0 n=0 »

For convenience in discussion, identifying supernumerals have been placed
above the various terms in equation (37). These terms will next be
compared in the small-perturbation transonic limit. The ratio of term
® to term (D 1s, by equation (30a), of order T282 log TP, whereas
the ratio of term @ to term @ is of order 1/logT8. Both of these
ratios have a limiting value of zero regardless of how T and B8
individually approach zero. It 1s therefore permissible to neglect ®
with respect to @ and @ with respect to @ . The ratio of term @
o term (@ 1s of order T2 log TB; the limiting value of this ratio
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depends. on the manner in which T and B approach zero. Although

72 log T8 will, in general, be small for small T, values of B

exigt that, for small but fixed values of' T, will make T2 log 7B
comparable to 1. The quantities T and B are to be regarded as
independent variables in going to the small-perturbation transonic
limit; it is therefore necessary to retain term (:) along with term

(:) in equation (37). Term (:) arises from the @, term in the boundary
condition (12) and is generally neglected in small-perturbation analysis.
When terms (@) and (® are neglected, and 1log [g/(l-uz)]‘/2
relative to log TR, equation (37) reduces to

is neglected

i A Bol) - kem, > b By () = - v, (36)
n= : n=0 :

. where

k'= 2 log TB - (39)

Both sides of equation (38) mey be expressed as series of ortho-
‘gonal Legendres polynomials in u and the coefficients of corresponding
Legendre polynomials equated to each other. The result is a set of

o1
gimultaneous linear equations for the An, the solution of which may be
indicated as .

}\n = Tz ‘]in(nyb) - - . (40)

where %n(K,b) denotes a function of the parameter K and of body
shape; the functions g. and g, are of order of magnitude 1 so

that 1t is plausible to assume %n is also of order 1.
The solution for the first approximation é is then

‘ 3= TZS 8, () 2y0) (41)
e |

Near the body @ has the form (from equation (35a))
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=]

1

gﬁ ~ 1P ng—lz a, P (n) (42)
n=0 .

The perturbation velocity ¢x near the body is, from equations (24)
and (42),

-
1. _ 2 T 1 1._ 1
B~ T [I_ZE a Pn(p) *+3 log"l, a, Pn'(u) (43)
. + n=0

e i

On the body or in the flow field not too far from the body, the second
term in the bracket dominates ‘the first term in the transonic range
B ~ 0. In particular, on the body @ has the form

o~ - 1osTa2an W) - -nZ e ()

The radial velocity component é near the body is, from equations (8)
and (25), -

n=0

. : 1/2 ’ |
ér _ BC]@w” %.2_ {- = E a, P (n) + E- log 1 ; a]in Pnr(ui‘ (45)
(1-u%) /

The second term in the bracket 1é negligible compared with the first
term, so that on the body equation (45) assumes the form

3, - gj B R (46)

n=0 .

In the flow field, which will be defined as the region for which 1
and log 1 are considered to be of order 1, the distrubance velocity

1 .
® 1s obtained from eguations (18) and (41), whereas the radial velocity
é& is given by equations (8), (19), and (41). Because only the order

of magnitude of the solution in the flow field, rather than its specific
form, 1s desired, the process may be considerably simplified. The
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functions Q,(A) ant P,(n) will contribute only terms of order of

magnitude 1 to the solution. The form of the solution in the flow
field may therefore be obtained from the solution near the body by
~taking 1 and log 1 of order 1. The solution for ‘®, 1s therefore,
from equation (43), of the form

. . |
P~ 10 g (kD) - (47)

where g;(k,b) is a function of K alild of body shape, and is of order
’of magnitude 1. The radial velocity cp in the flow field has the form
from equation (45), - ' '

-&5 ~ TZB hl(K;b) ' (48)

where 'hl( K,b) 1is a function of K and of body shape, and is of order
of magnitude 1.

_ ' 1
The resultant velocity increment A 1is defined by
1 1 2 1 271/2
A =[(1+ch) + (3,) -1 (49)

The ratio (cpr) /é:pL is of order 7282 1in the flow field and of order
1/log T8 on the body 80 that (cp )2 may be. neglected - Thé resultant

velocity increment A is therefore approximated by CP .

N

Second approximation. - The second approxima.tion ¢ 1is a solution
of the non-homogeneous LaPlace equation

| @ . ® ®
bp = = MO(ZCPX+<PX+B°Pw)ACP+[ (ZCP#% )+L1M %:‘
® ®O

2 1 11
Mo 2B PR + 27 (1480 )0, P (50)
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vhich satisfies the boundary conditions (29), (30a), and (30c). In
solving equation (50), only those terms on the right side that are of
highest order of magnitude in the small-perturbation transonic limit
T=0, - B—>0 will be retained. The plausible assumption is made in
this connection that the highest-order part of the solution of a
complete differential equation is the same as the complete solution of
the differential equation in which only highest-order terms have been
retained. For further simplification, an explicit solution will be
sought only near and on the body, so that the limiting forms for the
various derivatives in equations (24) to (28) may be used. The sub-
sequent analysis will therefore only indicate implicitly the form of
the solution in the flow field.

1 ' :
The highest-order terms in ®,- and $Q> are, from equations (43)
and (45), ' . :

1 2
~ - R'
q; T 2?-log 1

1 Tz R

S V- 2)1[2

(l-u

x0
1 )
where R = R(k,b,u) = E an(n,b) Pn(u) and the primes denote differ-

. n=0 . .
entiation with respect to u. The highest-order contributions to the

1
second-order derivatives of ¢ are, by equations (41) and (24) to (28),

1l | n

q&x ~ - T2 B_ log 1
Lo ®

X 11/2 (1 2)172
1
O - T2 R

weo ™ 3~ 2

(L-u%)

The various terms on the right side of equation (50) will now be
examined with regard to their orders of magnitude. Term (:) vanishes
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by {rirtue of thé solution for the first approximation. The ratio of'

term to term (:) is of order 1262/1 log 1 and approaches zero
both in the flow field and on the body. It is therefore permissible to
neglect term @ . The ratio of term (3) or (9 to term. is of order

B /Z log 1, which is negligible in the flow field; near the body, the
ratio may be small or large depending on the manner in which T—> 0 and
p—0. Terms (@) and (® mustztherefore be retained and equation (50)

for the second approximation ¢ reduces to

2 2g3
Ji z(lRR"logzl-—(R)R"Tlog)+MO Tg
B (1-u2_) l

RR' 1 2 R(R')% 72 log 1

T (1-a2) T (52)

A typical term on the right side of eguation (51) is, aside from
factors depending on the physical parameters T, y, and MO’ the

limiting form for A—31 of some function of u and A, which may be
denoted by f(u,A). In order to solve equation (51), it is assumed that
the product of f£(u,A) and ()\z-p ) may be expanded into a series of
orthogonal Legendre polynomials. The right side of equation (51) may
contain singularities at the end polnts p = +1 because of the factor

- 1 5> which becomes infinite at these points. It ‘may therefore be

-

necessary to exclude small but finite neighborhoods about u = 1 from
the 1nterva.1 of expansion and consequently from the domain of definition
of cp. At this point the assumption 1s made -that the effect of the stag-
nation points, if they occur, is negligible. The expansion for £(u,A)
may then be expressed by '

(WF4i2) 2(u,) Z o By By) (s2)
A n=0 - :

- where ap, depends on body shape and hh 18 a function of A. Then the

solution of equation (51) corresponding to the term f(u,7\) is, from
equa.tion (17), the solution of the non-homogeneous equation
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Oalie - [adg), + (03D, - 2%11 () Bylh) (53)

A.solution of equation (55) is now sought in the form

RS ILLCEXC (54)
b=

where g (M) 1s a function of A to be determined

Inserting egquation (54) in equation (53) and noting that P (n)
satisfies Legendre's differential equation yields, when coefficlents of
Pn(p) are equated, the non-~homogeneous lLegendre differential equation

[(0%-1) 07 )] - n(e) 0u¥ = 2y ~ (s5)

The solution of equation (55) is the sum of the complemsntary solution
taken proportional to Qn()o to satlisfy the boundary condition at

infinity and_ the particular integral r (M), which may be expressed in
terms of two indefinite integrals by

ry(\) = Pp(A) o) 200 b, (N) Py(A) @k [ah (56) .

The_function' Tn satisfies the boundary conditions'at infinity.
solution of eguation (53) may therefore be written as

= 14[2 Ay (N P, (1) +i; ay (A Pn(ui‘ (57)
n= n=0 :

The 1imiting form of equation (56) for A—3l or 1—»0 1s

r(2) ~ i.fdz_lfh(z) a1 (8)

The
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The subscript n is omitted from r(2) dinasmch as h (?\) is

independent of the subscript n in the limit 1—»0. Equation (57)
then becomes, for 1—0,

o~ T [:—108 lszn (u)+r(1)2%1’n(ﬂ a | (59)

n=0

The quantity r(1) may now be evaluated for each term on the right side
of equation (51) and the solution for @ consequently is

\

Bp~p loe li An Pnlu)+ é’ (1) %I{: 'R"1 logf l-i‘-(R')zR"‘rzl log’ ‘l:] +
_1.4 2 5 |
n=0 A
o oy Tt T Vo TR logT 1 o p Mo R(RY) log> 1 (60)

Equation (60) explicitly indicates the solution only near the body,

where 1 ~0. 1In the flow fleld (1~ 1 and 1log 1 ~ 1), equation (60)
indicates the solution only as to order of magnitude , as previously
mentioned. This limitation, however, is unimportant in the investigation.
The limiting form of the solution as T ~ O (for example, equation (60))
is used herein because of the resultant simplification in the analysis.

The consta.nts Kn in equation (60) are determined from the boundary con-

ditions (SOa) and (30c). Insertion of equation (60) into equation (30c)
yields ’ __— '
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' : . 2.2 2
where 1 1s to be evaluated at 1y = T B g . The unchecked terms in
’ . l -
equation (61) become negligible compared with the checked terms in the
small-perturbation transonic limit. Equation (61) therefore reduces to

f; o 2 (0) - nggxz; o 20t 0) |
= n= . o

= log 1B ZMOZRR' + K [:PMng'R"-MOZR(R')2~Mozggx(RR')i]

K { g (R')ZR" -—MO 8ex R(R')]}/ (62)

Equation (62) may be solved for the coefficiente An - in the same manner

as was indicated for the coefficients An occurring in the first

approximation %. As in equation (52), it may be necessary to exclude
the region around the end points u = #l. The result may be expressed
as '

2 2
Ay = log T8 a, (k,M 195 M,b)

2 | - ~ .
where a,(K,Mg,Iy,b) denotes a function of the paremeters K, My, Ty
and the body shape and is of the order of magnitude 1. _

Althougn the term in R3 camnot bé neglected in equatlon (51), it.
can be neglected in equation (60) and in the boundary condition -

(equation (61)). Near the body, the solution for m given by
equation (60) therefore becomes, when the R term is neglected,

2 - '
@ 1 R 2 - 1,. ZPM 11t 2 1 ,2:12 3,
"J”'Emgm log 1 :>: anPn(p)+§(l-p )ggRRZlog 1 -z(R")“R"T"1og" 1]+

n=0

1.2, . 2. 1 2
T MozRR, log® 1 - 54 My R(R')ZT2 1og3 1 (83)
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An explicit solution for the potential in the flow field cannot be
obtained from equation (63) but, as previously mentioned, the order of
magnitude of the solution in this region may be 1nferred from
equation (63) by teking 1 a.nd log l of order 1. In the flow field,

the disturbance velocities cp_X and cpr thus have the form
(:p]c ~ T8 (01K+02€) (64)

2 2 2 -

%, = 8P, ~ TB(d K+dge) (65)
e | :
vhere € = ézM, ¢y "and dy are functions of K, M,, PM’ and body

shape, and cp .and ds are functions of only K and body shape. The
c's and d's are of order of magnitude 1. ' :

In the neighborhood of the body (equation ( 30a)), the quantity 1
begins to contribute to the order of magnitude of the terms in
equation (63). The disturbance velocities on the body are thus given
by , _ .

By P -2%P (CREGE RIS £ R(R')]} (66)
2 [ 8 maw - o] + [ o s
r "y Zan (K -MO [MOR(R MgRR K +

%ngz(R_')zR" k2 ‘ ()

’ 2
Aglde from the dependence of the constants: an on K, the dominant
terms contributing to %x on the body (equation (66)), come from the

cp cp and &, Qp R terms in the differential equation (50). The first
term of @y in the flow field (equation (64)) results from the cP(oq)xw

term. The second term of equation (64) comes from the cpxcpn term in
@ in equation (50). The expressions for . on the body and in the

flow field (equation (67) and (65), respectively) may be similarly
,analyzed.
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DISCUSSION

Transonic gimilarity. - The results obtained thus far in the first
two approximations may be summarized as follows:

On the body,
‘ 2l :
©~ - K[R n (s-MO2 RR')K +%M02 R(R')ZK:] - (68)
. - : t . X
Py ~ - K{R' +[ '-MOZ(RR')]K - %Moz [R(R’)z]' kZ (69) -~
@p ~ - IARe(S-2URR' K + [MO R(R')® - PMng'R’] I +-%— Iyef(R)%R"%S
) (70)
where
R = E ap Py(n)
n=0
(o]
2
S = E a) P (u)
n=0
In the flow field (1~ 1, log 1 ~ 1),
© ~ 72 (bl +by Kibze ) : : (71)
2 Cok ) ‘ ‘

P~ T2 (d + dp K+ ) . (73)
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where by, c¢p, and dp are functions of K, My, Iy, and body shape

and the other b's, c's, and d's are functions of only K and body
ghape. The ©b's, c¢'s, and d's are of order of magnitude 1. It
appears plausible to assume that higher approximations would not alter
the results obtained thus far concerning the dependence of the potential
on the parameters K and €.

The solution given by equations (68) to (73) will next be considered
from the viewpoint of transonic similarity; that is, the possible
dependence of the solution on less than three combinations of the
physical parameters T, My, and 7 in the small-perturbation tran-

sonic limit T-—30, p—0 will be investigated. In the limit T—0,
p—>0, the solution for the body (equations (68) to (70)) becomes a
function of the parameter K, the ratlo of specific heats 7, and the

. body shape. Hence, for constant 7, a similarity rule exists on the
body with respect to variations in T and B through the similarity
parameter K. In the derivation of this result, it was necessary to
neglect terms of order 1 in comparison with log 1; that is, in compari- .
son with log T8 on the body. The quantity 1, however, must be :
extremely small before log ! begins to dominate terms of order 1. The
foregoing similarity rule may therefore possibly be limited to extremely
gslender bodies with thickness ratios not in the range of practical
interest. If the body is not extremely slender, the potential in the
neighborhood of the body depends not only on the parameter K but also
on the thickness ratio T in a complicated manner. (See, for example,
equations (41) and (63).)

For the flow-field solution, (equations (71) to (73)), in the limit
T—0, B—0, the coefficients by, cp, -and -4, become functions of

K, 7, and body shape, whereas the other b's, c's, and d's remain
functions of X and body shape. The flow-field solution thus becomes,
for T-—0, p—0, a function of three parameters K, ¢, and 7, so
that apparently no simple similarity law exists in the flow field. The
original physical parameters of the problem (r, M,, and 7) have
not been reduced in number, so that no apparent simplification of the
dependence of the potential upon the physical parameters has been
achieved. Figure 2, which presents curves of |k| /¢ against B for
geveral values of the thickness ratio T, shows, however, that the
parameter € 1s much larger than the parameter K for small values of
f. It then appears desirable to consider those flow-field solutions in
vhich € 1s of ordér of magnitude 1 and K 18 negligible compared with
€. ! -

The essential modifications in the analysis previously given are
that the term in Py in the body boundary condition (7b) may now be

neglected in view of equation (38) and that only the terms in Py Py s
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2 ‘ ‘ .
ngiu) and @y, By, need bg considered on the right side of the differ-
ential equation (9). The term in ‘AR, 1s the dpminant term in the
flow field, whereas the @, 2nd ©,°q =~ terms are dominant in the
neighborhood of the body. It is therefore necessary to retain the

terms QPy , and wba¢hm) for the body boundary condition in order to
obtain the constants A, of the complementary solution.

By carrying through the analysis directly or by inspection of the
solution equations (71) to (73), the potential in the flow field may be
expressed in terms of the single parameter €. Because of the simplifi-
cations resulting from the condition K<<g, this analysis for the
solution in the flow field has been carried through the firsgt three
approximations. In the third approximation, as well as in the second
approximation (equation (63)), the complementary solution becomes
negligible compared with the particular solution corresponding to the
Py Pyx term in the flow field. Thus the results for the flow-field

region to three approximations may be expressed as

F=f€ +fpe? + fge O (74)
where
iy
F = —gl-cp (75)
B ,

and f,, f,, and f3 are functions only of body shape and are of
order of magnitude 1.

In establishing equation (74), it was unnecessary to make the strong
assumption log 1>>1 but rather the much weaker ones, Té<<1, pl<<1
" and log TR ® 1. It is therefore probable that the similarity law for
the flow field given by equation (74) holds for a wider range of thickness
ratios than the similarity law for the body (equation (68)). The
existence of different similarity laws for the flow field and for the
"body would. indicate a transition region where a more complicated relation.
obtalins.

Comparison with reference 1. - The results obtained in this investi-
gation are somewhat different from those of reference 1, where a single
gimilarity parameter equivalent to the parameter ¢ is derived for both
the flow field and the body. These differences may perhaps be understood
as follows: a
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In reference 1, the boundary condition at the body is written in a
form essentially equivalent to

e, = nggx for r—>0 ’ ‘
or
WFy = eg88;, - for w—0 (76)

and nonlinear terms‘in the differential equation for the potential other
than the m ®yx 'term are neglected. When only the PPy term on the

right side 18 retained and the transformed potential F is used,
equation (9) becomes

BF = 2F.F, . (77)

If it is assumed that the boundary condition (76) may be evaluated on
the axis @, = O rather than on the body Wy = 78 g(x), then the only

parameter entering the differential equation (77) and the boundary
condition (76) is €. The potential F(x,w) should therefore be
expressible in terms of the single parameter €. On this basis, the
transonic similarity rules in terms of the parameter € are obtained -
in reference 1.. )
The present analysis differs from that of reference 1 in three

respects. First, the boundary condition (26a), or, more ‘generally, the
boundary condition

rftp, = Th*ighg, o - (18)
is, in the present analysis, satisfied on the body, as
ry = Tg(x) _ (79)

.rather than near the axis, as

re—30 . (80)

The use of equations (78) and (79) will evidently yield the same results
for any value of the exponent n. Equation (80), however, is equivalent
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‘to equation (79) only if n = 1, and then only in the first approxi-
mation; for in the first approximation (equation (41)), o ~ log r,
" 80 that rq. has a finite nonzero limit as .r—»0. Hence, reference 1

- is correct insofar as the first approximation obtained herein is
concerned.

In the second approximation (equation (63)), however, the dominant

term 18 of order log r 8o that rq% becomes infinite for r— O.
This result, however, does not invalidate the procedyre as regards the
flow field because the boundary condition (76) is needed only to obtain
the complementary solution in equation (63). As previously noted, the
complementary solution is negligible with respect to the particular
solution corresponding to the- F;Fyy term in the flow field , at least

to the first three. approximations

. A second difference between the present analysis and that of
reference 1-stems from the logarithmic-type singularity . that the
potential o(x,r) exhibits as r-—0. This singularity affects not
only the numerical value of the potential o(x,r) and the.velocity at
the body rp =Tg(x), but also its order of magnitude. Hence, even

-after use of equation (79) in satisfying the boundary condition, &
further use of egquation (79) must be made in the solution to determine
the parameters on which the velocity at the body depends . i

A third difference between the present analysis and that of refer-
ence 1 is that the singularity of ®(x,r) as r—0 causes the terms

in o @, =~ end cpw?q)ww (rather than the ®.® . term) 1in the differ-

ential equation (9) to be the dominant terms in the neighborhood of the
body in higher approximations. These terms lead to the similarity para-
meter n in the present analysis.

The foregoing analysis indicates that there is no single transonic
similarity rule for bodies of revolution for both: the flow field and
the body, and that the similarity rule for the body may be limited to
extremely slender bodies. The use of transonic similarity for bodies
of revolution may therefore be somewhat limited on a practical basis.

It 1s well known, however, that the compressibility effects for a body -
of revolution are much smaller than for the corresponding two-dimensional
profile (references 8 to 10) which may easily be seen from
“equations (43) to (45) and (63), (66), and (67) where it is noted that,
on the 'body, the compreseibility factor B occurs in the dominant terms
only through powers of the slowly varying function 1log 1. If the

function 1log T 1s considered of order 1, then the solution for

2 ' T '

4

Q is of order T and-should be quite small compared with the solution
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for c}), which is of order -1°. The Prandtl-Glauert rule for bodies of
revolution may therefore be expected to hold for a much wider range of
free-stream subsonic Mach numbers than the corresponding rule for two-
dimensional bodies.

Lewls Flight Propulsion Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, August 31, 1950.



28

NACA TN 2239

APPENDIX - SYMBOIS
Tﬁe following sfmbols are used in tﬁis report:
local spéed of sound
speed of sound in free stream
transformed.veiocity potential, Eg,m )
function charécterizing shape of %ody

varisble, AZ-1

‘free-stream Mach number, U/ao

Legendre function of first kind - \

Legendre function of second kind
function of K, body shape, and p
ﬁafticular integra% : |
free-stream.velqcity' :

disturbance v?}ocity in x-direction, @,
disturbance veiocity iﬁ r-direction,'tyr-
cylindricalicqordinates

compressibility factor, q/l-Moz, (equation (4a))

_ M02 (l + Z%l Moz) , (equation (4ﬁ))

ratio of specific heats

- Laplacian

2
, B
similarity parameter in neighborhood of body, 7 log TB

gimilarity parameter in flow field,

resultant velocity increment on body . .
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A,u prolate-slliptic coordinates for body of revolution
T lateral distance ratio
® perturbation velocity potential
transformed r-coordinate, Br
Subscript:
b on the body
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Figure 1. - Cylindrical coordinate system for body of revolution,
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Figure 2. - Curves of ratio of absolute value of paraméter x to
parameter ¢ against compressibility factor B for several
thickness ratios. : :
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