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NATIONAL ADVISORY CO4MIra FOR AERONAUTICS 

ThCmICAL NOTE 2245 

CALCULATION OF COMFRSIBLE POTENTIAL FLOW PAST SLEI'JDER 

BODLHS OF REVOLUTION.BY A1 IMPEGRAL METHOD 

By Milton M. Klein aM W. Pen 

SUMMARY 

An integral method., previously used. to obtain compressible flow 
past two-climenslon.al shapes, has been applied to the calculation of 
compressible potential flow past slender. bodies of revolution. Good 
agreement of the resulting velocities on ellipsoids of revolution 
with . those obtained by other methods was found. Flow-field conditions, 
such. as the extent of local supersonic regions, were calculated and. 
discussed. The free-stream Mach number beyond which a continuous 
potential-flow solution ceases to exist was found to be very close to 1. 

INTRODUCTION 

The partial differential equation for the compressible potential 
flow past a body of revolution is considerably more difficult to solve 
than the corresponding plane (two-d.iinensional) equation. As a conse-
quence, fewer extensions of low-speed or incompressible-flow solutions 
to higher subsonic speeds have been made for bodies of revolution than 
for two-dimensional shapes. The principal work onbodies of revolution 
èeems to have been confined to solutions of the partial differential 
equation after it has been linearized under the asumptions of small 
perturbations and of free-stream Mach number not too close to 1. For 
example, a treatment of subsonic flow by the method of sources and 
sinks is given in reference 1. The case of wholly supersonic flow,. 
which has been more extensively treated, is discussed In reference 2. 
These solutIons may be convenIently expressed In the form of a 
similarity rule (Prand.tl-Glauert rule for bodies of revolution) that 
gives the flow pattern for a given Mach number if the flow pattern 
at another Mach number is known. Correct forms of the rule are pre-
sented in references 3 to 5. 

The solution of the linearized differential equation yield.in€ 
the Prandtl-Glauert rule may be regarded, as In the two-dimensional 
case, as the first term in an expansion of the potential In powers of 
a. thickness-ratio parameter. The amount of labor required to obtain

/
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higher-order terms of the expansion, Is considerable for a two-
dimensional body and much greater for the corresponding body of 
revolution. Only one calculation, for the ellipsoid of revolution, 
of the second term of such an expansion appears to have been made 
(reference 6). 

Because of the large amount of work and the mathematical diff i-
culties Involved In obtaining higher approximations for bodies of 
revolution through the differential-equation approach, it Is particu-
larly desirable to survey other possible approaches to the problem of 
calculating the flow past a body of revolution at high subsonic Mach 
numbers. The integral-method approach of references 7 and 8 was 
therefore studied and the results of the Investigation conducted at 
the NACA Lewis laboratory are presented herein. 

The method of references 7 and 8 Is based on an integral form of 
the equation of continuity and on the intrinsic form In terms of the 
local streamline curvature of the irrotatlonality condition. The 
essential approximation of the method is . the choice of a curvature 
function that will adequately represent, the variation of the stream-
line curvature in the flow field. In the two-dimensional problem, 
several guides are provided to limit the possible choicesof a 
curvature function. These guides are: (a) the incompressible flow 
pattern; (b) the Prandtl-Glauert rule for the low-subsonic-speed 
range; and. (c) the transonic similarity rule for the high-subsonic-
speed range in which local supersonic regions exist in the flow field 
(references 9 and 10). For the axially syinnietric case, guides (a) and 
(b) are available but the situation with regard to guide (c) is dubious. 

An analysis of the differential equation for the body of revolution 
(reference ii) indicates that, although the transonic siIrLi1aIty rule 
of reference 9 may hold. in the flow field, it does not appear to be 
valid on thebody, where a different similarity rule obtains that is, 
moreover, valid only for extremely slender bodies. In this report, 
therefore, guide (c) has not been used in choosing a curvature runction. 
The resulting greater arbitrariness of the choice of curvature function 
thus implies a greater uncertainty of results for bodies of rvo1ution 
than for the • two-dimensiOnal shapes. In order to reduce ,this uncertainty, 
two substantially different curvature functions, both satisfying guides 
(a) and (b), havebeén selected for 'the Investigation. 

Although the illustrative examples giyen herein have been confined 
to ellipsoids of revolution, the method with either curvature function 
may ,be applied In a straightforward manner to arbitrary bodies of 
revolution;	 -	 1 .	 '
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ANALYSIS 

The flow is assumed steady, isentropic, irrotational, and axially 
symmetric. cept for a modification In the continuity Integral, the 
equations of motion anti their d.evolopment parallel the two-dimensional 
treatment'of reference 8. The equations of motion are: (Main symbols 
are defined in the appendix; see fig. 1 for flow notation.) 

Equation of continuity, 

2ityp0v dy =	 2itypv tin	 (1) 
Jo	 Uo 

Irrotationality condition,

+Cv=O	 (2) 

Bernoulli equation,
1 

P [lylM2 ( v21)1 7l	 (3) 

where 

p	 density of fluid 

v	 velocity in flow field 

n	 distance measured along potential lines from body of revolution 

C	 streamline curvature	 - 

y	 ratio of specific heats 

M Mach number 

subscript 0 denotes free-stream conditions. 

It Isextreniely simplifying to replace the coordinate n by the 
coordinate y in the preceding equations. Because of the dubious 
situation with regard to a transonic similarity rule, it does not appear
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easy to give a rigorous justification- for this replacement in the small-
perturbation case analogous to the justification for the two-dimensional 
case given in append.ix A of reference 8. The replacement of n by y, 
however, is exactly valid at the m.idchord. location of bodies of revo-
lution with fore-and-aft symmetry. The approximation involved in the 
replacement should therefore be fairly good. near the maximum-thickness 
locations of slender bodies of'revolution in general. For convenience, 
the free-stream quantities p0 and. V0 will be taken as units of 

density and velocity so that p and. v hereinafter represent non-
dimensional fractions of free-stream density and velocity, respectively. 
In addition, the unit of length is taken as the airfoil chord, so that 
all lengths such as , x, y, and 1/C hereinafter represent nondiniensional 
fractions of the airfoil chord length 

Equations (1), (2), and (3) thus become, respectively, 

y dy	 p, dy	 (4) 

dv 
dy = - 

P =	 (6) 

The variations Indicated, in equations (4) and (5) occur at Oonstant x. 
The lower limit of integration Y In equation (4), which corresponds 
to the zero streamline, is the ordinate of the meridian section of the 
body of revolution. The variable upper limit y occuring in 
equation (4) and corresponding to the flow-field streamline may be 
eliminated by consideration of the limiting form of this equation as 

fly, 
y—_ . In order to obtain a finiteresult, the quantity 	 y dy is 

-	 JY 
subtracted from both sides of equation (4). If no wakes or sources 
of fluid exist In the flow field, then lirri-(y-y0) = 0 (reference 8). 

(5)
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Equation (4) therefore assumes the limiting form, for y—, 

(pv-i) y dy	 (7) 

The continuity equation (7) becomes, when dy is replaced by dv 
from equation (5),

V.

(P-!)dv 

in which the upper limit V is the velocity at the surface of the body 
corresponding to the ordinate Y. The relation between the flow-field 
velocity v and the corresponding distance y Is obtained by inte-
gration of equation (5) between the limits Y and y as 

yy=J;V 

For further simplification, the assumption of small perturbation - 
of the flow velocity is now explicitly introduced; accordingly, the 

quantity p -	 in equation (8) is expressed as a power series in the 

velocity increment v = v-i. From equation (6), the quantity p - 

can be expanded in the form 

p -	 =	 - 'cV2 +	 (10)
where

1 - M0	 (ha) 

•	 F0 = 1 + + -	 . ..	 (llb) 

F 1 = 1 +	 -	 (2-y)(3-2y)	 6	 (lic)
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Terms of higher order than i 	 in the expansion equation (10). are 
negligible in the solution to be derived herein. Substituting 
equation (10) into the continuity inteàl equation (8) and changing 
to a new variable of integration z = P/A yield 

A2 f (z -	 + F 1A 2 z3) dz 

where A= V-i is the disturbance velocity on the body. 

Equation (9) becomes, internis of the new variable z, 

/	 -. 

Inasmuch as 0 z 1 and. f or small perturbat ions A< <1, the; 

quantity

	

	 may be expanded in powers of Az, yielding,
l+Jiz

1 
y = Y + A	 (1 -Az +A 2z2 A 3 z 3 + . . 

By inserting the value of y fromequation (14) in equation (12), the 
continuity equation become&, for arbitrary curvature C, 

	

2f	 zFcAz2+l2z3)[y+	 (1-Az+A2z2-A3z3+ . . . ) dz

(15) 

First curvature function. - The streamline curvature is now 
aseuined to be expressible as some simple function of the chosen ind.e-
pendent variables, the chordwise location x, and the local velocity v. 
The function chosen must satisfy the boundary conditions of zero curva-
ture at infinity and known curvature C on the body. Two curvature 
functions were chosen f or i'nvestigation.. The first curvature function 
is the same as that used. for the two-dimensional problem (ref érence 8).

(12) 

(13) 

(14)  

&=zp	 (16)
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where 

0a	 cUl'VatUre of body contour 

p	 parameter to be determined 

The parameter p has a limited r,ange of values because of conditions 
at infinity. The streamline curvature C must vanish at infinity and 
the inte'als of equations (14) and (15) must diverge and. converge, 
respectively, at the lower limit z = 0. &amination of equations (14) 
to (16) therefore shows that the parameter - p must have the range 
of values (See also reference 7.) 

1<p<3/2	 (17) 

Substitution of equation (16) into equation (14) yields 

y = Y ^	 -A 
(i_z2P) 

A2 
(i-z3P) 

-A3 ( l_z4;P )1 (18)' 

The continuity inte'a1 equation (12) becomes, by iiseof equation (18), 

Cl 
A2	 A ii_zi-	 (i-z2P) =	 (i.z	 - FAz2P + F 1A2z3P) Y 

+ . L 1..	 A	
2-p	 +

Jo

A2 (l
-zP) - A3 (1Z4P)]Jd	 (19) 

Perforinin the inte'at1on and. retainin€ terms through A4 result in 

(YCa)2 = (JL. -	
+ r1A2	 +	 1A	 (	 + 

2A2	 2-p	 3-p 4-p j a	 (2-p)(3-2p)	 (2-p)(4-2p)

(20)
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Several terms in equation (20) are negligible throughout the
entire subsonic range. Thus, of the terms involving. YCa as a factor,. 
the term in P1 Isnegligible when compared with the preceding one for 
A < 1. Of the terms not involvIng 0a as a factor, the quantity in 
A2 is negligible when compared with the term in iA in the subsonic 
range	 1, and In the A2 terms, the term in	 is negligible 
compared with the term in 	 in the transonic range .t 0. Hence, 
the j termwithin the second parenthesis on the right may be neglected 
and. the continuity equation (20) becomes 

(YCa) 2 	 (	 pA	 0A2 

2A2 
=	 __)YCa - (2-p)(3-2p) - (3-p)(4-2p) 	 (21) 

Equation (21) provides the desired relation from which the velocity 
Increment A may be obtained for given values of the free- .streani Mach 
number M0 and the curvature parameter of th body YCa• Curves of A 

against	 for various values of M 0 and. the parameter p are 
presented in figure 2. The numerical data from which these curves 
were drawn are presented in table I. 

In applying equation (21), it Is necessary first to obtain the 
parameter p. The parameter p is determined by requiring equation (21) 
to yield, in accordance with the discussion in the Introduction; (a) the 
mown velocity A1 for incompressible flow i = i, and. (b) the PPandt1-
Glauert rule for bodies of revolution In the low-subsonic-speed range 

1). For incompressible flow, the terms in c may be neglected 

' and equation (21) becomes, with i = 1 and. A = A1, 

(YCa) 2 - YCa +	 A1	
(22) 

2	 (2-p)(3-2p 
2A1 

The equation for determining p from the incompressible velocity A°j 
and. the body-curvature parameter ' YCa Is then, from equation (22) 

A2..I	 A2r	 1 
= Z. -	 + :i_ IL!_ (i^A1) - 11	 (23) 

4 YCa V ] 6 YCa LYCa	 2j

/
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The minus sign is chosen for the square root because the value of p 
may not exceed 3/2. In the low subsonic or Prand.tl-Glauert range, the 
terms ici	 are still negligible and. equation (21) has the form 

(YCa) 2 - p.YCa ___________ 

2A2 - 2 -P + (2-p)(3-2p)	
(24) 

The quantity YCa is of order 72, where 7 is the thickness ratio. 

By multiplying the numerator and. the denominator of the left side by 
equation (24) may be expressed as 

- f (I T2 , p )
	

(25) 

The PraMtl-Glauert rule for bodies of revo1ution1s (reference i), - 

= (pT 2 ,x)	 -	 (26) 

where the function g is defined by the incompressible solution 

= g(7 2 ,x)
	

(27) 

In order that equatIon (25) agree with the Prandtl-Glauèrt rule 
(equation (26)), the paraater p must be chosen as a function of 
and x such that, for the incompressible case p = 1, this function 
reduces to that given in equation (23). Thus, in equation (23), i2 
is to be replaced by p7 2 ind.eterinining p. The parameter p is 
thus a function of Mach number f or bodies of revolution, in contrast to 
the two-dimensional case where it is constant. When the value of p - 
is obtained from low-speed considerations, the velocity increment A 
at high subsonic speeds is determined from equation (21). The detailed 
method. of application of equation (21) to the calculation of velocities 
at high subsonic Mach numbers will be discussed In the section 
APPLIC?TION TO KLLIPSOID OF REVOLUTION. 

When the velocity increnipnt A is determined, the local velocity 
' at any distance y in the flow field may be obtained from 
equation (18), which becomes,. on retention of terms through A2,
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y 
=Y +-(	

- i)	 (i-z2-P)	 . (28) 

The variation of streamline curvature C with d.istazice y may then be 
obtained from equations (16) and (28). 

Second curvature function. - As previously discussed, it was con-
sidered desirable to repeat the analysis with a second curvature function 
substantially different from the first. In this manner, the reliability 
of the solution could be assessed more accurately. For greater simplicity, 
the second curvature function was also chosen to . eliminate the factor y 
in the integranã. of the continuity integral equation (12). The second 
curvature function was therefore chosen as

(29). 

where the parameter q is to be d.eterinined as a function of x from 
the same low-speed, considerations used to determine the parameter 
in the, preceding section. By an analysis similar to that used. to 
determine the permissible values of p, the range of values of q. is 

(reference 7),

	

iq< 2
	

(30) 

Substituting equation (29) into the continuity equation (12), integrating, 
and retaining terms through . A3 yield 

YCa	 j2 - r0A3	
.'	 (31) 

	

2	 2-q •3-q 

Equation (31) provides the basic relation from which the velocity 
increment A may be calculated for given values of M0 and YCa. For 

incompressible flow, the term in c is negligible so that the param-
eter q is determined from

(32) 
2	 2-q
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In the Prand.tl-Glauert range, the term in 1' is still negligible, 
so that eq.uation (31) becomes

YCa	 A2
(33) 

In order that equation (33) agree with the PraMtl-Glàuert rule for 
bodies of revolution (equation (26)) the parameter q is chosen as a 
function of t T2 and x such that for the incompressible case this 
function reduces to equation (32). The velocity increment A is then 
determined at high subsonic speeds from equation (31), which may be 
conveniently solved by introducing two new parameters 	 and. X (ref-



erence 9). When X and X are defined by

(34a) \3-qj .L 

=	 a c2 (2-q)3	
(34b) 

.L	 (3-q) 

equation (31) assumes the form

= 2 _x3 	 (35) 

A plot of equation (35) is presented in figure 3; the significance of 
the vertical tangents in figures 2 and 3 and their relation to the 
so-called potential-limit phenomenon are discussed in'references 7 and. 8. 

After the velocity increment A on the bod.y is obtained, the local 
velocity increment V at any distance y in the flow field can be 
obtained by means of equation (5). Introducing equation (29) into 
equation (5) and changing over to the variable z yield 

1y y dy=	
z(l^z)	

(36 

Expanding the quantity l/1^Az, inteating term by term, and retaining 
terms through A2 give
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-	 = yl.(1 -	 - 2Y1 (1-z2 )	 (37) 
Ca q-1 \zQ.- 1	 j	 Ca 2-q 

The variation of streamline curvature with distance y may then be 
obtained from equations (29) and (37).	 - 

APPLICJTION TO ELLIPSOID OF REVOLUTION 

As an illustration of the foregoing analysis, the velocity dis-
tribution on an ellisoid of revolution at high subsonic Mach numbers 
will be calculated. The incompressible velocity distribution for an 
ellisoid of revolution of thickness ratio ¶ may be obtained from the 
expression for the velocity potential given in reference 12 and. is 
given by

1 + A1 = El + f( 2)	 (38) 

where

loge i+?Jl_T2 - 2T2Ji_T2 

f(T) =	
iii:2	 ___	 (39) 

2lT2 - , loge
l_A/1_12 

chordwise location measured from center of ellipsoid, seinichords. 

The curvature parameter YCa for an ellipse is given by 

YCa	
12j	

(40) 
[1_2(l_T2)]3/2 

First curvature function. - The parameter p is determined from 
equation (23) using the values of A1 and YCa from equations (38) 
and (40), respectively. Although not so determined herein, the value 
of p may also be obtained directly from the curves of figure 2 for 

= 0. In accordance with the discussion on the Prandtl-Glauert rule, 

p is to be determined as a function of r2 , which reduces to the

LI
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known dependence of p on ¶2 for incompressible flow (.i = 1). 
The variation of p with i is conveniently obtained by plotting 
p against T2 and. changing the abscissa designation to wr 2 . The 
variation of p with t1 for several chordvise locations is pre-
sented. in figure 4. The values of p increase with increasing dis-
tance from the center of the body and approach a limiting value of 
3/2. The occurrence of this limiting value may be seen by noting that 
the incompressible velocity Ai passes through zero near the trailing 
edge and, from equation (23), the paraziieterp approaches 3/2 as A1 
approaches zero. Having obtained the value of p at the Mach number 
Mo, the velocity increment A for a given YCa is then obtained from 
the basic ' graphs of figure 2. IEccept for the additional step of finding 
p as a function of Mach number. the procedure is essentially the sane 
as that given in reference 7. 

The paranater p has a limiting value of 3/2 for either A1—'o 
or The graphical procedure for obtaining p therefore tends 
to become somewhat inaccurate at hlgh Mach numbers unless great care 
is us?d, especially at those locations off the center where the velocity 
is close to zero. The value of p was therefore analytically deter-
mined at the higher Mach numbers. Because the value of p at a Mach 
number M0 is the sane as the incompressible value of p for a thick-
ness ratio reduced by the factor iJT, only higher-order terms were 
retained. Inasmuch as for p—,3/2, 2-p -4, equation (22) becomes, 
on retention of higher-order terms,

4A13 
=	 (41) 

a) 

Equation (38) becomes, on retaining terms in f(T) through T2 

l+Aj= [l^4(1o e -2\l I l-	 (42) 
1] \Jl_2(l_T2) 

Substituting equatIons (40) and (42) In equation (41) and replacing 
¶2 by ILT2 yields, for p as a function of Mach number, 

32p 4 [	 r	 1.! l 2	 1 [l21T2]3 
-	 =.	 1 +	 log8	 _2)j l_2(1_2) - lJ	 2T4(l2)

(43)
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The velocity increment A was then found in the usual manner with the• 
aid of the basic graphs (fig. 2). The procedure involving the analyti-
cal determination of .p was used. in the range. M?0.95. 

Second curvature function. - The parameter q . is determined by 
means of equation (32) using the values of A1 and. YCa from 
equations (38) and (40), respectively. The variation of q with Mach 
number is then obtained by plotting q against r2 and. changing the 

abscissa designation to r2 . The variation of q with wr 2 for 
several chord.wise locations is also presented in figure 4; the values 
of q are closer to the limiting value of 2 for the larger chordwise 
locations. When the value of q at the Mach number M0 is obtained., 
the parameter X is then calculated from equation (34b). The value 
of the parameter ) is next obtained from the X, X curve of figure 3. 
The velocity increment A is finally obtained from equation (34a). 
Except for the additional step of finding q as a function of Mach 
number, the procedure is essentially the same as that of reference 8. 
It may be noted that calculations with the second. curvature function 
are simpler than those with the first curvature function. 

As for the first curvature function, it is preferable to determine 
analytically the parainete± q at high Mach numbers. Substituting 
equatiOns (40) and (42) in equation (32) and. replacing i2 by fT2 

yields, for q as a function of Maph number, 

2-q = 4	 ____________ 
21j	

12 
2 {Ll + $ lo8

[12(lT2)]3/2 

1fr2 AJ12 

The velocity increment A is then obtained by . the procedure following 
the graphical determination of q. The procedure involving the ana-
lytical determination of q was used for Mach numbers M00.95. 

RESULTS MD DISCUSSION 

The methods developed herein for both curvature functions have 
been used to calculate velocity distributions on ellipsoids of revo-
lution and conditions in the flow field for several thickness ratios 
and a range of Mach numbers. The variation pf the maximum velocity 
Increment A11	 at the center of the ellipsoid with free-stream Mach 
number MO for several thickness ratios is presented in figure 5. In 
order to indicate the local Mach number M corresponding to a given 
velocity increment A, contours of local Mach number obtained from
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the Bernoulli relation between velocity increment A, local Mach 
number M, and. free-stream Mach number M0 have been plotted on 
the figure. For the purpose of comparison, the values given in ref-
erence 6 and. the values given by the Prandtl-Glauert rule (equations 
(26), (27), and (38)) are also included. For purposes of comparison, 
the Prandtl-Glauert rule is shown in fIgure 5 for local Mach numbers 
greater than 1, although this procedure is, strictly speaking, not 
permissible. On the whole, good agreement among the various methods 
is indicated. 

The velocity distribution on the body for several thickness ratios 
and. Mach numbers is presented in figure 6. These distributions have 
been terminated at the values of 	 forwhIch A passes through zero 
because the curvature functions chosen for this investigation, Inasmuch 
as they yield positive values of the streamline curvature, may not be 
used for negative velocity increments. The agreement between the two 
curvature functions in figure 6 is essentially the same as that indi-
cated. in figure 5. The 	 curves in figure 6 will be discussed 
in the section POTENTIAL LIMIT. 

The results with regard to the flow field are presented in fig-
ures 7 to 9. The variation of the velocity parameter z. with lateral 
distance y-1 is given in figure 7. The curvature C/Ca is plotted 
asa function of y-1 in figure 8 arid as a function of z in fig-
ure 9. In contrast to the fairly good agreement for the velocity dis-
tributions on the body, the results in the flow field are not in good 
agreement. .This behavior is plausible inasmuch as the procedure for 
determining the curvature function utilizes the velocities on the body 
in th Prandtl-Glauert speed range as reference values. Thus, whereas 
the method used herein to determine the curvature function can be 
regarded as averaging out local differences in the areas under the 
C/Ca against y-r curves in fIgure 8 to yield about the seine surface 
velocities (in accordance with equation (5)), the local differences In 
the flow field may be substantial. 

It is shown in figures 8 and 9 that the two curvature functions 
are quite different in type, as is evidenced by the values of C/Ca 
greater than 1 exhibited by the second curvature function at high Mach 
numbers and. low thickness ratios. Inasmuch as the curvature C/Ca 
should probably not exceed 1, this phenomenon may be regarded as a 
criterion for eliminating this type of curvature function from cons ider-
atlon. The results obtained by the first curvature function are there-
fore probably more reliable than those obtained by the second curvature 
function.
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The lateral and longitudinal extents of the symmetric-type local 
supersonic regions that develop at the higher Mach numbers, y8 -T and 

are presented as functions of free-stream Mach number in figures 10 
and 11, respectively. These values were obtained from the velocities 
in the flow field (fig. 7), the velocity distribution on the body 
(fig. 6), and the local M = 1 contour of figure 5. The two curvature 
functions are not in good agreement with regard to lateral extent of 
the local supersonic region, the discrepancy becoming more evident with 
decreasing thickness ratio. The two curvature functions are in much 
better agreement with respect to chordwise extent of the supersonic 
region, a result to be anticipated in view of the good. agreement of the 
velocity distributions on the body (fig. 6). In order to indicate the 
differences between two-dimensional and. axially synmietric flow with 
reard to extent of the supersonic region, the results for the elliptic 
cylinder, calculated by the method of reference 8 are included in 
figures 10 and 11. Although the supersonic region starts at a much 
higher Mach number for the ellipsoid of revolution than for the elliptic 
cylinder, the lateral extent y6 -T attains much higher values for the 
ellipsoid of revolution than for the elliptic cylinder. 

POTENTIAL LIMIT 

The calculation of two-dimensional compressible flows by the 
integral method (references 7 and 8) yields a free-stream Mach number, 
called the potential-limit Mach number MO,-I, beyond which, for a 
given thickness ratio, a continuous solution for the whole body cannot 
be obtained. The same phenomenon is found to occur in the treatment of 
bodies of revolution by the present method. The potential-limit Mach 
number corresponds to the points of vertical tangency of the A against 
r..f?	 curves of figure 2 or of the X against X curve of figure 3. 
The value of M0	 for the curvature functions investigated herein may 
therefore be obtained by application of the conditions 

(tJY )	 -O
(45) 

A M0 

dX_ 0	 (46)
ax-

to equations (21) and (35), respectively. For the first curvature
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function there is obtained

(3.i 
A 3-2D YCa = -.;---. , - 

c-P (2a 
-p

2r\ 
-A) 

- S:.Qf	
(47) 

3-pJ 

and for the second curvature function the result is 

- 3-q) i i = 3
	 (48) 

For the ellipsoid of revolution and, probably more generally, for 
aerodynamic shapes, the potential limit occurs at the inidchord. section. 
(See reference 7 for discussion of two-dimensional case.) The potential-
limit values of .j and A for the first curvature function were 
obtained by simultaneous solution of equations (21) and (47) at the 
mldchord location. Because of the variation of the parameter p with 
Mach number and the complicated form.of the continuity equation (21), 
the work was considerably more difficult than for the corresponding two-
dimensional problem. It was found convenient to adopt an iteration 
procedure in which the values of t were obtained from the continuity 
equation (21) and the corresponding values of A from the potential-
limit equation (47). The Darameter p was determined from the simpli-
fied equation (43) evaluated at the mid.chord.location, 	 = 0. Initial 
values of i and A for the Iteration were obtained as follows: 

At the potential limit, the value of .i Is small so that the 
parameter p is close to its limiting values of 3/2. The continuity 
equation (21) and the potential-limit equatIon (47) may therefore be 
approximated by, respectively, 

/ 
=	 +	

I'c(YCa+A)	 (49) 
3 -2p	 4A3	 3 

(YCa+A)	 (50) 3-2p	 3	 .3
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Equating the right sides of equations (49) and (50) yields 

1	 1 

A=	 (51) 

The value of F at the potential limit is close to its limiting 
value of 1.2 for M0 = 1. Taking F = 1.2, the value of A 1 may 

then be obtained from equation (51) and the value of p, from either 
eq.uatlon (49) or (so). The initial values of 	 and A 1 were 
within a few percent of the final iterated values. fter the potential-
limit Mach number M0,j is obtained, the velocity distribution on the 
body and. in the flow field can be calculated in the usual manner. 

For the second curvature function, the potential-limit values of 
t and A may be more directly obtained. Insertion of equation (48) 
into equation (35) yields

VtI	 T-2 "a ic	 2-qj	 4 

x = -p-- -•;: (3-q) 2 -	
(52) 

where the parameter q is given by the simplified equation (44) eval-
uated at	 = 0. The quantity ILj	 then obtained from a plot of 
the parameter x against	 and the corresponding value of A 1 , from 
equation (48). 

The velocity distribution on the body at the potential limit is 
given in figure 6. The velocity gradient at the midchord exhibits, as 
In the case of two-dimensional flow, a finite discontinuity (reference 7). 
The results for the flow field at the potential limit are given in 
fIgures 12 to 14. The discrepancies previously noted between the two 
curvature functions become even more evident at the potential limit. 
The extreme maximum values of C/Ca exhibited by . the second curvature 
function indicate that it Is probably very Inaccurate near the pbtential 
limit. The potential-limit values of the lateral and longitudinal 
extents of the local supersonic region are indicated by circles in 
fIgures 10 and 11. (Some potential limit values of y5 -T are outside 
range of fig. 10.) 

The variation of the potential-limit values of free-stream Mach 
number and maximum velocity increment with thickness ratio Is given 
In figure 15 and the lateral and. longitudinal extents of the super-
sonic region at the potential limit as a function of thickness ratio
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-in figure 16. For comparison, the corresponding curves for the ellip-
tic cylinder are also presented infigures 15 and 16. The potential-
limit Mach number Mtj1 is much higher for the ellipsoid of revolu-
tion than for the elliptic cylinder and is very close to 1. These high 
values of M0 ,1 may be interpreted as follows: A body of revolution 
produces a smaller relative decrease of cross-sectional area between 
the body streamline A-A and an arbitrary streamline B-B (fig. 1) 
than the corresponding two-dimensional shape. The consequent smaller 
velocity increments for the body of revolution result in higher values 
of the free-stream Mach number at which the supersonic region has 
started to develop (lower critical Mach number). Thus, it is plausible 
that the potential limit will occur at a much higher free-stream Mach 
number for the body of revolution than for the corresponding two-
dimensional shape. It is surprising, however, that the values of Mo,i 
are as close to 1 for a body of revolution as is indicated by the 
present method. The values of M 	 for the second curvature function 
are higher than those for the firsf curvature function. The difference 
i-n MO, z for the two curvature functions may be explained on the basis 
of the large values of curvature exhibited by the second curvature 
function (figs. B and 13). These large values of curvature lead to a 
rapid decrease of velocity with distance from the body (equation (5)). 
It is therefore to be expected that the lateral extent of the local' 
supersonic region at a given Mach number would be smaller for the 
second curvature function than for the first curvature function. 
(Fig. 10 verifies this conclusion.) It then follows that the flow 
described by the second curvature function will. not attain the maximum 
value of M0 beyond which a syimnetric-type solution may not be con-
tinued (reference 7) until the flow given by the first curvature 
function has done so. 

The variation of maximum velocity increment at the potential limit 
1nax,l with thickness ratio I for the first curvature function is 
approximately linear and close to that given by the initial choice of 
Ainax,i for iteration previously discussed (equation (51)). The vari-
ation of Amax, j with I for the second curvature function is of the 
2/3 power type, as maybe seen from equation (48) and. (52). This vari-
ation, however, is the same as that given by the similarity law for two-
dimensional flow (references 8 and 9), and illustrated by the curve of 

against T for the elliptic cylinder. The description of 
by the second curvature function is therefore to be regarded 

as another of its inaccuracies. 

The lateral extent of the supersonic region at the potential limit 
is much greater for the ellipsoid of revolution than for the elliptic 
cylinder. The extreme extent of the supersonic region for the ellipsoid 
of revolution is largely due to the closeness of M0 	 to 1. For 
values of free-stream Mach number near 1, the disturance velocity
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decays very slowly with lateral distance from the body (reference 13). 
In addition, a very small velocity increment is needed to yield sonic 
velocity. The. lateral extent of the supersonic region should there-
f ore rise very rapidly in the neighborhood of the potential limit.. 
(See figs 10 and. 16.). The extreme behavior of the flow field in the 
neighborhood of the potential limit indicated .by the present method 
may therefore be reasonable for potential flow. It is, of course, 
possible that the symmetric-type flow given by the present method 
would be terminated, by a shock before uch extreme sizes of the super 
sonic region are attained.. 

On the basis of steady-state considerations, the potential-limit 
Mach number M0 , j is interpreted in reference 8 as the transition Mach 
number between synnuetric-type solutions for M0 < M0 , 1 and asymmetric-

type solutions for MO > .Mb,j, with a shock terminating the symmetric-
type solution. The extreme closeness of .M0 , j to 1 'would therefore 
indicate that the drag-divergence Mach number associated with the 
strong shoàk that terminates the symmetric-type local supersonic. 
region should. occur much closer to 1 for bodies of revolution than for 
the . corresponding . two-dimensional shapes. 

CONCLUDING REMARKS 

An integral method. has been extended to obtain the compressible 
potential flow past a body of revolution. Of the two curvature func-
tions chosen for the investigation, the first curvature function appears - 
more reliable than the second. curvature function. 

Although the synnnetric-type local supersonic region first appears 
at a thuch higher Mach number for the ellipsoid. of. revolution than for 
the elliptic cylinder, it attains a much greater lateral extent. The 
potential-limit Mach number is much higher for the ellipsoid of revolu-
tionthan for the elliptic cylinder and. very close to 1. The Mach 
number for drag divergence should. therefore occur at a Mach number much 
closer to 1 for a body of revolution than for the corresponding two-
dimensional shape. The present approach offers. fairly simple methods 
for calculating the velocity distribution on a body of -revolution at 
high subsonic Mach numbers with local supersoniô regions. 

Lewis Flight Propulsion Laboratory, 
National Advisory Committee for Aeronautics, 

Cleveland, Ohio, September 1, 1950.
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APPENDIX - SYMBOLS 

•	 The following symbols are used in this report: 

o	 streamline curvature 

M Mach number 

n	 distance measured along potential lines from body of revolution 

p, q parameters for curvature functions 

V	 resultant velocity on body of revolution 

v	 velocity in flow field 

x	 distance along axle of body of revolution measured from leading 
edge 

Y	 ordinate of meridian section of body of revolution 

y	 lateral distance normal to free-stream direction 

z = 1)/A 

Pcl_jZMo4 

ratio of specific heats 	 • 

A	 velocity increment, V-i 

(2-q.)1'c A 
=(3-q•)j:i 

=l-	 S 

V	 velocity increment, v-i 

distance along axis of body of revolution measured from center, 
semichord 

p density of fluid 

¶	 thickness ratio 
n2	 3YCa c (2-q) 

- 2	 (3q)2
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Subscripts: 

a	 at surface of body of revolution 

i	 incompressible or low-speed value 

1	 potential limit 

S	 sonic value 

0	 free-stream cond.ition
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TABLE I - BASIC CALCULATIONS SOB OBTAINING VELOCITY INCREMENT A (EQUATION (21)) 

[FIrat cm'vature function, C/Ca zP.] 

- A 0.02	 0.04	 0.08	 0.08	 0.10	 0.12	 0.16	 0.20	 0.30	 0.40	 0.50	 0.60	 0.70	 0.80	 0.90	 1.0 
M 
0 1.0 0.0665 0.1138 0.158 0.196 0.2338 0.2702 0.339 0.4055 0.4841 0.5292 0.7006 0.8315 0.9530 1.0656 1.1893 

1.1 .0718 .1230 .188 .211 .2526 .2918 .386 .4377 .5225 .6037 .7567 - .8991 1.0319 1.1658 
1.2 .0792 .1355 .185 .232 .2776 .3206 .402 .4804 .5752 .6623 .8505 .9877 1.1362 1.8735 
1.3 .0895 .1538 .210 .263 .3144 .3628 .455 .5426 .6471 .7474 .9570 1.1148 1.2830 
1.4 .1099 .1881 .257 .321 .3818 .4399 .520 .6265 .7807 .9004 1.1276 
1.45 .1344 .2260 .308 .384 .4569 .5259 .856 .7806 .9280 1.0691 1.5363 
1.48 .1688 .2855 .388 .483 .5736 .6593 821 -.9749 1.1569 
1.495 .2389 .4029 .147 .680 .8053 .9247 1.1499 
1.499 .356? .6005 .814 1.011 
1.4999 .6331 1.0852 - 

0.4 1.0 0.0628 0.1082 0.1483 0.185 0.2213 0.2553 0.3200 0.3811 0.4534 0.5221 0.6498 0.7660 0.8716 0.9666 1.0511, 
1.1 .0688 .1169 -.1604 .200 .2392 .2760 .345 .4120 .4903 .5660 .7038 .8313 .9479 1.0545 
1.2 .0756 .1290 .1766 .221 .2632 .3036 .380 .4529 .5393 .6213 .7752 .9170 1.0482 1.1694 
1.3 .0852 .1486 .2007 .250 .2985 .3441 .430 .5128 .6102 .7033 .8782 1.0406 
1.4 .1048 .1795 .2449 .505 .3633 .4183 .522 .6217 .7392 .8514 1.0630 
1.45 .1284 .2158 .2944 .366 .4354 .5009 .625 .7423 .8816 1.0144 
1.48 .1614 .2729 .3712 .462 .5476 .6292 .783 .9392 
1.495 .2286 .3854 .5234 .6505 .7699 .8838 1.098 - 
1.499 .3413 .5745 .7795 .9880 
1.4999 .6061 1.0194 

0.6 1.0 0.0584 0.1 0.1369 0.1709 0.2032 0.2339 0.291 0.3462 0.4099 0.4694 0.5776 0.6725 0.7549 0.8246 0.8798 0.9257 0.9583 
1.1 .0634 .1 .1482 .1851 .2200 .2533 .316 .3752 .4445 .5095 .628? .7347 .8284 .9098 .9794 1.0367 1.0817 
1.2 .0700 .1 .1654 .2040 .2424 .2791 .3485 .4157 .4904 .5628 .6963 .8168 .9249 1.0217 1.1067 1.1807 1.2430 
1.3 .0793 .1 .1859 .2319 .2755 .3171 .395 .4701 .5577 .6405 .7945 .9350 1.0636 1.1811 1.2876 1.3838 1.4694 
1.4 .0976 .1 .2273 .2834 .3364 .3869 .482 .5729 .6796 .7810 .9707 1.1463 1.3092 1.4615 1.6031 1.7355 1.8580 
1.45 .1197 .2 .2738 .3409 .4042 .4647 .579 .6867 .8143 .9556 1.1632 1.3755 1.5742 1.7618 1.9388 2.0164 2.2652 
1.48 .1506 .2 .3458 .4301 .5182 .5851 .7282 .8628 1.0223 
1.495 .2134 .3 .4883 .6066 .7178 .8238 1.023 
1.499 .3187 .5 .7278 .9037 
1.4999 .5661 .9 

0.7 1.0 0.0551 0. 0.128 0.1596 0.1893 0.2176 0.2705 0.5196 0.3764 0.4290 0.5221 0.6003 0.6642 0.7111 0.7469 0.7647 0.7658 
1.1 .0596 . .138 .1730 .2052 .2359 .2935 .3471 .4095 .4672 .5713 .6607 .7362 .7978 .8455 .8789 .8976 
1.2 .0662 . .153 .1909 .2265 .2604 .3241 .3837 .4553 .5183 .6364 .7401 .8305 .9081 .9727 1.0245 1.0633 
1.3 .0747 . .174 .2174 .2579 .2965 .3692 .4374 .5175 .5926 .7308 .8548 .9659 1.0440 1.1520 1.2277 1.2919 
1.4 .0920 .1 .213 .2662 .3156 .3628 .4518 .5354 .6340 .7271 .9004 1.0599 1.2047 1.5389 1.4694 1.8754 1-.6785 
1.45 .1129 .1 .257 .3207 .3801 .4367 .5435 .6439 .7626 .8749 1.0852 1.2796 1.4609 1.6304 1.7893 1.9383 2.0779 
1.48 .1421 . .326 .4053 .4799 .5510 .6853 .8114 .9605 
1.495 .2015 • .460 .5636 .6772 .7771 .9654 
1.499 .3011 . .68? .8532 1.0091 - 
1.4999 .5349 . 1.194 

0.8 1.0 0.0509 0. 0.115 0.1437 0.1699 0.1946 0.2404 0.2821 0.3294 0.3716 0.442 0.4950 0.5287 0.5419 0.5324 0.4965 0.4287 
1.1 .0546 . .125 .1560 .1845 .2115 .2616 .3076 .3601 .4078 .489 .5541 .6018 .6313 .6424 .6536 .6053 
1.2 .0603 . .138 .1725 .2041 .2341 .2901 .3417 .4011 .4556 .551 .6314 .6956 .7440 .7768 .7935 .7940 
1.3 .0683 • .158 .1969 .2352 .2675 .5519 .5917 .4611 .8256 .641 .7421 .8261 .9005 .9915 1.0047 1.0371 
1.4 .0842 . .194 .2419 .2865 .3289 .4086 .4830 .5701 .6519 .802 .9371 1.0587 
1.45 .1032 .1 .235 .2922 .5460 .3972 .4935 .5837 .6899 .7901 .976 - 
1.48 .1300 • .297 .3708 .4381, .502? .6245 .7387 .8736 1.0011 
1.495 .1845 . .421 .5237 .6194 .7106 .8824 1.0436 - 
1.499 .2759 . .629 .7815 .9241 
1.4999 .4502 •	 44 1.117 

0.85 1.0 0.0459 0. 0.1072 0.1327 0.1566 0.1789 0.2196 O2561 0.2963 0.3311 0.384 0.4151 0.4201 0.3933 0.5206 0.1445 0.2892 
1.1 .050? .116 .1444 .1704 .1948 .2398 .2804 .3260 .3661 .431 .4759 .4995 .4993 .4716 .4101 .2992 
1.2 .0560 .128 .1599 .1889 .2161 .2667 .3129 .3652 .4124 .492 .5539 .5972 .6219 .6269 .6111 .5731 
15 .0635 .147 .1829 .2162 .2477 .3064 .3605 .4226 .4797 .580 .6635 .7313 .7859 .8205 .8423 .8490 
1.4 .0786 . .181 .2253 .2666 .3057 .3790 .4472 .5266 .6006 .734 .8536 .9583 1.0500 
1.45 .0965 .1 .219 .2727 .3227 .3701 .4593 .5426 .6403 .7321 .901 1.0548 1.1945 
1.48 .1217 .278 .3459 .4093 .4695 .5828 .6889 .8139 .9319 
1.495 .1728 . .3947 .4801 .5797 .6648 .8252 .9757 
1.499 .2584 . .589 .7318 .8654 .9924 - 
1.4999 .4592 .7 1.047 

0.9 1.0 0.0425 0.0712 0.0958 0.1182 0.1387 0.1575 0.1912 .2200 0.2497 0.2722 0.2937 0.2732 0.1591 
1.1 .0456 .0771 .1045 .1288 .1513 .1723 .2101 .2430 .2782 .3069 .3443 .3512 .3170 0.2049 
1.2 .0504 .0857 .1158 .1430 .1684 .1921 .2352 .2737 .3160 .3522 .4074 .4388 .4439 .4176 0.3494 0.2047 
1.3 .0572 .0977 .1326 .1642 .1937 .2215 .2722 .3184 .3705 .4170 .4947 .5528 .5916 .6107 .6093 .5863 0.5510 
1.4 .0716 .1208 .1638 .2032 .2400 .2748 .3396 .5994 .4682 .5317 .6443 .7404 .8212 .8872 .9401 .9791 1.0053 
1.45 .0876 .1463 .1987 .2466 .2915 .3341 .4138 .4878 .5785 .6591 .8072 .9394 1.0573 1.1628 1.2661 1.5113 1.4097 
148 .1105 .1862 .2526 .3136 .2708 .4251 .5272 .6224 .7345 .8396 1.0547 
1.495 .1571 .2644 .3586 .4425 5265 .6034 .748? .8848 1.0452 
1.499 .2350 .3955 .5361 .6655 .7866 .9034 
1.4999 .4179 .7026 .9524 -
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TABLE I	 BASIC CALCULATIONS FOB OBTAINING VELOCITY INCREME1IT A (EQUATION-(21)) - Conc5ded. 
First Curvature function, C/C 8 0 1'•] 

Ii 0.02	 0.04	 0.06	 -0.06	 0.101	 0.12	 0.16	 0.20	 j 0.25	 0.30	 I 0.12	 10.32181 0.36	 0.38	 0.364 N0 p 
0.95 1.0 0.0353 0.0585 0.07 0.094 0.1095 0.1222 0.1418 0.1535 0.1121

- 
0.1155 0.0526 0 1.1 .0381 .0643 .085 .104 .1208 .1167 .1600 .1774 .1861 .1823 .1281 .0587 0 1.2 .0422 .0711 .095 .116 .1161 .1516 .1818 .1078 .2295 .8407 

1.1 .0479 .0816 .10 .115 .1584 .1798 .2178 .2505 .2845 .3106 
1.4 .0593 .1013 .13 .169 .1990 .2270 .2763 .3245 .1762 .4218 
1.45 .0738 .1232 .16 .206 .2436 .2786 .3434 .4030 .4715 .8140 
1.48 .0934 .1571 .212 .261 .1116 .3569 .4415 .5100 .6018 .6972 
1.498 .1328 .2235 .302 .175 .4441 .5090 .6310 .7446 .8787 1.0052 
1.499 .1988 .3345 .453 .562 .6649 .7622 .9455 
1.4999 .3558 .5939 .805 1.000 

0.02 0.04 0.06 0.08 0.10 0.12 0.16 0.18 0.194 0.1982 0.20 0.22 0.2130 0.25 0.28 
0.97 1.0 0.0307 0.0501 0.0855 0.0778 0.0872 0.0934 0.0924 0.0762 0.0378 0 

1.1 .0334 .0549 .0721 .0868 .0985 .1076 .1167 0.1068 0.0812 1.2 .0371 .0614 .0814 .0986 .1132 .1256 .1436 .1511 .1376 0.0979 1.3 .0427 .0709 .0948 .1158 .1344 .1809 .1786 .1992 .2143 1.4 .0530 .0882 .1192 .1465 -.1719 .1952 .2369 .2731 .3114 145 .0645 .1081 .1461 .1805 .2124 .2423 .2972 .1468 .4027 1.48 .0622 .1382 .1871 .2317 .2731 .3127 .3860 - .4534 .5356 1.495 .1171 .1970 .2669 .1109 .3910 .4479 .1546 .6543 .7610 1.499 1754 .2949 .1999 .4959 .5662 .6719 .8331 .9841 
1.4999 .3119 .5244 .7110 .8822 1.0428 

0.02 0.04 0.06 0.064 0.0662 0.07 0.0787 0.08 0.09 0.094 0.0993 0.10 0.12 0.11 0.14 
0.99 1.0 0.0218 0.0316 0.0293 0.0228 0 

1.1 .0240 .0163 .0403 0.0366 0 - 
1.2 .0271 .0422 .0511 0.0519 0.0450 0.0402 0 
1.3 .0115 .0505 .0644 .0737 0.0775 0.0725 0627 0.0246 
1.4 .0397 .0652 .0860 .1015 .1182 .1300 - 1.45 .0487 .0809 .1062 .1324 .1540 .1716 1.48 .0624 .1044 .1407 .1736 .2018 .2321 1.495 .0891 .1496 .2b24 .2507 .2958 .1381 1.499 .1335 .2244 .3017 .3771 .4455 .5104 1.4999 .2376 .3994 .5414 .6714 .7939 .0101 

= A 0.40 10.484	 10. 465 	 0.o	 O.6	 I 0.67	 10.679	 0.70	 I 0.80	 I 0.90	 1.0 
MP 
.9 .0

___ 

.1	 • 

.2 0.2191 0.0293 0 

.3- .3396 0.3103 0.2625 0.1265 0 

.4 .4966 .5509 .5846 0.5978 0.5897 0.5597 0.5059 

.45 .6447 .7383 .8160 .8792 .8289 .9658 

.48 . .8535 .9931 

.495 

.499 

.4999
0.2843 0.30 0.40 0.4169 0.50 0.60 0.70 0.75 .7848 0.80 0.90 1.0 

0.91 .0 

: 0 
.3 0.2149 0.1166 0 
.4	 . .3423 .3826 0.3911 0.3608 0.2718 0.1817 0 
.45 .3526 .5361 .6000 .6453 .6723 0.6415 0.6719 0.6469 
.48 .6038 .7336 .8466 .9296 
.495 .8809 1.0841 
.499 
.4989

0.1407 0.16 0.20. 0.25 0.26 .2649 -0.30 0.40 0.50 0.5133 0.02 0.70 0.90 0.90 1.0 
0.891.O 

1.1 
1.2 - 
1.3 0 
1.4 0.1452 0.1457 0.0998 0.0644 
1.45 .2073 .2342 .2650 0.2793 0.2576 0.1114 0	 - 
1.48 .2837 .3297 .3809 .4257 .4979 .S4B4 0.5778 0.5859 0.5726 0.5367 0.4689 1.495 .4177 .4911 .5764 .6554 .7986 .9250 
1.499 .6323 .7461 .8797 1.0057 
1.4999
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Parameter, p - 
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parameter Of body \fV	 for several values of parameter p. Values computed from 

equation (21) and tabulated in table I.
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(b) Free-stream Mach number M 0 , 0.4. 

Figure 2. - Continued. Velocity Increment on surface of body of revolutionas function of 
curvature parameter of body for several values of parameter p. Values computed 
from equation (21) and tabulated in table I.
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Figure 2. - Continued. Velocity increment on surface of body of revolution as function of 
curvature parameter of body 	 for several values of parameter p. Values computed 
from equation (21) and tabulated In table I. 
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Figure 14. - Variation of streamline curvature with velocity in flow field of 
ellipsoid of revolution at midchord location for potential-limit Mach number 
and several thickness ratios. 
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