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SUMMARY

An integral method, previously used to obtain compressible flow
past two-dimensional shapes, has been applied to the calculation of
compressible potential flow past slender bodies of revolution. Good
agreement of the resulting velocities on ellipsoids of revolution
with those obtained by other methods was found. Flow-field conditions, -«
such- as the extent of local supersonic regions, were calculated and
discussed. The free-stream Mach number beyond which a continuous
potential-flow solution ceases to exist was found to be very close to 1.

INTRODUCTION

The partial differential equation for the compressible potential
flow past a body of revolution 1s considerably more difficult to solve
than the corresponding plane (two-dimensional) equation. As a conse-
quence, fewsr extensions of low-speed or incompressible-flow solutions
to higher subsonic speeds have been made for bodies of revolution then
for two-dimensional shapes. The principal work on bodies of revolution
seems to have been confined to solutions of the partial differential
equation after it has been linearized under the assumptions of small
perturbations and of free-stream Mach number not too close to 1. For
example, a treatment of subsonic flow by the method of sources and
sinks is given in reference 1. The case of wholly supersonic flow,.
which has been more extensively treated, is discussed in reference 2.
These sclutions may be convenlently expressed in the form of a
‘similarity rule (Prandtl-Glauert rule for bodies of revolution) that
gives the flow pattern for a given Mach number if the flow pattern
at another Mach number is known. Correct forms of the rule are pre-
sented in references 3 to 5. ‘

The solution of the linearized differential equation yielding
the Prandtl-Glauert rule may be regarded, as in the two-dimensional
case, as the first term in an expansion of the potential in powers of
a thickness-ratio parameter. The amount of labor required to obtain
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higher-order terms of the expansion, is considerable for a two-
dimensional body and much greater for .the corresponding body of
revolution. Only one calculation, for the ellipsoid of revolution,
of the second term of such an expansion appears to have been made
(reference 6).

Because of the large amount of work and the mathematical diffi-
culties involved in obtaining higher approximations for bodies of
revolution through the differential-equatlon approach, it is particu-
larly desirable to survey other possible approaches to the problem of
calculating the flow past a body of revolution at high subsonic Mach
numbers. The integral-method approach of references 7 and 8 was
therefore studied and the results of the investigation conducted at
the NACA Lewis laboratory are presented herein.

The method of references 7 and 8 is based on an integral form of
the equation of continuity and on the intrinsic form in terms of the
local streamline curvature of the irrotationality condition. The
essential approximation of the method is the choice of a curvature
function that will adequately represent the variation of the stream-
line curvature in the flow field. In the two-dimensional problem,
several guides are provided to limit the possible choices of a-
curvature function. These guides are: (a) the incompressible flow
pattern; (b) the Prandtl-Glauert rule for the low-subsonic-speed
range; and (c) the transonic similarity rule for the high-subsonic-
speed range in which local supersonic regions exist in the flow field
(references 9 and 10). For the axially symmetric case, guides (a) and"
(b) are available but the situation with regard to guide (c) is dubious.

An analysis of the differential equation for the body of revolution
(reference 11) indicates that, although the transonic similarity rule
of reference 9 may hold in the flow field, it does not appear to Le
velid on the body, where a different similarity rule obtains that is,
moreover, valid only for extremely slender bodies. In this report,
therefore, guide (c) hes not been used in choosing a. curvature tunction.
The resulting greater arbitrariness of the choice of curvature function
thus implies & greater uncertainty of results for bodies of revolution
than for the two-dimensional shapes. In order to reduce this uncertainty,
two substantially different curvature functions, both satisfying guides
(a) and (b), have been selected for the investigation

Although the 1llustrative examples given herein have been confined
to ellipsoids of revolution, the method with elther curvature function
may be applied in a stralghtforward manner to arbitrary bodies of

revolution
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ANALYSIS

The flow is assumed steady, isentropic, irrotational, and axially -
symmetric. Except for a modification in the continuity integral, the
equations of motion and their ‘development parallel the two-dimensional’
treatment of reference 8. The equations of motion are: (Main symbols
are defined in the appendix; see fig. 1 for flow notation.)

Equation of continuity,

Jyo - n - -
2nypgvo 4y =Jq 2nypv dn (1)
0. v 0] .

Irrotationality condition,

g:{- +Cv =0 N - (2)
Bernoulli equation,
1
L . l-ZiM02<L2-J.)7-l' (3)
o 2 vo¢ . /I
where
p  density of fluld
v velocity in flow field
n distance measured along potential lines from body of revolution

C gtreamline cu;vature
Y ratio of specific heats
M Mach number |
subscript 0 denotes free-stream conditions.
It is.extremely siﬁilifying to replace the coordinate n by the

coordinate y ' in the preceding equations. Because of the dubious
situation with regard to a transonic similarity rule, it does not appear
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easy to give a rigorous Justification for this replacement in the small-
perturbation case analogous to the justification for the two-dimensional
case given in appendix A of reference 8. The replacement of n by y,
however, is exactly valid at the midchord location of bodies ‘of revo-
lution with fore-and-aft symmetry. The approximation involved in the
replacement should therefore be fairly good near the maximum-thickness
locations of slender bodies of revolution in general. For convenience,
the free-stream quantities PO and vy will be taken as units of

density and velocity so that p and v hereinafter represent non-
dimensional fractions of free-stream density and velocity, respectively.
In addition, the unit of length is taken as the airfoil chord, so that
all lengths such as, x, y, and 1/C hereinafter represent nondimen51onal
fractions of the airfoil chord length.

\

Equations (1), (2), and (3) thus become, respectively,

™o y )
: y dy = pvy dy ' (4)
0 ; , ‘

-,

ay = -2 | (5)
2 _
. - .
b= [1 - -7-;—1 Mg (v’z-l)]7 (6)

The variations indicated in equations (4) and (5) occur at constant x.
The lower limit of integration Y in equation (4), which corresponds
to the zero streamline, is the ordinate of the meridian section of the
body of revolution. The variable upper limit y  occuring in. '
equation (4) and corresponding to the flow-field streamline may be
eliminated By consideration of the limiting form of this equation as

: ' ' : y _
Y—>e. In order to obtain a finite result, the quantity y dy 1is

. Y
subtracted from both sides of .equation (4). If no wakes or sources
of fluid exist in the flow field, then 1im:(y-yg) = O (reference 8).

J— =

’
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Equation (4) therefore assumes the limiting form, for y— o,

Xz— J‘ (pv-1) ¥y dy o (7)

The continuity equation (7) becomes, when dy is replaced by dv
from equation (5),

-’

&)

ml"<
o
'
]
p,
o

in which the upper limit V is the velocity at the surface of the body
corresponding to the ordinate: Y. The relation between the flow-field
velocity v and the corresponding distance y 1is obtained by inte-~
gration of equation (5) between the limits Y and y as

Vv
dv

Y = =
J Cv

{9)

For further simplification, the assumption of small perturbation -
of the flow velocity is now explicitly introduced; accordingly, the

quantity po - % in equation (8) is expressed as a power series in the _‘
velocity increment v = v-1. From equation (8), the quantity p - %

can be expanded in the form .

. .
P - =HV- Lov? +I‘lu3 (10)
where > . "
' po=1-M . o ' (11a)
Mg2 2.y 4 ) o
Po=1+ 5 - —§Z,Mo . (11v)

ry=1+ 2—,2'-7-»‘494_ - ’elf (2-7)(3-27) Mo® | (1lc)
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Terms of higher order than v3 in the expansion equation ( 10) are
negligible in the solution to be derived herein. Substituting
equation (10) into the continuity integral equation (8) and changing
to a new variable of integration z = V/A yield

1.
I; = AZ 1 (pz - I hz2 +P1A22.3) % dz. ‘ (12)‘
o ‘ , .
where /= V-1 is the disturbance velocity on the body.
Equation (9) becomes, in.terms of the new variable z,
. . | |
y=Y+ A 6'(%7\'{? o (13)

z

/

Inasmuch as O <z < 1 and for small perturbations A< <1, the

quantity ll may be expanded in powers of Az, yielding
, +A\z -
1 )
y=Y + A é:(l Az + %28 p323 4+ L L L)az (14)

Z

By inserting the value of y from equation (14) in equation (12), the
continuity equation becomes, for arbitrary curvature C,

‘ - 1 S 1 .
2 ; - v
Ye | G (pz -1 Az% oy 02 3)[Y+ 1 (1-Az+A222-A323+ . )dzZI dz
0 C ' : C
(15)

First curvature function. - The streamline curvature is now
assumed to be expressible as some simple function of the chosen inde-
pendent variables, the chordwise location x, and the local velocity v.
The function chosen must satisfy the-boundary conditions of zero curva-
ture at infinity and known curvature Cg- on the body. Two curvature
functions were chosen for investigation.. The first curvature function
is the same as that used for the two-dimensional problem (reference 8).

C : |
= - 2P . :
Ca, =z . . (16)
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where
.Ca curvature of body contour
P parameter to be determined

The perameter p has a limited range of values because of conditions
at infinity. The streamline curvature C must vanish at infinity and

- the integrals of equations (14) and (15) must diverge and converge,

respectively, at the lower limit z = 0. Examination of equations (14)

to (16) therefore shows that the parameter - p must have the range

of values (See also reference 7.)

l<p< 3/2 - (17)

Substitution of equation (16) into equation (14) yields

y=Y+ 4 [1‘21'1) on (=22R) g (1252 _ 3 -—-———(1‘24-1’)] '(18)'

Cq 1-p 2-p 3-p - 4-p

The continuity integral equation (12) becomes, by use of equation (18),

1 .

2 2 . ’ l-p 2.
r_A 1-D _ [ Az2-P 4 [ 72;3-P A N1z ) (1-2°7P)
-g- = @ (].LZ PcAZ + 1A z ) Y + Ca . 1__p A z-p +

0
3_ : _4-D | :
7? i____l'; pp) - A° ————(14fp )] az (19)

\

Performing the integration and retaining terms -through A% result in

(¥ea)? _ ( w o Led P1A2> il - u
21?2 2-p ’3-p,+ 4-p ¥Ca (2-p)(3-2p) - (_2-p'_)(4-2p') *

c.C 2. - W
35)(4-2p )A (20)
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Several terms in equation (20) are negligible throughout the
entire subsonic renge. Thus, of the terms involving YC, as a factor,

the term in Pl is negligible when compared with the preceding one for
A <<1. Of the terms not involving YC, as a factor, the quantity in

G is negligible when compared with the term in u/A in the subsonic
range p ~ 1, and in the A% terms, the term in u 1is negligible
compared with the term in F in the transonic range u ~ 0. Hence,

the pn term within the second ‘parenthesis on the right may be neglected
and the continuity equation (20) becomes

(21)

wn \2 2
(Yca) - (Lr IEA l-‘cA
- \2

- ph
2 =3 .S-p)m * ED)(3E) T Be)(a2n)

Equation (21) provides the desired relation from which the velocity
increment A may be obtained for given values of the free-stream Mach:
number MO and the curvature parameter of the body YCa. Curves of A

against ./ YC, for various values of M, and the parameter p . are
a 0

pregsented in figure 2. The numerical data from.which these curves
* were drawn are presented in table I. =

i

In applying equation (21), it is necessary first to obtain the
parameter p. The parameter p 1s determined by reguiring equation (21)
to yield, in accordance with the discussion in the Introduction; (a) the .
known velocity Ai for incompressible flow u = 1, and (v) the Prandtl-
Glauert rule for bodies of revolution in the low-subsonic—speed range -
(pn ~ 1). For incompressible flow, the terms in Pc may be neglected

‘and equation (21) becomes, with u =1 and A= Ay,

(¥Ca)? _YCq Ay .(2?)\

= +
—Zz  2- ) (3-2p) -
20, p (2 p)(A' pfﬁ

The equation for determining p from the incompressible velocity A
and the body-curvature parameter ICq is then, from equation (22)

2 .f 2 ’
. iy s B bl " NV R | (23)
, 4 YCa 16 YC, |Y¥Cq e '
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The minus sign is chogsen for the sguare root because the value of P
may not exceed 3/2. In the low subsonic or Prandtl-Glauert range, the
terms in Fc are still negligible and equation (21) has the form

(YC,)2 _HYCy W
2/ 2-P (2-p)(3-2p)

(24)

The quantity YC, 1is of order Tz, where T 1is the thickness ratio.

By multiplying the numerator and the denominator of the left side by uz,
equation (24) may be expressed as .

i & £(ut2,p) _ (25)

' The Prandtl-Glauert rule for bodies of revolution is (reference 1),

uh = g(uilx) : (26)

where the function g 1s defined by the incompressible solution
by = g(1%,x) o (en)
1 = 8 s X

In order that equation (25) agree with the Prandtl-Glauert rule
(equation (26)), the parameter - p must be chosen as a function of uTz
and x 'such that, for the incompressible case p = 1, this function
reduces to that given in equation (23). Thus, in equation (23), Te
is to be replaced by pTz in .determining p. The parameter p is
thus a function of Mach number for bodies of revolution, in contrast to
the two-dimensional case where it is constant. When the value of 7p
is obtained from low-speed considerations, the velocity increment A
at high subsonic speeds is determined from equation (21). The detailed
method of application of equation (21) to the calculation of velocities
at high subsonic Mach numbers will be discussed in the section
. APPLICATION TO ELLIPSOID OF REVOLUTION.

When the velocity increment A 1s determined, the local velocity
V at any distance y in the flow fleld may be obtained from

equation (18), which becomes,. on retention of terms through Az, .
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1 A1 1 A2 2oy '
y =Y+ 57 o (zp-l - %) =N ( -2“7P) . (28)

The variation of streamline curvature C with distance y may then be
obtained from equations (16) and (28).

‘Second curvature function. - As previously discussed, it was con-
gidered desirable to repeat the analysis with a second curvature function
substantially different from the first. In this manner, the reliability
of the solution could be assessed more accurately. For greater simplicity,
- the second curvature function was also chosen to eliminate the factor ¥
in the integrand of the continuity integral equation (12). The second
curvature function was therefore chosen as

L _,ar : ‘ .
g, = z ¥ : : (29)

* where the parameter g 1s to be determined as a function of x from
the same low-speed considerations used to determine the parameter . P
in the preceding section. By an analysis similar to that used to
determine the permissible values of p, the range of values of g is

(reference 7),

l<g< 2 (30)

Substituting equation (29) into the continuity equation (12), integrating,
and retaining terms through A3 yield

3
g g2 Lol
2 2-q - 3-g

(31)

- Equation (31) provides the basic relation from which the velocity
increment A may be calculated for given values of M0 and YC,. For

incompressible flow, the term in Pc is negligible so that the param-
eter q is determined from '

’

DT S (32)
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In the Prandtl-Glauert range, the term in Pc is still negligible,
so that equation (31) becomes

YCq 2
= B
7~ 2, . (33)

In order that equation (33) agree with the Prandtl-Glauert rule for

. bodies of revolution (equation (26)) the parameter q is chosen as a
function of pT2 and x such that for the incompressible case this
function reduces to equation (32). The velocity increment A 1is then
determined at high subsonic speeds from equation (31) which may be
conveniently solved by introducing two new parameters: A and X (ref-
erence 9). When A and X are defined by :

r
A = (%fg) 7% A ' ' (34a)
YC, P 3 o
‘ (S-q)
equation (31) assumes the form
X=A N3 - (35)

A plot of equation (35) is presented in figure 3; the significance of
the vertical tangents in figures 2 and 3 and their relation to the
so-called potential-limit phenomenon are discussed in references 7 and 8.

After the velocity increment /A on the body is obtained , the local
velocity increment Vv at 'any distance y 1in the flow field can be
obtained by means of equation (5). Introducing equation (29) into
equation (5) and changing over to the variable z yield

y 1 ' .
YA  dz . .
Yy dy = = — (3ﬁl
bJﬂ Ca\x\ z9(1+Az)
Y i z

Expanding the quantity - 1/1+Az integrating term by term, and retalning
terms through AZ give
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j2 _ye o BXAL ( 1 ) _ 2y 12_{5 (1-22-3) (37)

The variation of streamline curvature with distance y may then be.
obtained from equations (29) and (37). ’

APPLICATION TO ELLIPSOID OF REVOLUTION

As an illustration of the foregoing analysis, the velocity dis-
tribution on an ellisoid of revolution at high subsonic Mach numbers
will be calculated. The incompressible velocity distribution for an
ellisoid of revolution of thickness ratio T may be obtained from the
expression for the velocity potential given in reference 12 and is

given by
1+4 = [; + f(Tﬂ 18 " | -
o 1-£2(1-72) : . (38)
where _
,’ _re
12 1loge ¥NLT _ 2124112
£(7) = 1-N1T (39)
v . 2 ‘
24112 - 12 logy LN LT

1- Af1-72

¢ chordwise location measured from center of ellipsoid, semichords.

The curvature parameter YCs for an ellipse is given by

YCq 121t ©(40)

. [1_£2(1_72)]3/2-

- TFirst curvature function. - The parameter p 1is determined from
equation (23) using the values of Aj and YCa from equations (38)
and (40), respectively. Although not so determined herein, the value
of p may also be obtained directly from the curves of figure 2 for .
My = 0. 1In accordance with the discussion on the Prandtl-Glauert rule,

p is to be determined as a function of pTz, which reduces to the




NACA TN 2245 _ | 13

known dependence of p on T2 for incompressible flow (n = 1).

The variation of p with p 1is conveniently obtained by plotting

p against T2 and chan 1ging the abscissa designation to pTé, The
variation of p with u for several chordwise locations is pre-
sented in figure 4.  The values of p increase with increasing dis-
tance from the center of the body and approach a limiting value of
3/2. The occurrence of this limiting value may be seen by noting that
the incompressible velocity /j; passes through zero near the trailing
edge and, from equation (23), the parameter p approaches 3/2 as g
approaches zero. Having obtained the value of p at the Mach number
Mo, “the velocity increment /A for a given YCg is then obtdined from
the bagic graphs of figure 2. Except for the additional step of finding
P as a function of Mach number, the procedure is essentially the same
as that given in reference 7.

The parameter p has a limiting value of 3/2 for either Aj;—0
or p—>0. The graphical procedure for obtaining p therefore tends
to become somewhat inaccurate at high Mach numbers unless great care
is used, especially at those locations off the center where the velocity
ig close to zero. The value of p was therefore analytically deter- )
mined at the higher Mach numbers. Because the value of p at a Mach
number Mp 1s the same as the incompressible value of p for a thick-
ness ratio reduced by the factor A, only higher-order terms were
retained. Inasmuch as for p—3/2, 2-p— 3, equation (22) becomes,

on retention of higher-order terms,

4A13

3-2'9 =
(YCa)

(41)

Equation (38) becomes, on retaining terms in f(f) through T2,

) 2 4 . , 1-£2 -
1+A1—[1+T2 (10%41—2— 2)] m , (42) .

Subgtituting equations (40) and (42) in equation (41) and replacing
T2 by pT* .yields, for p as a function of Mach number,

' u e 4 ] 1-g2 1® h-pau?)®
S2p =4 [1 » 2 (o w2 2)] AJTE'ZT:%F) S e

(43)
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The velocity increment /A was then found in the usual manner with the "
aid of the basic graphs (fig..2). The procedure involving the analyti-
cal determination of p was used in the range Mg 20.95.

. Second curvature function. - The parameter q 1s determined by
means of equation (32) using the values of Jf4 and YCq from
equations (38) and (40), respectively. The variation of q with Mach
number is then obtained by plotting g against ™ and changing the
abscissa designation to _uTz. The variation of q with pTé for
several chordwise locations is also presented in figure 4; the values
of q are closer to the limiting value of 2 for the larger chordwise
locations. When the value of g at the Mach number Mg ' is obtained,
the parameter X is then calculated from equation (34b). The value
of the parameter A is next obtained from the A, X curve of figure 3.
The velocity increment A is finally obtained from equation (34a).

- Except for the additional step of finding q as a function of Mach
number, the procedure is essentially the same as that of reference 8.
It may be noted that calculations with the second curvature function
are simpler than those with the first curvature function. :

As for the first curvature function, it is preferable to determine
analytically the parameter q at high Mach numbers. Subgtituting
equations (40) and (42) in equation (32) and replacing 12 by - uTé
yields, for g as a function of Mach number,

‘ : 2 3/2
g = uté 4 - [-£2(1-ur?)]
st [1 i (loge e )] 1-£2(1u78) 2 \1- (2¢)

‘The velocity increment A is then obtalned by the procedure following
the graphical determination of q. The procedure involving the ana-
1yt1ca1 determination of g was used for Mach numbers Mp>0.95.

’

RESULTS AND DISCUSSION
g The methods developed herein for both curvature functions have
been used to calculate velocity distributions on ellipsoids of revo-
 lution and conditions in the flow field for several thickness ratios - .
and a range of Mach numbers. The variation of the maximum velocity
increment fyax at the center of the ellipsoid with free-stream Mach
number Mg for several thickness ratios 1s presented in figure 5. In
order to indicate the local Mach number M corresponding to a given
velocity increment A, contours of local Mach number obtained from
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the Bernoulli relation between velocity increment /A, local Mach
number M, and free-stream Mach number Mgy have been plotted on

the figure. For the purpose of comparison, the values given in ref-
erence 6 and the values given by the Prandtl-Glauert rule (equations
(26), (27), and (38)) are also included. For purposes of comparison,
the Prandtl-Glauert rule is shown in figure 5 for local Mach numbers
greater than 1, although this procedure is, strictly speaking, not
permissible. On the whole, good agreement among the various methods
is indicated.

The velocity distribution on the body for several thickness ratios
and Mach numbers is presented in figure 6. These distributions have
been terminated at the values of £ for.which A passes through zero
because the curvature functions chosen for this investigation, inasmuch
as they yield positive values of the streamline curvature, may not be
used for negative velocity increments. The agreement between the .two
curvature functions in figure 6 1s essentially the same as that indi-
cated in figure 5. The Mp ; curves in figure 6 will be discussed
in the section POTENTIAL LIMIT.

The results with regard to the flow field are presented in fig-
ures 7 to 9. The variation of the velocity parameter 2z with lateral
distance y-T 1s given in figure 7. The curvature C/Cs .is plotted
as a function of y-T in figure 8 and as a function of 2z in fig-
ure 9. In contrast to the fairly good agreement for the velocity dis-
tributions on the body, the results in the flow field are not in good
agreement. .This behavior is plausible inasmuch as the procedure for
determining the curvature function utilizes the velocitles on the body
in the Pranditl-Glauert speed range as reference values. Thus, whereas
the method used herein to determine the curvature function can be

regarded as averaging out local differences in the areas under the
C/Ca againgt y-7 curves in figure 8 to yleld about the same surface

velocities (in accordance with equation (5)), the local differences in
the flow field may be substantial.

It is shown in figures 8 and 9 that the two curvature functions
are quite different in type, as 1s evidenced by the values of C/Ca
greater than 1 exhibited by the second curvature function at high Mach
numbers and low thickness ratios. Inasmuch as the curvature C/Cg
should probably not exceed 1, this phenomenon may be regarded as a
criterion for eliminating this type of curvature function from consider-
ation. The results obtained by the first curvature function are there-
fore probably more reliable than those obtained by the second curvature
function. . :
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The lateral and longitudinal extents of the symmetric-type local

supersonic regions that develop at the higher Mach numbers, yg-T and
is: are presented as functions of free-stream Mach number in figures 10

and 11, respectively. These values were obtained from the velocities
in the flow field (fig. 7), the velocity distribution on the body

(fig. 6), and the local M = 1 contour of figure 5. The two curvature
functions are not in good agreement with regard to lateral extent of
the local supersonic region, the discrepancy becoming more evident with
decreasing thickness ratio. The two curvature functions are in much
better agreement with respect to chordwise extent of the supersonic
region, a result to be anticipated in view of the good agreement of the
velocity distributions on the body (fig. 6). In order to indicate the
differences between two-dimensional and axially symmetric flow with
regard to extent of the supersonic region, the results for the elliptic
cylinder, cdalculated by the method of reference 8 are included in
figures 10 and 11. Although the supersonic region starts at a much
higher Mach number for the ellipsoid of revolution than for the elliptic
cylinder, the lateral extent yg~7 attains much higher values for the

ellipsoid of revolution than for the elliptic cylinder.

POTENTTAL LIMIT

The calculation of two-dimensional compressible flows by the
integral method (references 7 and 8) yields a free-stream Mach number,
called the potential-limit Mach number Mgp, 3, beyond which, for a
given thickness ratio, a continuous solution for the whole body cannot
be obtained. The same phenomenon is found to occur in the treatment of
bodies of revolution by the present method. The potential-limit Mach
number corresponds to the points of vertical tangency of the A against

NYCq curves of figure 2 or of the A against X curve of figure 3.
The value of Mgy ; for the curvature functions investigated herein may
therefore be obtained by application of the conditions

WecA N | |
(W> Mo = ° | (25)
. ax _
=0 (46)

to equations (21) and (35), respectively. For the first curvature
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function there is obtained

3u Zrb A
A\3-2p 3p

R 3l ) (47)
2-p 3-p : )

YCq =

and for the second curvature function the result is

2- PcA 2 -

For the ellipsoid of revolution and, probably more generally, for
asrodynamic shapes, the potential 1limit occurs at the midchord section.
(See reference 7 for discussion of two-dimensional cage.) The potential-=
limit values of p and A for the first curvature function were
obtained by simultaneous solution of equations (21) and (47) at the
midchord location. Because of the variation of the parameter p with
Mach number and the complicated form.of the continuity eguation (21),
the work was considerably more difficult than for the corresponding two-
dimensional problem. It was found convenient to adopt an iteration
procedure in which the values of p were obtained from the continuity
equation (21) and the corresponding values of A from the potential-
limit equation (47). The parameter  p was determined from the simpli-~
Tied equation (43) evaluated at the midchord location, ¢ = 0. Initial
values of p and A . for the iteration were obtained as follows:

At the potential 1limit, the value of u 1is small so that the
parameter p 1is close to its limiting values of 3/2. The continuity -
equation (21) and the potential-limit equation (47) may therefore be
approximated by, respectively, ' -

2 o .
. ¥Ca) 1 .
B, ( =L+ %PC(YCaH\._) (49)

¥ -
u =..‘i(yca¢§/x) - (50)
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Equating the right sides of equations (49) and (50) yields

1 1
2, \&

A= @) (rl;) YC, o (51)

The value of ['; at the potential limit is close to its limiting
value of 1.2 for Mg = 1. Taking ['¢c = 1.2, the value of A; may

then be obtained from equation (51) and the value of pj, from either
equation (49) or (50). The initial values of p; @and A; were

within a few percent of the final iterated values. After the potential~-
limit Mach number Mp,; 1s obtained, the velocity distribution on the
body and in the flow field can be calculated in the usual manner.

. For the second curvature function, the potential-limit values of
p and A may be more directly obtained. Insertion of equation (48)
into equation (35) yields

" YCq [e? (Z-q)3 4
T f S (3-)% 27

(52)

where the parameter q 1s given by the simplified equation (44) eval-
nated at £ = 0. The quantity u, was then obtained from a plot of
the parameter ¥ against p and the corresponding velue of Al’ from

~equation (48).

The veloclity distribution on the body at the potential'limit is
given in figure 6. The velocity gradient at the midchord exhibits, as
~ 1in the case of two-dimensional flow, a finite discontinuity (reference 7).

The results for the flow field at the potential limit are given in :
figures 12 to 14. The discrepancies previously noted between the two
curvature functions become even more evident at the potential limit.

" The extreme maximum values of C/Ca exhibited by the second curvature
function indicate that it is probably very inaccurate near the potential
limit. The potential-limit values of the lateral and longitudinal
extents of the local supersonic region are indicated by circles in
figures 10 and 11. (Some potential limit values of yg-T are outside
range of fig. 10.)

The variation of the potential-limit values of free-gstream Mach
number and meximum velocity Increment with thickness ratio is given
in figure 15 and the lateral and. longitudinal extents of the super-
gonic region at the potential limit as a function of thickness ratio
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--in figure 16. For comparison, the corresponding curves for the ellip-
tic cylinder are also presented in'figures 15 and 16. The potential-
1imit Mach number MO,Z is much higher for the ellipsoid of revolu-

tion than for the elliptic cylinder and is very close to 1. These high
. values of MO,I may be interpreted as follows: A body of revolution
produces a smaller relative decrease of cross-sectional area between
the body streamline A-A and an arbitrary streamline B-B (fig. 1)
than the corresponding two-dimensional shape. ' The consequent smaller
velocity increments for the body of revolution result in higher values
of the free-stream Mach number at which the supersonic region has
started to develop (lower critical Mach number).' Thus, it is plausible
that the potential limit will occur at a much higher free-stream Mach
number for the body of revolution than for the corresponding two-
dimensional shape. It is surprising, however, that the values of Mo,1
are as close to 1 for a body of revolution as is indicated by the
present method. The values of Mp,; for the second curvature function
are higher than those for the first curvature function., The difference
in Mp,; for the two curvature functlons may be explained on the basis
of the large values of curvature exhibited by the second curvature
function (figs. 8 and 13). These large values of curvature lead to a
rapid decrease of velocity with distance from the body (equation (5)).
It is therefore to be expected that the lateral extent of the local-
supersonic reglon at a given Mach number would be smaller for the
second curvature function than for the first curvature function.

(Fig. 10 verifies this conclusion.) It then follows that the flow
described by the second curvature function will. not attain the maximum .
value of Mp beyond which a symmetric-type solution may not be con-
tinued (reference 7) until the flow given by the first curvature
function has done so. :

The variation of maximum velocity increment at the potential limit
Amax,l with thickness ratio T for the first curvature function is
approximately linear and close to that glven by the initial choice of
lmax,1 for iteration previously discussed (eguation (51)). The vari-
ation of Amax,l with 7 for the second curvature function is of the

2/3 power type, as may be seen from equation (48) and (52). This vari-
ation, however, is the same as that given by the similarity law for two-
dimensional flow (references 8 and 9), and illustrated by the curve of
Amax,l against T for the elliptic cylinder. The description of

Amax,l by the second curvature function is therefore to be regarded

as another of 1its 1naccuracies.

The lateral extent of the supersonic region at the potential limit
is much greater for the ellipsoid of revolution than for the elliptic
cylinder. The extreme extent of the supersonic region for the ellipsoid
‘of revolution is largely due to the closeness of Mp,; to 1. For
values of free-gtream Mach number near 1, the disturbance velocity

)l
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]
decays very slowly with lateral distance from the body (reference 13).
In addition, a very small velocity increment is needed to yleld sonic
velocity. The lateral extent of the supersonic region should there-
. fore rise very rapidly in the neighborhood of the potential limit..
(See figs. 10 and 16. )‘ The extreme behavior of the flow field in the
neighborhood of the potential 1imit indicated by the present method
may therefore be reasonable for potential flow. It is, of course,
possible that the symmetric-type flow given by the present method -
would be terminated by a shock before such extreme sizes of the super-
sonic region are attalned.
L)

_ On the basis of steady-state considerations, the potential-limit
Mach number Mg ; 1is interpreted in reference 8 as the transition Mach
number between symmetrio-type golutions for M0'< Mo 1 and asymmetric-
_type solutions for Mp > Mo 1, with a shock terminating the symmetric-
type solution. The extreme closeness of Mp,; tol would ‘therefore
indicate that the drag-divergence Mach number associated with the
strong shock that terminates the symmetric-type local supersonic
region should occur much closer to 1 for bodies of revolution than for-
the. corresponding two-dimensional shapes. : '

’

CONCLUDING REMARKS

An integral method has been extended to obtain the compressible
potential flow past a body of revolution. Of the two curvature func-
tions chosen for the investigation, the first curvature function appears
more reliable than the second curvature function..

Although the -symmetric-type local supersonic region first appears
at a much higher Mach number for the ellipsoid of revolution then for
the elliptic cylinder, it attains a much greater lateral extent. The
. potential-limit Mach number is much higher for the ellipsoid of revolu-
tion than for the elliptic cylinder and very close to 1. The Mach

number for drag divergence should therefore occur at a Mach number much
cloger to 1 for a body of revolution than for the corresponding two-
dimensional shape. The present approach offers fairly simple methods
for calculating the velocity distribution on a body of revolution at
high subsonic Mach numbers with loca; supersoni¢ regions.

Lewis Flight Propulsion Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, September 1, 1950.
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APPENDIX - SYMBOLS

v

The following symbols are used in this report:
streamline curvature

Mach number

.distance measured aloﬁg potential lines from body of revolution

parameters for curvature functions
resultant velocity on body of revolution
velocity in flow field

[

distance albng axis of body of,revolution ﬁeasured from leading
edge : '

ordinate of meridian section of body of revolutidn
lateral distance normal to free-stream direction
v/ i
MO2 2-7 4
1 - e - 222
2 2 Mo
ratio of specific heats

velocity increment, V-1
(2-a) I:_c_ A
(3-4) »

1-Mg?
velocity increment, v-1

distance along axis of body of revolution measuréd from center,
semichord

density of fluid

thickness ratio

_ ¥Cq [e2 (2-q)°

2. s (3-q)2
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Subscripts:

a at surface of body of revolution
i incompressible or low-speed value
l potentiél limit

8 . sonic value

0 = free-stream condition
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TABLE I - BASIC CALCULATIONS FOR OBTAINING VELOCITY INCREMENT A (EQUATION (21))

[Pirst curvature function, C/C, = zP.]

NACA TN 2245

-

) . .
0.02 [ 0.04 [ 0.08 [ 0.08 [ 0.10 [ 0.12 J 0,16 [ 0.20 [ 0.25 [ 0.30 | 0.40 | 0.50 [ 0.60 | 0.70 [ 0.80 | 0.90 | 1.0

A
)
o [1.0 0.1138(0.1563]0.1960]0.2338]0. 2702 |0. 3396 [0. 4055 [0. 4841 [0.5592]0. 7006 | 0. 8315 0. 9530 2. 0856 (1. 1603
1.1 .1230| .1689| .2118| .2526| .2918| .3666| .4377( .5225( .6037( .7567| .8991)1.0319|1.1668
1.2 .1355( .1859| .2329('.2776| .3208| .4025( .4804 | .5732| .6623| .8305| .9877|1.1352(1.2736
13 .1538| ,2109( .2639( .3144{ .3628| .4550| .5426| .6471| .7474| .9370!1.1148|1.2830
1.4 .1881 .2570| .3210| .3818| .4399 .5506 | .6555 | .7807( .9004(1.1276
1.45 .2260| .3086( .3648( .4569( .5259| .6568| .7806 | .9280|1.0691|1.3363
1.48 .2855| .3886 .4838[ .5736| .,6593| .8217| -, 9749 |1.1569
1.495 .4029| .5473( .6802| .8053| ,92¢7[1.1499
1.499 .6005| ,8146(1.0116
1.4999 1.0652 .
1.0 0,1082/0.1483(0,1857]0, 2213 |0. 2553 |0, 3200 [0, 3811 [0, 4534 |0, 5221 | 0. 6498 0. 7660|0.6715| 0.9666 | 1.0515
11 .1169| - 1604| .2009| .2392| .2760| .3459| .4120| .4903| .5650| .7038| .8313( .94791,0646
1.2 .1290| .17e6| .2210| .2632| .3036| .3803| .4529 | .5393| .6213| .7752| .9170(1.0482|1.1694
1.3 .1466( .2007|-.2508{ .2985| .3441 .4308| .5128| .6102( .7033| .67821.0406
1.4 .1795( .2449| .3057| .3633| .4183| .5228| .6217| .7392| .8514(1.0630
1.45 .2158( .2944| .3669| .4354| .5009( .6250| .7423 | .8816{1,0144
1.48 .2729] .3712] .4621| .5476| 6292 .7837/ .9392 .
1.495 .3854( ,523¢| .6505| .7699| .8638(1.0988
1.499 .5745( .7795| .9880
1.4999 1.0194
1.0 0.1000|0.1369(0.1709 10,2032 |0.2339 |0.2919 [0, 3462 [0, 4099 [0, 4694 [0.5776[0.6725|0.7549{0.8246 |0.8798(0. 9257
1.1 .1083| .1482( .1851| ,2200( ,2533| .3162| .3752 | .4445( .5095| .6287| .7347| .8284| .9098| .9794|1.0367
1.2 21197( .1634| .2040| .2424| .2791| .3485| .4137 | .4904 | .5628 .6963| .8168| .9249(1.0217|1.1067|1.1807
1.3 .1359| .1859| .2319( .2755| 3171 .3959  .4701 .5577( .6405| .7945| .9350|1.0636(1.1611(1.28761.3838
1.4 .1668| .2273| .2834( .3364( .3869( .4827( .5729| .6796( .7810{ .9707|1.1463|1.3092(1.4615(1.6031(1.7355
1.45 .2009| ,2738| .3409| .4042| .4647( 5790 ( ,6667 | .8143( .9356]1.1632|1.3755|1.5742(1.7618|1.9388 |2.0164
1.48 .2543| ,3458( ,4301| .5182| .5851| .7282 | ,8628 [1,0223 '
1.495 .3596| .4883| .6086| .7178| .8238(1.0238
1.49 .5366] ,7278| .9037
1.49 .9523
1.0 0.0939(0.1281{0.1596{0.1893]0.2176 [0.2705 J0.3196 [0.3764 |0.4290 [0:5221 {06003 [0.6642 [0, 7131 [0, 7469 |0, 7647
1.1 .1017| .1387| .1730| .2052| ,2359| .2935| 3471 | .4095| .4672| .5713| .6607| .7362] .7978| .8455| .8789
1.2 .1122| ,1531| .1909| ,2265] .2604 | .3241 | .3837 | ,4533| .5183| .6364 | .7401 .8305| .9081| .9727|1.0248
1.3 .1278{ .1744( .2174| .2579| .2965| .3692 | .4374 | ,5175| .5926| .7508( .8548] .9659|1.0e48 [1.1520|1.2277
1.4 .1570] .2137| .2662| .3156| .3628| .4518 | .5354 | .6340| .7271| .9004 [1.0569{1.2047|1.3369 [1.4824 |1.6754
1.45 .1893| .2578| .3207| .3801| .4367 | .5435 | .6439 | .7626| .8749 [1.0852(1.2796|1.4609 [1.6304 [1.7893(1.9383
1.48 .2399( .3260| .4053| .4799| .5510| .6853 | .8114 | .9605
1,495 .3396| .4609( .5636| .6772| ,7771| .9654 .
1.499 .5068] .6873( .85321,0091
1.49 .8996{1.1948
1.0 0.0852(0.1157(0.1437(0.16990.1946 [0.2404 [0.2821 [0, 3294 [0. 3716 [0.4424 [0.4950[0.5267 |0.5419 |0.5324 |0. 4965
11 .0920( .1256( .1560| . .2115| .2616 | .3076 | .3601( .4078| .4896| .5541| .6016| .6313 | .6424 | .6336
1.2 -1019| .1387| .1725| .2041| 23411 .2901 | .3417 | .4011| .4556 | .5516 .6314| .6956| .7440| .7768 | .7935
1.3 .1162| .1583( .1969| .2332| .2675| .3319 | .3917 | .4611| .56256 | .6416( .7421| .83011 .9005| .9915 1.0047
1.4 .1431{ .1945( .2419| .2865| .3289| .4086 | .4830 | .5701 | .6519| .8021( .9371[1.0887
1.45 .1728| .2351( ,2922| .3460| .3972| .4935| .5837 | .6899 | .7901| .9760 :
1.48 .2193( .2978( .3708| .4381 .5027| .6245 | 7387 | 8736 [1.0011
.3108| .4217| .5237| .6194| .7106 | .6824 [1.0436
4642} .6296| .7815| .9241
.8244]1.1178
0.0790[0:1072[0.1327 [0.1566 |0, 1789 |0:2196 [0:2661 [0.2963 [0:3511 [0.3644 (04151 |0.4201 |0.3933 |0.5206 [0, 1445
0855| :1164| .1444| .1704| .1948| .2398 | .2804 | .3260| .3661 | .4312( .4759 | .4995| .4993| .4716| .4101
i0049| .1288| .1599| .1889| .21G1| .2667 | .3129 | .3652 | .4124| .4923| .5539| .5972| .6219| .6269| .6111
1083| .1474( .1829| .2162| .2477| .3064 | .3605 | .4226 | .4797| .5800( .6635| .7313| .7859 | .8205| .8423
.1336( :1814 .2253| .2666 | .3057| .3790 | .4472 | .5268 | .6006 | .7349 | .8536| .9583|1.0500|
i1615| .2195| .2727| .3227| .3701| .4593 | .5426 | .6403 | .7321| .9013[1.0548(1.1945
:2051( .2785| .3459| .4093 | .4695 | .5828 [ .6869 | 6139 | .9319
.2910| .3947| .4801| .5797| .6648 | .8252 | .9757 :
:4347| .5896| .7318| .8654 | .9924 :
L7723 [1.0472 )
0.0712[0.0958 0.1182 [0.1387 [0.1575 [0.1912 0.2200 [0.2497 0. 2722 [0.2937 [0.2732 [0. 1501
07711043 | .1288[ .1513 [ ,1723 | .2101 | ,2430 | .2782 | .3069 | .3443| .3512| .3170(0.2049
.0857( .1158| .1430| .1684 | .1921 |..2353 | .2737 | .3160 | ,3522 | ,4074 | .4388| .4439 | .4176 [0.3494 [0.2047
.0977| (1326 | .1642| .1937| .2213 ( .2722 | ,3184 | .3705| .4170| .4947| .5528| .5916| .6107 | .6093 | .5863
.1208( .1638| .2032 | 2400  .2748| .3396 | .3094 | .4682| .5317| .6443| .7404 | .8212| .8875 | .9401| .9791
1463 .1987| .2466 | .2915| .3341| .4138 | .4878 | .5785| .6591| .8072( .9394 [1.0573 [1.1628 [1.2561 {1.3113
.1862( .2526| .3136 | .3708 | .4251| :5272 | .6224 | .7343 | .8396 |1.0347
2644 | .3586 | .4451 | ;5263 | .6034 | .7487 | .8848 [1.0452
.3955( ,5361( .6653 | 7866 | .9034
.7026 [ .952¢
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TABLE I - BASIC CALCULATIONS FOR OBTAINING VELOCITY INCREMENT A (EQUATION-(21)) - Concluded.

[First curvature function, c/Cq = 2P.] NACA
A 0.02 ] 0.04 [ 0.06 [-0.08 [0.30] 0.12 | 0,16 | 0.20 [ 0.25 | 0:30 | 0.35 J0.5218] 0.36 |0.36 [0.584
G| v ; : a
0.95] 1.0 [0.0353]0,0585 0.0946]0.1095] 0,1222]0.1418]0.1552 |0. 1521 ]0. 1153]0,0526] 0
1.1 .0381| .0643 .1042| .1208 .1367| :1600| .1774 .1881| .1823 lo.1281 J0.0587]0
1.2 L0422 lo711 .1168| .1361| .1536| .1838| .2078| .2295| .9407
1.3 .0479| .0816 .1352| .1584| .1798| .2178( .2505| .2845| .3106
1.4 .0593f .1013 ..1691] .1990| .2270| .2783| .3245| .3762| .4218 .
1:45 | .o738] .1232 .2066| .2436| .2786| .3434| .4030| .4715| .s340
1,48 | .0934| .15M1 .2639] 3116 .3569] .4415| .5100| .6018| -6972
1.495 | .1328 .2235 .37581 .4441| .5090| .6310| .7448| .8787|1.0052
1.499 | :1988| 3345 .5625| .6645] .7622| .9455
1.4999( .3558| .5939 .8059]1.000
©.02 | 0.04 {0.06 |'0.08 [0.10 | 0.12 | 0.16 | 0.18 [0.194 [0.1062] 0.20 | 0.22 |0.2330 |o.25 | 0.28
0.97[ 1.0 |0.0307[0.0501 [0. 0655 0.0778]0.0872[ 0. 0954 | 0. 0924 | 0. 0782 [0.0578 |0
1.1 .0334] .0549| .0723| .0868| .0985| .1076) .1167 0.1068|0.0832 o :
1.2 .0371{ ,0614| .0818| .0986| .1132| .1256] .1436 : L1511 p.1376 [0.0979
13 .0427{ .0709| .0948| .1158| .1344| .1508| .1786 .1992 .2143
1.4 .0530| .0882| .1192| .1365| «1719| .1952] .2369 ) .2731 L3114
1:45 | .0645( .1081! .1461| .1805| .2124| .2423| .2972( .3468 .4027 ,
1.48 | .oe22| .13e2| .1871) .2317| .2733| .3127| .3860 : L4534 L5356
1,495 | .1171] 1970 .2669| .3309| .3910| .4479| .5546 .6543] .7610
1,499 | ;1754| .2949 .3999| .4959] .see2| .6719| 8331 .9841] N
1.4999) .3119| .5244| .7110| .8822|1.0428 .
0.02 | 0.04 | 0.06 |0.064 {0.0862| 0.07 {0.0787| 0.08 | 0.09 10.094 [0.0993] 0.10 [0.12 [0.13 | 0.14
0.99| 1.0 | 0.0218|0,0516 |0.0293| 0. 02280
11 .0240| .0363| .0403| 0.0366 |0
1.2 .0271] .0422 | .0511 0.0519 {0.0450 |0.0402 |0
1.3 .0315( ,0505| 0644 L0737 0.0775 [0.0725 |0.062770.0246
1.4 .0397( ".o0es52 | .0860 . 11035 .1182 | L1300 -
1.45 | .0487| .0809| .1082 L1324 .1540 | .1736
1.48 | 0624 .1044] .1407 : 1736 : .2038 | .2321
1.495 | .0891| .1496| .2024], .2507 .| .2958 | .3383
1.499 | :1335| .2244] 3037 | e3m .4455 | .5104
1.4999| .2376 .3994 | .5414 6714 7939 | L9101
A 0.40 J0.484 [0.485 [ 0.50 [ 0.60 [ 0.67 J0.679 | 0,70 | 0.80 | 0.90 | 1.0 | | | [
Mg P . ‘JYC.
o.9es(1.0
1.1, \
1.2 * [o0.2101]0.0203 [0
1.3 3396 0.3303(0.2625 [0.1265 [0 .
1.4 .4966 5508 | .5846 0.5978 [0.5897 |0.5597 [0. 5059
1,45 | 6447 .7383| .£160 : 8792 | (9289 | ,9658
1.48 |, .8535 9932
1,495
1,499 !
1.4999 .
0.2943] 0.30 | 0.40 [0.41€9| 0.50 | 0,60 | 0,70 | 0.75 j0.7848| 0.20 [o0.90 | 1.0
5.571.0 .
1.1
1.2 |o : o
1.3 0.2149 0.1188]0 .
1.4 . .3423 | .3826 0.3911 [0, 3608 |0.2718 |0.1817 [0
1,45 3525 | 5361 .6000 | .6453| .6723 0. 6815 [0. 6729 [0, 6460
1,48 6038 | .7336 .8466 | 9206
1,495 .8809 [1,0841
1.499
1.4999
0.1407{ 0.16 |0.20 [ 0.25 | 0.26 b.2649]0.30 [ 0.40 |o.s0 lo.sazz]o.eo 1 6.70 | 0.80 | 0.50 | 1.0
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Figui‘e 2, = Velocity increment on surface of body of revolution as. function of curvature
parameter of body AYC, for several values of parameter p.

equation (21) and tabulated in table I.
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Figure 2, - Continued.

Curvature parsmeter, '\/YCa

(b) Free-stream Mach number Mgy, 0.4.

Velocity increment on surface of body of revolution.as function of

curvature parameter of body 1/?03 for several values of parameter .p.
from equation (21) and tabulated in table I.
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Figure 2. - Continued. Velocity increment on surface of body of revolution as function of
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Figure 2, -~ Continued. Velocity increment on surface of body of revolution as function of
curvature parameter of body YCy; for several values of parameter p. Values computed
from equation (21) and tabulated in table I.
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Figure 2. ~ Continued. Velocity increment on surface of body of revolution as function of
curvature parameter of body /\/YCa for several values of parameter p, Values computed
from equation (21) and tabulated in table I. 4
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Figure 2. - Continued. Velocity increment on surface of body of revolution as function of
curvature parameter of body VYCa for several values of parameter p. Values computed

from equation (21) and tabulated in table I.
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Figure 2. - Continued. Velocity increment on surface of body of revolution as function of

curvature parameter of body /\/YC for several values of parameter p. Values computed
from equation (21) and tabulated in table I,
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Figure 2. - Continued. Velocity increment on surface of body of revolution as function of
- curvature parameter of body VYCA for several values of parameter p. Values computed
from equation (21) and tabulated in table I.
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Figure 2. - Concluded. Velocity increment on surface of body of revolution as function of
curvature parameter of body: VYCE for several values of parameter p. Values computed
from equation (21) and tabulated in table I.
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Figure 9. - Variation of streamline curvature with velocity in flow field of
ellipsoid of revolution for several Mach numbers.
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Figure 14. - Variation of streamline curvature with velocity in flow fleld of
ellipsoid of revolution at midchord location for potential-limit Mach number
and several thickness ratios. v



NACA TN 2245

Maximum velocity increment at potential limit, Amn.x,l

o7

+6

o5

o4

3

2

.1

53

First curvature_ function
€/Cq = 2P

~=——=—Second curvature function
: C/Cq = 29 5,

——~—Elliptic cylinder

1,00 ~l=—=a -
\\\- T~k s'l
\‘\
\
Mo,
296 —
\

.92 X e
\\ ‘/
\\MOpl .
A Y

e .88 2
K3 N ’
- \\ ,/
5 L~
g Y ] _-hmax,1 |
£ .84 > ~ 4 = 4 i
g N i A
& ; pall - / max,yl
= /z \ _ 1 "
g o \ -1 //

80 =
o ,/ D //
Ci ya e AN ]
g / - \></

rd -
] g
§ .76 ,// ’// - /// s
/ - // ,/ \\
/ - B
72 A 17 // \\

P L7 / ] ' \\

,/( P N

[ 04 .08 12 16 »20 24 28 32
Thiclkness ratio, 7
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at midchord for ellipsoid of revolution and elliptic cylinder as function of
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