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SUMMARY

A systematic procedure is developed for the calculation of the
structural response of aircraft flying through a gust by use of .differ-
ence equations and matrix notation. The use of difference equations in
the solution of dynamic problems is first illustrated by means of a
simple-damped-oscillator example. A detailed analysis 1s then given
which leads to a recurrénce matrix equation for the determination of
the response of an airplane in a gust. The method takes into account

- wing bending and twisting deformations, fuselage deflection, vertical

and pitching motion of the airplane, and some tail forces. The method
is based on aerodynamic strip theory, but compressibility and three-
dimensional aerodynamic effects can be taken into account approximately
by means of over-all corrections.' Either a sharp-edge gust or a gust
of arbitrary shape in the spanwise or flight directions may be treated.
In order to aid in the application of the method to any spe01f1c case,
a suggested computational procedure is included.

The possibilities of applying the method to & variety of transient
aircraft problems, such as landing, are brought out. A brief review of
matrix algebra, covering the extent to which it is used in the analysis,
is also included.

INTRODUCTION

In the problem of an airplane flying through gusts, accurate
predictions of stresses are not always obtained if the interaction
between aerodynamic loads and structural deformations is not considered.
The present paper gives a method for determining the dynamic response
of aircraft in gusts in which this interaction is considered. An . '
approach is employed which is a departure from the usual modal type of
solution. The time derivatives in-the integro-differential equations
of motion of the airplane are replaced by appropriate difference
expressions and use is made of matrix notation to express conveniently
the conditions of equilibrium at a number of points along the wing span.
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The result is a systematic procedure which is complete and general in
form. The airplane is assumed to be free to translate and pitch. Wing
bending, wing twist, and fuselage flexibility are '‘all included. Tail
forces due to vertical motion, angle of attack, and gust penetration are
also included in the analysis.

With the method, a gust with any gradient in the direction of
flight or along the span may be treated without difficulty. The method
is based on aerodynamic strip theory, but over-all compressibility and
aspect-ratio corrections may be included without difficulty, if desired.
One such over-all correction is indicated. ‘

In the first part of the paper the method of using difference
equations in the solution of dynamic problems is illustrated by an
example in which the transient response of a simple oscillator is
determined. The analysis for the determination of the response of an
airplane in a gust is then given. 1In the following section a computa-
tional procedure is suggested. This section, is not intended to
describe or add to the understanding of the analysis, but by following
the directions indicated, the response of any airplane may be  found
without following through the complete details of the analysis.

Supplementary definitions and derivations are presented in appen-
- dixes. Appendix A summarizes the various matrix coefficients and

matrices that are used in the analysis, appendix B gives a derivation
of the difference equations, appendix C gives a derivation of the .
flexibility matrices, appendix D gives a derivation of a recurrence
equation for evaluating the form of Duhamel's integral which involves
an exponential kernel, and appendix E presents a review of the funda-
mentals of matrix algebra It is suggested that those not familiar
with matrix algebra read appendix E before reading the analysis.

| ' . SYMBOLS ,

% a ' distance between leading edge of wing and elastic axis
| ay coefficient used in unsteady lift function for sudden change

in angle of attack

-

A aspect ratio of wing
Ay . aspect ratio of horizontal tail
b semispan of wing

c chord of wing
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o chord at wing midspan

cot midspan chord of tail

ct mean aerodynamic chord of tail

e ‘ distance between mass center of wing cross section and
elastic axis of wing; positive when elastic axis lies
forward of mass center

E Young's modulus of elasticity

F suddenly applied force

G shear modulus of elasticity

i integers 0, 1, 2, 3, 4, and 5 used to'designate stations
(for most part used as parenthetical numbers, that is, w(3)
is deflection at station 3) '

I bending moment of inertia

J- torsional stiffness constant -

k radius of gyration of wing mass about elastic axis or
elastic spring constant ' '

1 length of section associated with a spanwise station

L aerodyhamic 1lift over interval 1 on wing

Lf shear force transmitted to wing by fuselage

Lg aerodynamic 1ift over interval 1 on wing due to gust

Lgt one-half aerodynamic lift on tail due to gust

Ly one-half total aerodynamic 1lift on tail

Ll part of aerodynamic 1ift over interval 1 on wing (see
equation (16))

Ly part of aerodynasmic 1ift over interval 1 on wing (see
equation (17)) '

m mass of beam included in interval 1 or concentrated mass

in spring oscillator
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. ) - o
mass m including spparent mass effect (m + EE&S_)

assumed over-all compressibility and aspect-ratio correction

for wing ( ; A )

2 +A\/1 - W

assumed over-all pompfessibility-and aspect-ratio correction

. Ay
for horizontal tail

2 + At\/l - M

mass moment me including apparént mass

efféct (me + EE£E§<— - 5))

mass of fuselage per unit length

mass pblar moment of inertia mk? including apparent mass

, 4 2 4)
2 nplc’(l a nplc
effects (mk + fEE——(e - c) + 158

Mach number or aerodynamic .moment over interval . 1 about
elastic axis of wing

momentjtransmitted to wing by fuselage

integers 0, 1, 2, 3, and gl forth to designate number of time
intervals passed

normal'load apting at a station
fuselage inertia loading per unit length

torsional load acting at a station

distance traveled by wing in half-chords (%g‘t, where midspan

chord Co is used as reference chord)

distance interval in half chords (EU €>
Co

. horizontal-tail area

time, zero at beginnigg of gust penetration
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By

forward yelocity of flight
vertical velocity of gust

deflection of elastic axis of wing, positive upward, or
deflection of mass oscillator

deflection of fuselage; positive upward

fuselage modal function, zero at wing elastic axis and unity
at tail one-quarter-chord location

distance along fuselage measured from wing elastic axis,
positive in rearward direction

distance from foremost part of nose to elastic axis

distance from elastic axis to one-quarter-chord location on
tail - T

distance along wing measured from center of airplane
ratio of dynamic deflection to static deflection '
angle'of attack of horizontal tail

forward-speed and aspect-ratio factor for wing (mpmpU) or
coefficient of damping for spring oscillator

: - 1
forward-speed and aspect-ratio factor for tail (5 mAtnpStU)

exponential coefficient in & function associated with

Co

coefficient of fuselage modal function
time interval

exponential coefficient in ¢ function associated with
variable s '

dimensionless interval between 1 - 1 and i
stations (Aijb is actual length)

-mass density of air

angle of twist of wing, positive in stalling direction
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Subscripts:

t

0,1,2,3,

NACA TN 2060

function which dénotes growth of lift on rigid airfoil

entering sharp-edge gust (used without subscript to
indicate function for wing and with subscript t used
to indicate function for tail) ‘

., l

natural frequency assoclated with Wjp, radians per second

unit-step function

function which denotes growth of 1lift on airfoil follbwing

sudden change in angle of attack (used without subscript
to indicate function for wing and with subscrlpt t used
to indicate function for tail)

square matrix

_rectangular matrix

column matrix

row matrix

tail

n number of time intervals passed

0,1,2,3,4,5 or i station (however, station is usually given as

parenthetical number, such as .w(3) for deflection
at station 3); 1 1is also used as general subscript
in appendix A

All the terms, coefficients, and matrices not defined in this
section are defined in appendix A.

Dots are used to indicate derivatives with respect to time; for

example, g% =W or g% =W

ANALYSIS

Transient Response of a Simple Damped Oscillator

In order to illustrate the use of difference equations and to test
the accuracy. of the procedure that is to be used in the solution of the
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more complicated gust problems, the solution of a simple problem having
a known analytical solution is first presented. The problem is to com-
pute the response of the damped oscillator shown in figure 1 to a
suddenly applied force. The differential equation of motion of this
system due to the suddenly applied force is

Wi+ g = F(8) (1)

By use of difference equations this differential equation may be trans-
formed into an equation which involves deflection ordinates at several

successive values of time. Probably the most commonly used difference

equations are the following (see appendix B for derivation):

. _¥n+l 7 ¥n-1 o
¥n = 2¢ ’ (2)

CW; - 2w, t W :
.. n+l n n-1
Wn = ) (3)
. €

which give the derivatives at the intermediate of three successive
ordinates. Although these equations are quite adequate for the
oscillator problem of the present paper, they cannot be used in the
gust analysis which follows. Rather, for reasons which are brought out
in a subsequent part of the analysis, equations that give the derivatives .
at the end ordinate of several successive ordinates must be used. If
only three successive ordinates are used, the derivatives so found are
not accurate enough to be useful. If a fourth ordinate is added, how-
ever, derivatives may be taken at the end ordinate with accuracies
which are comparable to those given by equations (2) and (3). Such
derivatives are derived also in appendix B and are given by the
equations: :

1wy - 18wy + 9o - 2Wh-3

¥n = 6¢ : (4)
Vo = 2y = SWp.y * by o - Wy g

2 _ (5)

€

Although either equations (2) and (3) or equations (4) and (5) may be
used in the solution of this oscillator problem, only equations (4)
and (5) will be used, since only these equations can be used in the
gust-problem solution presented in this paper.
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If the derivatives in equation (1) are replaced by the difference
equations (4) and (5), the following equation is obtained:

. | _ _ »
(2 + %— -%lﬁ + i €2>Vn = (5 + 3'1%&>Vn-l 'Q‘ + 2%;>Wn-2 + (1 + g%f)wnﬁ + 'EITF
| - (6)

This equation may be said to be the difference equation of motion. If
the more general case of a variable applied force were being considered,
the factor F in this equation would be replaced by Fp, the value of
the force present at the time t = ne.

k . B
a=)+00,5=2,

¢ =0.01, F =1, and the notation z ='F;E (ratio of dynamic deflection

If a specific case is now considered, in which

to static deflection) is used, equation (6) becomes

zn = 0.018927 + 2.42272 zp-1 - 1.92114 zp_p + 0.47949 zj-3 | (7)

This equation may be regarded as a recurrence formula; the value Zn
may be interpreted as the defléction to come and may be found easily
from the three preceding deflections 2zp.1, 2zn-p, and 2zp-3. Then with

the newly found value zp and with z,_; and Zp.p, the next deflec-

tion can be found, and so on. This process thus gives a step-by-step
derivation of the time history of deflection and may be carried out as
far as is desired. Of course the process must start with known initial
values of z. These values can be found with the aid of the initial
conditions of the problem by means of the following approach.

The difference equations for the first and secénd derivatives at
the third ordinate of four successive ordinates are (see appendix B)

5;.
]

glz<2wn+l + 3wp - 6wp-1 + Wn-2>

irfn %(Wn.;.l - 2wp + Wn- l)
€

If these equations are taken to apply at t =:O (n = 0), they become
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Vg = g%(2wl + 3wg - 6wy + W-2> (8)
W = j%(yl - 2wp + w-1> - - {9)

For the problem under consideration the primary initial conditions are
that, at t = O, the displacement and velocity are zero. By use of
equation (1) or by reasoning from Newton's second law, a secondary
initial condition can be established; that is, the acceleration
immediately following the applicatlon of the unit force must be l/m.
In equation form these conditions are ‘

WO =0
V.fo =0
.. 1
Wy = =
0 m

By substitution of these values into équations (8) and (9) and by use
of the notation z = F;E’ the following relations can be found to exist.

between the ordinates:

Zo=o \l
z.p = 0.24 - 8z .' . (10)
Tz.] = 0.0L -2

Substitution of these values into equation (7), with n set equal to 1,
gives an equation from which 23, the deflection at t = ¢, may be
evaluated. Three successive deflections can now be established: the
deflection at t = ¢, the zero deflection at t = 0, and a fictitious
deflection for t = -¢ given by equation (10). In the real problem no
deflection exists for t less than zero; the assumption that a deflec-
tion does exist before t is zero is simply a means for allowing the
recurrence formula, equation (7), to apply at the origin as well as at
later values of time., Furthermore, no violation is made of the condi-
tions under consideration because, mathematically, the response

after t = 0 1is not influenced by the response that may exist

before t = 0, so long as the initial conditions are satisfied. The
process Jjust described for treating the initial conditions is actually
not different from the.procedure commonly employed in difference-
equation approaches, in which exterior points near a region under con-
- sideration are written in terms of the interior points by means of the
boundary conditions.
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With the initial values of deflection thus established the step-
by-step evaluation of succeeding deflections proceeds in a straight-
forward manner; that is, equation (7) is now evaluated for n = 2,
then for n = 3, and so on. The response of the ‘oscillator for the
physical constants listed previously is given in figure 2. The compari-
son between the difference solution shown in this figure and the exact
solution of equation (1) is seen to be good. As a matter of interest,
the solution is also shown in this figure that is obtained by the use
of the parabolic end-ordinate derivative which involves only three
successive ordinates. The agreement in this case is seen to be quite
bad. If equations (2) and (3) had been used, on'the other hand, the
difference solution (in this case for wy,;) would correspond to that

given for the cubic end-ordinate derivative.

Recurrence Matrix Equation for Response of
an Airplane - in a Gust
In order to help the reader to obtain a perspective of what is to
be covered in this section, the following basic phases .of the analy51s
are glven
(1) The assumptions are stated.
(2) The coordinate system and displacements are defined.

(3) The aerodynamic 1ift and moment are defined.

(4) The normal and torsional dynamic loadings (inertia forces,
aerodynamic forces, and fuselage forces) on the wing are derived.

(5) The equations of elastic deformation - wihg vertical motion,
wing rotation, and fuselage bending - are given.

"(6) The dynasmic loadings on the w1ng are transformed into
difference equations.

(7) The equations of elastic deformation and the difference
equations for loading are combined to give.the recurrence matrix
equation for response.

.In succeeding sections the initial response is determined, the
method for evaluating the gust forces is shown, and the method for
computing the loads and stresses is indicated.
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Assumptions.- In this analysis an attempt is made to obtain the
simplest and most direct solution to the problem with a minimum of
simplifying assumptions. The case treated is that of an airplane having
an essentially straight wing and penetrating a gust of known structure.
The tail is considered to penetrate subsequently the same gust as does
the wing. The assumptions made are as follows:

Assumptions pertaining to elasticity and airplahe motion:
(1) The usual assumptidns of engineering beam theory are made.

(2) The fuselage is free to pitch and move vertically. The portion
of the fuselage in front of the elastic axis of the wing is assumed for
convenience to be rigid. The portion of the fuselage rearward of the
elastic axis is assumed flexible, and the elastic deflection is assumed
to be given by a single modal function.

(3) The tail is assumed rigid.
Assumptions pertaining to aerodynamic forces:

(1) Aerodynamic strip theory applies. . Thfee-dimensional effects,
however, may be taken into account approximately by means of over-all
.corrections. Some such corrections are indicated.

(2) The gust force and forces due to vertical and pitching motion
are the only tail forces considered. Other forces of known character
may be included, however, if desired.

(3) Aerodynamic. forces on the fuselage are neglected.

Coordinate system and displacements.- Position on the airplane is
denoted by an orthogonal system of axes. The origin is at the inter-
section of the wing elastic axis with the plane of symmetry of the
airplane: the w-axis runs positive upward, the x-axis runs along the
fuselage positive in the rearward direction, and the y-axis runs span-
wise. The wing semispan is considered to be divided into six, not
necessarily equal, sections, with a station point at the middle of each
section. (See fig. 3. ) More or fewer stations could be chosen, but it
is believed that six is a fair compromise between the amount of labor
involved in setting up a solution and the accuracy desired. The interval
between stations is designated by the number of the station at the out-
 board end of the interval. Station O is located near the wing root and
generally may be located where the fuselage intersects the wing. In this
way the concentrated forces of the fuselage are allowed to act through
station O. The other five stations are then located in any convenient
manner so as to fall at concentrated mass locations or at points which
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represent the average of distributed masses, station 5 being nearest
the tip. The total mass within a section is assumed to be concentrated
at the station point, and the average of the section geometry (chord,
elastic axis position, and so on) is assumed to apply. 1In this way the
wing is assumed to be a beam subject to six load concentrations, and as
such will have a linear moment variation between each station. The

further assumption is made that the éi variation is linear between

each station. With these assumptions for the EI variation and con-
centrated load locations, equations for deflection at each station .
point may be derived (appendix C) by direct analytical treatment.

The displacements of the cross section at each station of the wing
are given as the deflection of and rotation about the wing elastic axis
as shown in figure 4. The fuselage displacements are shown in figure 5
and are given by the equations: S '

o

- wp = w(0) - ¢(0)x (11)
for the forward section and

we = w(0) - @(0)x + W8 (12)

for the rearward section. The function Wj .is taken as the fundamental
mode of vibration of the fuselage and tail assembly, when the fuselage
is considered to be clamped as a cantilever beam at the elastic-axis
location of the wing, and is given in terms of a unit deflection at

the %fchord position on the tall. With this function to represent the

elastic deformation of the fuselage the deflection and angle of attack
of the tail is found with the aid of equation (12) to be

wp(xy) = w(0) - o(0)xy +8 (23)
) dwe
_—l
5 (1k)
= ¢(0) - 861

where

S aw

- 1
61 = dx:} .
x=xt
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Aerodynamic lift and moment.- Berore.going into the details of the
analysis it is felt worthwhile to define and describe the nature of the
aerodynamic forces to which the wing is subjected. These forces
originate from two sources: they arise directly from the gust encoun-
tered, and they arise from the ensuing airplane motion. The equations
for the aerodynamic lift and moment that develops are herein set up in
a convenient form on the basis of work given in references 1 to 4. 1In
these investigations various methods for separating the 1lift forces
have been used, but the particular method for separating these forces
is not important so long as they are taken into account properly.

In the present paper the aerodynamic lift and moment are considered
to be composed of two parts: one part, designated as the 1lift or
moment due to circulation, which includes all 1ift forces or moments
exclusive of aerodynamic inertia effects and the other part, which is
due solely to these inertia effects. These lift forces and moments can
be resolved into the force systems acting on the airfoil as shown in
the follow1ng sketches:

Forces due to ciréulation : c,{*J

Inertia force and moment _ L—- c <

The force Lg 1is the 1ift force developed by the gust. All the other
forces occur as a result of motion of the airfoil. These forces, as
well as the gust force, are given for an interval 1 of the span by
the equations: For the forces due to circulation, .

Lg = mAﬂchU\jP Wt - 7)dr "_ (15)

t
L, = mAxrchUf Elcp - W+ c(% - %)%E - o(t - -'rzld"r (16)
0
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1c2
Ip = 20w » (17)

and for the inertia force and moment,

2 . .
Ly = Ml 15 4 <E - )‘ 18
Rl o AR VL | (28)
L.,

M=_ﬂplc' . 1

1 T28_q) _ (19)
where
L v

my factor which can be used to introduce over-all compressibility

and aspect-ratio corrections; in this paper the factor is

A
2+ a1 - M

l1-9 1ift function which denotes the growth'of 1ift on an airfoil
following a sudden change in angle of attack

assumed to be given by

v lift function which denotes the. growth of 1ift on a rigid

airfoil entering a sharp-edge gust

The functions 1 -¢ and V¥ and the correction my are estab-
lished as follows. In reference 5, approximate equations are derived
which give the lift-coefficient form of the growth of 1lift on a finite
wing following a sudden change in angle of attack or due to the penetra-
tion of a sharp-edge gust. The equations may conveniently be considered
as the product of a factor, which may be regarded as a lift-curve slope,
and an unsteady lift function, designated by 1 - ¢ for the function
due to the angle-of-attack change and by .¥v for the function due to

the sharp-edge gust. These unsteady lift functions are shown in

figures 6 and 7 and are given by the following equations: For
the 1 - ¢ functions '

(1-0)p3=1- 0.283¢70 5408 (20a)
(1-0),.0=1- 0.361070 P18 (20b)
(1 - 0)gm = 1 = 0.1650 0 0% _0.335670:3908  (50c)
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and for the VY functions

'WA;3 Z 1 - 0.679¢ 0P8 | .ppge3R08 | | (21a)
Wog=1- o.uuee'o'29oé - 0.272e-07725s _-0.1938—3.005' (21b)
Lo .=1- 0.2360°07088 _ (.513,70-3648 o.171e'2;”25 (21&)
f£=o== 1 - 0}5008-0.130s_ 0.500<e"s - (22)

Equations (21) are based on equations of reference 5; whereas equa-
tion (22) is the function that is suggested for wings of infinite
aspect ratio in reference 3. Inspection of equations (20) shows that
the ¢ function for aspect ratios 3 and 6 is given by a single
exponential term. It is probable that the ¢ function for higher
aspect ratios, say 10 and even 20, may also be given to a sufficient
approximation by a single exponential term. Therefore, the assumption
is made that in general .® may be represented by an equation of the
form ’ :

o = aje™s . - (23)

Interpolation, for example, of the curves in figure 6 shows that
the ¢ function for aspect ratio 10 might be approximated by the
equation: ' .
_ -0.3s
¢A:1o = Oihle ' ‘ (2k)
The analysis does not necessarily limit ¢ +to a single exponential
term. Other terms could be added with some increase in labor, but the

degree of refinement obtained is not expected to add much to the over-
all accuracy of the solution.

Although the functions given by equations (20) to (22) are known
to approximate the true functions quite well over a large range

in s <s = %H P), the ¢ functions given by equation (21) do not

: o]
vanish, as they should, when t = 0. When used in the computational
procedures given hereinafter, these functions, therefore, are to be
taken as zero when t = 0. Another point to note is that the variable s
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is given in terms of a reference chord cg; thus this variable as
applied to the wing is different, in general, from the variable as applied
to the tail.

Examination of the values of lift-curve slope, which were stated
to be present in the equations taken from reference 5, reveals that they
may be approximated with good accuracy by the product of 2nx and the

n ﬁ 5 for steady incompressible
flow. 1In the present paper it is assumed that compressibility and -
aspect-ratio corrections can be made by replacing this aspect-ratio
1
correction by a compressible aspect-ratio correction defined by KTJQ——,
+ 2
where A' = Aﬂl - M2 and by'multiplylng this -correction by the Glauert-

—_
\1 - 2
procedure then for taking into account three-dimensional and compressi-
bility effects in the present analysis is to determine mp from the
forward speed and aspect ratio of the wing and to use the 1 -9

and { functions, equations (20) to (24), for the aspect ratio which
is nearest that of the wing.

often-used aspect-ratio correction

Prandtl Mach number correction to give the product mp. The

Some word of explanation of equation (16) might be worthwhile at
this point. The ®(t - t) function is associated with the lift forces
which are due to the wake. Without this term the equation would yield
the steady lift corresponding to the instantaneous values of angle of
attack and vertical velocity. If equation (16) is integrated by parts
and the conditions -are stipulated that w, w, @, and ¢ are all zero
at t =0, the following equation may be found:

Ly = Belbgw - (1 - 0)Bet + BcwE- % - (2 - %)‘i[q”

' t At
(1 - <I>0)Bc21(% - E)Ep + Bczf wo(t - T)dr - .BcZUf pb(t - T)ar -
. ¢ ; 0 ' 0 ’

Bc l(% : %)\/;t éé(t - T)dr | E ' .(25)

where B has been introduced as a forwafd—speed and aspect-ratio
parameter defined by the equation :

B = mynpU | o (26)
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With reference to-equation (23), ¢, and éo in equation (25) would
have the values .

®o = a)
. _ & .
%= -

The form of Lj given by equation (25) is presented because -this form
is more convenient to use in the present analysis.

For this analysis the total lift and moment acting at the elastic--
axis location are desired. For the present, the total 1ift L and
moment M of the forces due to circulation are found; the inertia
force and moment are to be treated separately. Summation of all the
1ift forces due to circulation and summation of the moments of .these
forces about the elastic axis gives the desired equations for the ‘aero-
dynamic 1ift and moment acting on the airfoil over an interval 1 as
follows: : ' :

L=L; +Ly+Lg " . = , (27)

M = (a - E)Ll - (—35 - a)L2 + (a - %)Lé | (28)

The loading on the wing.- The normal and torsional dynamic loads
that are held in equilibrium by the elastic restoring forces of the
wing may be found by considering all the aerodynamic and inertia forces
that act on the wing. The mass situated at any station (see fig. 4)
can be shown to have an inertia normal force equal to

-mW + mep

and an inertia torsional moment about the elastic axis equal to

mew - mk<Q

If the aerodynamic forces and moments (see equations (18), (19), (27),
and (28)) are added to these inertia loadings, the total normal and
torsional loadings on the wing at each station are found to be given,
respectively, by the equations:

'p= -mv + med + L + Ly

qQ = meW - mk°¢P + M - <§ - a)L3 + Mll
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‘The terms L3 and M) ordinarily would appear with the aerodynamic

1ift and moment values but are treated separately so that they can be
combined with the structural mass terms. If use is made of equations (18)
and (19), the loading equations become -

p = - mW + EE6 + L~ ’ (29)
q = BV - TKoP + M (30)

where

4 2 L
_ e} nplc (1l _8a nplc
‘Ek+-l+<2 c>+128j|

The terms appearing with the structural mass quantities in the defini-
tions of m, me, and fik® are the terms which are commonly associated
with apparent mass effects.

The value of the shear forces Lf and the moment My +transmitted
to the wing by the fuselage can be found in the following manner: From
equations (11) and (12) the values of the inertia loading on the forward
and rearward sections of the fuselage can be shown to be given, respec-
tively, by the equatlons

Pe

g [{0) - (0)x] (31)

me [#(0) - $(0)x + swj (32)

Integration of these inertia loadings over the length of the fuselage
and addition of the aerodynamic tail load 2Lty give the value of the
total load transmitted to the wing; one half of this load is designated
by L and is assumed to act at station O, the other half being con-
sidered to act through the corresponding statlon on the other half of
the wing. Integration of the moment of the inertia loading about the
elastic-axis location and addition of the moment -2xtLt of the tail
"forces give the total moment due to the fuselage; one half of the
moment is designated Mfr and acts at station 0. The values of Lf

Pr
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and My thus found can be given by the equations:

Ly = -M%(0) + M3p(0) - M3b + Ly (33)
My = Mpi¥(0) - MyB(0) + M5B - x¢Ly . (3%)
where the M;'s are considered to be generalized masses defined as
follows: . : ' '
1 Xt \
Ml = § g dx
Xn
1 ¥t
My = ‘é‘f mex dx
Xn
L%
° 3
- (35)
N %
1 2
M)+ = -2-/ meX dx
Xn
1 [ %t
M5 = ‘2" m,fxwl dx
X
1 /7t 2
0 /

The generalized mass conétant Mg, although not appearing in equations (33)
or (34), is included in this group because it occurs in a subsequent part of
the analysis. In the derivation of equation (34), the aerodynamic moment

of the tail about the tail %—chord position is neglected since it is

considered to be small in comparison with the value x,Li. The 1ift on
the tail Lt can be found by application of equation (27) to the tail
surface. In this case the ¢ function appropriate to the tail should
be chosen and the values of displacement w and ¢ should be replaced
by Wf(Xt) and at, the values of deflection and angle of attack at
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the taillﬁ—chord position. These values are given by equations (13)
and (14).

Matrix equation of equilibrium.- The problem of computing the
response may be considered to be one of the determination of the deflec-
tion and.rotation of a beam which is subjected to normal and torque
loadings.. In differential form, the bending and rotational displace-
ments are -related to the normal and torque loadings by the well-known
expressions:

5 . -
LEI&:;; (36)

-5 = - (37)

where in this instance p and q are the loadings per unit length of
beam. In-addition to these two.equations which are considered to apply
to the wing, an equation for computing the elastic deformations of the
fuselage may be found; this equation may be found in the following manner.
The rearward part of the fuselage is considered to be a cantilever beam
subjected to the inertia loading given by equation (32) and the tail- .
force 2Lt. If equation (36) is applied to the fuselage and use is made
of equations (12) and (32), the following equation for fuselage bending
results: '

) 32 ¥ S .
5 %E EI g)% = mg[#(0) - F(0)x + By | + 2L (38)

X

in which Lt wmust be treated properly as a concentrated load and I
is the bending moment of inertia of the fuselage. Since Wl represents
8 vibration modal function, the following relation exists: :
2,
32 oWy 5
== Elp —— =m Wi
a2 T2 T

where wf' is the frequency of vibration associated with Wj. Equa-
tion (38) may therefore be written

amfmfew_l = -mp E(o.) _$(0)x + Bwl:] ¥ 2Ly
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Multiplication of this equation through by W1 and integration
between O and xt results in the following equation for fuselage
bending

wpPMb = M;(0) + M5B(0) - Mg + Ly ~(39)
.where M3, Ms, and Mg are defined by equations\(35).

Equations (36), (37), and (39), when the loadings given by equa-
tions (29) and (30) are considered, are seen to be rather involved
integro-differential equations but describe completely the motion of
the airplane. The problem is to find functions w, ¢, and ® which
satisfy these equations and which satisfy both the boundary conditions
and the initial conditions.

The problem of finding the w and ¢ functions may be simplified
considerably by reducing the rather complicated equations of motion to
a simplified and systematic algebraic form. The first step (see
appendix C) is to replace the differential equations (36) and (37) for
wing deflection and wing rotation by the following simple matrix
equations

[l - |»] o (10)

[=]le] = |a] (k1)

"The matrlces in these equations are defined in appendix C (see equa-~
tions (C22) and (C23) and equations (C29) and (C30), respectively) and
have been derived on the basis that the displacements along the semispan
are given at six stationms. .

Equations (40) and (41) and the fuselage deflection coefficient &
are now combined in a single matrix equation of the form -indicated as
follows:

oo ol]ls 0
o o [v1]- 12 e
o o [B]|]o | 'q| '

This form is chosen because it will be useful subsequently. With the
notation given in appendix A, equation (42) may be abbreviated to the
form:
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B

[c | wi|= 7] : - (43)
. |

" This equation may be regarded as the loading matrix equation of equi-
librium; it relates the loadings to the displacements by linear simul-
taneous equations. The boundary conditions are automatically satisfied
when this equation is used because they had to be taken into account

when the submatrices [A:] and [?:] were derived. Only the initial |

conditions remain to be satisfied and these are treated separately in a
subsequent section.

Transformation of the losading equations into difference form.-
The loading equations are now simplified by replacing the time deriva-
tives by difference equations: If equation (5) is used to replace the
derivative in equations (29) and (30) the values of the loading at
-the nth time interval are found to be -

Pn= -%(2wn - 5wn-l + ll-wn_g - Wn-3) + ?g(e@n - 5cpn-l + thn-Q - CPn'_3) + Ln
¢ .

(b4)

a— —2
e, fik
=52 - Sny + g - v 3) - 5(29, - Sony + Menp - Pno3) 4 My

(45)

The values L, and M, are found by determining the expressions
for Iy, Ly, and L; at t = ne ~(see equations (27) and (28)). of

these L; 1is the most complicated, since it (see equation (25)) involves

three unsteady 1lift integrals of the Duhamel type. Fortunately, however,
a rather simple recurrence relation can be developed which allows the
calculation of the value of these integrals at a given time interval
directly from the value at the previous time interval. This derivation
is presented in appendix D and is made possible because the & function
is of an exponential form. (Where the ¢ function is given by more
than one exponential term, a recurrence relation for each term may be
written.) From the derivation in appendix D, therefore, the value of

the three integrals at the nth timeé interval may be given as follows:

Becle - Bcle| . 3 v
Fn + 2C ®ovn - T2 E@O + c(ﬂ - %>®£lq’n ' . (46)
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where
. -Y€ ’
Fp=e ¢ Fo g+ & +8Pn

in which g and g' are defined by equations (A5) in appendix A. With
this expression to replace the value of the integrals in equation (25),
the value of Ll may be written

Ly = ﬁcl(@o + % Qo>wn - (1 - og)Bclw, + Bcl Eil_- oo) - %? bo -

(30 + & 60)<(2 - %E]% + (1 - 00)8c21(R - By + 7y (47)

With the use of difference equation (4), this equation may be trans-
formed finally into the form'

-

Lln = down + dlwn-l + dewn_e + d3wn_3 + do'@n + dl'mn_l +
do'Ppn-2 + d3'Pp.3 + F - (48)

where the d's are defined in appendix A. Likewise, from equations (4),
(17), and (26), Lp, may be written

L Blc

2n © ohe élﬁh - 18mn—l + n-2 - 20n. 3)

If Lln,‘Lgn, and the value Lgn of the gust force at t = ne are

introduced into equation (44), the value of p at the nth time interval
can be shown to be given by the equation:

Pn.= No¥ +‘nlwn-l.+ No¥p-2 * n3wn—3 * T]O'q)n * nl'ansl * n2'¢n_2 *
713"Pn-3 + Fn + Lgn . _ ) ()“'9)

where the n's' are coefficients which are given by equations (A3) in
appendix A. In a similar manner, the equation for q (equation (45))
can be reduced to the form:

=V 1 1] ]
9 = Y%o"n * "1¥n1 * Vo'ne Y V33t Vo P V1 %nar Y V2 Pna !
e o= e oS
V3cpn_3+<a )+ (8 - ¢)lep | - (50)
where the V's are given by equations (A4) in appendix A.
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' 1
The value of aerodynamic 1ift acting at the tail L-chord It is

found most conveniently by applying equation (49) to one-half of the
tail surface. This application is made by modifying the 1 coeffi-

cients as follows: The mass value m 1is set equal to zero, % is
taken as %, ¢ 1is replaced by cg, and Bcl is feplaced by Bt, defined:
as the forward-speed and aspect-ratio parameter of the tail by the

equation:

1

v

In addition, w and ¢ are replaced by the deflection and rotation of
the tail given by equations (13) and (14). With these substitutions
the value of Ltn is found to be ' :

Ltn = fow(o)n + flw(O)n_% + few(o)n_2 + §3w(o)n_3 + fo'cp(o)n +

£1'9(0)n-1 + f2'9(0)n-2 + £3'9(0)n-3 + Fo®n + F18n-1 +

Fpdpp + T3y g + Ftn + Lgtn _ ' (52)

where

‘Ftn = eVt Ftn-l * JV(O)n-l + J'(P(O)n-l + 3Sn-l - (53)

Lgt is one-half the tail gust force at t = ne and the f's and J's
n

are defined by equation (A7) and (All), respectively, in appendix A.

With equation (52) and difference equations (5), equations (33)
and (34) for Lr and My and equation (39) for fuselage béending may
be reduced readily to the following form:

Lfn==7ow(0)n + 71w(0) 1 + 7o%(0)yp + 73V(0)n_3 + 79'9(0), + .
71"9(0)11;]_ + 72"1’(0)11-2 + 73'@(0)11_3 + 708n'+ 71%q-1 +

70,0 * 736n_3 + Ftn + Lgtn ' (54)
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My = Hgw(0)y + wyw(0)n g + upw(0)y p + ugw(0)y 3 + ug'®(0), +
B 'P(0)p 1 + uo'@(0) o + “3'Q(O)n-3 + Hdp + M8y g +
l:l.-esnfa + ﬁ36n_3 - xtFtn - X.tLgt o ' (55)
n

0 = rOW(O)n + rlw(O)n_l + rew(O)n_2-+ r3w(0)n_3 + ro'w(o)n +
rl'cp(o)n-l + relq)(o)n-z + r3'cP(O)n_3 + Foan + 1—'16n_l +
—1:2811_2 + ;3611_3 + Ftn + Lg‘t (56)

\ n

where the 7's, pu's, and r's are given by equations (A8) to (Al0) in
appendix A..

The complete set of loading equations as well as the fuselage
bending equation are now available in difference form. Equations (L49)
and (50) apply at each spanwise station and in addition the value
of Lf and My must be introduced at station O. The coefficients M,
v, 7, and so forth are seen to involve only the physical properties of
the airplane structure, the forward-speed and aspect-ratio parameters
given by equations (26) and (51), certain constents derived from the
unsteady 1ift function, and the time interval. The time interval ¢ -
that is chosen should be fairly small in comparison with the natural
period of the fundamental mode in bending of the wing. To serve as a
guide an interval chosen near 1/30 of the estimated period of vibration
of the fundamental mode appears to be quite satisfactory. Of course,
some .caution should be observed in the choice of this interval if the
airplane is near a critical condition where some mode other than the
- fundamental may predominate. For example, if the airplane is flying
near the flutter speed, the characteristic frequency of the response may
be near the natural torsional frequency.of the wing. The time interval
should be modified accordingly.

Recurrence matrix equation for response.- Equations (49), (50),
(54), and (55) for loading, equation (56) for fuselage bending, and the
equilibrium equation (43) may now be combined to give the recurrence
matrix equation for response. In order to simplify the process of
combining these equations, only the abbreviated or symbolic form of the
matrices which occur are used. The definitions of these matrices are
given, unless otherwise stated, in a complete group in appendix A.

Application of equations (49) and (50) to' each of the spanwiée
stations and of equations (54) and (55) to station O leads to a set
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of loading equations which may be put in the matrix form given by the

following equations:
7 °n-3 * [“O]I"ln * ["1] I"l n-1*

.A+EUJ na*[ﬁ]

lpln = 7Olgn + |7l‘8n—i + |72l6n-2 +

e o2 + [ ]ovs + o]
B 1 ‘

g
|qln = “olén * |“1|5n-1 * |“2|6n-2 * * ["1] l"ln-l *

L N O [ A e [ e e

¢ P 2

n-2 *

+ F

n-3 +

+

n

u38_

n-2 +
[V3']|q’|n-3 + [( ; %)] !3 +lLgl| + };t‘<Ft ¥ Lgt>n -~ (58)
. n :
where . ' _
. IFIn - el'7€ Fln'l + [g]lwln_l*[g'] I @ln_l | (59)’
(o), = o7t (Fi)gy + 39(0), + 9%9(0), , + 35, (60)
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Equa{;ions (57) and (58) and equation (56) may now be combined to
form the following matrix equation:

0 0 erJ [ro 'J d Ty 71| rl: 3
o|| = 7] ["o] ["0] lwl N i"l: "l':' le *
ol A%l o] Dolf{lell, |I] Pr] [29) |lel],.,

= L) =] [

7 ] e[ |l e B ] -
el Ba] Lol el sl B] B o]

|i| [:] |F§|:|:Tn (61)
ol [o-3))|
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For simplicity, this equation may be abbreviated to the form:

- 5 o : ) ' &
P| =|s. S : S + |s
el = [ooll) + [l o [l sl
) ® n ? n-1 @ n-2 ® n-3
'[RJ Fl+|Tg (62)
n
where
5|
F,n=[e;]VFn_l+[wa' A (63)

and the matrix rigln is defined in the section entitled "Derivation

of Gust Forces."

‘Substitution of equation (62) in equation (43) gives

5 10 10 5 ' o}
Bﬂ w"’;‘[%é] w o+ [éi] w +,[éé] W +‘[é; v +
¢ n ? n ¢ n-1 ¢ n-2 ? n-3

Lgl_ __ - | (64)
With the use of the notation

B - |6 - G| (65)
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i

and
o) o) o
sl 5] () |[F] +|ze|| | (600
|Q|n [éi] W + [%é] w‘ + [.é] v + +| Lg (66)
® n-1 ? n-2 M n-3 : : ba!
equation (64) may be written simply
5 . |
B e
° A
n

Multlplylng through by the rec1procal of [ﬁ] gives flnally the
"equation )

(68)

This equation gives‘the displacements that apply at time n in terms
of the displacements that occurred at several preceding values of time
(sée equations (63) and (66) for the definltions of |F|, -and el -

From equation (68) the complete response of the airplane can be
computed once the character of the gust is knmown. The matrlx of gust-

force values |L can be determined by the procedure given in the’
€ln

section entitled "Derivation of Gust Forces." The initial conditions
(treated in the following section) are used to obtain three successive
initial sets of the displacements. With these sets of displacements
the next set may be obtained by application of equation (68). With ‘the
newly found set and the preceding sets of displacements, the next set
may then be found, and so forth, until a sufficient time history of

the dlsplacements is found from which maximum loading conditions may be
~determined.

The reason for using the difference form of the derivativeslas.
given by equations (4) and (5) might now be given. Equation (64) may
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be considered a differential equation, since the matrix [C] contains

the spanwise derivative matrices [A] and - [B] and may be likened to
the differential equation which relates the load to the deflection for

a beam. The unknowns are the deflections at time n. The right-hand
terms correspond to the loading, the first term being the only one

which is not known since it contains the unknown deflection. The sub-
sequent inversion of the matrix [D] leads to, in effect, the solution
to this differential equation and, in the beam analogy, corresponds to
the integration of the loading to obtain the deflection. When numerical
methods are used, the deflection may be computed with good accuracy by
integration of the loading. On the other hand, if the difference equa-
tions which apply at an interior ordinate had been used, the matrix [C]
would have appeared as an operator on one of the known deflections on
the right-hand side of the equation. Effectively, its operation would
be to differentiate a known deflection, correspondihg in the beam
analogy to the attempt to obtain the load which caused a given deflec-
tion. This process, however, cannot be done with accuracy when numeri-
cal methods are used because of the difficulty encountered in the form
of small differences of large numbers. The difference equations which
apply at an outer ordinate and, consequently, lead to an integration
process, therefore, have to be used.

Derivation of the Initial Response

As has been mentioned, some initial values of deflection are
needed before equation (68) can be used. This section shows how these
values are obtained. The airplane, Jjust before gust penetration, is
considered to be in level flight, and all displacements which follow
are given relative to this level-flight condition. The initial condi-
tions are that the vertical displacements, vertical velocity, wing
rotation, and angular velocity are all zero. The gust force can be
shown to start from zero and, therefore, by Newton's second law the
additional initial condition can be established that the acceleration
must be zero at the start of the response. These conditions can be

~ satisfied, and the beginning of the response can be found by means of

the analy51s which follows.

" The initial response is assumed to be given in terms of four suc-
cessive ordinates, denoted by W_p, W_1, Wo, and wy; the wy ordinate

is considered, as in the case of the damped oscillator, to locate the
origin of time. The first and second derivatives at the wp ordinate
are given by equations (8) and (9). By virtue of the initial conditions
(the vanishing of the deflection, velocity, and accelerations at t = 0),
the ordinate wp and the derivatives given by equations (8) and (9)
must be zero; therefore, the ordinates w_o -and w.] are found to be

related to the ordinate w1 Dby the following relations:

H
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W_p = 8wy ’ (69)
W_1 = -wp (70)

These relations are general and must apply for deflection and rotation
at each of the spanwise stations and for the fuselage deflection as well,
. that 1s, the displacements at t = -2¢ must be minus eight times the
displacements at t = ¢, and the displacements at t = -¢ must be the
negative of those at t = €. Substituting these ‘conditions in equa-
tion (64), taking n as equal to 1, and using the condition that the
displacements are zero at t = 0 give the following matrix equation in
terms of the displacement at t = € alone:

5

[D] + [Se] + 8[53] Wl [R”ig| (71)

Pl

The term ulf,l is zero and therefore does not appear in this equation.

Solution of this equation gives the values of the displacements that
occur at. t = ¢ (n = 1).

The three sets of initial displacements required to proceed with
equation (68) are thus known: the set of deflections found at t = €,
the zero set at t = 0, and the set at t = -¢ given by equation (70),
or simply the negative of the displacements which were found at t = €.
In the actual case no displacements are present at t = -¢, but these
displacements may be regarded as being of a fictitious nature the only
purpose of which is to allow the step-by-step evaluation of the dis-
Placements to be started easily.

Derivation of Gust Forces

The matrix 'ig'n which appears in the response equation (68)

is derived as follows. From equaticn (15) and the notation of equa-
tion (26), the total gust force acting over a station section at the nth
time inverval may be given by the equation

S ne 3 : -
' Lg, = Bcl JQ .5¥ W(ne - 1)dT (72)
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The integral in this expression is also of the Duhamel type and since
the V¥ function is expressed by exponential terms (see equations (21)),
the ‘integral may be evaluated quickly by a method similar to that
developed in appendix D. The procedure of computing the gust force

by this equation and then the response is not recommended, however,
since a complete response evaluation would have to be made for each
gust ‘considered. Instead the procedure recommended is to compute the
response due to a sharp-edge gust; then-with this response the response
to any gust may be found direcply by superposition.

Thus for the case of a sharp-edge gust, equation (72) reduces
" simply to

Lg = Belvy, ‘ (1)
where V, is the value of the V function at t = ne. This equation

when applied to each of the spanwise stations leads directly to the
matrix equation for gust force:

colovo
c1liva

Calovp

||, = ¥n o

¢3t3V3
culyvy

0515V5

If the gust is uniform in the spanwise dlrectlon, the v's in this
equation w1ll all be equal

'

In a similar manner, one-half the gust force acting on the tail’
due to a sharp-edge gust may be shown to be

\

Lg_tn = BtVo‘th ] | (75)

where the gust gradient is assumed to be the same as for station O and ‘“tn

is the value of the V¥ function for the tail. This equation and equa-
tion (T4) may now be combined to give the desired matrix ‘Lgln

follows:
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Bevo 0 ||wy
0 Beolovol|¥ |n
’ 0] Bclllvl
l_ Lgy, 0 Beolavp| %)
L. | = = 7
- Bl ngl O Beslzvs - ‘
n
' 0 Beylyvy

In the application of this equation it should be kept in mind
that Lgt does not begin to act until the tail starts to penetrate

the gust. The time interval at which penetration starts may be taken
- Xt

.-as the interval nearest to the quantity T

Computation of Loads and Stresses

Once the time history of the displacements has been found from.
equation (68), the normal or torque loading on the wing can be found
with little additional work. If the notation of equation (66) is used,
equation (62) may be written '

- \P|n=[sa W w

This equation shows that the loading matrix |P‘| may be found by

adding an easily computed matrix to the matrix |Q|, the value of which
will have already been determined in the response calculation. The
loading matrix |P is remembered to be defined in terms of the normal
and torque loadings, and either of these loadlngs may be found
1ndependently of the other.

The loadings thus found are considered to be applied statically,
and the stresses are then found by ordinary static means. Since the
loadings can be computed for any value of time, the complete stress
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history of any point in the structure may be computed. In general, the
maximum stress at different points in the structure is expected to
occur at different times. Some. guide as to the probable time of
occurrence of the most severe stress may be had, .however, if the
computed wing deflection is observed. It is likely that maximum stress
occurs in the range where wing bending appears to be most pronounced.

The acceleration of any point in the structure may be found, if
desired, with the aid of equation (5).

COMPUTATIONAL PROCEDURE

The principal results of the analysis presented in the previous
sections are summarized herein in a step-by-step form. ‘Only those
steps which actually have to be performed when a determination of
structural response for any airplene is being made are listed. In
order to, conform with standard aircraft practice the use of inch-pound-
second units throughout is recommended.

The steps are as follows:
Preliminary steps:

(1) The wing semispan is divided into six sections and a station
is located at the middle of each section (see fig. 3). The sections are
proportioned in any convenient manner so that certain stations will
fall at concentrated mass locations, such as engines or fuel tanks.
Station O is located near where the fuselage intersects the wing and
station 5 is located near the tip. The properties EI, GJ, m, @€,

and 'ﬁﬁe are then computed at each station.

(2) From the EI, GJ, and A; values determine the [A:] and [?:]
matrices by the method given in appendix C. ' ,

(3) Compute the gust-force values at the successive time intervals
"for both the wing and the tail. (See section entitled "Derivation of
Gust Forces.") The V¥ functions used are taken from equations. (21)
or (22) for the aspect ratios which are nearest to those of the wing and
tail, respectively. A time interval that .appears satisfactory is one
in the neighborhood of 1/30 of the estimated natural period of the funda-
mental bending mode of the wing.
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The recurrence equation:

(4) With the quantities determined in steps (1) and (2), determine
the matrix elements given by equatlons (A3) to (A5) at each of the
spanwise stations. '

(5) Compute the fusélage and tail coefficients given by equa-
tions (A8) to (A1Y). (See definition of My, Mp, M3, My, M5, and Mg

given by equations (35).)

(6) With the use of the coefflclehts determined in steps (4)

and (5), set up the follow1ng matrices: [D] [Si] [Sé] [éi] [RJ

[] -and [WJ These matrices are defined in appendix A and for the
most part are found from simple diagonal matrices of the coefficients
determined in steps (4) and (5). The form, for example, of the Ls:]
matrices is illustrated in table 1 with randomly chosen numbers. All
elements which are not shown are zero. It may be of interest to explain
briefly the significance of the various terms that appear in the matrix.
In order to facilitate the explanation the matrix has been partitioned
into several submatrices. The terms in the upper left-hand box are
associated with wing bending and the airplane vertical motion; whereas
the terms in the lower right-hand box are associated with wing torsion
and airplane pitching. The terms along the two.subdiagonals serve to
couple together the bending and twisting action. The terms in the
first row and first column are associated with fuselage bending. The"
omission of certain terms in the matrix will lead to the matrix which
applies to the more simple type of aircraft motion. For the case, for
example, in which only wing bending and vertical motion are to be
considered, computation of only the terms which make up the upper left-
hand box is sufficient.

(7) Determine the reciprocal of the [Q] matrix and set up the
following matrix equation:

o}
wl = o] |, (78)
?l, '
where
| o) o) 3

R[5 Y 5

Pin-1 ?In-2 ?[n-3 : n
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in which

i In these equations the matrices containing ®, w, and @ are displace-
| ment matrices and are defined in appendix A. The matrix |F| takes
into account the forces which develop due to the "wake effect,"

and 1Lg is the gust-force matrix which is derived in step (3).

Equation (78) is seen to give the displacements that occur at time n
in terms of the displacements which occurred at the times n - 1,
n-2, and n - 3, : .

The initial response:

(8) By use of the matrices given in step (6) and the gust forces
which apply at n =1, set up the following matrix equation:

3

!:[D] + [55] . s[sg]] J - [g“ig“l | | (19)

The term If‘l does not appear in this equation because it is zero.

(9) Solve equation (79) for the displacements.' Any convenient
method, such as the Crout method (see referehce 6), may be used. The
displacements found will be the value of displacements that apply at
t=¢ or n=1.

The response:

(10) The response may now be found by successive application of
1 equation (78). The response at n = 1 has been found in step (9);
| the response at 'n = 2 1is next to be determined. The values of the
| displacements in the n - 2 term of the response equation are all
taken to be zero (initial condition), and the values in the n - 3 term
are taken as the negative of those found in step (9). The gust forces
to use are those which apply at n = 2. The deflections that apply
at n =2 are then found by matrix algebra. For convenience the column.
nmatrix |Q| is evaluated first, and then multiplication of this column
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matrix by the reciprocal of the [D] matrix gives the deflections

at n = 2. With the newly found deflections at n = 2 and the deflec-
tions at n =1 and n = O, the deflections at n = 3 can be found,
and so forth. This process is continued until the wing bending appears
to be the most pronounced.

Wing loading:

(11) With the deflections known, the value of wing loading in
bending or in torsion can be computed directly from equation (77). The
stresses at any point can then be computed from the wing loading by
ordinary static means. Since the loading may be computed at any value
of time, the complete stress history of any point on the structure may
be computed.

EXAMPLE

As an illustration of the method of analysis given in the present
paper, the response of a typical two-engine airplane due to a sharp-
edge gust is determined. For brevity the fuselage is assumed rigid
and only vertical displacement and wing bending are considered. The
weight variation over the wing semispan and the equivalent-weight
concentrations are shown in figure 8. In this figure are shown also
the station locations and the interval covered by each station section.
The solution is made for a forward velocity of flight of about 210 miles
per hour and a gust velocity of 10 feet per second. In tables 2, 3,
and 4 are listed, respectively, the various physical characteristics
and the factors which come from the unsteady lift function, the values
of the V¥ function and the gust-force matrix, and the matrix elements
that are required for the solution (steps (1) to (5)). The ¢ function

_for an aspect ratio of 6 was chosen (see equation (20b)); and the ¥ func-
tion for an aspect ratio of infinity (equation (22)) was used.’

The [A] matrix as computed from the values of A and EI
listed in table 4 is shown in table 5(a). In the computation of
the 7 values shown in table 4 for station O, the fuselage was treated
as a concentrated wing mass. This treatment is allowable since the
fuselage is assumed rigid and further saves the work of computing
the 7 values (see equations (A8)). The [Dﬂ - [sq ] or [D] matrix,
which in this case applies only to bending and vertical displacement,
is shown in-table 5(b). The equation which is formed from equation (78)
(step (7)) and which involves the reciprocal of [D] and the [Sij

and rRJ matrices is shown in table 6. The equation for computing the
initial response (step (8)) is shown in table T.
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The solution to these equations is shown in figure 9 in which
deflection in inches is plotted against spanwise station points for
various intervals of time. For clarity the deflections for the odd
intervals have been left off. From these curves the consequent wing
bending and the manner in which the airplane is swept upward by the
gust can be seen. The time histories of the loads (equation (77))
that occur at each of the spanwise stations are shown in figure 10.
These curves indicate the presence of some second-mode excitation in
the response. The stresses that occur at stations 0, 1, and 2 are
shown in figure 11. The presence of second-mode excitation is not
readily discernible from the stress curves. '

+

DISCUSSION

' A method for computing the stresses and structural action of an
airplane flying through a gust has been given. The method is based on

aerodynamic strip theory, but over-all corrections for compressibility

and three-dimensional effects can be made as is indicated by a suggested

correction procedure. Some tail forces are included in the analysis

and others might equally well be included if their character is known.

The analysis as given is general enough to include the wing bending
and twisting flexibilities and the fuselage flexibility. In a good
many cases that may be considered, however, the last two of the flexi-
bilities may prove to be of negligible importance. Some investigators
have indicated (see reference 1) that unless the forward speed of the
airplane approaches the flutter or divergence speed of the wing, the.
torsional deformations do not have to be included. Likewise, in cases
in which the fuselage is rather stiff, the effect of fuselage flexibility
on the response may be rather small. In such cases in which either or
both ‘of these flexibilities may be ignored, the analysis is; of course,
simplified and shortened. The example presented in the previous section
illustrates this point. In the present state of understanding of gust-
response analysis, enough information is not available to indicate
definitely when and when not to include the various flexibilities of

.the aircraft structure. The analysis in the present paper may provide

a useful means to assess their importance. The extent, for example,

to which coupling exists between wing bending and wing torsion in any
particular case may be seen by comparing the displacements obtained from
the coupling terms with the displacements obtained from the noncoupling
terms.

Both the symmetrical and antisymmetrical types of gusts can be
handled by the analysis given in the present paper. In general, the
symmetrical gust is expected to produce the most severe stress condition,
and therefore only the matrices which apply for a symmetrical case have

~
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been given. These matrices were derived by using the boundary condi-
tions for the symmetrical deformation of a free-free beam. The case

of an antisymmetrical gust can be treated by replacing these matrices
by the ones which apply for the antisymmetrical deformation of a free-
free beam. The case of a general unsymmetrical gust can be handled by
first breaking the gust into two parts, a symmetrical part and an anti-
symmetrical part, and then treating each part independently. ’

It might be of interest at this point to compare briefly the
matrix method to a modal-function solution. One of the chief disad-
vantages of the modal-function solution is that the modes and frequencies
of natural vibration of the structure have to be computed in advance.
Then, a large number of integrals which involve these modes have to be
determined in orcder to set up the problem. In the present analysis
the physical properties of the airplane are used directly in the setting-
up of the problem. Further, in order to make the modal solution
practical the higher modes must be dropped and only the basic or funda-
mental modes can be used. Hence, the success of the analysis depends
to a large degree on how.well single modal functions, one mode each for
bending and torsion, can represent the airplane distortion. 1In the
analysis of the present paper the distortions are found for all practical
purposes as the correct values at a number of spanwise stations, at
least to within the accuracy to which the aerodynamic and structural
parameters are known. Also, 'in this analysis, probably the most
difficult operation is the inversion of the matrix [Dﬂ, which is
actually not a very involved operation, especially when done by the
quick and systematic procedure afforded by the Crout method (reference 6).

The present paper -indicates the methods for determining the
response for both a sharp-edge gust and a gust of arbitrary shape.
Probably the best approach, however, is to compute only the response
-for a sharp-edge gust, since the response for any arbitrary gust may
. thereafter be computed by means of Duhamel's integral. To follow such
a procedure would also save a great amount of work in the evaluation of
the gust forces.

One of the important features of the method of analysis presented
is that it is not restricted to the gust problem. The approach used’
may be used to treat other problems of a similar nature. The landing
problem can be handled by simply replacing the distributed gust force
by the concentrated landing forces. In the landing problem also, the
problem is set up much more easily since the aerodynamic terms do not
ordinarily have to be included. However, the landing problem in which
aerodynamic forces are included may be solved by this method if desired.
The approach used herein may also be used to solve the problem of the
release of heavy objects such as bombs. This problem could be con-
sidered the inverse of the gust problem; a load is released rather than
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encountered. Some maneuvering problems, such as the sudden deflection
of the ailerons, and a number of other transient problems might also
be treated by an approach similar to that giveh in the present paper.

CONCLUDING REMARKS

A method for computing the stresses and structural response of an
aircraft flying through a gust has been presented. The method is based
on aerodynamic strip theory, but compressibility and three-dimensional
effects can be taken into account approximately by means of over-all
corrections. The method takes into account wing bending and twisting
deformations, fuselage deflection, vertical and pitching motion of the

.airplane, and some tail forces. A sharp-edge gust or a gust of

arbitrary shape in the spanwise or flight directions may be treated.
A suggested computational procedure is given to aid in the application
of the method to any specific case.

The possibilities of applying the method to a variety of transient
aircraft problems,Asuch as landing, are brought out.

Lahgley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va., January 19, 1950
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APPENDIX A
DEFINITIONS OF MATRICES USED IN ANALYSIS

For convenience in presentation,‘most of the matrices and matrix
elements that are used in the analysis are defined in this appendix.
The matrices are presented without derivations, but their orlgln should-
become evident by a study of the analy31s.

Matrices.- The various matrices that are used in the analysis are
defined as follows for the case in which the wing semispan is divided
into six sections: (The elements which are used in the matrices are
defined in the subsequent section.)
w(0)
w(1)
w(2)
w(3)
w( k)

w(5)

o(1)
9(2)
o(3)
o(4)
o(5)

|l

E
]
=

P |l
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p(0)
p(1)
n(2)
n(3)
p(k)
p(5)

|»]=

4(0)
a(1)
g(2).
a(3)
g(4)
a(5)

0

q

2 1=1]2|
1o

(4]
- [

See appendix C for definiticns.

0 0

: [cj: o[A] 0 "
o o [3]
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EINEIER
o g [g]
Matrix elements.- The matrix elements which appear in the matrices

defined in the previous section are eXpressed for convenience in terms
- of the following common factors: :

B = mAﬂpU QO

= al
2u : (A1)
- Sy o= ax ¢o ) -7al
5 _ 42
% =72

in which the last four are associated with the ¢ function for the
wing. (See equation (23).) With these factors the elements that must
be computed at each spanwise station are as follows:

dg —%(l -bo)Bcl + Becl (‘i’o + %50&) W |
dy; = §-(l o)
1 = g1 - ®0)Bcl

dp = -Sg(l - ®0)Bcl

l .
dB =3€(1 - &0)Bcl

do' = %%(l - ¢O)BCQZ(% - %) + Bcl El(l - 0g) - N (12)
%‘boUe - (<Do + %E?Oe)c(% - %)]

0 =30 - eopei(3 - 2)

dp' = (1 - °o)Bc2-l(13; - %)
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ey . .
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.Eg +dy 1 =f:ge+ a' - et
g | , _ Lme ' 9
-Z-l'd? T]2—-€2—+d2 +'T62.EC21
m , _ ImE . 1 2
2% "3 Tt Y -l
- DU
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4me : c
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_‘V3~—--€§.+ d3'8..— )
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The coefficients which must be computed for the fuselage and tail
_are expressed in part in terms of the following common factors:

1 \
Bt = 3imp,TUSY %o = a1,
. _eu o, _ ' (A6)
7y = aﬁkt to = 7481y ? :
o'to = 7t28.lt

in which the last four are associated with the ® functions appropriate
to the tail. Also used are the generalized masses given by equa-
tions (35) and the value 6] as given in equation (14). With these

factors-the coefficients for the tail and fuselage are as follows:

11 - 1 R
fo = -g;(l - d’to)ﬁt + Bt(‘bto + §¢t0€>
3 .
£, =21 - 04, )B ,
1 }eg )t > (ATa)
£, = -.2_€(1 - @to)ﬁt
£3 = 321 - Oo)Pe | )
fo' = =1 - o ( 1 ol - o )
0 * ge 'to)xt+§ct)5t+5t - Ptg) -
1. . 1 1 11
§(I)tOU€ - ((Ilto + -éQtoE)_(xt + §Ct):, +'—T;—B2 g tCt
1 . | - 1 7
£ =20 - agg)(xe + Zec)pe - Zoeee o
| / (ATD)
1 1 1 ' ’
' 1 1
f3 = —ﬁ(l - (I)to) (Xt + %‘H‘)Bt - l—é—G-BtCt
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-%%(1‘- 411;0) (l + %Ctel)ﬁt - B;; Elel(l - é’to) - T
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oU&] Oto + S0toS 5°t°1 @gﬁt%l

él—-‘

; ' 3 :
1-0 (1 1 e) |
( to) -t 1 Bt + pPtctol > (ATc)

3 o 1
“melt - oxg)(2 + ) - preren

mjw P

1( 1 ' 1
-—1_<D)<1+—ce) + =3
3e to 2 vl B? Toe totfl

/
7o=-%+fo \
72__2@4%”2' o )
73-6—2+f3 Y,
7o'=i—};2—+fo' )
71'=-§M2—2+f1'

TR ’ | (A8Db)
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73'=-h-;1—§+f3' )
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APPENDIX B .
DERIVATION OF DIFFERENCE EQUATIONS

In this appendix the parabolic and cubic difference equafione for
the first and second derivatives of a function are derived.

Parabolic equations.- For the parabolic difference equation,
consider the function shown in figure 12(a). This function is assumed to
be replaced by the arc of a parabola which passes through the three
ordinates a, b, and c¢. It can be verified readily that such a curve
‘can be given by the equation . :

YY) e

The first and second derivatives of this equation at y = € are gliven
by the equations '

dw c - a
= = - B2
dyj]y._.e 2¢ ( )‘
T 2 - ‘ .
dy y=¢ €

These equations are the standard difference equations for the first

and second derivatives of a function. The derivatives are purposely
taken at the middle of the three ordinates because the resulting
equations are suitable for use in the simplification of many problems.
If the derlvative had been taken at an outer ordinate, the approximation
afforded would not be accurate enough to be useful.

Cubic equations.- The cublc difference equations may be derived
in a manner similar to that for the parabolic equations. In this case
_ four successive ordinates are used. (See fig. 12(b).) The function
is replaced by a third-degree curve which is given by the equation
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Because of the increase in accuracy that results from the use of a
higher-degree curve, the first and second derivatives may be taken at
an outer ordinate with an accuracy which 1s about equivalent to that
given by equations (B2) and (B3). The derivatives at y = 3¢ are

dwf . 11d - 18¢c + 9b - 2a :
dy]y=3€ - 2 . (35)

d°2w _2d - 5 + L4b - a : :
= B6
@Jy:3e 62 f ) : ( )

If taken at the third of the four ordinates, the derivatives are

dw _2d +3¢c - 6b + a R .
dw - : _ B
dY]y= 26 6€ ( 7 )

- d%w | —d-2¢c+bD : | (B8)
E_yE y=2€ ; ’ ) :

Equations- (BS) and (B6) are used in the derivation of the response. °
equation for an airplane in a gust. Equations (B7) and (B8) are useful
in the derivation of the initilal response. ’ :
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APPENDIX C
DERIVATION OF MATRIX EQUATIONS OF EQUILIERIUM

Iﬁ this appendix the matrix equations .
| [A]lw' |p| (c1)
Bllel=1e] e

for symmetrical bending and twisting of a free-free beam.under normal
and torsional loads are derived.

Bending.- In accordance with the assumptlions made in this paper the
wing semispan is considered to be divided into six sections with a station
point at the center of each section (see fig. 3). The inertia force of
the mass and the aerodynamic force that develops over each section is in.
turn assumed to be concentrated at the respective station points. The
wing 1s thus effectively a beam bending under six concentrated loads and,
as such, will have a linearly varying moment between each station. The
following general equation for the moment between the 1 and 1 + 1 station
may therefore be written: '

M =ay + byy B ' (c3)

where

ay = [1+ b};(i) M(1) - y(l)lM(i +1)

bi’:_ﬁi%q@[(i +1) - M(1)]

in which y(1) 1s the abscissa to the 1 station.

The wing is further assumed to have a linear 1/EI variation
bétween stations with the correct value of l/EI at each station. This
type of variation would lead to an EI curve which follows very closely
the true stiffness curve of the wing and which of course has the correct
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values of EI at each station. A general equation for 1/EI may
therefore also be written; thus,

L _c+a ch)
CE o 1y (Ch)

" where

i, y(i) 1 y(4) 1
¢ = briy1] EI(1) “bhi4] EI(L + 1)

4 =1 1 1
A b>~1+1EJI(1+1) EI(1)

With equation (C3) and equation (Ch4) the well-known expression
relating deflection to moment for a beam may be written

=L = = = +Db +d
o2 E (a1 17 ) (c1 1y)

(C5)

The deflectlon may be found most conveniently from this equation by use
of the engineering beam theorem which states that the deflection of one
point on a beam relative to the tangent of the deflectlion curve at

* another point 1s equal to the moment about the displaced point of the
M/EI diagram between the two points. ' In this case symmetrilcal loading
is being considered and therefore the boundary condition at the center
line 1s that the slope must be zero; the deflection of each station
relative to this point therefore may be readily computed. Fortunately,
because of the convenient analytical representation of M/EI, these
deflections may be found by exact integration. The deflection, for
example, at station 4 due to the M/EI ' variation between statlons 1
and 1 + 1 may be given by the expression: '

y(1+1) - '
Loy e mmlen s am[p) - sJay
yii :



NACA TN 2060

57

Consideration of all the expressions of this sort leads to the total

deflection of each station relative to the wing center line.
deflection the more useful deflection relative to station O can be

readily determined. The values of the deflection thus obtained are
found to be expressible by the following matrix equation:

w(l)

w(2)

w(3) | = 28
EI(0)

w(k)

1% (5)

a1

8n1

a

31
ayy

-

alo
850
a32
ayo

0

et

0
0

0]

&u5

855 |

M(0)

M(1) }

M(2)

M(3)
M(L)

where the matrix elements are defined by the equations:

2
ajy = Xokl + Xl‘Al

2
8o] = Ao(hy +2p) + A7A,

+

az] = XO(Xl

+ .

aul = lo(xl

+ A A B

17271

Ao+ A3) +lk12Al +h (A + xS)Bl

. .
Mo * My + Ay) + A %Ay + A (s + M3+ 2y)By

ag) = holhy +rp + My + Ny +hsg) leAl a3y + A3 + Ay + A5)By

a1p = M°Cy

8o = xIQCl +
azp = Xlecl +
8 = XlQCl +

+

352 = XlQCl

’

2
AhoDy + XE Ay

2
MOy + 23)Dy + AR,

+ xgx

3P

Mo + A3+ €MD+ MpPAn + Ay(hg + Ay)B,

M(hp + A3 + My + hs)D) + AaPho + hp(Ag + My + As5)B,

-’

From this

(c6)

>(c7a)

f(cn)
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. L2
| 823 = M"Cp

_3 2 ‘ 3 2
as3z = Xz 02 + X2X3D2 + X3 A

3 .
o 5 f - (CTe)
a3 = MCy + xg(x3 + xu)D2 + x3 A3'+'X3XuB3
a5y = x2202 + xg(x3 A+ >»5)1‘)2 + x32A3 + x-3(.>q+ + x5)B3 ,
agy = A3%C;
2 2 '
Byl = 237C3 + AghDy + MRy, r o (c7a)

a5y = 23°C3 + A3(\y + A5)D3 + 1,24, + MsB),

ah5 = Xh2Cu |
| . * (CTe)
‘ _ 1,2 . .
‘ ~in which
; =\

5 1 __1(0) . 1 1(0)
P31 - 6 1(1)
| (o8
o - L _100) 1 I(0) F>
1y o) 121(1)
D, -1 _I(0) . 1I(0)
i 6 I(i - l) 3'I(i) J



59

(T10) | | _Q_T&pu_i
' . | | h._”nH.E.Hm .@OP.QH?O.HD.Q..Q eq uwd YOTusm
RE.P | : 0 | 0 | o o] (1N
()] |5y + tix iy - 0 ___ 0 0 (€)W
(o0 | (€€ Sy + My o+ Ey . LR €y . 0 | ola=|(aK
vam Sy + i+ Ex 4 By Ty v By Eyy By 2y ol (1w
(1)d ﬁmw P Ey g By Ty s Ex 4 O+ Ty Ey s By + Ty Sy 4 Ty Ty (0)W

) : . _ ‘uoT3wnbe
XTa3emw oy3 £q ueATd eq 03 UMOYS oq uwd SPBOT oYj 03 sjuemom ey} FulIBTed suollenbe syl ‘punog
oq Lwvw UOTIBVIS YOBE 4B JUSWOW oYY ‘(¢)d pus ‘“(q)d ‘(€)a ‘“(2)@ “(T)d ©PBOT 6ATJ oY} WoIf ‘

SO Dl m% £

‘WIOJ PO3BTAGIQQEB OY3F UT USAIS eq Lwm (90) uotrywsnbe ooqmﬁﬁ®>doo 04 ‘oOxez ST § UOIYBIS 9B JUSWOW
3Y3 3BYJ PISN ST UOTATPUOD AIBPUNOG 3Y3 9SNBIIQ (90) uotqenbs ur aradde jo0u S30Pp (G)W 2Juswowm syf,

NACA TN 2060



60 NACA TN 2060

Substitution of equation (C11l) into equation (C9) gives

EHE E—]I.QUY [Hl][Hz] ] ' (012)

3
Multiplication through by the reciproca.l of E: ) [Hl] [HQ] results in

the equation:

ng [Eil]]??]]-llwhlpl . | (§13)'

This equation thus gives the loads in terms of the deflection of each
station relative to station 0. In the case under consideration, however,
the wing 1s a free body capable of motion through space and therefore to

- set up properly the equations of motion the deflection must be given

relative to a fixed datum line. This datum line is most conveniently
located as the position of the wing prior to action of the disturbing

. loads. Consideration of the following sketch

will show therefore that the following relation must exist:

W =w - w(0) A ' (C1k)

Substitution of this equation into equation (C13) glives

[H]EIQ]:I Iw : w(o)l | (c15)
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. - _l )
. To aid in the derivation EI3O) [[?i][?éj] is now written in the
b

general form:

b11  bip b33 biy  byg

byp b22 b23 béh 'b25

-1
EIO) a1 = [v b b b b C16)
3 [[ 11[2]] = (P13 P23 P33 b3y P35 (€
| Py Poy o Py By Pus

. p—

Thus with this equation, equation (C15) may be transformed to the form:

w(0)
Poo  Pi1 b Paz by Pas| WD [p(1)
boa  Pio Pop bpg Py Dys| |W(2) p(2)
bo3  Py3 DPp3 Bag by i) |w(3)| = |»(3) (c17)

oy Pry Doy D3y Dy Dy w(b) | - |p(W)

Pos P15 Pp5 Dby By b52 w(5) p(5)
ﬁhere
, . 7
boy = 'Cbll + bip + b13 + by + bl5)
pop = (o1 * bpp + bp3 * Do) * s |
Doy = ~(1 + Doy + b3 + by + bhé)
P05 = ~(B15 + bps + b3s + bys + bsg) J
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Equation (C17) is noted to express all the loads except p(0) in
An additional equation in which p(0) is
expressed also in terms of the deflections may be established by use of
the condition that all the loads acting on the wing semispan must add
up to equal zero; that is,

terms of the six deflections.

p(0) -+ p(1) + p(2) + p(3) + (k) + p(5) = 0

(c19)

This condition automatically satisfies the two boundary conditions that
the shear must be zero at the tip and center line of the wing. Thus if

. the five equaﬁions represented by equation (C17) are added, and use is

made of equations (C18) and (C19), the following equation results:

booW(O) +>'bOlW(l)A_+ bogw(g)( + b63W(3)'+ boh_w(’-l») + b05w(5) = p(O) (CQO)

where

boo = '<§01 * bop *+ Boz * bgy, + boé)

(C21)

This equation may now be combined with equation (Cl7) to give finally

-
boo

This equation is thus the desired matrix equation which relates the normal

bo1

bop

byo

b22

bsg

oy,

bos

b03
bi3
o3

P33

b3y

b3s5

o

by

o),

b45

-b

b65
LY

P35

bh5

55

1w(0)

w(1)
w(2)
w(3)

w(k)

w(5)

p(0)

p(1)

; 13(2)

1p(3)

p(h)

p(5)

(Cee)

loads to the deflection. If the square matrix is denoted by [A], the

equation may be abbreviated conveniently to the form

(2] = ||

which is the form used in the text. (See equation (140.).

(Cc23) -
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As an aid in computational work, & summary of the steps involved in
the determinmation of [A] is given to close this section:

(1) From the I values at the respective stations compute the
coefficients given by equations (C8)

" (2) With these cosfficients determins the matrix elements glven: by
equations (C7). These elements form the matrix [Hl] which is defined

‘by equaticns (C6) and (C9)

(3) Multiply the [H;] matrix by the [HEJ matrix, which is defined
by equations (C10) and (Cll). The result should be a symmetrical matrix;
this property serves as a very useful computational check.

3
E;(O ) [_Hl] @2]] matrix. This matrix should also be

symmetrical. (The Crout method (reference 6) serves as a rather quick
A and useful means for performing the inversion.)

(h) Invert the

(5) Add the columns of the inverted matrix and place the negative
of these sums at the top of their respective columns such as to form a
new'row of matrix elements. Then add these sums and place the. negative
of the sum as the first matrix element of the newly formed row. A new
column headed by this value is thus in the making. Fill in the remainder
of the column with the respective elements of the new row; that is the
appropriate values should be inserted to make the matrix symmetrical
This final matrix is the desired [A] matrix.

Torsion.- For the torsional case the torqpe loads q are assumed
to be concentrated at the stations just as in the case for the normal
loads p. Consideration then of the following example torque -diagram

Lttt —+¢
\ Q(O)q(l)Q(Q)q(3)q(4)q(5)
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will show that the following equations must apply:

, W@ = -
| g(1) = (1) - T(2)
. q(2) = T(2) - T(3) g . (cal)
q(3) = T(3) - T(4) :
a(k) = 7(4) - ©(5)
a(5) =1(5) )

where T(1) represents the total torque present in the 1 interval. No
torque exists between the wing center line and station 0.

To aid in the derivation, the assumption is made that 1/GJ varies
linsarly between stations. A typical T/GJ‘ diagram between, say, the
i -1 and the 1 station'would appear as follows: .

(1 /ﬂ?(%

GJ(i -1 bAy

From the differential relation %9 = é%, the fact may be observed that
. dy )

the change in angle of twist between two stations is equal to the area

of the T/GJ diagram between the two stations; therefore,

bxit (1) . T(4) (025)

e(1) - o(1 -.l.) R ey (1)
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If the notation .

_2G 1
SRS v 1 (c28)
+
J(1 -1). J(1)
is employed, equation (C25) may be written
o m(1) = JiEP(i) - (1 —'1)] o (ca7)

Application of this equation to each of the spanwise stations gives the
following equations for T: .

(1) = 31e(1) - 9(0)]

2(2) = 5 [p(2) - 0(1)]

1(3) = 33[e(3) - 0(2)] > (c28)
T(4) = dufe(t) - o(3)]

T05) = 3505 -]

Substitution now of these equations into equations (C2L4) gives the
desired equations relating the torque loads to the angle of twist. The
equations thus found can be given in the matrix form:

ENER 0 0 0 o | Jo)| a0
-1 (U1 +d2) . -dp o o 0 o(1) a(1)
0 Jo Q2+ 33) | -33 0 o | |e(@)] [a(2)
0 o 330 Q3 +a) -h 0 o(3) | [a(3)
0 0 9 G e i | e ] e

|° o 0 0 -J5 5 | e [a)]
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which can be abbreviated to

[B]le] = |a] (¢30)

the form used in thé test. (See equation (41).) Thus all that is
involved in the computation of the matrix ﬂﬂ.is the evaluation of the
matrix elements by means of equation (C26).
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APPENDIX D

RECURRENCE EQUATION FOR THE EVALUATION OF DUHAMEL 'S TINTEGRAL
INVOLVING AN EXPONENTIAi KERNEL
The derivation of'a rather simple recurrence relation for the'step->
by-step evaluation of the three unsteady 1lift integrals appearing in
equation (25) is presented. This derivation is made possible because
the kernels of the integrals are expressible in exponential form.

From equation (23) the first and second derivative of the
¢ function may be written

20,

b=-Thae T =be (1)

.o ) o .
= M52, o =0 e : (D2)

where

90 =
0=728

With these equations the three Integrals of equation (25) méy be
combined conveniently into the following single integral denoted by Iy:

v - .o . -7(t-T)
Iy =‘f 9. Belv - [@OBCZU' + 0pc z(ﬁ - g)] Pre dr (D3)
o ,
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For convenilence the notation
ok : e - 9
= - + 2
Y ¢0B02w [§OBCZU o4Bc Z(h :]¢ | (Dk)
is introduced and thus equation (D3) becomes
t -y(t-71) .
I, = \/ﬁ Ye dT
t
o .
or
-rt t "l' v
I, =e JF Yo" dr (D5)
- JO

Mathematically, the integral in this equation may be Interpreted to
represent the area under the function given as a product of Y and e? T,
In accordance with numerical evaluation processes, the interval 0

to t may be divided into a number of time stations of interval ¢ .

The product of Y and e”7 may then be found at each of the time
stations and from these products the area under the curve may be deter-
mined in first approximation by the trapezoidal method of determining
areas. Thus, if the n time station corresponds to time t, the
expression for It may be approximated as follows:

-yne[ e 726 7(n-1)¢ 1, 7ne
I, Iy = e Yie + Yue et Y e +oYe (D6)

where Yd does not appear since the initial conditions are used that

‘the deflection w and rotation @ are zero at t = 0, and\therefore
Yy 1s zero. (See equation (D4).) More accurate methods, such as

Simpson's method, could be used for determining the area wnder the curve,
but because of the small interval chosen the consequent increase in
accuracy is negligible. If the notation

F, = ee-yneE'le‘)’€ + Y2672@ + ...+ Yn_le7(n—l)g}' (D7)

is introduced, equation (D6) may be written simply

€ . .
I, =P +5 Y . (D8)
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If equation (D5) is expanded similarly, only for an upper limit
of t - €, the expanded result would be

-7(n-1)1- ye  gpe _ i}
- y(n-2)e 1 y(n-1)e
In*l = ¢e le' + ¥2e + ... + Yn_ge + 5 Yn'le

(D9)

By analogy with equation (D7), however,

-y(n-1)el, 7e 72¢ ’ y(n-2)e
Fo.q = e© 7(n-1) l—;le + Ype + oo+ ?n_ze ( | (D10):

and therefore equation (D9) becomes

I

n-1 = Fpoy v 5 o ' (P11)

A study of equations (D7) and (D10) shows that the following relation
must exist: :

. - -
Fp=eF, + ey -(D12)

Now, if equation (D&) is used to rewrite Y, and Y ., 1In equations (D8)
and (D12), the value of I, may be given finally by the equation:

l e ! l i N a A ’ )
I, =F, + 3 QOBcZewh - Eﬁcls[§¢o + c(ﬁ - ;>¢;}¢n (D13)

where

-Ye .. -Ye =€ . 3 a\ -
Fp=e 4 Fn-l + ¢g€e Bclwh_l - Bclee [ﬁéo f c(H - E)@é]@n_l
' (D1k)
The value of the unsteady 1ift integrals is thus given by

equation (D13). As regards the analysis given in the present paper,
wo-1 and Q.7 are the values of deflection and rotation which have,

say, Just Dbeen determined from the recurrence equation for response.
The value Fn-l was also established and therefore Fn can be deter-

mined as a definite quantity. The value I, 1s thus. seen to be given
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in terms of the known F, and in terms of w, and @, which are the

next values to be evaluated from the recurrence equation.
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APPENDIX E
MATRIX AIGEERA

This appendix is written for those not familiar with matrix notations
or metrix methods. All the matrix algebra necessary for the understanding
of this paper is described hereinafter by way of examples.

Matrix definition.- Scme of the basic types of matrices are illustrated .
by the following arbitrary matrices which are of the third order:

The column matrix

The row matrix
|_2 -3 1

The square matrix

-1 -1 3

4 o 0]
o "3 o0
0 o 1]

The dlagonal matrix

The identity matrix




T2 : ' NACA TN 2060

Element definition.- BEach of the terms that appear in a matrix is
defined as an element. Its position is usually denoted in a row by the
number of terms from the left and in & column by the number of terms
from the top. ’

Matrix addition.- The addition of two matrices produces a single

matrix, Addition is performed by simply adding together corresponding
elements. For example,

2 -3 1 4 -1 0 6 -4 1
1 2 21 +1{0 3 2]l =11 5 0
-1 -1 3 2 0 -1 1 -1 2

Multiplication of a matrix by & scalar number.- In the multiplication

of a matrix by a scalar number every element in the matrix is multiplied
by the number. For example, :

Multiplication of a columm matrix by & row matrix.- The product of
a column matrix and & row matrix is equal to the sum of the products of
the corresponding elements. For example, :

L? -3 %] 2l=(2x2) +(-3x1) + [} + (-Ai] = -3
1 ‘
-l
Multiplication of a éolumn matrix by a square matrix.- The multiplication_

of a column matrix by a square matrix produces a column matrix. Copsider
the following set of three simultaneous equations:

3\

2y1 = 3y2 + y3 = al

- = El
yyt 2y2 2y3 o (E1)

|
]
R

1}
o

= yl - y2 + 3}’3 3
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The procedure adopted in matrix algebra is to write these equations in
the matrix form )

’ - = E
1 2 2|17, a, (E2)
-1 -1 . 3 y3 &3

where the multiplication of the Iyl colum matrix by each row in the
square matrix produces the respective elements in the |a| column matrix.
(See multiplication of a column matrix by a row matrix.)

In order to simplify the presentation of an analysis, the symbolic °
or abbreviated maetrix form 18 used quite often. The symbolic form of
equation (E2) is simply '

[M]]s] = el | (£3)

The determination of |a|] by the multiplication of |[y| by Eﬂ is
illustrated with arbitrary values of y, say y, =4, y, =5, and y, =6,
by the following equation: , 3

2 -3 1]tk (2xU4) + (-3x5) +(1x86) -1 a,
1 2 2115l =[(1x4) +(2x5)+(2x6)|=|2]= a | (E4)
-1 -1 3116 (-; x4 + (-1 x5)+(3x6) 9 ag

Multiplication of & square matrix by a square matrix.- The multi-
plication of two square matrices produces & square matrix. Multiplication
is performed by letting the multiplying matrix operate, as in the preceding
section, on each of the successive columns in the matrix being multiplied

to produce corresponding successive columms in the product matrix. For
example,

1 2 -2 1 3 -2 =~ 5 2 -5 (E5)
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Order of multiplic&tion.- In general the commutative multiplication
law of ordinary algebra does not hold in matrix methods; that is,

|2l [5] # 15| 2]

Therefore, whenever the product of several matrices is indicated, these
matrices must be multiplied together without changing their order.

Matrix partitioning and submatrices.- A matrix may be partitioned
or divided at will into smaller matrices. For example, the left-hand
side of equation (E4) may be partitioned as follows: : :

The matrices which are formed by the dividing lines are called submatrices.
These submatrices may be treated as though they were elements when matrix
operations are performed. For example, with the notation

a=|-3 1_|
1

b =
-1
[2 -2

c=1
-t 3
5

d =
6

al |k} 8 + ad

——-
|
!
[

c| |& kb + cd
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The reciprocal of a matrix and the identity matrix.- By ordinary
algebraic methods the formal operation involved in the solution for x of
the equation

mx = a
is the multiplication through by the reciprocal of m; thus,
x =mla

The same formal operation may be applied to matrix equations. For example,
the solution for |y| " in equation (E3) is simply .

o) = [ Jal
where ﬁ{] -1 is the reciprocal, or the inverse, of [Fﬂ

.The reciprocal of a matrix is found as the matrix which satisfies
either of the equivalent equations
H

(] W]
M P - [1]

where [I| is the identity matrix. For equations (E2) and (E3), the
reciprocal of [M] is found as the matrix which satisfies the equation

2 -3 1] fvy e | [r o o0
12 2| b, ey df=f0 1 o0
11 3| b3 o3 g3 o 0 1

If this equation is considered in relation to equations (El), (E2), and (E5),
the values bl, by, and b3 would simply be values of Y1, Yo, and y3 which

satisfy equation (El) for a; =1, ap = 0, and a3 = 0; ¢, C,, and c3 would
and e, = 0; and d,, dp, and d3 would
1. PFor this example, the

| ]
e

be the values for a; =0, a, =

3
aéd a3

|
o

be the values for 'al =0, an =
golutions are

o
\®)
i
[ Kl
(2] Q
n =
H Il
Bl
’\524
H
B gl

=
N
w
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The Crout method (reference 6) provides a very quick and convenient
method for determining these solutions.

The determination of y by the operation [M] 1 on lal is illustrated

ag follows for a.l = -1, a, = 2, and a3 = 9!

L1 T 5' 21 =1{5 o (E11)
6

The operation perf ormed by this equation can be seen to be the inverse
operation of equation (EL). :
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TABLE 1

ILLUSTRATION OF THE [S] MATRICES

— s
— —




NACA TN 2060 . ‘ 9

TABLE. 2

PHYSICAL CHARACTERISTICS AND UNSTEADY LIFT

FACTORS FOR EXAMPLE ATRPLANE

b}v in' ¢ ¢ o 6 e s e e s e e s e e s e . 'o o o e o o e . ¢ o o- . 560
Co, in. e e v s e s e e e e e s e e e e e e e e ee e e e e e . 154

ET
£ X P 1%

b3 ,
e, IB/EES e e e e e e e i e e ... 0.0T65
i110) o . 210
,U’{in./sec.‘....'......... . 1 (010)
Vy, I0./BEC 4 4 te e e e et e e e e e e e e e e e e e e e .. 120
€) BEC ¢ o o o o o o o o o o o o o 4 o o s s 4 e a4 s e e e . . . 001
A8, half-ChOPA8 « v & « + o o & o o o o o« o o o o o o & 0.48052
. O o =4 (<
P o)
mA..............................0.861
0.001147
A o TG [ 1
Y e e e e e e e e e e e e e e e e e e e e e e e e e e . . 18,3078

¢« o a o
.
.
.
.
.
.
.
.
.

0.832703

% = a1 P 1
& . . - ... C e e e .. .. -6.60912
B o .o Ce e .. C. 120.9983

“!ﬂﬁ!"’



80

TABLE 3

¥ ORDINATES AND GUST-FORCE MATRTX FOR

EXAMPLE AIRPLANE

¥
2 (Equation (22))
0 0
1 .22105
2 . L3674k
3 L6716
5 .58888
6 .62830
T .65980
8 .6859L
9 . 70840
10 . 72820
11 .T4595
12 .T76215
13- LTTT07
14 . 79086
15 .80373
"16 81574
17 .82696
18 .83748
17.8k4okL
15.7552
|L8| - 100 12.1811 .
10.5295
8.77455

| 7.01964  “WacA
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Figure /.-Damped oscillator and suddenly
applied force. -
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0 05 JO ) ’ 20
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Figure. 2.~ Cormparison of exact and difference -
equation solutions for response of damped
osc/llator
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Frgure 3.-Division of wing into sections.
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Figure 4.- Displacements of a wing cross section.
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Figure 5.- Coordinate systern for fuselage displacement.
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'S, half chords

Figure 6.- Lift functions for sudden change in
angle of attack.(See equation (20).)
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Figure 7.- Lift functions for wings entering a
sharp - edge gust.(See equations(2l) and (22).)

87



88

NACA TN 2060
sooF ¥ AV
L9 Q
o ¥
s zoof 39 |SY1
\ k = o o i;’ e/
3 N S Y3 oas i
§ ook R 1245 '
LR ' |
Q Structural mass '
3 0 1 1 1
J8b |=.i8b | 466 | 166 | e b | 166 |
£
| /0,769 6,050 /433 382 20/ 118 /b
<9 — > 4 o el >
.09b| .18 b A7 b 6 b /6 b W X-N

Figure8.-Weight distribution and equivalent corcentrations
for example two- engine aircraft.
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Figure 9.- Response of example airplane due fo /0-Ffoof-
per-second sharp-edge gust. U= 2/0 miles per hoor.
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Figure 10.-Time history of station loads for
example airplane. ‘
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Frgure ll.~ Bending stress devel/oped in example
airplane dve fo 10-foot-per-second sharp-edge
qust.
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(a) Parabolic.

a b |c a

€ 2€ 3¢

(b)Cubic.

—y

NACA TN 2060

Firgqure /2.~ Functional notation used in the derivation

of parabolic and cubic difference eguations.
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