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NATTIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1876

CAICULATION OF THE AERODYNAMIC LOADING OF FLEXTBLE WINGS
OF ARBITRARY PLAN FORM AND STIFFNESS

By Franklin W. Diederich
SUMMARY

A method 1s presented for calculating the aerodynamic loading, the
divergence speed, and certaln stabllity derlvatives of wings and tail
surfaces of arbltrary plan form and stiffness. Provision is made for
using either stiffness curves and root—rotation constants or influence
coefficlents In the analysis. Computing forms, tables of numerical
constants required in the analysls, and an illustrative example are
included to facilitate calculations by means of the method.

INTRODUCTION

- The distribution of the aerodynamic loading on wings and tail
surfaces 1s important both for the structural analyslis of these com—
ponents, since 1t determines the applied bending moment and torque
acting at any station, and for their aerocdynamic analysis, since 1t
affects the stabllity derivatives to a large extent. At high speeds the
aerodynamic loading, particularly in the case of swept wings, is
greatly affected by the structural deformations caused by the loading.

- The present paper ls concerned with the determination of the effects of
structural flexibility on the aerodynamic loading of wings of arbitrary
plan form and stiffness.

The problem of load distribution was analyzed for unswept flexible
wings as early as 1926 (reference 1) but has received relatively little
attention since that time. The only new effect considered in subsequent
work 1s -aerodynamic induction (reference 2). No work appears to have been
done on the loading of flexible swept wings. The related problem of aero—
elastic divergence of swept wings with certain prescribed stiffness
varlations has been treated in reference 3.

The present paper treats the problem of aerodynamic loading by
matrix methods. Aerodynamic induction is taken into account approxi—
nmately, since sultable aerodynemlc influence coefficients are not avail-
able for wings of arbitrary plan form. When they become available they .
can readily be incorporated in this method. Structural flexibility is
taken into account in the form of either calculated stiffness variations
or measured Influence coefficlents. The required integrating matrices
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are presented for both a six—point and a ten—point solution. For the
slx—point solution convenient computing forms are included as well. The
method is illustrated by means of an example. In addition to the analysis
of the aerodynamic loading, the determination of the related divergence
espeed and of certain stability derivatives is discussed.

For the convenience of the reader unfamiliar with matrix terminology
a summary of matrix methods has been included in the appendix. The
sections on Application of the Method" and, in particula.r, "Instructions:
for Solution" may be re@d without reference to the section "Derivation of
the Method." S .

SYMBOLS

e (2
A aspect ratio 5
[A] aeroelastic matrix

meqSA?el crECosl*A
a " dimensionless parameter I
. (67)

at -parameter (meqswcr cos A)
ac | section aerodynamic center, measured from leading edge

fraction of chord

b wing span, inches
c chord measured parallel to the air stream, inches
c average wing chord, inches (%)
S 3 1t
- ¢y . . section 1ift coefficient [—)
'L T So\ae/
G, wing 1ift coefficient | — ,
o R (45, )
‘ OBMV . wing root bending-moment coefficient < )
o o qSb
' wi
. ng rollmg—moment coefficient (ECBMV>
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EI

&)

asp3c, tan A cos3a
dimensionless parameter <\me = -

(ET),

bending stiffness in planes perpendicular to the elastic
" axis, pound—inches? \

location of elastic axis measured from leading edge, fraction
of chord '

distance from reference axis to section aerodynamic center
(positive forward), fraction of chord

torsional stiffness in planes perpendicular to the elastic
axis, pound—inches

unit matrix

matrix defined by equation (12)

integrating matrix for sihgle integration from tip to foot
first row of K; matrix

integrating matrix for double integration from.tip to root
first row of XK, matrix

integrating matrix for single integration from root to tip

- matrix relating concentrated and accumlated torque

matrix relating concentrated loads and accumulated bending
moments -

matrix converting torques due to distribﬁted loads to torques
due to concentrated torques '

matrix converting bending moments due to distributed loads to
bending moments due to concentrated loads

1ift on both winge but excluding 1ift on part of wing covered
by fusslage, pounds

running air load along the reference axis, pounds per inch

accumlated bending moment (in planes perpendicular to the
reference axis unless specified otherwise), inch—pounds

effective section lift—curve slope for angles of attack due to
deformztion, per radian
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effective section lift—curve slope for a&ditionalrtypeAangle—
- of-attack distributions, per radian

section 1ift-curve slope, per radian

concentrated load, pounds

wing—tip helix angle

root—twist constants (see equation (9))

root-bending constant (see equation (9))
dynamic pressure, pounds per square inch
concentrated torque, inch—pounds

total wing area including part of wing covered by fuselage
square inches

distance from wing root to wing tip perpendicular to the air
stream (see fig. 1), inches

length of wing along reference axls (see fig. 1), inches

‘accumlated torque (tn plenes perpendicular to the reference

axis unlesse specified otherwise) inch—pounds

distance between the effective root and the innermost complete
gectlon of the torsion box perpendicular to the elastic
axis, inches

lateral ordinate measured from wing root, inches
lateral center of pressure, inches

angle of attack, radians
equivalent angle of attack, radians <: +-——l-dg

local dihedral angle’due to deformation or slope of wing
deflection curve at reference axis, radians

structural deflection, inches
distance aleng reference axils, inches

angle of sweepback (measured to the reference axis unless
specified otherwise), degrees
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[*]
[°s]

influence-coefficient matrix for wing twist in planes parallel
to the alr stream due to concentrated unit loads applied at
the reference axis, radians per pound

influence-coefficient matrix for wing twist in planes parallel
to the air stream due to concentrated unit torques applied
in planes parallel to the air stream, radians per inch-

pound

P angle of twist in planes perpendicular to the reference axisg,
radlans o

Subscripts:

a additional

c midchord i

D divergence

fw flexible wing

g geometric

LE leading . edge

M- due to bending moment

MAC pertaining to the mean aerodynamic chord

P damping in roll

r at root or effeétive root

rw rigid wing '

8 structural (due to structural deformations)

sub subsonic

spr supersonic

T due to torque

TE trailing edge

w wing exclusive of fuselage

Prime mark:

in or pertaining to sections parallel to air stream rather
than perpendicular to the reference axis

Matrix notation:

U
L]

column matrix

row matrix
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[ ] square matrix

[o ] diagonal matrix

DERTVATION - OF THE METHOD

.

’ Method Employing Stiffness Curves

Assumptions.— In the development of the method the following
assumptions are made:

(a) The effects of aerodynamic induction may be taken into account
by applying an over—ell correction to strip theory and rounding off the
resulting load distribution at the tip,

(b) A11 deflections and angles of attack are small.

(c) The wing is mounted flexibly at an effective root perpendicular
to the elastic axis through the intersection of the elastic axis and
the fuselage (see fig. 1) , the root rotations being proportional to the
root bending moment and root torque,

(d) An elastic axis exists in the outer portion of the wing, this
axls being defined as the elastic axis the wing would have if it were
mounted rigidly some distance outboard of the root approximately perpen—
dicular to the midchord line. (Near the root the elastic axis is defined
as the extension of the outboard elastic axis.)

(e) A1l deformations are given by the elementary theories of
bending and of torsion about the reference axis, which in this case is
the elastic axis.

Alr loads.— In keeping with assumptions (&) and (b) the force on
a wing section of unit width parallel to the direction of flight is

A

qac (mea,s + mela.g) cos A |
meqCcq cos A (1)

where the equivalent angle of attack @ 1s defined by

Yoy
T=o0g + —a (1a)

n, 8
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The effective section lift—curve slope m, for angle—of-attack distribu—
tions due to structural deformations has been given in reference 3 on
the basis of the reasoning of reference 4 for subsonic speeds as

. S
A+ L4 cosA

(2)

me = mg

Similarly, the effective 1ift—curve slope mel for additional—type
angle—of—attack distributions is determined by the same reasoning as

A

A+ 2 cos A (3)

ey = o
Both slopes must be multiplied by cos A, as in equation (1), in order

to apply to loads acting on sections and angles' of attack measured
in plenes parallel to the direction of flight.

The torque of the running load 1! about the reference axis is l'elc

for uncambered sections (for cambered sections the torque at zero 1ift
mst be added and the analysis of the following paragraphs modified
accordingly). This torque may be resolved Into a running torque about
the elastic axis and a running bending moment about a line perpendicular
to the elastic axis. The running load, torque, and moment must then be
miltiplied by. cos A to yleld their values per unit length along the
elastic axis, so that '

1 = mgacd cos2A (%)
or, in matrix notation,

{1}- nea(cos?) [0}z | | (ha)

. The running torque and the running bending moment are, respectively,

{'Lelc cos A} and {-Ielc sin A}. The running bending moment leads to

accumlated bending moments which have to be added to the accumilated
bending moment due to the running loead. o

The accumulated torque T 18 obtained from the running torque by
an integration inboard from the tip. This integration may be performed
by a matrix [Kl] which is based on Simpsonts rule with a modification

suggested by V. M. Falkner at the tip. (See'appendix.) The effect of -
Falkner's modification is to round off the calculated load distribution
and cause it to go to zero with an infinite slope at the tip, as the
aerodynamic 1ift distributions actually do. The matrix is glven' in
table I. : '



8 NACA TN No. 1876

Similarly, the accumlated bending moment M is obtained by a double
integration inboard from the tip of the running load and a single
integration of the running moment. The double integration may be -
performed by another matrix [Kg] (given in table II), which is based

on the equivalent of Simpson's rule for moments, Falkner's modification
again being made at the tip. The derivation of the integrating matrices
is giscussed in somewhat greater detail in the appendix.

The accumuilated torque and bending moment may then be written as

{r] = o\[x] {zelc cos A}
coteereosifi| 2 ) e

it

and

o}

1t

5,2 [Ke] {i} - Ay {lelc sin A}

o
' © e é' e 2
1 ' 1 :
Mg q8) “Cyn (cos A) KQ] [Cr] (sin A) o o o {a} (6)
Equations of equilibrium.— The equations of equilibrium of a
deformed wing referred to the elastic axis are

ap .

& dy T B (7)
d

EI ar (8)
dy

These equations must be 1ntegrated outboard from the root to obtain ¢
and I'. The integrations may be performed by a matrix [K3] (seeA

table TIT and appendix) also based on Slmpson s rule without the tip
modification, however, since the torques and moments go to zero with
finite and zero slopes respectively. To the deformations obtained in
this manner the rotations due to the root deflection P and F
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mist be added. The root rotations are defined by four dimensionless
congtants:

_ Sen/%

(%)
o w/(GT),.

Q%d= h& | . (9b)

w/(GT),

r. JT
iT_/_r_ (90)

Qp =
Ty w/(EL )r

r . .
ol (0)
Moow/(ED),

~ which may be combined into two other constants

_ oy/T,, ()

Q. = (), = (QCPI' - (EI)Z tan AQI‘T cos A (9e)
. aTM/Mi (63)., . S

Q.. = (o, = (Qpy = (&), tan A_QI-M> cos A (9f)

w Dbeing defined as in figure 1. The deformations may then be written as

[0}
(GJ)r

{o)- oy | [ (575 + £ ey o)+ Z el
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r}- (;)r' [Ké] [(E)r} - arg, [To] {M} QPT[IOJ {T} (11)

where the matrix [IO] ig defined by

0000
1000

: . 12000 ’

[Io]= 1000 (12)
1000

The angle of attack due to the strubtural deformations ag 1is
related to @ and I' by
= (p—T tan A) cos A : (13)

If equations (5), (6) (10), and (11) are substituted in the matrix
equlvalent of equation (13) the following relation is obtalned:

fas} = a 4] {a} | (1)

where the aeroelastic matrix [A] is defined by

0

- ][]+ & e,

Bt

o

)= S EPENS ) IR
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and the parameters

2 2cosltA
mggSp<€; C,cCOos
a = (ch) ul : (16)
r
and
(GJ)

a_ r A tena (168)
a .

(E:[)r ®1 Oy COB A

are substantlally the same parameters as those used in reference 3.

Solution of the equations.— If 1t is desired to calculate the.
aerodynamic loading corresponding to a given geometrical angle—of-attack
distribution and dynamic pressure, equation (14) may be rewritten as
follows:

[[I] -~ a[A] n?l ap = {ag} | (17)

In this form it constifutes a set of linear simltaneous equations for
the a values in terms of Qg values. From the calculated & values

the 1ift distribution may be determined from either equation (1) or (k).

: - The divergence dynamic pressure may be obtained from equation (17)
by setting the determinant of the square matrix on the left side of the
equatiog equal to zero. Thils procedure is equivalent to getting «

8
equal to zero in the term a of equation (1%), so that .

fo} = afa] {a;} | (18)

The critical value of a 1s then determined by matrix iteration and
hence the divergence dynamic pressure fram equation (16).

Method Employing Influence Coefficients

The assumptions made in the preceding sections concerning the
behavior of the wing structure are unnecessary if influence coefficients
for the given structure are available from test data or refined methods
of calculation. The coefficients most convenient for this analysis are
those giving the rotation of the structure in planes parallel to the
direction of flight due to vertical loads applied along a convenient
reference axis and due to torques about lines Perpendicular to the

‘
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dirsction of flight. Since it is usually more convenient to apply
concentrated rather than distributed loads in structural tests, the
influence coefficients are considered in this analysis to have
been obtalned in this manner.

The angle of structural deformation ag may be expressed in terms
of the influence coefficlents &p and o, as follows:

{oa} = [og] (B} + [o) {2} (19)

vhere the R's and P's are arbitrary concentrated torques and loads,
the latter being applied at thes reference axis. The accumulated torques
-and bending moments about lines perpendicular and parallel, respectively,
to the direction of flight may be related to the concentrated torques
and loads by means of the summation matrices [Kg] and [Ki] (see

appendix) as follows:

{1y = [J{} - von afi] - (e0)
Py - s fis] 7} @

These relations may be solved for the values of R and P required to
produce given distributions of accumulated torque and bending moment

{R}j [Ku]—l{{'r'} + tan A{M'}} (22)

{r} - %[I%]_'l{w} (23) :

The accumulated torques and bending moments produced by the air
load are then

| {T'} = s.w[Kl]{l'elc} -~ {M'} ‘tan A (2k)

[ur} = 5P ] (2] | (25)
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Upon substituting equations (22), (23), (24), (25), and (1) into
equation (19), the following equation is obtained:

{%} = a'[A’] {a} | (26)

a' = mggsyc, cos A (27)

° 9

c

4] = fevees ol 1 37 () | + el )

[«

where, in turn

ORI (292)

-1

S (z50)

[%6]
[®]

are given in tables IV and V.

The solution of equation (26) is obtained in the manner previously
described for equation (1k).

APPLICATION OF THE METHOD

Determination of the Structural Parameters

At the time an aeroelastic analysis is performed no expsrimental
stiffness data are usually available, so that the calculated stiffness
curves must be used. In order to use these curves it ig necessary to
agsume the existence of a reasonably straight elastic axls. The location
of this axis may be estimated by considering it to be the line connecting
the shear centers of the individual sections. If the elastic axis
obtained in this mannsr is not reasonably straight within a few percent
of the chord, the results of the analysis may not be sufficiently reliable.
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The stiffnesses GJ and EI do not have much physical signiflc&nce
inboard of the last p01nt where there is a complete cross section of the
torsion box. (See fig. 1.) In order to arrive at estimates of the root
stiffnesses (GJ)r and (EJ),., which serve primarily as reference values

in this analysis, the stiffness curves have to be extended. It is con-
venient to conslder the stiffnesses to be constant inboard of the last
complete section of the torsion box; this procedure should yileld conserve—
tive values of the root rotatioms.

The most difficult problem incurred in analyzing the deflections on
the basis of stiffness curves appears to be the estimation of the root
rotations. As used in this analysis, they are the torsion and bending
deflections imposed by the triangular Iinner portion of the wing and the
carry—through bay -on the rest of the wing. As seen in figure 2, which
is plotted from the data of reference 5, these values are essentially
constant along the span, so that they actually constitute rigid-body
rotations. (The bending rotations have been obtained by taking the
difference in slope between curves calculated by considering the wing
to be cantilevered at the effective root — the root used to calculate
torsional deformations in reference 5 — and the averages of the leading—
edge and tralling—edge deflections actually measured. The twists were
obtained by subtracting the twists calculated on the basis of the assumed
effective root from the measured twists.)

The rotations should in any practical case be calculated by analyzing
the triangular root and the carry-through bay and made dimensionless by
means of equations (9). If such an analysis is not available, the dimension
less rotation parameters shown 1n. figure 2 may be used as a guide; it
mist be kept in mind, however, that in the case of a sweptforward wing
the parameters QQM and Qnr would have the opposite sign.

Once the structure under investigation is built, fairly simple
deflection tests, similar to those performed in reference 5, may be used
to check the root—rotation parameters by calculating the differences
between the observed rotations and those calculated by simple beam
theory considering the wing cantilevered at the effective root; at the
same time the existence and estimated location of the elastic axis may
be verified. If the experimental program is falrly extensive it is
desirable to measure -influence coefficients directly. These influence
coefficients can then be used in conjunction with the alternate method
described in the preceding sectlion to obtain a quick check on the aero—
elastic analysis based on calculated stiffnesses. .

The influence coefficients used in the analysis congist of the
rotations of sections parallel to the direction of flight due to ‘
concentrated unit torques in plunes parallel to the plane of symmetry
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or concentrated unit loads at the reference line. These rotations in
radians are entered in tables of the fqrm: '

Pal o for]

TWIST AT STATION y/s, DUE TO | TWIST AT STATION y/s, DUE TO
UNIT CONCENTRATED TORQUE AT UNIT CONCENTRATED LOAD AT
ATL TR : - v1/8y
y1/8 | /e |
: 0.2]0.4]0.6 Jo.8{0.9[1.0 0.2[0.4 |0.60.8/0.9|1.0
v/8% S I F/ew |
o | - 0
0.2 0.2
0.4 N 0.4
0.6 o ' _ 0.6 _
0.8 [ 1 ' 1 0.8 -
0.9 | 0.9

These particular tables would be used for a six—point analysis; similar
tables would be used for a ten—point analysis. In either case it is
to be noted that the twists are measured at values of y/sw from 0 to 0.9,

whereas the loads are applied at yl/sw values from 0.2 to 1.0. The

tables obtained in this manner constitute the desired influence—
coefficient matrices.

If the wing sections are found to twist nonuniformly, so that they
‘become cambered in effect, the angles of twist ag to be entered in
the influence—coefficient matrices have to be defined in a different
manner according to whether the aeroelastic analysis is performed for
subsonic or supersonic speeds. At subsonic speeds the lift depends on.
the slope of the mean camber line at the three—quarter—chord point, so
that the effective angle of attack is

ot

ag = 2 T8 _ (30)
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At supersonic speeds the 1ift depends primarily on the average slope of
the mean camber line, so that

Cip — ¢ :
o = = T8 (3)

‘Determination of the Aerodynamic Parameters

The selection of the aerodynamic parameters m, and & for the

calculation of the divergence speed has been discussed in reference 3.
For calculating the aerodynamic loading at a given flight condition the
aerodynamic parameters are chosen for that flight condition. The
effective lift—curve slopes mgy and Dg, &re applicable only to subsonic

subcritical speeds. At higher speeds no simple span correction is
available; neglect of the span correction tends to be conservative for
calculation of the divergence speed and the aerodynsmic loading, however.

Instructions for Solution-

Two sets of integrating matrices have been prepared, one for a six—
point solution and one for a ten—point solution. The former should be
adequate for all practical purposes; only where the stiffness curves are
very irregular near the root does the ten—point solution have to be
resorted to. The points considered by the two sets of tables are at

E'L = 0, 0.2, 0.4, 0.6, 0.8, and 0.9 for the shorter solution and

A

E‘i-: o, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 for the longer
solution. The brocedure to be followed for either solution is 1dentical;
although computing forms asre presented in this paper only for the six—
point solution, thelr extension to apply to the ten—point solution is
obvious.

Calculation of the matrices.— The first step in the aerocelastic
analysls by means of the stiffness curves is the calculation of the
aeroelastic matrix [A] from the physical and goometrical parameters
of the wing. These parameters are conveniently tabulated in a form of
the type shown in table VI(a). The computation is then carried out
“according to the instructions of table VI(b), each step in the procedure
being identified by the number in the upper left cormer of each box.

It must be kept in mind that many of the operations call for matrix
miltiplications where the order of the multiplicands is of importance.
(A brief sumnary of matrix methods is presented in the appendix.) The
aeroelastic matrix is obtalned as the last step (step 13) of the
computations in this form which constitutes an evaluation of the

A matrix given in equation (15).
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A gpecial case arises when elr is zero. If ey is not zero

along the remainder of the spen, its value at_some point other than the

°1
root may be used as a reference value. The |-— (5_ matrix and the

e
1,
mltiplying factors of steps 8 and 9 as well as the definition of the
parameter a are then based on this other reference value rather
than 1, If ey 'is zero along the entire span, step 1 and gteps 3

to 8 may be omitted and steps 9 to 13 should be modified as follows:

(EI),
Step 9 (GJ) swta.nA[ J

Step 10 [©®]- [@]

Step 11 Ag is

Step 12 Omit

sep 13[4, 0 [@] [@)

Ic 1nfluence coefficients of the proper type are available, the
calculation of the aeroelastic matrix lAf] is carried out directly
by means of equation (28).

Solution for divergence dynamic pressure.— In order to determine
the value of the parameter a or a¥ corresponding to divergence, the
aeroelastic matrix [A] or [A'] is iterated (see appendix) as indicated
by equation (18). Table VII(a) may be used for this purpose. The result
is the critical value of a or a'. The divergence dynamic pressure is
then calculated from equation (16) or (27). It is to be noted that this
pressure will be in pounds per square inch. Since the aeroelastic matrix
is independent of the Mach number, except insofar as ey varies with Mach

number, the same critical value of a may be used to calculate the diver—
gence dynamic pressure for an entire range of Mach numbers. If the value
of e; changes, however, as it does between the subsonic and supersonic
region, the critical value of a has to be calculated for both values

of el-

If the value of e; 1s zero along the entire span and the [A]

matrix has been calculated. according to the modified instructions,
1teration of the matrix will give the value of the parameter d at
divergence. From the definition of d the divergence dynamic pressure
may then be calculated.



18 NACA TN No. 1876

Solution for aerodynamic loading.— In order to calculate the aero—
dynamic loading corresponding to a given .flight condition and geometric
angle—of-ettack distribution the aeroelastic matrix [A] or [AY] is
multiplied by the value of a or a' calculated for the given flight
condition and subtracted from the unit matrix [I]. (see equation (17).)
The result may be entered in table VII(b). Again it must be noted that the
value of the aeroelastic matrix varies with the flight condition if e
varies, so that the aeroelastic matrix corresponding to the proper e)
value must be selected. The resulting matrix constitutes the coefficients
of a set of simultaneous linear algebraic equations for the unknown values

of the effective angle—of—attack distribution of the deformed wing.
{Eg_ a, in terms of the known angle—of-attack values of the rigid

mg
wing { } Table VII(b) is set up for the calculation of the additional

loading, the damping—-in—-roll loading, and a third arbitrary loading; as
many loadings as desired may, of course, be calculated by this method.

The solution of the equations may be carried out in any convenient manner.
The form of table VII(b) has been prepared for uss in conjunction with
Crout?s method of solving linear simultaneous equations (reference 6).

In the case where ey 1s zero along the .span, the headings at the
top of table VII(b) should be modified to read

_——= — d =

[T

where [A]  _, has been calculated according to the modified instructions
and d has been obtained by iterating [A]el=0'

The values of {%3— '} calculated for the additional load’
) 1
distributlon (@ = l) constitute values of the ratio csz 2

or (bcz) /(ccz) in view of the assumptions made cdncerning the air

-forces. The section loading of the flexible wing is obtained from the
relation '

" ey mel :> o -
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or in dimensionless form

cey .
C = el ch:l > (325-)

The wing 1lift coefficiént defined by the relation

L
or, = - (33)

and the wing bending-moment coefficient defined by

M'

CBu,, = qu (3)

may be obtained by integrating the load distribution. These integrations
may be performed conveniently by multiplying the ccz/cr values by the

first rows of the [Kl] and [KQJ matrices, respectively. Thus

- oo {2 £

- my, SWTZLLKlJl[;_r] z—zz & (352)
and
cey .
p—"=
° m,
" Te 872r wtKejl[ ] oy (362)
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The lateral center of pressure of the wing load gl- may then be

W
determined from the relation

(37)

,_P|<<|
|
3

The fore-end—eft location of the aerodynamic center of the wing load
measured rearward of the leading edge of the mean aerodynamic chord as.
a fraction of the mean aerodynamic chord may be estimated from the
relation

(ac) Y -7
- oac +—1VIACta.nAaC (38)
°Mac - °MaAC

where AaC 1s the sweep of the section-aerodynamic-center line.
For any other geometrical angle—of—ettack distributions such as

those due to built—in twist or those due to rolling, the same section
lift—curve slope should be used as for the structural deformations, so

that mel is replaced by mg ‘and j§i is unity in equations (32), (35),

T,
1
and (36). For the damping—in-roll distribution with a tip helix angle
of 1 radian :
8w n 1
ag=1-——(1-2 (39)
g b/2 S
The rolling-moment coefficient due to the wing load is defined by
oM?
1, = =X : (ko)

L

It is seen to be twice the wing bendingsmoment coefficient.

The contribution of the wing to other stability derivatives may
be obtained similarly by integrating the load distributions due to the
angle—of-attack distributions caused by the motion under congideration,
as described in reference T7; in the case of swept wings, particular care
mist be taken in selecting the proper angle-of-attack distribution and
in accounting for the lateral inclination of the 1ift vector. (see
reference 4.)

If the aerodynamic loading or the stability derivatives are to be
obtained for a wide variety of flight conditions, it is convenient to



NACA TN No. 1876 21

systematize the calculations in the following manner: The aeroelastic
matrix is computed for both the subsonic and supersonic aerodynamic—
center values and iterated for both cases to obtain the subsonic and
supergonic values of the divergence parameter ap. From these values

the divergence dynamic pressure may be computed by means of equation (15)
and plotted against Mach number, as suggested in reference 3; on the
same plot values of the actual dynamic pressure may be plotted against
Mach number for various altitudes of interest. Such a plot for a wing,
the physical characteristics of which are given in figure 3, is shown in

figure k4.

Since at a given Mach number the ratio a/ap is equal to the
ratio q/qD, the range of a/aD values of interest may be established

from this plot for both the subsonic and the supersonic region. Several

representative a/&D values may then be chosen within the given ranges

and the corresponding values of a computed from the previously calculated
values. The aerodynamic loading is calculated for these values of a

using the appropriate [AJ matrix and plotted in the form of

(ccl)f /(ccz) » With the ratio a/a;, as a parameter. From these

curves or from the =— & values the 1ift coefficients may be obtained

mel

in the form (CL)fw/(CL) and plotted against a/aD or q/qD; the
. v
other coefficients may be obtained and plotted in & similar form.

For any specific flight condition the value of a/aD may then
be obtained from the plot of q and dp against Mach number. The

loading, 1ift coefficient, or other item of interest may be obtained
from the plots which give these items in terms of the rigid—wing values.
Once the rigid—wing values at the given Mach number are known, the
flexible—wing values may then be obtained immediately.

IMlustrative Example

In order to illustrate the method described in the preceding
sections, a typical swept wing has been analyzed. The physical and
geometrical parameters of the wing are shown in figure 3 and the upper
part of table VIIT (which follows the form of table VI(a)). The
chord, elce, and stiffness matrices have been obtained from the
glven parameters and are shown in the lower part of table VITI.

The calculation of the aeroelastic matrix for the subsonic case
has been carried out by means of the form of table VI(b). All but
three of the steps of the computation are shown in table TX numbered
in the same order as in table VI(b). Steps 1, 2, 6, 7, 11, and 12
constitute matrix multiplications, which are carried out in the order
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indicated; steps 5 and 13 constitute matrix additions or subtractions;
steps 3 and 4 constitute multiplications of matrices by constants.

The aeroelastic matrix is iterated in table X(a) (which follows .
the form of table VII(a)) to yield a value of ap = -2.208. From this.

value and a value of & computed in the same manner for supersonic

speeds, the divergence dynamic pressure has been calculated by means of
equation (16) on the basis of estimated values of the effective 1lift—
curve slope. The variation with Mach number of the divergence dynamic
pressure, the actual dynamic pressure at sea level, and the estimated
effective lift—curve slope is shown in figure L.

For a value-of é% = ~0,25, such as would be obtained approximately

at a Mach number of 1.0, the aerodynamic loading has been calculated for .
the additional-angle—of-attack case and the damping—-in-roll case in
table X(b), which follows the form of table VII(b). The values of g

for the damping—in-roll case have been calculated from equation (39).

The aerodynamic loadings, in addition to those calculated for other

q/qD values, have been plotted in figure 5 as ratios of the flexible—
wing loadings to the rigid-wing loadings. The curves have been. integrated
to yileld wing 1lift and rolling-moment coefficients as well as

the aerodynamic center of the wing load, which are shown in

table X(b) for the case of gL = —0.25 and which are plotted against
D
-3 in figure 6.
dp

The wing 1ift coefficient is defined in such a manner that if
the fuselage 1ift is known and made dimensionless by dividing by q
and S the resulting fuselage 1ift coefficient may be added directly
to the wing 1ift coefficient. This definition and the fact that
figure 5(a) is plotted over the fraction of the wing-elone span 8y

explain the fact that the area under the curve of figure 5(a) is not 1.
The aerodynamic center as plotted in figure 6 constitutes the center

of pressure of only the wing load. In order to obtain the airplane
aerodynamic center, the magnitude and center of pressure of the fuselage
load would have to be known and taken into account.

DISCUSSION

Both the aerodynamic and the structural assumptions made in this
analysis are more realistic than those made in reference 3. The device
employed. in this analysis of calculating the air forces for wing sections
parallel to the direction of flight and then transferring them to
sections perpendicular to the elastic axis obviates the necessity of
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replacing the actual wing with one the root and tip of which are
perpendicular to the elastic axis for the purpose of analysis. Further—
more, the inclusion of Falkner'®s modification (see appendix) in the
integrating matrices has the effect of rounding off the load distribu—
tion approximately in the manner observed at subsonic speeds. At
supersonic speeds the load distributions do not go to zero in the manner
assumed in Falkner's modification, but even at supersonic speeds there
is some reduction of load at the tip, the total magnitude of which is
not far from the reduction obtained by Falkner's modification.

Only one aerodynamic assumption 1s still made: that induction
effects may be approximated by an over—all reduction of the strip theory
loading (rounded off as previously described) at subcritical gpeeds and
may be neglected at supersonic speeds. The effects of aerodynamic
induction could be taken into account more accurately by using aero—
dynamic influence—coefficient matrices instead of the effective 1lift-—

4 ) o _
: ; c ®1 sc :
curve—slope concept and the oy and ———(—;> matrices used in
T e1 Cr
T

this analysis. Avallable methods.of calculating such influence coeffi—
cients for wings of arbitrary plan form at subsonic and supersonic speeds,
particularly those suitable for wings with large amounts of sweep, are
either too inaccurate or too time—consuming for practical purposes,
however.

Although the analysis of this paper has been performed for wings
congisting of uncambered sections, it is directly applicable as well to
the determination of the additional loading of wings with cambered
sections. The loading of such wings due to the section pitching moment
at zero 1lift may be determined by modifying the analysis somewhat.

The assumption of an effective root perpendicular to the elastic
axis made in reference 3 for the purposes of calculating the structural
response is carried over in this analysis. It is modified, however,
to the extent that the root is no longer considered to be rigid as in
reference 3, but flexible, both in torsion and bending. It has been
demongtrated in reference 5 that the deflections of a swept beam may be
eatimated on that assumption, provided the root-rotation parameters are
known. By assuming the effective root at the intersection of the elastic
axlg with the side of the fuselage, the root bending due to bending
moment and root twist due to torque are minimized. The bending due to
twist and twist due to bending are the same regardless of the location of
the effective root.

The method of introducing the root rotations into the analysis by
means of the [;é] matrix assures that the structural twist in planes
parallel to the direction of flight is zero at the fuselage. From
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figure 2 it is seen that the local values of the root rotation either
tend to approach zero at the root or tend to cancel each other. If the
root—rotation constants are known, the structural deformations can there—
fore be predicted quite accurately by the assumptions made.

The manner in which the equations of equilibrium are solved by
means of the integrating matrices accounts for the true chord and
stiffness variations. It does not necessitate replacement of the
actual wing by constant—chord segments with all the flexibility
concentrated at the ends of the segments, an approach which has been
used extensively in the work on aeroelastic problems of straight wings.

A further refinement which obviates the necessity for making any
structural assumptions other than that of small deflections is the use
of measured influence coefficients in the aerocelastic analysis. Wherever
such coefficients are available it is, of course, of advantage to use them.

No explicit account has been taken in the analysis of the effects
of the inertia loading on the structurel deformations and hence the
aerodynamic loading. On swept wings, in particular, their effects
may be considerable. For the purposes of this analysis, however, the
structural deformations due to inertia loading may be considered part
of the geometric angle of attack and the rigid-wing geometric angle of
attack may be modified accordingly. The deformations due to the inertia
loading may, incidentally, be calculated conveniently by means of the Kj,

K5, and K3 matrices.

Some of the general observations made in reference 3 concerning the
divergence phenomenon are corroborated by the example. As expected of
a wing with a considerable amount of sweepback, the divergence dynamic
pressure is negative. Consequently the wing cannot diverge. The
divergence dynamic pressure is useful as a reference value, however;
the values of the load distribution and the stability parameters divided
either by the corresponding rigid-wing values or by the section 1lift—
curve slope depend only on the ratio of the actual to the divergence

dynamic pressure.

The type of plot shown in figure 4 is therefore quite. ugeful in
the analysis of aeroelastic phenomena. As pointed out in reference 3,
this chart may also be used to estimate the actual divergence dynamic
pressure where there is a possibility that the wing may diverge. It
appears that the critical values will occur at either extremity of the
transonic region. In the transonic region proper the lift—curve slope
usually appears to be lower then at the extremities, so much so that the
decrease in lift—curve slope even tends to overbalance any forward
shift in aerodynamic center.

As would be expected qualitatively, the effect of wing flexibility
in the case of the example wing is to unload the wing tips owing to the
fact that they bend up. The 1ift carried by the wing is therefore less
than that carried by a rigid wing, the center of pressure being farther
inboard and the aerodynamic center farther forward.
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The difference between the supersonic and subsonic values of the
loading, the lift and rolling-moment coefficients, and the aerodynamic
center for a given value of a/aD is due to the difference in the

e, distributions. If the distributions were the same, the subsonic
and supersonic variations of these quantities with a/aD would coincide

despite the difference in the elr values.

Another item of possible interest is the fact that the variations
of the paramsters dD and ap for the example problem are approximately

linear (see fig. 7), as would be expected from the results of the
analysis of reference 3. The deviations from linearity are most pronounced
near the points for d = 0 (that is, A = 0°). They are due to the.effects
of the root rotations, in particular, the bending due to torsion and torsion
due to bending; these effects were neglected in the approximate analysis of
reference 3. The points of figure 7 correspond to the example wing and
the wings that would be obtained by rotating the example wing to the
unswept and- 37.5° sweptforward positions in such a manner as to keep the

elrcr co8s A (EI)
parameters y

8p (GJ)r

moment—arm (el) distributions constant. Points are shown for both the
subgonic and supersonic variations as well as for the case when e; =0
over the entire span (aD 0). The difference between the subsonic and

, a8 well as the chord, stiffnees, and

supersonic lines is due entirely to the difference in- the e1 distribu-—
tion; if the distributions were the same, as would be the case if the
elastlic axis were at a constant fraction of the chord, the varlations
would be the same, regardless of the difference in the elr values.

The present analysis is concerned only with wing or tall loads;
the total loads are obtained by adding the fuselage loads (which may
be assumed to be unaffected by flexibility) to the wing or tail loads
obtained from the analysis. The amount of load carried by a flexible
wing and the manner of its distribution can consequently be estimated by
the method presented herein if the contribution of the fuselage is known
at low dynamic pressures, that is, for the "rigid-wing" case.

The fuselage has a considerable effect on some of the stability
parameters as well, although in the case of others, such as Clp: the

effect is negligible. Other effects that may have to be accounted for
in calculating stability derivatives are the boundary-layer behavior
and tip suction. The boundary-layer effect may be accounted for by

- using a section lift—curve slope corrected for boundary-layer effects
- to calculate the angle—of-attack distribution of the flexible wing at
the flight conditions of interest and then obtaining the 1ift and drag
distributions corresponding to that angle—of-ettack distribution.
TLateral tip suction may be important on low-aspect-ratio and highly
swept wings. Since it does not affect the 1ift distribution, it may be
taken into account by calculating the angle—of—ettack distributlon of
the flexible wing and estimating the tip suction corresponding to the
actual angle of attack at the tip.
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In calculating stabllity derivatives it is well to keep in mind
that the method presented in this paper is based on a modified strip
theory, unless aerodynamic influence—coefficient matrices are used. The
calculated derivatives may therefore be somewhat in error, particularly
if in calculating them the moment of a load distribution has to be
determined. If there is reason to suspect that the modified strip
theory is inadequate for calculating a given derivative, the derivative
may be calculated for the rigid-wing case by a more refined method; the
results calculated by the method of this paper may then be used to
correct the accurate rigid-wing value for the effect of structural
flexibility.

CONCLUDING REMARKS

A method has been presented for calculating the aerodynamic loading,
the divergence speed, and certain stability derivatives of wings and
tail surfaces of arbitrary plan form and stiffness. Provisions have
been made for using either stiffness curves and root—rotation constants
or influence coefficients in the structural part of the analysis. Strip
theory with over—ell reduction and rounding off at the tip to take
account of aerodynamic induction have been used for the aerodynamic part
of the analysis. Computing forms, tables of numbrical constants required
in the analysis, and an illustrative example are included to facilitate
calculations by means of the method.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va., December 2k, l9h8
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APPENDIX
SUMMARY OF MATRIX ALGEBRA PERTINENT 'TO THE ANALYSIS

For the convenience of the reader unfamiliar with matrix terminology,
a summary of matrix definitions and methods is presented in the following
sections. For a more complete discussion of matrix methods ths reader
is referred to any text on matrices, for instance reference 8.

Definitions

A matrix is a rectangular array of numbers, called elements, written
down in rows and columms. A column matrix consists of a single colum,
a row matrix of a single row. A square matrix has as many rows as it
has columms. The dilagonal of a square matrix from the upper left to the
lower right is called the principal disgonal. A matrix all the elements
of which are zero except for those on the principal diagonal is called a
diagonal matrix. If all of these elements are unity, the matrix is
termed the unit matrix.

Matrix Algebra

Addition.— Two matrices can be added or subtracted if both have the
same number of rows and columms. The addition or subtraction is carried
out by adding to or subtracting from each element of the first matrix
the corresponding element of the second matrix.

Multiplication by a constant.— A matrix is multiplied by a constant
"~ by multiplying each element by that constant.

Matrix maltiplication.— Two matrices can be multiplied by each other
if the second has as many rows as the first has columns. The elements
of the resulting matrix are obtained by multiplying the elements in the
corresponding row of the first matrix by thoss of the corresponding
column of ths second matrix in the following order: The firat element
of the row is multipllied by the first element of the column, the second
by the second, and so forth. The sum of the products obtained in this
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manner is the value of the element of the product matrix, Schematically
this process may be illustrated as follows:

1 A
2la | b |c d | e | T B Q
3 % C =
4 1 I

[=] [M]—t [m] [x]
5 E
6 F

Q=8A+ DB +cC+ dD + eE + fF

It must be emphasized that in multiplying matrices by each other their
order is of importance. As the two matrices under consideration are
written the matrix at the left (the m matrix) is said to be post—
multiplied by the other, (the M matrix); or the M matrix may be said
to be premultiplied by the m matrix, in order to distinguish the manner
in which they are multiplied. If the two matrices were written in the
reverse order and then multiplied according to the foregoing instructions,
that 1s, 1f the [M] matrix were postmiltiplied by the [m] matrix, the
element of the second row and fourth columm of the product matrix [M][m]
would clearly not have the value Q 1in general, nor would, in general,
any other element have the value it would have if the two matrices were
miltiplied in the order shown. Consequently it is important to observe
the order in which the matrices are written down in the computing
instructions. : :

Matrix iteration.— The purpose of iterating a square matrix is to
determine the column metrix or matrices which, if postmltiplied by the
given square matrix, yleld the same column matrix except for a constant
miltiplier. It is the value or values of these multipliers which
constitute the desired characteristic values of the matrix.

The iteration is carried out by assuming a "trial" colum (the
column shown in table VII is convenient for the purpose of this analysis)
and premultiplying it by the given square matrix to yield a "result"
colum. The elements of the result colum including the last are
divided by the last element of the result columm and entered as a
second trial columm. The second trial columm is then premultiplied
by the square matrix to yield a second result columm. The procedure is
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repeated until the same value (within the desired accuracy) is obtained
twice in succession for the last element of the result matrix. The
reciprocal of this value is the desired (lowest) characteristic value
of the matrix, that is, the lowest ‘critical value of aD, in_the
analysis of this paper.

" Another way of estimating a first trial column in this analysis
is to add the elements in each row of the A matrix, enter the six sums
in the first result column, and treat them as if they had been obtained by
multiplying the A matrix by a first trial colum.

Derivation of the Integrating Matrices

Although femiliarity with the derivation of the integrating
matrices is not essential to the application of the method of this
paper, an outline of the derivation is presented because of its general
interest.

The integrating matrices used in this paper are based on the same
concept as Simpson's rule — replacement of the actual function which is
to be integrated by parabolic segments. If the function y has the
values ¥, 3, Yp, and yp41, respectively, at the equally spaced

points X1 Xp, and Xp43, the following relations are seen to be

true for a second—degree parabola passed through the three known points:

Yy =Tn+ %(?n+l - yn—-l)(x - xn) + %(Yn+l — ¥y *+ srn—l)(x - xn>2 (A1)
fn+l _ .
Jé;fl y dx = (%'A%>yh—1 + <§'A%>yn.+'<%'a%>yn+l (a2)
In+l 1 5 5 i
fxn yoax = ( 12 A%Yn 1 <§ AX>="’n * (1—2 A’;le (£3)
n v ax =\33 AX)Yn—l + <3 Ax>yn < = Ax> Va1 (Ak)

Xn1



30 NACA TN No. 1876

ern+l(x - x)y dx = (- %-5i%>yh_l + (O)y, + (%-Ei%>yn*l (a5)

Xn—1

/:+1(x - 1)y dx = (— 51,; &9;',1_1 + (ﬁ A—x2>yn_l +(21u &?)yml' (a6)

where

AX = X =Xy g = X0 ~ %y (a7)

The different integrations over the parabolic segments may- thus
be performed by multiplying the given y values by the multiplying
factors indicated in equations (A2) to (46),.

Since load distributions at . subsonic speeds go to zero with infinite
slope at the tlp and the ordinary second—degree parabola furnishes a
poor approximation to such a distribution, V. M. Falkner has suggested
that a curve of the type '

1 /2

y =By + A1 -2 4 a1 - x)3/2 (88)

be passed through the last three points of the load—-distribution curve
at the tip (x = 1). On the basls of the approximation, relations
equivalent to equations (Al) to (A6) may be derived. The multiplying
- factors for the last two segments are then based on these equivalent
expressions rather than those of equations (A2) to (A6).

. The integrating factors of equations (A2) to (A6) may be assembled
directly into integrating matrices. The,.K3 matrix, for instance, is

set up to perform the integration foy dx. TIf at the upper limit x = 0.1

and if the ten-point matrix (table I%I(b)) is to be used, the factors 0.04167
0.06667, and —0.00833 may be obtained from equation (A4) since x, ; =0,

¥p = 0.1, and Ax = 0.1; similarly, if for the same case the integration

1s extended to xp43 = 0.2 as the upper limit, the integrating factors
0.03333, 0.13333,.and 0.03333 will be obtained from equation (A2).

These factors cogstitute~the second and third rows of the matrix K3;

since the Iintegrations are independent of the y values other than the
first three, the other y values are multiplied by zero in these two

rows. In order .to extend the integration to x = 0.3 an integration is

b4



NACA TN No. 1876 31
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again performed up to x = 0.2 and another integration, using another
parabolic segment, is performed from x = 0.2 to x = 0.3. For the
latter integration Xp~1 = 0.2, x, = 0.3, and Ax = 0.1,.s0 that
equation (A4) again yields the factors 0.04167, 0.06667, and —0.00833.
The y value at x = 0.2 1is therefore assigned a multiplying factor
of 0.03333 by the first integration and a factor of 0.04167 by the
second, or a total factor of 0.07500. The resulting factors are
entered in the fourth row of the K3 matrix. All other rows are

obtained in a similar manner.

o ) 1
The Ki matrix is set up to perform the integration \/P y dx. The
X

~values of the last row of the ten—point K, matrix (table I(b)) are

obtained from Falkner's equivalent of equation (A3) for the curves
asguued in reference 5, with x . = 0.8, x, = 0.9, x,,7 = 1.0, and

Ax = 0.1, Only the miltiplying factors for the y . values at x = 0.8
and x = 0.9 are listed, since the y wvalue at x = 1.0 (the wing tip)
is assumed to be zero in this analysis, so that its multiplying factor

is immaterial. The values of the last row but one are obtained. similarly
from Falkner's equivalent of equation (A2). The values of the row

for ék = 0.7 are obtained by using equation (A3) in the interval

x = 0.6 to x = 0.8 and Falkner's equivalent of equation (A2) in the
interval x = 0.8 to 1.0. Similarly the row for él = 0.6 1is
A

obtained by combining the results of equation (A2) for the interval x = 0.6
to 0.8 with Falkner's equivalent of equation (A2) for the

interval x = 0.8 to 1.0. All other rows are obtained in a similar
manner. .

' 1
The K, matrix is set up to perform the integration ‘/P (x - x,)y ax,
x

where x 1s the variable of integration.and Xy the value o% x at
the lower limit. In applying the integrating factors of equations (A2)
through (A6) to this integration it must be realized that

Ja-xyar-m-x) paes fa-mhya ()

go that the integrating factors for this integration would be obtained

by adding (x — x,) times the factors of equation (A2) or (A3) to

the factors of equation (A5) or (A6), respectively, depending on the

limits of the integration. The factors for the different

segments (x = 0.8 to 1.0, 0.6 to 0.8, and so forth) are then combined

for any given row (with its given value of x,) in the manner indicated for
for the K1 matrix to yield the Kp matrix. :
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The ‘Kh matrix sums up the torques outboard of a given point,

while the K5 matrix gives the sum of the moments of forces applied

outboard of a’given point. Neither requires any integrations in the
sense of equations (A2) to (A6). For the six—point method these two
matrices are: : .

Ky .A - &

y/s, 0.2 0k 0.6 0.8 0.9 1.0| |[y/s,|0.2 0Ok 0.6 0.8 0.9 1.0
0 1 1 1 1 1 1 o |o.2 ok 0.6 0.8 0.9 1.0
620 1 1 1 1 -1 0.2] 0 2 A 6 .7 .8
oslo o 1 1 1 1 okl 0o o 2 4 5 .6
.6/0 o 0o 1 1 1 0.6l 0 0 o0 .2 .3 .k
080 o o o 1 1 0.8 0 o o o .1 .2
090 o o o0 o0 -1 09l 0 o o o o .

It will be noted that the moment arms which comprise the mati'ix are

fractions of s,, so that the matrix must be multiplied by the length 8,
in order to yield actual moments as stated in equation (21).
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TABLE I.— VALUES OF THE INTEGRATING MATRIX [gi]
(a) Six—Point Solution
n/sy| O .2 A .6 .8 9

0 0.0666T{0.26667(0.13333|0.26667{0.09333|0.15085

o2 |=.01667| .13333| .15000| .26667| .09333] .15085

A |0 0 L06667| 26667 .09333| .15085

.6 |0 o] —.01667{ .13333]| .11000| .15085

810 0 0 0 02667 .15085

9|0 0 0 0 -.01886| .09333

(b) Ten—Point Solution
T]/SA 0 o1 .2 .3 N .5 .6 T .8 .9

0 0.03333}0.133330.06667|0.13333[0.06667|0.13333{0.06667|0.13333|0.06000 0.15085
.1 {-.00833] .06667| .07500| .13333| .06667| .13333| .06667 .13333| .06000| .15085
.2 |0 0 .03333| .13333] .06667{ .13333| .06667 «13333| .06000( .15085
.3 |0 0. —.00833| ".06667| .07500| .13333| .06667| .13333| .06000 .15085
4 [0 0 0 0 .03333f .13333| .06667| .13333| .06000| .15085
.5 |0 0 0 0 —.00833; .06667| .07500| .13333| .06000| .15085
.6 |0 0 0 6 0 0 .03333| .13333| .06000( .15085
.7 |0 0 0 o] 0 0 —.00833| .06667| .06833| .15085
.8 10 0 0 0 0 0 0 0 02667 .15085
.9 |0 0 0 1o 0 0 0 0 ~.01886| .09333

“Iﬂ"!"
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TABLE I1.— VALUES OF THE INTEGRATING MATRIX [ K]

(a) Six—Point Solution

35

0/, 2 X .6 .8 9

o |0 0.05333]0.05333|0.16000{0.07314 0.13792

.2 | -.00167| .01000[ .02500| .10667| .05u48| .10775

R K] 0 0 .05333] .03581| .07758

610 |o ~-.00167| .01000| .01548| .ou7u1l

8lo ) ) 0 —-.00152| 01724

910 0 1o 0 —:00108| .o0u19

(b) Ten—Point Solution

n/s, 0 .1 .2 3 o .5 .6 .7 .8 .9
0 0 0.013333 | 0.013333 | 0.040000 | 0.026667 | 0.066667 | 0.040000 | 0.093333 | 0.046476 0.137920
o1 | —.000417| .002500| .006251 | .026667 | .020000 | .053333| .033333| .080000 | .oLO4TE .122835
210 [ o] 013333 | .013333 | .040000 ;026667, 066667 JO3ULTT 107750
o3 K 0 —-000k17 | .002500 | .006251 | .026667 | .020000| .053333 | .028476| .092665
Ao 0 0 0 0 ".013333| .013333 | .040000 | .022476 | .077580
510 0 ‘0 0 —000417 | .002500 | .006251 | .026667 | .0L64TT7| .062495
.6 1o 0 0 0 0 0 0 .013333 | 010476 | .OLTA1O
7o 0 0 0 o o -.000417 | 002500 | .004060 | .032325
B8 |o 0 0 0 ) o o". 0 —.0015é3 ’.01721+o
9]0 0 o 0 0 ) 0 0 —-.001077 | .00k190
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TABLE III.— VALUES OF THE INTEGRATING MATRIX [K:,;]

(a) Six—Point Solution

n/sp| © .2 b 6 81 9
0 0 0 d_ 0 V 0 0

.2 »08333| .13333 | =.01667|0 10 0

A | .06667| 26667 | .06667]0 o 0
| «6 | -06667| 26667 | .15000| .13333(-.02667|0

8 | .06667| .26667 | .13333| .26667| .06667|0

.9 -06667| 26667 | .13333) .26667| .10833| .06667

(b) Ten~Point Solution

Infessl o0 | a2 | 2 | .3 A .5 .6 ¢ .8 .9

o |o 0 0 0 0 0 0 0 0 0

1| .on167] .06667|-.00833 [0 0 o 0 0 0 0

2 +03333) .13333 «03333]0 ] 10 0 0 0 0

.3 | .03333] .13333{ .07500| .06667 |-.00833|0 0 0 0 0

o4 | .03333] .13333] .06667] .13333] .03333|0 0 0 0 {o

-5 | +03333] .13333| .06667( .13333| .07500| .06667|-.00833l0 = [0 o

-6 | .03333] .13333] .06667| .13333| .06667| .13333] .03333|0 0 0

-7 | -03333| .13333| .06667| .13333| .06667| .13333( .07500| .06667(—.008330

.81 .03333] .13333| .06667{ .13333 .06667| .13333| .06667| .13333 .03333/0

-9 | .03333] .13333| .06667| .13333| .06667| .13333 .06667 .13333} .07500| .06667
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TABLE IV.— VALUES OF THE LOAD-CONVERSION MATRIX [Ksj
(a) Six-Point Solution
n/spl O .2 L .6 .8 .9
0.2 0;08333 0.13333(-0.01667|0 0] 10
o4 |—-.01667| .13333] .08333]0 10 o]
o6 ‘o 0 .08333| .13333|-.01667|0
B8]0 0 —.01667| .13333] .08333(0
910 0 0 0 L0u553( ,05752
1.0 0 1o 0 0 ~.01886| .09333
\ (b) Ten—Point Solution
n/spl O .1 .2 .3 o4 5 6 o7 .8 .9
0.1 |0.04166|0.06667]-0.00833]0 0 0 0 0 0
«2 |-.00833| .06667] .0k167]0 0 0 0 0 0
.3 |0 0 LO4166[ ,06667|-.00833]|0 0 o] 0
A 10 0 —.00833| .06667| .Ok167|0 0 0 0
.5 |0 0 0 0 .04166] .06667(—.00833|0 0
.6 |0 0 0 0 —.00833| .06667| .04167]0 0
.7 10 o} 0 0 0 0 .04166| .06667|-.00833
8 |0 0 0 0 0 0 -.00833{ .06667| .04167
9 |0 0 0 0 0 0 0 0 04166
1.0 {0 0 0 0 0 0 0 0 —.00833 .09333|
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TABLE V.— VALUES OF THE LOAD—CONVERSION MATRIX [K7:l

/ (a) Six—Point Solution
n/sp 0 .2 ok .6 .8 9
0.2 | 0.01667 | 0.16667 | 0.01667 |0 0 )
ok f.06833 .05000 | .11667 | .05000 | —.00833| O
.6 |0 0. .01667 | 16667 | .01667| 0
B8 10 0 -,00833 | .05000 | .08946| .02035
9 |0 0 0 0 .00631 | . .08860
1.0 [0 0 0 0 —-.01077] .04190
(b) Ten—Point Solution {
n/sp| 0 .1 .2 .3 A 5 .6 I I .9
0.1 |0.00833|0.08333 b.oo&gl 0 0 0 0 0
.2 |~.00417| 02500 .05834| .02500|—.00417 ) 0 0
3 [0~ 0 .00833{ .08333| .00833 10 0 0
A [0 0 —.00417| .02500| .05834f .02500|-.00417|C 0 o
.5 |0 0 o] 0 .00833| .08333| .00833 lo 0
.6 |o 0 0 0 -.00417| .02500| .05834| .02500|-.00417[0
.7 |0 o o 0 0 .00833| .08333] .00835|0
.8 |o 0 0 0 0 -.00417| .02500( .06029 ';02935
910 0 o] 0 o] 0 .00631} .08860
1.0 |0 0 0 0 o 0 ~.01077[ .04190
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TABLE VI.— FORM FOR COMPUTATION OF AEROELASTIC MATRIX

(a) Wing Parameters

A= S = w o= %T =
A= b = . c = % = oy =
ten A = 8A = 8Csub Q[‘T=
cos A = S, = 85 cos A = aCgpn QPM=
n/sp n c e ) sub Lepr. GJ EI
-
.2
R
.6
.8
.9
_:_rj [1]
n/sp 0 .2 an .6 .8 .9 n/sa 0 .2 i .6 .8 9
0o [1.000 | O 0 0 0 0 0 0 0 0 0 0 0
.2 0 0 0 ] 0 .2 1 0 0 0 0 0
A -0 o 0 0 0 A 1 [0} 0 0 ) o]
.6 0 0 0 0 0 .6 1 0 0 0 0 0
.8 0 0 o} 0 0 .8 1 0 0 0 0 0
.9 0 0 0 0 0 .9 1 0 0 0 0 0
1%] (D) |
5] EI _
afsp | © .2 A .6 .8 .9 nsa| 0 .2 RN 6 .8 .9
0 p1.000 | © 0 0 0 0 0 [1.000] O 0 0 0 0
.2 0 0 0 0 0 .2 0 0 0 0 o
A 0 0 0 0 0 A o’ 0 0 0 0
.6 0 0 0 0 0 .6 0 0 0 0 0
.8 0 0 0 0 0 .8 0 [ 0 0 0
.9 0 0 0 0 0 .9 0 0 0 0 0
I 2]
P \r/ gy 1, \°r spr
n/s, 0 .2 A '.6 .8 .9 n/sa 0 .2 A .6 8 .9
o | 1000 | 0 0 0 0 ol 0o |1.000] o 0 0 0 0
.2 0 0 0 0 0 .2 0 - 0 0 0 ‘0
b 0 0 0 0 0 b 0 0 0 0 0
.6 0 [o] 0 0 -0 .6 0 (] [ 0 0
.8 0 0 0 0 o .8 ) ) 0 0 0
.9 0 0 0 0 0 .9 0 0 0 0 0

39
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TABLE VI.- FORM FOR COMPUTATION OF ABROELASTIC MATRIX — Continued

(b) Computing Instructicans

. 2
® e [e] o ],
nfsa] © .2 & .6 .8 .9 nea| o© .2 4 .6 .8 .9
| of| o ) 0 0 0. o 0 |0.06667
: ’ .2 |.08333 o] ] [+] .2 |.o1667
i u | .08667 o 0 o 4 [+ 0
6 |.o6667 o 6| o 0
8 |.os667 o 8| o 0 0 0
9 |.08667 9] o 0 0 0
@ el ] el te]
| nfep| © .2 & .6 .8 -9 _ Infsa] o© .2 & .6 .8 9
‘ of| o o | .0 o 0 0 o] o o o 0 0 0
| .2 |.08333 4} [$} 0 .2
4 | .06667 o 0 0 b
.6 | 06667 [+] .6
.8 |.06667 . 0 -8
.9 | .06667 .9
© -((%f (tann) [@)] ‘ e -
n/ep{ O 2 .6 .8 .9 afsy| © .2 o4 € 1 .8 .9
o] o 0 0 0 ) 0 of o 0 0 0 [) 0
2 0 o o .2 0 o 0
y 0 0 0 Nl 0 0 )
6 o 6 | 0
: .8 ‘ [ .8 0
9 ' 9.
%%f et - _— g. Eg;: °lr°:A°°°-x b - o
| - ® 3=y = Gy tan 8 )[1] Q@ e e <
] o T T3 1 & 1T 37T 3 W] o 2 X ] 6 | 8 ] .9
‘ o] o 0 [ ° ) o of o 0 0 0 0 [)
% .2 0 0 0 0 0 .2 0 0 0 0 0
3 R o 0 0 0 4 I 0 0 0 0 0
.6 0 o 0 0 0 .6 0 0 ° 0 o
.8 0 0 0 0 0 8 0 0. 0 0 0
| .9 o o 0 0 0 9 0 o 0 0 0
a';(an—oaMtanA)ﬂ__ a%%—c:/\m-n%u’__
| ® (SR CIRY (O] e [©)] - (@)
‘ nfep] © .2 A .6 .8 .9 ' nfsp | © .2 - .6 .8 .
‘ o] o 0 o 0 0 o o| o 0 o 0 o 0
2 0 o 0 .2 ) 0 o
" o | o 0 KN 0 0 0
.6 (] [ [
.8 [} .8 0
.9 .9

NACA
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TABLE VI.~ FORM FOR COMPUTATION OF AEROELASTIC MATRIX — Concluded

(b) Computing Instructions — Concluded

Supersonic Case

41

2 ,:elr °r> ]spr
By 6 | 8 9
0 |0.06667
Subsonic Case 2 |-.01667
5 FIE] AN
o 3 N .6 .8 .9 b ° °
- - .8 0 0 0 °
.2 | ~.00167 — > —
" 0 o) ] 0 C@ Bgﬂ B@ﬂ
6 o 0 /o 0 .2 RN .6 .8 9
.8 0 0 0 0 o| o 0 0 0 <; | 0
.9 0 0 0 0 2
@ @] (6] .
n/sa{ © .2 b .6 -8 -9 6
o 0 o 0 0 0. 0 -8
.2 =2
" =
: 8 e
n/sy © .2 4 .6 8 9
.8 ol ‘o 0 0 0 0 0
.5 .2
) []-@) - [&] t
n/sa| O .2 4 .6 .8 9 -6
0 0 0 0 ° ° ° 8
.2 2
n (o1 gy _
.6 Cldepr
, @ - [® - e
" YARKCE .2 4 .6 8 9
o] o 0 0 0 0 0
.2
A
.6
.8
-9
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TABLE VII.— FORM FOR SOLUTION OF AEROELASTIC EQUATION
(b) Aerodynamic Loading
) (a) Divergence
e
(] [E3- 0] |
q/sA 0 .2 R 6 .8 .9 q/SA 0 4 .6 .8 .9 {OB}A {aB}p {a,g}
o 0 0 0 0 o 0 0 | 1.0000 o 0 0 0 1
.2 _\.2 1
A4 R 1
.6 .6 1
.8 .8 1
.9 -9 1
Auxiliary matrices
{"‘8} 0 [ 1.0000 0 Q 0 o 1.0000
(v | @ Y[ W] | (8 .2
A
0 0 0 0 0 0 o
.6
2 | .3000
.8
4| L5000
-9
6 | .7000
.8 .9000 ¥inal matrices
.9 11.0000|1.0000 [1.0000 [1.0000{1.0000{1.0000 - {m_g__} &_} {me _}
'_Kljl[c/cr:] "1 Ja {m°1 | ™1 .
o | L 1 ]
[2]fes}
O[] o] &] ® (zela[e/e-]
@] | L [ |
° 0 0 0 0 0 0
.2
X
fe T S e g} = Zo_ 5l -
P O — | O - — ol - —
.8
E O, - — | o — | @ —
aDB
- ¥
N B o
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TABLE VIII.— PARAMETERS OF EXAMPLE WING

k3

A=k S = 37498 v =22.4 Qg = O
A = 37.5° b = 387.4 T = % = 96.8 %, - 0.40
tan A = 0.7673 sp = 218.9 acgp = 0.25 %, = 1.60
cos A = 0.7934 8y = 8p cO8 A = 173.7 acg,. = 0.425 Ql"ﬁ = 0,25
n/sa n c e Lo elspr GJ EI
0 0 122,5 0.4522 0.202 0.0272 6.56 x 109 7.02 x 109,
.2 43.8 110.8 493 .199 L0243 5.79 6.28
b 87.6 99.3 L4469 .197 .0219 3.13 3.65
6 131.3 87.7 Shlibh .19% .0194 1.49 1.89
.8 175.1 76.2 4420 .192 .0170 .68 .9k
.9 197.0 70.3 L4507 .191 .0157 42 .64
[=] [x]
n/s) o .2 't .6 .8 .9 n/sa 0 .2 A4 .6 8 .9
o | 1.000] o 0 0 ) 0 0 0 0 0 ) 0 0
.2 o |[.905 0 ) 0 0 .2 1 [ ) 0 0 0
Wb 0 o .811 0 0 0 ' 1 0 0 0 0 0
.6 0 o o | .16 ) 0 .6 1 0 0 ) 0 0
.8 0 0 0 o |.622| o .8 1 0 o | o 0 0
.9 0 ) 0 ] o | .5m .9 1 0 0 0 0 0
[&Gi:.l' [ﬁb[
(e g BT _
Wen] 0 ]2 | .k | 6] .87 9 e | o |2 | 4] 6] .81 5
o | 1.000] O 0 0 0 ) 0 | 1.00 0 0 0 ) 0
.2 0 |1.13 0 0 ) ) .2 0 [1.12 0 0 0 0
A 0 o |2.10 0 0 ) .4 ) 0 |1.92 0 0 0
.6 o o o |u.40 ) 0 .6 0 0 o |37 0 0
.8 0 0 0 o | 9.64 0 .8 0 0 0 o |7.47 0
.9 0 0 o 0 0 | 15.61 .9 0 0 0 0 0 | 10.96
2] 26]
1PNt/ Jsw 1r\°’r/ Jopr
/s, (o} 2 A .6 .8 .9 n/e 0 .2 4 .6 .8 .9
0 | 1.000{ © 0 ) 0 0 o |1.000 | o 0 0 - 0 0
.2 0 .806 0 0 0 0 .2 0 .732 0 0 0 0
A ) o | .642 0 0 0 A4 0 0 |.530 0 0 0
.6 0 0 0 {.ho2 0 0 .6 ) ) o ] .366 0 0
.8 0 0 o o | .368 ) .8 0 0 K 0 | .242 )
.9. 0 0 ] 0 0 | .312 .9 o | o o ) o | .190
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: | TABLE IX.— COMPUTATION OF AEROELASTIC MATRIX OF EXAMPLE WING
| (SUBSQNIC CASE)
® ] [ ® AEESIN
n/sp| o 2 o4 .6 .8 .9 n/sp o .2 A .6 .8 .9
0 o 0 0 0 0 o 0 | 0.06667 [0.2149 | 0.08560 | 0.13120 [ 0.03435 | 0.04707
.2 | .08333 | .15066 | —.03501 0 0 0 2| -.0667 | .10m6 | .00630] .13120] o335 .ou707
& [ L06667 .3013% | .14001 (] 0 .0 A (o] [ .04280| .13120| .03435| .O4707
6| 06667 .3013% | .31500| .58665| -.16070 [¢] .6 [¢] 0 |-.01070| .06560| .ouou8| .ou707
8| 06667 .30034 { 27999 | 1.17335| .64270 0 .8 0 0 [o] o .00981{ .O4707
9| 06667 | 30034 .27999| 1.17335] 1.08430 | 1.08072 .9 0 o 0 0o |-.00608| .ce922
® [ss] [S4] @ )
YN 0 .2 5 .6 .8 -9 n/sp 0 2 4 .6 . .8 .9
0 0 0 0. 0 g 0 0 0 0 0 0 0 0
.2 | .08333 | .14933 [-.03201 0 0 0 .2 | —.00613 | 01777 | .01728| .01922| .00503| .00689
A4 | 06667 .29867 | .12801 [¢] 0 0 A —.01173 | .03724 | .04875) .08089| .02118| .oeg02
6| 06667 .26867 | .28800( .49465| —.122452 (] .6 | —.01173 | .0372% | .05082) .17174| .06273|) .OT104
.8 | 06667 .29867 | .25599 | .98935| .49802 [ .8{ -.01173 | .03724 | .03938| .22118| .10693| .16293
.9 | 06667 | .20867| .25599| .98935| .80923 | .73070 .91 -.01173 | .03724 | .03938] .22118| .10es54| .23190
| Q| e (€] @) . [=][2]
? n/8,) (] .2 R .6 .8 .9 n/8p) [4 .2 A .6 .8 .9
0 [} 0 0 0 4] [] [+] (] 0.04826 | 0.04325 | 0.11456 | 0.04549 | 0.07917
2| o458 .08216 | —. 01761 0 0 0 .2 | -.00067 | .00905 | .02028| .07638| .03389| .06185
; 4| 03668 164331 .OT043 0 0 0 B 0 0 0 .03818| .022271 .04453
| 6| 03668 | .16433| .158u6| .27216}-.06851 | © .6 0 0 -.00135| .00716| .00963| .02721
: 8| .03668 | .16833| .14085| .suu3u| .27m01 0 .8 0 [ 0 0 |-.00095 .00990
| .9 | .03668 . L16433 | .14085] .5uu3k | Luks2L | 40203 .9 0 "] 0 0 —.00067 | .00241
| G e -0 ® @]
1 - B 0 .2 . . . .
| ® 2= (S ~ Oy ten A) [o] n/oA o 0 oh 06 08 o9
n/s 0 2 b -6 -8 -9 2| ~.00199 | 01106 | .c2unk| .o8zce| .03500| .06286
| ° © 0 9 9 0 0 4| —.00399 | .o1543 | .ou289| .20681] .09790| .18314
| 2| -.1629 0 0 0 0 0 .6 | —00399 | .ousu3 | .03755] .28397{ .165u2] .33786
| 4| 1629 ° o 0 o 0 .8 | —.00399 | .o1543 | .03221] .30252] .19308| .48336
1 . -6 —2629 0 0 ° ° ° .9 | ~00399 | .o1543 | .03221| .30252| .18680| :52208
| 8| -.1629 0 0 ) 0 0 .
‘ 9] -.1629 0 o 0 0 0 @ [“J = [@]‘ [@J
w s"; (Qam ~ gy tan A) - 20,1629 n/sy] (4] . .2 RN .6 .8 .9
‘ - 0 0 0 0 0 0 o
| 6] [®J’[®]*[®] .2 | —.ooual | 00671 |-.00716 | -.06280 | —.02997 | —. 05507
| ey O -2 - -6 -8 *9 & | —.00774 | .02181 | .00586 | 12592 | -.07672 | - 15812
| o 0 ° ° ° ° ° 6| —.0077h | .02181 | 01327 - 11223 | -. 10069 | -.26682
. 2 | —.03372 | .23282 | 05262 ° ° ° .8 | —.o0o774 | .02181 | .00717 | ~.08134 | —.08615 | —. 32043
| 05955 | M6S6T| .2a0kk] O 0 0 .9 | —.0o77s | .0e181 | .00717 | —.08134 | —.08426 | —.29018

| 6| =.05955 | 46567 | .u7346| .858817|-.22921 0

8 | —05955 | 46567 | .42084 | 1.71769 | .916T1 0
¢ -9 | —.05955 | .u6567 | .u2084 | 1.71769 |1.48954 |1.umu275
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TABLE X.— SOLUTION OF AERORLASTIC EQUATION FOR EXAMPLE WING (SUBSONIC CASE)

(a) Divergence

(b) Aerodynamic Loading

45

- =
ap = 025 & =0.552
(4] [[x]- ala]]
n/s'A [4 .2 Y .6 .8 .9 EYEN .2 A .6 .8 .9 {a.s}a {a.g}p {(1.8}_
3
o (] 0 0 0 0 0 0 11.0000( © 0 0 o 0 1 0.1033
.2 | ~.0041| ,OO6T {-.00T2 |~ 0628]~.0300|~.0560 2 | .0023| .9963| .00k0 | 0347 | .0165 | .0309 1 .2826
4} =.0077| .0218( .0059 |-.1259|-.0767|—-.1541 4| .0043]-.0120] .9968  .0695 | Jo424 | L0851 1 4620
+6 [ —.0077( .0218| .0133 [~.1122|~,1027|—.2668| | .6 | .0043|-.0120[-.0073 [1.0620 | .0567 | .1473 1 6413
.8 [=-.0077] .0218| .0072{~.0813|—,0862|~, 3204 .8 [ .0043]|-.0120(-.0040 | o449 10476 1769 1 .8207
«9 | =.0077| .0218] ,0072|-.0813[-.0843[~.2902 +9 | .0043[-,0120(~.0040 | .O4LG | .O465 [1.1602 1 9103
Auxiliary matrices
f .
o | 1.0000f o 0 [} ) 0 |4 1.0000 j| 0.1033
M @ )] W] ()| (6) 2| .0023| .9963| .0040| .0348] .0166 | .0310( | 2.0014 2834
4| .o043[-.0120| .9968| L0702 | .0427| .0857 1.0110 1665
0 0 0 0 0 0 0 -
- .6 .0043{~.0120]-.0073 [1.0629 [ .0538] .1395 29551 6094
2| .3000( .3115] .34k9| .3480
.81 .o043[-.0120f .0039) .0456 [1.0455 | .1638 9261 .7630
L | .5000{ (7311 .7846( .TBT6
9| .0043{-.0120| .0039| 0456 | .O44L [1,1473 .8081 .Th39
.61 .7000{1.0286)1.0526 {1.0532
.8 .9000(1.0775[1.0714]1.0723 Pinal matrices
.9 | 1.0000{1.00001.0000 |1.0000| 1.0000}1.0000| e _} {me } {me }
o a a, q
lKlJl[c/cr] eI (o | |Tex P ey -
@ Jo-0667]0-2423] 0. 1081]0. 1905 [0. 0581 [o.0866 | | 2-0000 || 0.1033
9320 .2320
A
[A]fes} 5 8518 || .3423
wle| o] el ol ® [<e]a [o/ed 7996 || a7
@l 0 Io.ow3]o.oh33|o.11k6|o.oh55]o.o792 7937 L6412
0 0 0 0 1} 0 [0}
.8081 . 7439
.2 | ~.1286|-.1561|-.1576
.| —.3018]-.3551]-.3567
Doz} = De b - Do
.6 | —.1246) - 4764 |- 1770 I.O{l{mTl a}a- 0.6524 l_@_]{mel a}p- I@J{mTl a.}— -
.8 | —.huy8|—. 1849 [-.4852 '
.9 | =.4128|-. 14526/ ~. 4529 (~. 4529 {2 = 0. Bs_ =o. Bg =
@Imelua 0.2736 [@_jmelap 0.1681 [@_]El-a_
ap = 2,208
- - - .
Cp, = 0.740 1y, Cau,, °-°696’%1 Gy, = 0.0855 my 5, = 0419
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S,= 104in.
w= |5 in.

(GR,= 5.10¢ 108 1b-in2
(ED),= 947=10°® Ib-in?

Tr = 43;420 in- b
My = 260,000 in~|b

" Rotation Av. value Q value

— Py -0.0002 0.16
——  Prn 0025 133
- — - r'r"r .0010 |.45
o ~= ¢ ey - .0010 - 24
2 .
4
=
o]
4
$ .
-] ')
S5 St
03)8: 8 /// _— \\\
o} U)“ Q' R a
[ = 7
20 - 7
s 8L/ _--- — - _ L
BE - B
gqo- o\\ \ —
3 =l Tl o
of ——— - __ . I
oL B 40 60 80 100 120

Distance along span, n, inches

Figure 2.- Rotations of a 45° swept box beam due to root
deflections (data from reference 5).
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Figure 4 - Effect of Mach number on the divergence
~ dynamic pressure and lift-curve slope of the example wing.
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Figure 5.- Load distribution of example wing.
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