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NATIONAL ADVISORY COMMITTEE FOR AERONIWTICS 

TECHNICAL NOTE NO. 1876 

CALCULATION OF TUE AERODYRANIC LOA])ING OF FLEXIBLE WINGS


OF ARBITRARY PLAN FORM A1iD STlnrNJSS 

By Franklin W. Died.erich 

A method. 18 presented. for calculating the aerodynamic loading, the 
divergence speed, and certain stability derivatives of wings and tail 
surfaces of arbitrary plan form and stiffness. Provision is made for 
using either stiffness curves and root-rotation constants or influence 
coefficients in the analysis. Computing forms, tables of numerical 
constants required in the analysis, and an Illustrative example are 
Included to facilitate calculations by means of the method. 

INTRODUCTION 

The distribution of the aerodynm1c loading on wings and tall 
surfaces is important both for the structural analysis of these con-
ponents, since it determines the applied bending moment and torque 
acting at any station, and for their aerodynamic analysis, since it 
a±'fects the stability derivatives to a large ertent. At high speeds the 
aero&ynemic loading, particularly in the case of swept wings, Is 
greatly affected by the structural deformations caused by the loading. 
The present paper is concerned with the determination 'of the effects of 
structural flexibility on the aerodynamic loading of wings of arbitrary 
plan form and. stiffness. 

The problem of load distribution was analyzed for unswept flexible 
wings as early as 1926 (reference 1) but has received relatively little 
attention since that time. The only new effect considered in subsequent 
work Is -aerodynamic induction (reference 2). No work appears to have been' 
done on the loading of flexible swept wings. The related problem of aero-
elastic divergence of swept wings with certain prescribed stiffness 
variations has been treated in reference 3. 

The present paper treats the problem of aerodynamic loading by 
matrix methods. Aerodynamic induction is taken into account approxi-
mately, since suitable aerodynamic influence coefficients are not avail-
able for wings of arbitrary plan form. When they become available they 
can readily be incorporated in this method. Structural flexibility is 
taken into account in the form of either calculated stiffness variations 
or measured. influence coefficients. The required integrating matrices
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are presented f or both a six-point and a ten-point solution. For the 
six-point solution convenient computing forme are included as well. The 
method is illustrated by means of an example. In addition to the analysis 
of the aerodynamic loading, the determination of the related divergence 
speed and of certain stability derivatives is discussed. 

For the convenience of the reader unfamiliar with matrix terminology 
a summary of matrix methods has been included in the appendix. The 
sections on "Application of the Iviethod" and, in particular, "Instructions 
for Solution" may be re.d without reference to the section "Derivation of 
the Method."

SYMBOLS 

A	 aspect ratio 

[A]	 aeroelastic matrix

(rnqs2e1 Cr2cosA 
a	 dimensionless parameter	 r 

(cj) 

a?	 parameter (meqswcr cos A) 

ac	 section aerodynamic center, measured from leading edge, 
fraction of chord 

b	 wing span, inches 

c	 chord measured parallel to the air stream, inches 

average wing chord, inches (-) 

/ll 
• section lift coefficient (-

•	 \qc 

• winglift coefficient
\qSJ 

wing root bendin-moment coefficient ( - 
\qSb/ 

wing rolling-moment coefficient (2c)
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7 mqSj 3C tan A cos3A 
dimensionless parameter I 

El	 bending stiffness in planes perpendicular to the elastic 
axis, pound—inches2 

e	 location of elastic 'axis measured from leading edge, fractIon 
of chord 

e1	 distance from reference axis to section aerodynamic center 
(positive forward), fraction of chord 

GJ	 torsional stiffness in planes perpendicular to the elastic 
axis, pound—inches2 

[i]	 unit matrix 

[IO]	 matrix defined by equation (12) 

[K1]	 integrating matrix for single integration from tip to root 

[K1] first row of K1 matrix 
1

[K2] integrating matrix for double integration from tip to root 

[K2]	 first row of K matrix 
1 

[K3]	 integrating matrix for single integration from root to tip 

[Kj1]	 matrix relating concentrated and accumulated torque 

[K5] matrix relating concentrated loads and accumulated bending 
moments 

[K6] matrix converting torques due to distributed loads to torques 
due to concentrated torques 

1K7]	 matrix converting bending moments due to distributed loads to 
-	 bending moments due to concentrated loads 

L	 lift on both wings but excluding lift on part of wing covered 
by fuselage, pounds 

2	 running air load along the reference axis, pounds per inch 

M	 accumulated bending moment (in planes perpendicular to the 
reference axis unless specified otherwise), inch—pounds 

effective section lift—curve slope for angles of attack due to 
deformation, per radian
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effective section lift-curve slope for additional-type angle-
of-attack distributions, per rad.ian 

fl10	 section lift-curve slope, per radian 

P	 concentrated load, pounds 

pb
wing-tip helix angle 

root-twist constants (see equation (9)) 

root-bending constant (see equation (9)) 

q	 dynamic pressure, pounds per square inch 

B	 concentrated torque, inch-pounds 

S	 total wing area including part of wing covered by fuselage, 
square inches 

distance from wing root to wing tip perpendicular to the air 
stream (see fig. 1), inches 

length of wing along reference axis (see fig. 1), inches 

T	 accumulated torque (in planes perpendicular to the reference 
axis unless specified otherwise), 1nch-ounds 

w	 distance between the effective root and the innermost complete 
section of the torsion box perpendicular to the elastic 
axis, inches 

y	 lateral ordinate measured from wing root, inches 

lateral center of pressure, inches 

a.	 angle of attack, radians

( 'l\ equivalent angle of attack, radians 	 - CL) 

F	 local dihedral angle due to deformation or slope of wing 
deflection curve at reference axis, radians 

structural deflection, inches 

distance along reference axis, inches 

A	 angle of sweepback (measured to the referenoe axis unless 
specified otherwise), de'ees
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[] influence-coefficient matrix for wing twist in planes paraflel 
to the air stream due to concentrated unit loads applied at 
the reference axis, radians per pound 

['DR]	
influence-coefficient matrix for wing twist in planes parallel 

to the air stream due to concentrated unit torques applied 
in planes parallel to the air stream, radians per Inch—
pound 

p	 angle of twist in planes perpendicular to the reference axis, 
radians 

Subscripts: 

a additional 

c mldchord 

D divergence 

fw flexible wing 

g geometric 

LE leading edge 

M due to bending moment 

MAC pertaining to the mean aerod,ynamic chord 

p damping in roll 

r at root or effective root 

rw rigid wing 

s structural (due to structural deformations) 

sub subsonic 

spr supersonic 

T due to torque 

trailing edge 

w wing exclthsive of fuselage

Prime mark: 

in or pertaining to sections parallel to air stream rather 
than perpendicular to the reference axis 

Matrix notation: 

	

}	 column matrix 

	

[J	 row matrix 
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[ ]	 square matrix 

[0]	
diagonal matrix 

DERIVATION OF TEE MHEOD 


Method Employing Stiffness Curves 

Assimiptions .- In the development of. the method the following 
assuiuptions are made: 

(a) The effects of aerodynamic induction may be taken into account 
by applying an over-all correction to strip theory and rounding off the 
resulting load distribution at the tip. 

(b) All deflections and angles of attack are small. 

(c) The wing is mounted flexibly at an effective root perpendicular 
to the elastic axis through the intersection of the elastic axis and 
the fuselage (see fig. 1), the root rotations being proportional to the 
root bending moment and root torque. 

(d) Pn elastic axis exists in the outer portion of the wing, this 
axis being defined as the elastic axis the wing would have if it were 
mounted rigidly some distance dutboard of the root approximately perpen-
dicular to the mid.chord line. (Near the root the elastic axis is defined 
as the extension of the outboard elastic axis.) 

(e) All deformations are given by the elementary theories of 
bending and of torsion about the reference axis, which in this case Is 
the elastic axis. 

Air loads.- In keeping with assumptions (a) and (b) the force on 
a wing section of unit width parallel to the direction of flight Is 

2' = qc(me% + i 1ag ) cos A 

= m0qccos A	 (1) 

where the equivalent angle of attack	 is defined by 

-
(la)
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The effective section lift—curve slope m for angle—of--attack distribu-
tions due to structural deformations has been given in reference 3 on 
the basis of the reasoning of reference 4 for subsonic speeds as 

A 
me =mo

	

	 (2)

A + I. cos A 

	

Similarly, the effective lift—curve slope m 	 for ad.dltional—ty-pe 

angle—of—attack distributions is determined by the same reasoning as 

A 

	

1 mo A+2cosA	 (3) 

Both slopes must be ltip11ed by cos A, as in equation (1), in order 
to apply to loads acting on sections and angles of attack measured 
in planes parallel to the direction of flight. 

The torque of the running load. 1' about the reference axis Is 

for uncambered sections (for cambered sections the torque at zero lift 
must be added and the analysis of the following paragraphs modified 
accordingly). This torque may be resolved into a running torque about 
the elastic axis and a running bending moment about a line perpendicular 
to the elastic axis. The running load, torque, and moment must then be 
multiplied by. cos A to yield their values per unit length along the 
elastic axis, so that

2 = m0qc cos2A
	

(ii.)


or, in matrix notation,

{z} = mq(cos2A) []}	 ('ta) 

The running torque and. the running bending moment are, respectively, 

{leic cos A} and. f2eic sin A). The running bending mcment leads to 

accumulated bending moments which have to be added to the accumulated 
bending moment due to the running load. 

The accumulated torque T Is obtained from the running torque by 
an integration Inboard, from the tip. This integration may be performed. 
by a matrix [K1] which is based on Simpson's rule with a modification 

suggested by V. M. Fallmer at the tip. (See appendix.) The effect of 
Falkner t s modification is to round off the calculated load distribution 
and cause It to go to zero with an Infinite slope at the tip, as the 
aero&ynainic lift distributions actually do. The matrix is given in 
table I.
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Similarly, the aôcuinulated bending iuomcnt M is obtained by a double 
integration inboard from the tip of the running load and a single 
integration of the running moment. The double integration may be 
performed by another matrix [K2] (given in table LI), which is based 

on the equivalent of Simpson's rule for moments, Falkner's modification 
again being made at the tip. The derivation of the integrating matrices 
is iscussed in somewhat greater detail in the appendix. 

The accumulated torque and. bending moment may then be written as 

{TJ 8A[Kl] fie1c cos A}

0 

Fei c 21 (5) 

and 

[M = 2 [] } - 8A [K1] 4[elc sin A 

0
-	 e1c	 e1 (c)2]]{}	

(6)
= sA2cr(cos24{]1_I —(sin A)_rr k11i-
Len	 5A L 4 e1 

Lr 

Equations of equilibrium.— The equations of equilibrium of a 
defoied wing eferred to the elastic axLs are 

GJ=T	 ('?')
• dy 

EI=M	 (8)

dy 

These equations must be integrated outboard from the root to obtain p 
and r. The integrations may be 'performed by a matrix [K 3] (see 

table III and appendix), also based on Simpson's rule without the tip 
modification, however, since the torques and moments go to zero with 
finite and zero slopes, respectively. To the deformations obtainod in 
this manner the rotations due to the root deflection, r and 1'r'
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niust be ad.d.ed. The root rotations are defined by four dimensionless 
constants:

QcPT = 
w/(CJ)	

(9a)


r 

_%fr 
- w/(GJ•)r	

(9b) 

r/Tr 

= w/(EI)r	
(9c) 

Q	
r4/r 

rM w/(EI)	
(9d) 

- which niay be combined into two other constants 

(	 tan A r) cos A	 (9e) 
w/((I)r	

PT(EI) 

arM/Mr (	 ____ 
= w/()r =	 - (SI) tan AQ) cos A	 () 

w being defined as in figure 1. The deformations may then be written as 

+	 [Io]M}J	 (10) r{L 3]L ' J8T
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0 
_____	 1(EI)rl w 

	

El J	
Q [io]J {M} +	 Qr ['s] {}]	 (U) fr}= 

where the matrix fi0j is defined, by 

0000.. 
1000.. 
1000.. 

[1oJ	 1000.. 
1000.. 

The angle of attack due to the structural deformations a 5 is 
related. to p and. r by 

a.8 = (p - r tan A) cos A 	 (13) 

If equations (5), (6), (io), and (U) are substituted in the matrix 
equivalent of equation (13), the foflowing relation Is obtained,: 

{cts} = a[A]{}	 (l1.) 

where the aeroelastic matrix [A] is defined by 

[A]	 K3][
(GJ)r]	 V. 

+(Q—tani9[Io] 

0	 0 
r	 21 

	

(cJ)	 __ 1e1	 'c\ I + (El)r (tan2[K3] [(EI)r]][] 

0 

	

E31 (

EI)r -	
ec COB A	 r'o1j
	

]	
(15) 

10

(12)
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and the parameters

mqs2e1c2cosl. 1 
a=	 (16) 

and

- ____	 5A	 tan A	 (16a) a -
	 e,cr COB A 

are substantially the seine parameters as those used in reference 3. 

Solution of the equations.- If it is desired to calculate the. 
aerodynamic loading corresponding to a given geometrical angle-of-attack 
distribution and dynamic pressure, equation (i1. ) may be rewritten as 
follows:

1[i] - a[A]}L- 
E} = {g}	 ('7) 

ii tmeJ 

In this form it constitutes a set of linear slimiltaneous equations for 
the	 values in terms of ag values, from the calculated a values 

the lift distribution may be determined from either equation (1) or (Ii.). 

- The divergence dynamic pressure may be obtained from equation (17) 
by setting the determinant of the square matrix on the left side of the 
equatio. equal to zero. This procedure is equivalent to setting ag 

equal to zero in the term E of equation (iii. ), so that 

	

{cte} = a[A]}	 (18) 

The critical value of a is then determined by matrix iteration and 
hence the divergence dynamic pressure froni equation (16). 

Method Employing ]hfluence Coefficients 

The assumptions made in the preceding sections conceruing the 
behavior of the wing structure. are unnecessary if in.fluence coefficients 
for the given structure are available from test data or refined methods 
of calculation. The coefficients most convenient for this analysis are 
those giving the rotation of the structure in planes parallel to the 
direction of flight due to vertical loads applied along a convenient 
reference axis aM due to torques about lines perpendicular to the
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direction of flight. Since it is usually more convenient to apply 
concentrated rather than distributed loads In structural teats, the 
Influence coefficients are considered In this analysis to have 
been obtained in this manner. 

The angle of structural deformation a 5 may be expressed. in terms 
of the influence coefficients 	 and.	 as follows: 

fa
B) = [ R]IRJ +
	

(19) 

where the R's and. P's are. arbitrary concentrated torques and loads, 
the latter being applied. at the reference axis. The accumulated torques 
and. bending moments about lines perpendicular and parallel, respectively, 
to the direction of flight may be related. to the concentrated torques 
and loads by means of the sunmation matrices [K 1.] and. [K5] ( see 

appendix) as follows: 

{T T} = [K11.]{R} - tan A{M'} 	 (20) 

{MT} = sw[K5J{P}
	

(21) 

These relations may be solved for the values of R and. P required to 
produce given distributions of accumulated. torque end bending moment 

[K]_l{fT?} + ten AjM t}}	 (22) 

{} =	 (23) 

The accumulated torques and. bending moments produced by the air 
load are then

{T'} = sw[K1]{I'elc} - {M} tan A	 (21i.) 

[Mt } = sw2[KJ{l1}	 (25)
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Upon substituting equatIons (22), (23), ( 21k), (25), and. (1) into 
equation (19), the foflowing equation Is obtained: 

{a.s} = aT[A]{}	 (26) 

where

a' = Ifl5qsc cos A	 (27) 

[A'] [
2 + [][]]	

(28) = e1cr [[JL_ (c)J 
where, in turn

—1 
[K6]= {KJ [K1]	 (29a) 

[K7] = [K5] 
—1 

[K2]	 (29b) 

are given in tables IV and V. 

The solution of equation (26) is obtained. in the mariner previously 
described for equation ,.(l14.). 

APPLICATION OF ThE MBEOD


Determinstion of the Structural Parameters 

At the time an aeroelastic analysis is performed no experimental 
stiffness data are usually available, so that the calculated. stiffness 
curves imist be used. In order to use these curves it is necessary to 
assume the existence of a reasonably straight elastic ax!s. The location 
of this axis may be estimated by considering it to be the line connecting 
the shear centers of the Individual sections. If the elastic axis 
obtained in this manner is not reasonably straight within a few percent 
of the chord, the results of the analysis may not be sufficiently reliable. 

and
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The stiffnesses GJ and El do not have much physical significance 
inboard of the last point where there is a complete cross section of the 
torsion box. (See fig. 1.) In orderto arrive at estimates of the root 
stiffnesses (GJ)r and	 'r' which serve primarily as reference values 

in this analysis, the stiffness curves have to be extended. It is con-
venient to consider the stif±'nesses to be constant inboard, of the last 
complete section of the torsion box; this procedure should yield. conserva-
tive values of the root rotations. 

The most difficult problem incurred in analyzing the deflections on 
the basis of stiffness curves appears to be the estimation of the root 
rotations. As used in this analysis, they are the torsion and bending 
deflections imposed by the triangular inner portion of the wing and the 
carry-through bay on the rest of the wing. As seen in figure 2, which 
is plotted from. the data of reference 5, these values are essentially 
constant along the span, 50 that they actually cOnstitute rigid-bo&y 
rotations. (The bending rotations have been obtained by taking the 
difference in slope between curves calculated by considering the wing 
to be cantilevered at the effective root - the root used to calculate 
torsional deformations in reference 5 - and the averages of the leading-
edge and trailing-edge deflections actually measured. The twists were 
obtained by subtracting the twists calculated on the basis of the assumed 
effective root from the measured twists.) 

The rotations should. in any practical case be calculated by analyzing 
the triangular root and the carry-through bay and made dimensionless 'by 
means of equations (9). If such an analysis is not available, the dimension. 
less rotation parameters shown in. figure 2 may be used as a guide; it 
must be kept in mind., however, that in the case of a sweptforward wing 
the parameters	 and rT would have the opposite sign. 

Once the structure under investigation is built, fairly simple 
deflection tests, similar to those performed in reference 5, may be used 
to check the root-rotation parameters by calculating the differences 
between the observed rotations and those calculated by simple bean 
theory considering the wing centilevered at the effective root; at the 
same time the existence and estimated location of the elastic axis may 
be verified.. . if the experimental proam is fairly extensive it is 
desirable to measure influence coefficients directly. These influence 
coefficients can then be used in conjunction with the alternate method 
described in the preceding section to obtain a quick check on the aero-
elastic analysis based on calculated stlffnesses. 

The Influence coefficients used in the analysis consist of the 
rotations of sections parallel to the direction- of flight due to 
concentrated unit torques in planes parallel to the plane of synnnetry
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or concentrated. unit loads at the reference line. These rotations in 
radians are entered in tables of the form: 

[ R]


TvIIST AT STATION	 DUE ¶'O 

UNIT C0NCENATED TORQUE AT 

yl/sw

__I. II 
RR_RU_ 
RR_U._ 

_I._ 
_I._ 

______UI

II", p] 
TWIST AT STATION 1/5w DUE TO


UNIT CONCENTRATED LOAD AT 

71/sw 

\ Yj/5w
0.2 0.6 0.8 0.9 1.0 

0 

0.2 

O.1. 

0.6 

O.8 - - 

0.9

These particular tables would be used for a six—point analysis; similar 
tables would be used for a ten—point analysis. In either case it is 
to be noted that the twists are measured at values of	 from 0 to 0.9, 
whereas the loads are applied at l/w values from 0.2 to 1.0. The 

tables obtained in this nlFrrmer constitute the desired influence—
coefficient matrices. 

If the wing sections are found. to twist nonuniformly, so that they 
become cambered in effect, the angles of twist a to be entered in 
the influence—coefficient matrices have to be defined in a different 
manner according to whether the aeroelastic analysis is performed. for 
subsonic or supersonic speeds. At subsonic speeds the lift depends on 
the slope of the mean camber line at the three—quarter—chord point, so 
that the effective angle of attack is 

(c
(30) c 
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At supersonic speeds the lift depends prlina±ily on the average slope of 
the mean camber line, so that

LETE 

	

C	 (31) 

Determination of the Aerodynamic Parameters 

The selection of the aerodynamic parameters m. and. e 1 for the 
calculation of the divergence speed has been discussed in reference 3. 
For calculating the aerodynamic loadlng at a given flight condition the 
aerodynamic parameters are chosen for that flight condition. The 


	

effective lift—curve slopes me and.	 are applicable only to subsonic 

subcritical speeds. At higher speeds no simple span correction is 
available; negLect of the span correction textds to be conservative for 
calculation of the divergence speed and. the aerodynamic loading, however. 

Instructions for Solution 

Two sets of integrating matrices have been prepared, one for a six—
point solution and one for a ten—point solution. The former should be 
adequate for all practical purposes; only where the Btiffness curves are 
very irregular near the root does the ten—point solution have to be 
resorted to. The points considered by the two sets of tables are at 

= 0, 0.2, 0.14., 0.6, 0.8, and 0.9 for the shorter solution and. 

-- = 0, 0.1, 0.2, 0.3, 0.14. , 0.5, 0.6, 0.7, 0.8, and 0.9 for the longer 

solution. The procedure to be followed for either solution is identical; 
although computing forma are presented In this paper only for the six—
point solution, their extension to apply to the ten—point solution Is 
obvious. 

Calculation of the matrices.— The first step In the aeroelastic 
analysis by means of the stiffness curves Is the calculation of the 
aeroelastic matrix [AJ from the physical and geometrical parameters 
of the wing. These. parameters are conveniently tabulated In a form of 
the type shown in table VI(a). The computation is then carried out 
according to the instructions of table VI(b), each step In the procedure 
being identif led by the number In the upper left coruer of each box. 
It must be kept in mind that many of the operations call for matrix 
multiplications where the order of the multiplicands is of Importance. 
(A brief summary of matrix methods Is presented in the appendix.) The 
aeroelastic matrix is obtained as the last step (step 13) of the 
computations in this form which constitutes an evaluation of the 
A matrix given in equation (15),
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A special case arises when e 1 is zero. If e is not zero 
r	 1 

along the remainder of the span, its value atsome point other than the 
e1 

	

root may be used as a reference value. The — (s-) 	 matrix and the 
e1 \ r/ j 

multiplying factors of steps 8 and 9 as well as the definition of the 
parameter a are then based on this other reference value rather 
than elr. If e1 1s zero along the entire span, step 1 and steps 3 
to 8 may be omitted and steps 9 to 13 should be modified as follows: 

____	 <X 1110] Step 9
(cJ) 5wtanA r 

Step 10	 I®]- [®] 
Step 11	 As is 

Step 12	 Omit 

Step 13	
[A]e0 = {} [@ j 

If influence coefficients of the proper type are available, the 
calculation of the aeroelastic matrix LA'] is carried out directly 
by means of equation (28). 

Solution for divergence dynamic pressure.— In order to determine 
the value of the parameter a or a' corresponding to divergence, the 
aeroelastic matrix [A] or [A'] is iterated (see appendix) as indicated 
by equation (18). Table VII(a) may be used for this purpose. The result 
is the critical value of a or a t . The divergence dynamic pressure is 
then calculated from equation (16) or (27). It is to be noted that this 
pressure will be in pounds per square inch. Since the aeroelastic matrix 
is independent of the Mach number, except insofar as e1 varies with Mach 
number, the same critical value of a may be used. to calculate the diver-
gence dynamic pressure for an entire range of Mach numbers. If the value 
of e1 changes, however, as it does between the subsonic and supersonic 
region, the critical value of a has to be calculated for both values 
of e1. 

If the value of e1 is zero along the entire span and the [A] 
matrix has been calculated according to the modified instructions, 
iteration of the matrix will give the vaLue of the parameter d at 
divergence. From the definition of d the divergence dynamic pressure 
may then be calculated.
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Solution for aero&yriainic loading.- In order to calculate the aero-
dynamIc loadiig corresponding to a given flight condition and geometric 
angle-of-attack distribution the aeroelastic matrix [A] or [A'] is 
multiplied by the value of' a or at calculated for the given flight 
condition and. subtracted from the unit matrix [ii . (See equation (17).) 
The result may be entered in table VII(b). Again it must be noted that the 
value of the aeroelastic matrix varies with the flight condition if e1 
varies, so that the aeroelastic matrix corresponding to the proper e1 
value must be selected. The resulting matrix constitutes the coefficients 
of a set of simultaneous linear algebraic equations for the unknown values 

of the effective angle-of-attack distribution of the deformed wing. 

4 in terms of the known angle-of--attack values of the rigid 
Lm°l I 
wing {ag}. Table VII(b) is set up for the calculation of the additional 

loading, the damping-in-roll loading, and a third arbitrary loading; as 
many loadings as desired may, of course, be calculated by this method. 
The solution of the equations may be carried out in any convenient manner. 
The form of table vII(b) has been prepared for use in conjunction with 
Crout's method of solving linear simultaneous equations (reference 6). 

In the case where e1 is zero along the span, the headings at the 
top of tablà vII(b) should be modified to read 

d 
-= 
dD

- d[A]O] 

where [A]e_0 has been calculated according to the modified instructions 

and d has been obtained by iterating [AiJe_0• 

The values of f-	 calculated for the additional load• 
l mei i 

distribution (c = 1) constitute values of the ratio c 1 /c-1 

or (cc i)/(ccj in view of the assumptions made conce 1nghe air 

forces. The section loading of the flexible wing is obtained from the 
relation

cc1 = cme1_E)	 (32)
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or in dimensionless form

CC j -=m	
S	 (32a) Cr	 e1 Cr\fl31 ) 

The wing lift coefficient defined by the relation 

CLW =	 ( 33) 

arid the wing bending-ioment coefficient defined, by 

0B	 (31i) M	 q,Sb 

may be obtained by inteating the load distribution. These inteations 
may be performed conveniently by multiplying the cc 2/cr values by the 
first rows of the [K1] and [K2] matrices, respectively. Thus 

CL = S/2 [Kljt__ BwCr 	 Icc.,')	

(35) 

0 

-	 SwCr - 
1 S/2	 l [cr]{l E}
	 (35a) 

and

SwCr 5w 
CB = s/2 2b [K2J	 (36) 

oç 
____	 rc 1m6 -	 swcr 5w - 

me s/2	 E2il[çj1	 1	 (36a)
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The lateral center of pressure of the wing load L may then be 

determined from the relation

L 2bCB 
- s 

The fore-end-a!t location of the aero&ynainic center of the wing load. 
measured rearward of the leading edge of the mean aero&ynainic chord as, 
a fraction of the mean aerodynamic chord may be estimated from the 
relation

(ac)v	 MAC 
= ac +	 tan Aac	 (38)


CIVIAC 

where A	 is the sweep of the section-aerodynamic-center line. ac 

For any other geometrical angle-of-attack distributions such as 
tho8e due to built-in twist or those due to rolling, the same section 
lift-curve slope should be used as for the structural deformations, so 

that me1 is replaced by me and •- is unity in equations (32), (35), 

and (36). For the damping-in-roll distribution with a tip helix angle 
of 1 radian

a.g	 b/2\	 6A) 

The rolling-moment coefficient due to the wing load is defined by 

2W 
C, = 

B
	 qSb 

It is seen to be twice the wing bendinnioment coefficient. 

The contribution of the wing to other stability derivatives may 
be obtained similarly by integrating the load distributions due to the 
angle-of-attack distributions caused by the motion under consideration, 
as described in reference 7; in the case of swept wings, particular care 
must be taken in selecting the proper angle--of-attack distribution and. 
in accounting for the lateral inclination of the lift vector. (See 
reference 4.) 

If the aerodynamic loading or' the stability derivatives are to be 
obtained for a wide variety of flight conditions, it is convenient to

(37) 

(39) 

(4o)
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systematize the calculat ions in the following manner: The aeroelastic 
matrix is computed for both the subsonic and. supersonic aerod.ynjc 
center values azid iterated for both cases to obtain the subsonic and. 
supersonic values of the divergence parameter aD. from. these values 
the divergence dynamic pressure may be computed by means of equation (15) 
and plotted against Mach number, as suggested in reference 3; on the 
same plot valuee of the actual dynamic pressure may be plotted against 
Mach number for various altitudes of interest. Such a plot for a wing, 
the physical characteristics of which are given in figure 3, is shown in 
figure i. 

Since at a given Mach number the ratio a/aD is equal to the 

ratio q/q, the range of a/aD values of interest maybe established 

from. this plot f or both the subsonic and the supersonic region. Several 
representat1ve a/aD values may then be chosen within the given ranges 
and the corresponding v8.lues of a computed from the previously calculated 
aD values. The aerodynamic loading is calculated for these values of a 
using the appropriate [A] matrix and plotted in the form of 
(cc)4, /(cc) , with the ratio a/aD as a parameter. From these rw 
curves or from the

	

	 values the lift coefficients may be obtained 
e1 

in the form ( CL)f/( cL)	 and plotted against a/aD or q/; the 

other coefficients may be obtained and plotted in a similar form. 

For any specific flight condition the value of a/aD may then 
be obtained from the plot of q and qD against Mach number. The 

loading, lift coefficient, or other Item of interest may be obtained 
from the plots which give these items in terms of the rigid-wing values. 
Once the rigid-wing values at the given Mach number are known, the 
flexible—wing values may then be obtained immediately. 

illustrative Example 

In order to illustrate the method described in the preceding 
sections, a typical swept wing has been analyzed.. The physical and 
geometrical parameters of the wing are shown in figure 3 and the upper 
part of table VIII (which follows the form of table VI(a)). The 
chord, e1c2 , and stiffness matrices have been obtained. from the 
given parameters and are shown in the lower part of table VIII. 

The calculation of the aeroelastic matrix for the subsonic case 
has been carried out by means of the form of table VI(b). All but 
three of the steps of the computation are shown in table IX numbered. 
in the same order as in table VI(b). Steps 1, 2, 6, 7, 11, and. 12 
constitute matrix maltiplications, which are carried out in the order
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indicated; steps 5 and. 13 constitute matrix additions or subtractions; 
steps 3 and 11. constitute imiltiplications of matrices by constants. 

The aeroelastic matrix is iterated in table X(a) (which follows 
the form of table VII(a)) toyield a value of aD = -2.208. From this 

value and a value of aD computed in the same mrer for supar sonic 

speeds, the divergence d.ynamic pressure has been calculated by means of 
equation (16) on the basis of estimated values of the effective lift-
curve slope. The variation with Mach number of the divergence dynamic 
pressure, the actual dynamic pressure at sea level, and the estimated 
effective lift-curve slope is shown in figure ii.. 

For a value of -- = -0.25, such as would be obtained approximately 
aD 

at a Mach number of 1.0, the aerodynamic loading has been calculated for 
the additional-angLe--of-attack case and the damping-in-roll case in 
table X(b), which follows the form of table vII(b). The values of 

for the damping-in-roll case have been calculated from equation (39). 
The aerodynamic loadings, in addition to those calculated for other 

values, have been plotted in figure 5 as ratios of the flexible-
wing loadings to the rigid-wing loadings. The curves have been integrated 
to yield wing lift and rolling-moment coefficients as well as 
the aero&ynainic center of the wing load, which are shown in 

table X(b) for the case of -- = -0.25 and which are plotted against 
aD 

- -i-- in figure 6. 

The wing lift coefficient is defined in such a mrmer that if 
the fuselage lift is Imown and made dimensionless by dividing by q 
and S the resulting fuselage lift coefficient may be added directly 
to the wing lift coefficient. This definition and the fact that 
figure 5(a) is plotted over the fraction of the wing-alone span s. 

explain the fact that the area under the curve o± figure 5(a) is not 1. 
The aerodynamic center as plotted in figure 6 constitutes the center 
of pressure of only the wing load. In order to obtain the airplane 
aerodynamic center, the magnitude and center of pressure of the fuselage 
load would have to be known and taicen into account. 

DISCUSSION 

Both the aerodynamic and. the structural assumptions made in this 
analysis are more realistic than those made in reference 3. The device 
employed in this analysis of calculating the air forces for wing sections 
parallel to the direction of flight and. then transferring them to 
sections perpendicular to the elastic axis obviates the necessity of
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replacing the actual wing with one the root and tip of which are 
perpendicular to the elastic axis for the pu.rpose of analysis. F'urther-
more, the inclusion of Falkner V s modification (see appendix) in the 
inte'ating matrices has the effect of rounding off the load. distribu-
tion approximately in the nipiiner observed at subsonic speeds. At 
supersonic speeds the load distributions do not go to zero in the manner 
assumed in Faflmer's modification, but even at supersonic speeds there 
is some reduction of load at the tip, the total maiitude of which is 
not far from the reduction obtained by Falkner'e modification. 

Only one aerodynamic assumption is still made: that induction 
effects may be approximated by an over—all reduction of the strip theory 
loading (rounded off as previously described) at subcritical speeds and 
may be negLected at supersonic speeds. The effects of aero&ynamic 
induction could be taken into account more accurately by using aero-
dynamic influence—coefficient matrices instead of the effective lift-

10 2 
rd	 1e1 , 

curve—elope concept and the 	 and I-(---) matrices used in 
LCrJ	 [el\crl 

this analysis. Available methods.of calculating such influence coeffi-
cients for wings of arbitrary plan form at subsonic and supersonic speeds, 
particularly those suitable for wings with large amounts of sweep, are 
either too inaccurate or too time—consuming for practical purposes, 
however. 

Although the analysis of this paper has been performed for wings 
consisting of uncambered sections, it is directly applicable as well to 
the determination of the additional loading of wings with cambered 
sections. The loading of such wings due to the section pitching moment 
at zero lift may be determined by modifying the analysis somewhat. 

The assumption of an effective root perpendicular to the elastic 
axis made in reference 3 for the purposes of calculating the structural 
response is carried over in this analysis. It is modified, however, 
to the extent that the root is no longer considered to be rigid as in 
reference 3, but flexible, both in torsion and bending. It has been 
demonstrated. in reference 5 that the deflectione of a swept beam may be 
estimated on that assumption, provided the root—rotation parameters are 
known. By assuming the effective root at the intersection of the elastic 
axis with the side of the fuselage, the root bending due to bending 
moment and root twist due to torque are minimized. The bending due to 
twist and twist due to bending are the same regardless of the location of 
the effective root. 

The method of introducing the root rotations into the analysis by 
means of the Io] matrix assures that the structural twist in planes 
parallel to the direction of flight is zero at the fuselage. 	 om
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figure 2 it is seen that the local values of the root rotation either 
tend to approach zero at the root or tend to cancel each other. If the 
root-rotation constants are known, the structural deformations can there-
fore be predicted quite accurately by the assumptions made. 

The manner in which the equations of equilibrium are solved by 
means of the inte'ating matrices accounts for the true chord and 
stiffness variations. It does not necessitate replacement of the 
actual wing by constant-chord seents with all the flexibility 
concentrated at the ends of the seients, an approach which has been 
used extensively in the work on aeroelastic probleme of straight wings. 

A further refinement which obviates the necessity for making any 
structural assumptions other than that of small deflections is the use 
of measured influence coefficients in the aeroelastic analysis. Wherever 
such coefficients are available it is, of course, of advantae to use them. 

No explicit account has been taken in the analysis of the effects 
of the inertia loading on the structural deformations and hence the 
aerodynamic loading. On swept wings, in particular, their effects 
may be considerable. For the purposes of this analysis, however, the 
structural deformations due to inertia loading may be considered part 
of the geometric angle of attack and the rigid-wing geometric angle of 
attack may be modified accordingly. The deformations due to the inertia 
loading may, incidentally, be calculated ccmveniently by means of the K1, 
K2, and K3 matrices. 

Some of the general observations made in reference 3 conceruing the 
divergence phendmenon are corroborated by the example. As expected. of 
a wing with a considerable amount of sweepback, the divergence &ynamic 
pressure is negative. Consequently the wing cannot diverge. The 
divergence dynamic pressure is useful as a reference value, however; 
the values of the load distribution and the stability parameters divided 
either by the corresponding rigid- swing values or by the section lift-
curve slope depend only on the ratio of the actual to the divergence 
dynamic pressure. 

The type of plot shown in figure is therefore quite. useful in 
the analysis of aeroelastic phenomena. As pointed out in reference 3, 
this chart may also be used to estimate the actual. divergence dynamic 
pressure where there is a possibility that the wing may diverge. It 
appears that the critical values will occur at either extremity of the 
transonic region. In the transonic region proper the lift-curve slçpe 
usually appears to be lower than at the extremities, so much so that the 
decrease in lift-curve slope even tends to overbalance any forward 
shift in aerodynamic center. 

As would. be expected qualitatively, the effect of wing flexibility 
in the case of the example wing is to unload the wing tips owing to the 
fact that they bend up. The lift carried by the wing is therefore less 
than that carried by a rigid wing, the center of pressure being farther 
inboard and the aero&ynamic center farther forward,
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The difference between the supersonic and subsonic values of the 
loading, the lift and rolling-moment coefficients, and the aerodynamic 
center for a given value of a/a, is due to the difference in the 

e1 distributions. If the distributions were the same, the subsonic 
and. supersonic variations of these quantities with a/aD would coincide 

despite the difference in the e , values. 

Another item of possible interest Is the fact that the variations 
of the parameters dD and aD for the axample problem are approximately 

linear (see fig. 7), as would be expected from the results of the 
analysis of reference 3. The deviations from linearity are most pronounced 
near the points for d = 0 (that is, A = 00). They are due to theeffects 
of the root rotations, in particular, the bending due to torsion and- torsion 
due to bending; these effects were neglected in the approximate analysis of 
reference 3. The points of figure 7 correspond to the example wing and 
the wings that would be obtained by rotating the example wing to the 
unswept and 37.50 sweptforward. positions in such a manner as to keep the 

el cr cosA (El) 
parameters	 ,	 r, as well as the chord, stiffuess, and. 

moment-ann Ce1 ) distributions constant. Points are shown for both the 
subsonic and supersonic variations as well as for the case when e 1 = 0 
over the entire span (aD = 0). The difference between the subsonic and 

supersonic lines is due entirely to the difference 1n the e 1 distribu-
tion; if the distributions were the same, as would be the case if the 
elastic axis were at a constant fraction of the chord, the variations 
would be the same, regardless of the difference in the eJT values. 

The present analysis is concerned only with wing or tail loads; 
the total loads are obtained by adding the fuselage loads (which may 
be assumec1 to be unaffected by flexibility) to the wing or tail loads 
obtained from the analysis. The amount of load carried by a flexible 
wing and. the mrn,er of its distribution can consequently be estimated by 
the method presented herein if the contribution of the fuselage is known 
at low dynamic pressures, that is, for the "rigid-wing" case. 

The fuselage has a considerable effect on some of the stability 
parameters as well, although in the case of others, such as C, the 

effect is negligible. Other effects that may have to be accounted for 
in calculating stability derivatives are the boundary-layer behavior 
and tip suction. The boundary-layer effect may be accounted for by 
using a section lift-curve slope corrected for boundary-layer effects 
to calculate the angle-of--attack distribution of the flexible wing at 
the flight conditions of interest and then obtaining the lift and drag 
distributions corresponding to that angle-of-attack distribution. 
Lateral tip suction may be important on low-aspect-ratio and highly 
swept wings. Since It does not affect the lift distribution, it may be 
taken into account by calculating the angle-of-attack distribution of 
the flexible wing and estimating the tip suction corresponding to the 
actual angle of attack at the tip.
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In calculating stability derivatives it is well to keep in mind. 
that the method presented in this paper is based on a modified strip 
theory, unless aerodynamic influence-coefficient matrices are used. The 
calculated derivatives m&y therefore be somewhat in error, particularly 
If in calculating them the moment of a load distribution has to be 
determined. If there is reason to suspect that the modified strip 
theory Is inadequate for calculating a given derivative, the derivative 
may be calculated for the rigid-wing case by a more refined. method; the 
results calculated by the method of this paper may then be used to 
correôt the accurate rigid-wing ,value for the effect of structural 
flexibility.

CONCLUDI1G REMARKS 

A method has been presented for calculating the aerodynamic loading, 
the divergence speed, and certain stability derivatives of wings and 
tail surfaces of arbitrary plan form and stiffness. Provisions have 
been made for using either stiffness curves and root-rotation constants 
or influence coefficients In the sti'uctural part of the analysis. Strip. 
theory with over-all reduction and rounding off at the tip to take 
account of aerodynamic induction have been used for the aero&ynaauic part 
of the analysis. Computing forme, tables of nunrical constants required 
in the analysis, and an illustrative example are included to facilitate 
calculations by means of the method. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Air Force Base, Va., December 21k-, 19).i-8
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SUMMARY OF MATRIX ALGEBRA PERTINENT 'TO TIlE MTALYSIS 

For the convenience of the reader unfamiliar with inatrix.terminolog.y, 
a sumnary of matrix definitions and. methods is presented in the following 
sections. For a more complete discussion of matrix methods the reader 
is referred to any text on matrices, for instance reference 8. 

Definitions 

A matrix is a rectangular array of numbers, called elements, written 
downin rows and. columns. A column matrix consists of a single column, 
a row matrix of a single row. A suare matrix has as many rows as it 
has columns. The diagonal of a square matrix from the upper left to the 
lower right is called the principal diagonal. A matrix all the elements 
of which are zero except for those on the principal diagonal is called a 
diagonal matrix. If aU of these elements are unity, the matrix is 
termed the unit matrix.

Matrix Algebra 

Addition.— Two matrices can be added or subtracted if both have the 
same number of rows and columns. The addition or subtraction is carried 
out by adding to or subtracting from each element of the first matrix 
the corresponding element of the second matrix. 

Multiplication by a constant.— A matrix is multiplied by a constant 
by. multiplying each element by that constant. 

Matrix multiplication.— Two matrices can be multiplied by each other 
if the second has as many rows as the first has columns. The elements 
of the resulting matrix are obtained by multiplying the elements in the 
corresponding row of the first matrix by those of the corresponding 
column of the second matrix In the following order: The firat element 
of the row is multiplied by the first element of the column, the second 
by the second, and so forth. The sum of the products obtained in this



28
	

NACA TN No. 1876 

i'nRjlner is the value of the element of the product matrix. Schematically 
this process may be illustrated as follows: 

123	 Ii.	 56	 123	 i.	 56 

1
	

A 

2
	

B 

x
	 C 

[in]
	

[M 

5
	

E 

F 

aA + bB + cC + dD eE + fF

123	 'i	 56 

Q 

_.[m][M] ---

.111 ± 
It must be emphasized that in multiplying matrices by each other their 
order .s of importance. As the two matrices under consideration are 
written the matrix at the left (the m matrix) is said to be post—
multiplied by the other, (the M matrix); or the M matrix may be said 
to be preniultiplied by the in matrix, in order to distinguish the maimer 
in which they are multiplied. If the two matrices were written in the 
reverse order and then multiplied according to the foregoing instructions, 
that is, if the [N] matrix were postmultiplied. by the [in] matrix, the 
element of the second row and fourth colunm. of the product matrix [M] [in] 
would clearly not have the value Q in general, nor iou1d, in general, 
any other element have the value it would have if the two matrices were 
multiplied in the order shown. Consequently it is important to observe 
the order in which the matrices are written down in the computing 
instructions. 

Matrix iteration.— The purpose of iterating a square matrix is to 
determine the column matrix or matrices which, if postmultiplied by the 
given square matrix, yield the same column matrix except for a constant 
multiplier. It is the value or values of these multipliers which 
constitute the desired characteristic values of the matrix. 

The iteration is carried out by assuming a "trial" column (the 
column shown in table VII is convenient for the purpose of this analysis) 
and preniultiplying It by the given square matrix to yield a "result" 
column. The elements of the result column including the last are 
divided by the, last element of the result column and entered a a 
second trial column. The second trial column is then preniultiplied 
by the square matrix to yield a second result column. The procedure is
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repeated. until the same value (within the desired accuracy) is obtained 
twice in succession for the last element of the result matrix. The 
reciprocal of this value is the desired (lowest) characteristic value 
of the matrix, that is, the lowest critical value of aD, in the 
analysis of this paper. 

Another way of estimating a first trial column in this analysis 
is to add. the elements in each row of the A matrix, enter the six sums 
in the first result column, and. treat them as if they had been obtained, by 
multiplying the A matrix by a first trial column. 

Derivation of the Integrating Matrices 

Although familiarity with the derivation of the integrating 
matrices is not essential to the application of the method of this 
paper, an outline of the derivation is presented because of its general 
Interest. 

The integrating matrices used in this paper are based on the seine 
concept as Simpson's rule - replacement of the actual function which is 
to be integrated by parabolic segments. If the function y has the 
values y 1, Yn, and Yn+1' respectively, at the equally spaced 

points 1n-1' Xn, and X+l, the following relations are seen to be 

true for a second—degree parabola passed through the three Iiowa points: 

= yn + Kn+i - yn_i)(x - xn) + (y 1 - 2y +	 - )2	 (jo,) 

r y dx 
= ( &>Tn_l + ( &)i.j, + ( 

&)y± 
Jxn-1 

[
Xn+l 

7 dx 
= (- 

&)Yfl_l 
+ ( 

&)y 
+ ( )yn^i	

(A3)

Jxn 

rXn 
/ y dx 

= ( 
&) n—1 + (3 &)in +	

x)y1	 (Ali)
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p'n+l 
J(x - x )y• dx = (- . 

2) y
	

+ (0	
+ ( 

i2) 
n+i	 (A5) 

Xn_l 

rn+1 
J(x - x,)y 

dx = (-	
y_1 + (
	

+ .	 2)y	 (A6) 
In 

where

(A7) 

The different integrations over the parabolic segments inay thus 
be performed by multiplying the given y values by the multiplying 
factors indicated in equa.tiQnB (.A2) to (A6). 

Since 'oad distributions at subsonic speeds go to zero with infinite 
slope at the tip and. the ordinary eecon.—d.egree parabola furnishes a 
poor approxiinatiQn to such a distribution, V. M. Fi1cner has suggested 
that a curve of the type 

	

y = A0 + A1(1 - x)i2 + (l -
	

(A8) 

be passed through the last three poinze of the load.—d.lstributicm curve 
at the tip (x = 1). On the basis of the approximation, relations 
equivalent to equations (Al) to (A6) may be derived. The multiplying 
factors for the last two segments are then based on these equivalent 
expressions rather than those of equations (P2) to (A6). 

The integrating factors of equations (P2) to (A6) may be assembled 
directly into integrating matrices. The . .K matrix, for instance, is 

rx 
set up to perform the integration J y dx. If at the upper limit x = 0.1 
and if tne ten—point matrix (table 111(b)) is to , be used, the factors 0.01.l67, 
0.06667, and —0.00833 may be obtained from equation (A14.) since x .a = 0, 

= 0.1, and Lx = 0.1; sImilarly, if for the same case the integration 
is extended to Xn+l = 0.2 as the upper limit, the integrating factors 
0.03333, 0.13333, and 0.03333 will be obtained from equation (P2). 
These factors coistItüte the second and third rows of the matrix K3; 
since the integrations are independent of the y values other than the 
first three, the other y values are multiplied by. zero inthese two 
rows. In order to extend the Integration to x = 0.3 an integration is
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again performed up to x = 0.2 and another integration, using another 
parabolic segment, is performed from x 0.2 to x = 0.3. For the 
latter integration Xn_l = 0.2, x	 0.3, and. x = 0.1, .so that 
equation (M) again yields the factors 0.014.167, 0.06667, and —0.00833. 
The y value at x = 0.2 is therefore assigned a multiplying factor 
of O.O3333by the first Integration and a factor of 0.0 14.167 by the 
second, or a total factor of 0.07500. The resulting factors are 
entered ill the fourth row of the K 3 matrix. All other rows are 
obtained in a similar manner.

Cl 
The K1 matrix Is set up to perform the Integration J y dx. The 

values of the st row of the ten—point K1 matrix (table 1(b)) are 

obtained from FaJimer's equivalent of equation (A3) for the curves 
asouined. in. reference 5, wIth x 1 = 0.8,	 = 0 .9, x	 = 1.0, and. 

= 0.1. Only the multiplying factors for the y . values at x = 0.8 
and. x = 0.9 are listed, since the y value at x = 1.0 (the wing tip) 
Is assumed to be zero In this analysis, so that Its multiplying factor 
is immaterial. The values of the last row but one are obtained. similarly 
from Falkrier t s equivalent of equation (A2). The values of the row 

for	 = 0.7 are obtained. by using equation (A3) In the Interval 

x = 0.6 to x = 0.8 and F1kner's equivalent of equation (A2) in the 
interval x = 0.8 to 1.0. Similarly the row for ..fl.. = 0.6 is 

obtained by combining the results of equation (A2) for the interval x = 0.6 
to 0.8 with Fal]mer's equivalent of equation (A2) for the 
interval x = 0.8 to 1.0.. All other rows are obtained In a similar 
manner.

,1 
The K2 matrix Is set up to perform the integration J (x - x0 )y Ix, 

xo 
where x is the variable of integration. and x0 the value of x at 
the lower limit. In applying the integrating factors of equations (A2) 
through (A6) to this Integration It must be realized that 

f(x_xo)Y dx= (xn_ xo)fyd +fix_in)y	 (A9) 

so that the Integrating factors for this Integration would be obtained 
by adding (x - x0 ) times the factors of equation (A2) or (A3) to 
the factors of equation (A5) or (A6), respectively, depending on the 
limits of the integration. The factors for the different 
segnents (x = 0.8 to 1.0, 0.6 to 0.8, and so forth) are then combined 
for any given row (with its given value of x0 ) in the manner indicated for 
for the Ki matrix to yield the K2 matrix.
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The K4 matrix aunts up the torques outboard. of a given point, 

while the K5 matrix gives the sum of the moments of forces applied 

outboard of a° given point. Neither requires aziy integrations in the 
sense of equations (.A2) to (AG). For the six-point method these two 
matrices are: 

y/s 0.2 0.14. 0.6 0.8 0.9 1.0 

0 1 1 1 1 1 1 

0.2 0 1 1 1 1 1 

o. li 0 0 1. 1 1 1 

0.6 0 0 0 1 1 1 

0.8 0 0 0 0 1 1 

0.9 0 0 0 0 0 1

0.2 0.14. 0.6 0.8 0.9 1.0 

0 0.2 O.li. 0.6 0.8 0.9 1.0 

0.2 0 .2 .4 .6 .' .8 

0.4 0 0 .2.14. . .6 

0.6 0 0 0 .2 .3 .11. 

0.8 0 0 0 0 .1 .2 

0.9 0 0 0 0 0 .1

It will be noted that the moment arms which comprise the K1 matrix are 
fractions of SW' 80 that the matrix must be multiplied by €he length S 
in order to yield actual moments as stated in equation (21). 
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TABLE I.- VAL1Th OF T fl EATING MATRIX [Ku 

(a)Six-Point Solution 

0 .2 .li .6 .8 .9 

o 0.06667 0.26667 0.13333 0.26667 0.09333 0.15085 

.2 -.O1667 .13333 .15000 .26667 .09333 .15085 

.i. o o .06667 .26667 .09333 .15085 

.6 0 0 -.01667 .13333 .11000 .15085 

.8 0 0 0 0 .02667 .15085 

.90 0 0 0 -.01886 .09333 

(b)Ten-Point Solution 

0 .1 .2 .3 .11 .5 .6 .7 .8 .9 

0 0.03333.0.13333 0.06667 0.13333 0.06667 0.13333 0.06667 0.13333 o.o6000 o.1o8 
.1 -.00833 .06667 .07500 .13333 .06667 .13333 .06667 .13333 .06000 .15085 
.2 0 0 .03333 .13333 .06667 .13333 .06667 .13333 .o6000 .i5o8 

.3 0 o	 . -.00833 .06667 .07500 .13333 .06667 .13333 .06000 .15085 

. li 0 0 0 0 .03333 .13333 .06667 .13333 .06000 .1o8 

.5 0 o o 0 -.00833 .06667 .07500 .13333 .o6000 .15085 

.6 0 0 0 0 0 0 .03333 .13333 .06000 .15085 

7 o 0 0 0 0 0 -.00833 .06667 .06833 .15085 
.80 0 0 0 0 0 0 0 .02667.15085 

. 9 o 0 0 0 0 o 0 0 -.01886 .09333
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TABLE II.- AUS OF ThE nmrni iin [i] 

(a) Six-Point Solution 

0 .2 .1 .6 .8 .9 

O 0 0.05333 0.05333 0.16000 0.073l1 0.13792 
.2 -.00167 .01000 .02500 .10667 .o51 J8 .10775 

.1 0 0 0 .05333 .03581 .07758 

.6 0 0 -.00167 .01000 .0i%8 .071l 

.8 0 0 0 0 -.00152 .0l72 

.9 0 0 0 0 -.00108 .O01l9 

(b) Ten-Point Solution 

0 .1 .2 .3 .5 .6 .7 .8 

0 0 0.013333 0.013333 0.01 00O0 0.026667 0.066667 0.0i.0000 0.093333 0.06176 0.137920 

.1 -,000k17 .002500 .006251 .026667 .020000 .053333 .033333 .080000 .04076 .122835 

.2 0 0 0 .013333 .013333 .010000 .026667 .066667 .031i.477 .107750 

, 3 ) 0 -.0001l7 .0025oo .006251 .026667 .020000 .053333 .02876 .092665 

.1 0 0 0 0 0 .013333 .013333 .Ok0000 .022176 .077580 

. 0 0 0 0 -.000l7 .002500 .006251 .026667 .0l677 .o62195 

.6 0 0 0 0 0 0 0 .013333 .0l0i76 .07ilO 

.7 0 0 0 0 0 0 -.000l7 .002500 . .0006o .032325 

.8 0 0 0 0 0 0 0 0 -.001523 .017210 

.9 0 0 0 0 0 0 0 0 -.001077 .001l90
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TABLE Ill.- VALtTh OF PEE INTE(ArING MATRTh [1C3] 

(a) Six-Point Solution 

T /SA 0 .2 .11 .6 .8 .9 
O 0 0 0 0 0 0 

.2 .08333 .13333 -.o166' o 0 0 

.4 .06667 .26667 .06667 0 0 0 

.6 .06667 .26667 .15000 .13333 -.01667 0 

.8 .06667 .26667 .13333 .26667 .06667 0 

.9 .06667 .26667 .13333 .26667 .10833 .06667 

(b) Ten-Point Solution 

/6A 0 .1 .2 .3 .4 . .6 .7 .8 .9 
0 0 0 0 0 0 0 0 0 

.1 .04167 .06667 -.00833 0 0 0 0 0 0 0 
.2 .03333 .13333 .03333 0 0 0 0 0 0 O 
. 3 .03333 .13333 .07500 .06667 -.00833 0 0 0 0 0 

.4 .03333 .13333 .06667 .13333 .03333 0 0 0 0	 '0 

.5 .03333 .13333 .06667 .13333 . 07500 .06667 -.00833 0 0 0 

.6 .03333 .13333 .06667 .13333 .06667 .13333 .03333 0 0 0 

.7 .03333 .13333 .06667 .13333 .06667 .13333 . 07500 .06667 -.00833 0 

.8 .03333 .13333 .06667 .13333 .06667 .13333 .06667 .13333 .03333 0 

.9 .03333 .13333 .06667 .13333 .06667 .13333 .06667 .13333 .07500 .06667
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TABLE IV.— VALITh OF T LOAD_CON1TES ION MAflUX [K6] 

(a) Six—Point Solution 

0 .2 •1. .6 .8 .9 

0.2 0.08333 0.13333 —0.01667 0 0 0 

.11 —.01667 .13333 .08333 0 0 0 

.6 0 0 .08333 .13333 —.01667 0 

.8 o 0 —.O166 .13333 .08333 0 

.9 0 0 0 0 .0)453 .O752 

1.0 0 0 0 0 —.01886 .09333 

(b) Ten—Point Solution 

_________________ 

mE.__
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TABLE V.— VALUES OF TEE LOAD—CONVERSION 	
[]


(a) Six—Point Solution 

11/SA 0 .2 .11. .6 .8 .9 

0.2 0.01667 0.16667 0.01667 0 0 0 

.11 —.00833 .05000 .11667 .05000 —.00833 0 

.6 o 0 .01667 .16667 .01667 0 

.8 0 0 —.00833 .05000 .O8916 .02035 

.9 0 o 0 .00631 .08860 

1.0 0 0 0 0 —.01077 .011-190 

(b) Ten—Point Solution 

________ r. is is 

• I, ii 
fli,- 1• [I 

I. 

rn is 

•1S [s is 

___ is _________
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TABLE VI.- FORM FOB COMPUTATION OF AEROTLABTIC MATRIX


(a ) Wln€ Parameters

s= W 

b= 

tenA= 8A= acSUb 

cos A =	 - S, = 5A cos A = acspr 

TI/SA TI C e 1 e1 

0 

.2 

.4 

.6 

.8 

.9 _______ ________ 

39 

______ LCr 
• 

O 1.000 0 0 0 0 0 

.2 0 0 0 0 0 

.4 -O 0 0 0 0 

.6 0 0 0 0 0 

.8 0 0 0 0 0 

. 9 0 0 0 0 0 

F (°")rl 
LGJ J 

0 .2 .4 .6 .8 .9 

0 1.000 0 0 0 0 0 

.2 0 0 0 0 0 

.4 0 0 0 0 0 

.6 0 0 0 0 0 

.8 0 0 0 0 0 

. 9 0 0 0 0 0 

r.(21 
Lelr\cr) 

li/SA 0 .2 .4 .6 .8 .9 
O 1.000 0 0 0 0 0 

.2 0 0 0 0 0 

.4 0 0 0 0 0 

.6 0 0 0 0 -0 

.8 0 0 0 0 0 

.9 0 0 0 0 0

['I1 
TI/BA 0 .2 .4 .6 .8 •9 

0 0 0 0 0 0 0 

.2 1 0 0 0 0 0 

.4 1 0 0 0 0 0 

.6 .1 0 0 0 0 0 

.8 1 0 0 0 0 0 

.9 1 0 0 0 0 0 

[(Eflr 
L El 

TI/C A 0 .2 .4 .6 .8 .9 

0 1.000 0 0 0 0 0 

.2 0 0 0 0 0 

.4 0 0 0 0 o 

.6 0 0 0 0 0 

.8 0 0 0 0 0 

. 9 0 0 0 0 0 

[(c21 
Le1rrJ Jspr 

fl/CA 0 .2 .4 .6 .8 .9 

0 1.000 0 0 0 0 0 

.2 0 0 0 0 0 

.4 0 0 0 0 0 

.6 0 0 0 0 o 

.8 0 0 0 0 0 

. 9 0 0 0 0 0
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TLE VI.— F0M FOR CCO'fFAj'IOR OF AOXLftSTIC MA]I - Oout1nue


(b) cOmputing Instructin

q/s0 .2 . .6 .8 .9 

.6 .06667 0 

.8 .06667 0 

.9 .06667

rn _ 
u I__ - --_--- --

•_ • • --__• • --__• • -- --
U 
•_ •_ •_ •_ - 

•_ -_ •_--__• •_--__• • -- --

- _ 

• -___N • - a_- N a_- - a - - 
] 1r—

a------•-- • -_ ___ o_- - a_-___N • - --
U 
a------• ____• •______• 0__-N a__ 

0 •__-___fl •__-___ a__-___ a__-___ -
AC 
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TABLE VI.— Y05}4 FOR C0MPiY1ATI0N OF AEBOELASTIC MATRIX - Concluded 

(b) Computing Instructions - Concluded

Supersonic Case 

Subsonic Case

---
N

__
- 

__-
_-

___ - 

N 

N 
• - 
• - 
N a N - 
N 

N 
N - 
N - N - a

[xJ 
[_()21spr 

0 .2 . .6

_____ 

.8 .9 

o 0.06667 

.2 —.01667 

. ____ 0 

1 .6 0 0

_____ 

[.8 0 0 0 0 

L.:.2_ 0 0 0 0 

D ir 

- 

rn 

• 
rn 

N 
rn N N __



p1

•_______ 

•__ 

• 

•__ 
,rn 

F	 I 

[ji[cicrJ 

I	 I	 I	 I

111 

L@J{ }. _____ a I I	 ImeiJ _____
I	 ®J 
I {	 }_ = _____ 

L =__ L
{	 }

I2
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PL VII.— FORM FOR SOLUTI OF AERO.ASTIC ZQUAII 

(b) Aeronamic Loa&tng 

(a) Divergence

[Aj 

0 .2 .4 .6 .8 .9 

O 0 0 0 0 0 0 

.2 

.4 

.6 

.8 

.9

a

________ m__•____ _______. __ __ • ._ __ 

HIII 

Auxillez7	 ices 

-7 
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TABLE VIII.- PARAMETKRS OF AMPLE WING

S=37498 w=22.4 

A = 37 . 5 b = 387.4 =	 = 96.8 = 0.40 
tan A = 0.7673 = 218.9 sub = 0.25 Q1,= 1.60 

cos A = 0.7934 =	 A C08 A = 173.7 ac6	 0.425
rM = -0.25 

TI/BA C B	
-

e1 GJ NI 

0 0 122.5 0.4522 0.202 0.0272 6.56 x 7.02 x io 
.2 43.8 110.8 .4493 .199 .0243 5.79 6.28 
.4 87.6 99.3 .4469 .197 .0219 3.13 3.6 
.6 131.3 87.7 .4444 .194 .0194 1.49 1.89 
.8 175.1 76.2 .4420 .192 .0170 .68 .94 

.9 197.0 70.3 .4407 .191 .0157 .42 .64 

li.3 

_____ rc 
[°r 

0 .2 .4 ..6 .8 .9 
0 1.000 0 0 0 0 0 

.2 0 .905 0 0 0 0 

.4 0 0 0 0 

.6 0 0 0 .716 0 0 

.8 0 0 0 0 .622 0 

.9 0 0 0 0 0 .574 

___
[i 
Lc 

TI/CA 0 .2 .4 .6 .8 .9 
0 1.000 0 0 0 0 0 

.2 0 1.13 0 0 0 0 

.4 0 0 2.10 0 0 0 

.6 0 0 0 4.40 0 0 

.8 0 0 0 0 9.64 0 

.9 0 0 0 0 0 i.6i 

1r	 r 
___	 [-1 

0 .2 .4 .6
_____ 

.8 

O 1.000 0 0 0 0 0 

.2 0 .806 0 0 0 a 

.4 0 0 .642 0 0 0 

.6 0. 0 0 .492 0 0 

.8 0 0 0 0 .368 0 

010

['0] 

TI/BA 0 .2 .4 .6 .8 .9 
0 0 0 0 0 0 

.2 1 0 0 0 0 0 

.4 1 0 0 0 0 0 

.6 1 0 0 0 0 0 

.8100000 

____ L i 
TI/8A 0 .2 .4. .6 .8 .9 

0 1.00 0 0 0 0 0 
.2 0 1.12 0 0 0 0 

.4 0 0 1.92 0 0 0 

.6 0 0 0 3.71 0 0 

.8 0 0 0 0 7.47 0 

. 9 0 0 _0 _Ô 010.96 

[(c21 
[e1r tcr) Jspr 

11/B A 0 .2 .4 .6 .8 .9 
O 1.000 0 0 0 0 0 

.2 0 .732 0 0 0 0 

.4 0 0 .530 0 0 0 

.6 0	 . 0 0 .366 0 0 

.8 0 0 0 0 .242 0 

. 9 0 0 0 0 0 .190
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TABLE U.- Ca(PUrATIOS OF AEROELASTIC MATRIX OF EXA1LE WINO 


(SUBSONIC CASE) 

.2 .08333 .15066 -.03501 0 0 0 

.4 .06667 .30134 .114001 0 0 .0 

.6 .06667 .30134 .31500 .58665 -.16070 0 

.8 .06667 .30134 .27999 1.17335 .64270 0 

. 9 .06667 .301314 .27999 1.17335 1.044430 1.04072 

[]
[i] 

tI/BA

__ 

0 .2 .4 .6

__ 

.8 .9 

0 0 0 0 0 01 0 

.2 .08333 .14933 -.03201 0 0 0 

.4 .06667 .29867 .12801 0 0 0 

.6 .06667 .29867 .28800 .49465 -.12452 0 

.8 .06667 .29867 .25599 .98935 . 49802 0 

.9 .06667 .29867 .25599 .98935 .80923 .73070 

() __ 

ti/BA 0 .2 .4 .6 .8 .9 

- 0 0 0 0 0 0 

.2 .014585 .08216 -.01761 0 0 0 

.4 .03668 .16433 .07043 0 0 0 

.6 .03668 .16433 .15846 .27216 -.06851 0 

.8 .03668 .16433 .114085 .54434 .271401 0 

.9 .03668 .161433 .14085 .54434 .44524 .140203 

(EI)r 
t 2A	 0.5502

QtanA)[Ioi 

ti/s

___ 

0 .2 .4 .6 .8 .9 

0 0 0 0 0 0 0 

.2 -.1629 0 0 0 0 0 

.4 -.1629 0 0 0 0 0 

.6 -.1629 0 0 0 0 0 

.8 -.1629 0 0 .0 0 0 

.9 -.1629 0 0 0 0 0 

B'L (Q	 - Qtan A)	 -0.1629 

[+[®]+[®] 
ti/SI

___ 

0 .2 .4 .6 .8 .9 

0 0 0 0 0 0 0 

.2 -.03372 .23282 -.05262 0 0 0 

.4 -.05955 .46567 .21044 0 0 0 

.6 -.05955 .46567 .47346 .85881 -.22921 0 

.8 -.05955 .46567 .42084 1.71769 .91671 0 

.9 -.05955 .46567 .42084 1.71769 1.48954 1.44275

0 

0 0.06667 0.21494 0.08560 0.13120 0.03435 0.04707 

.2 -.01667 .10746 .09630 .13120 .03435 .04707 

.4 0 0 .014280 .13120 .03435 .04707 

.6 0 0 -.01070 .c6560 .04048 .04707 

.8 0 0 0 0 .00981 .04707 

.9 0 0 0 0 -.00694 .02912 

__	 [[®1 
ti/CA 0 .2 .4 .6 .	 .8 .9 

O 0 0 0 0 0 0 

.2 -.00613 .01777 .01728 .01922 .00503 .00689 

.4 -.01173 .03724 .04875 .08089 .02118 .02902 

.6 -.01173 .03724 .05082 .17174 .06273 .07104 

.8 -.01173 .03724 .03938 .22118 .10693 .16293 

.9 -.01173 .03724 .03938 .22118 .10254 .23190 

_____ [K2][_] 

0 .2 .4 .6 .8 .9 
O 0 0.04826 0.04325 O.u46 0.04549 0.07917 

.2 -.00167 .00905 .02028 .07638 .03389 .06185 

.4 0 0 0 .03818 .02227 .04453 

.6 0 0 -.00135 .00716 .00963 .02721 

.8 0 0 0 0 -.00095 .00990 

0 0 0 0 -.00067 .00241 

ti/s , 0 .2 .4 .6 .8 .9 

0 0 0 0 0 0 0 

.2 -.00199 .01106 .02444 .08202 .03500 .06286 

.4 -.00399 .01543 .04289 .20681 .09790 .18314 

.6 -O0399 .01543 .03755 .28397 .16542 .33786 

.8 -.00399 .01543 .03221 .30252 .19308 .48336 

.9 -.00399 .01543 .03221 .30252 .18680 52208 

ti/s. 0 .2 .4 .6 .8 .9 

0 0 0 0 0 0 0 

.2 -.00414 .00671 -.00716 -.06280 -.02997 -.05597 

.4 -.00774 .02181 .00586 -.12592 -.07672 -.15412 

.6 -.00774 .02181 .01327 -.11223 -.10269 -.26682 

.8 -.00774 .02181 .00717 -.08134 -.08615 -.32043 

.9 -.00774 .02181 .00717 -.08134 -.08426 -.29018



{%} 

(1) (2) .() (4) () (6) 

O 0 0 0 0 0 0 

.2 .3000 .3115 .3449 .3480 

.4 .5000 .7311 .7846 .7876 

.6 .7000 1.0286 1.0526 1.0532 

.8 .9000 1.0775 1.0714 1.0713 

.9 1.0000 1.0000 1.0000 1.0000 1.0000 . 0000 

[A]fa4 

(i) (2) (3) (4) (5) (6) 

0 0 0 0 0 0 0 

.2 -.1286 -.1561 -.1576 

.4 -.3018 -.3551 -.3567 

.6 -.4246 -.4764 -.4770 

.8 -.4448-.4849-.4852 

.9 -.4128 -.4526 -.4529 -.4529

0 1.0000 0 0 0 0 0 

.2 .0023 .9963 .0040 .0348 .0166 .0310 

.4 .0043 -.0120 .9968 .0702 .0427 .0857 

.6 .0043 -.0120 -.0073 1.0629 .0538 .1395 

.8 .0043 -.0120 .0039 .0456 1.0455 .1638 

.9 .0043 -.0)20 .0039 .0456 .0444 1.1473

•	 1.0000 0.1033 

1.0014 .2834 

1.0110 .4665 

. 9551 .6094 

.9261 .7630 

.8081 .7439 

Final inatricee 

mmel 
ala { { L o 

LK1J 1 [d1r] p 

©I0.0667I0.2413I0.11I0.1909I0.10.0866
1.0000 0.1033 

.9320 .2320 

.8518 .3423 

1K2]l[r1 
o

.7996 .4711 

0	 I 0.O483j0.O433 I 0.1l460.0455I 0.0792 .7937 .6412 

.8081 .7439 _______ 

L®iI = 0.6524 L®i{	 g} = i{	 a} - 

L®i{
Ia	

0.2736 LI{ g} = 0.1681 L®i{	 }_ =
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TABLE I.- SOWTION OF AERQELASTIC EQUATION FOR AMPLE WO (SUBsONIc CASE) 

(b) Aerodnaa1c Loading 

(a) Divergence
-O.25 a=0.552 

[A] 

0 .2 .4 .6 .8 .9 

O 0 0 0 0 0 0 

.2 -.0041 .0067 -.0072 -.0628 -.0300 -.0560 

.4 -.0077 .0218 .0059 -.1259 -.0767 -.1541 

.6 -.0077 .0218 .0133 -.1122 -.1027 -.2668 

.8 -.0077 .0218 .0072 -.0813 -.0862 -.3204 

.9 -.0077 .0218 .0072 -.0813 -.0843 -.2902

[{']- a[A]] 

0 .2 .4 .6 .8 .9 

0 1.0000 0 0 0 0 0 

.2 .0023 .9963 .0040 .0347 .0165 .0309 

.4 .0043 -.0120 .9968 .0695 .0424 .0851 

.6 .0043 -.0120 -.0073 1.0620 .0567 .1473 

.8 .0043 -.0120 -.0040 .0449 .0476 .1769 

.9 .0043 -.0120 -.0040 .0449 .0465 1.1602

s}a NL {a} 

1 0.1033 

1 .2826 

1 .4620 

1 .6413 _______ 

1 .8207 

1 .9103 

Auxiliary niatricee

aD=_2.208

= 0.740 a0	 °BMW = O 0696me1	 0.0855 a0	 = 0.419 
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".7 

/L 1041n. 

w 15 n. 

(GJ3)r S.IOx l0 lb-in.2 

(E..flr	 9.47sjOb_j.t 

Tr	 4,420 in. lb 

= 260,000 in.-Ib 

Rotation 

______ rT 
9'r 

- ____ - Pr1 
--	 -- .

Av. value Q value 
-0.0002. 0.16 

.002.5 .33 

.0010 1.45 
-	 .0010 - .24

- 

, 

	

- /	 - 
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C
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0

I	 I	 I	 I	 I 

	

0 .	 2.0	 40	 60	 80	 100	 12.0 

Distance along 5pQfl, q , inches 

Rgure2..-RotQtions of 45° swept bo beam c'ue to root 
deflec.tlon5 (da±i from reference 5). 
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Figure 3.- Parameters of the exumple wing. 
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Figure 4 — Effect of Mach number on the divergence 

dynamic pressure and lift - curve slope of the example winy. 



50

10 

S

0 

'JIU

NACA TN No. 1876 

.4	 .6	 .8	 1.0 

Latera' ordtnate, y/s 

(a) Asumêd rgd-wing loading. 

•	 Sub5onic	 - ------ 5upersonic 

Co

-	
0.50 

-	 ----
I-	 - -• .-...	 4

- 
() U	 -. 
o

01	 I	 I 

0

	

	 .4-	 .6	 .8	 l.a 

Lateral ordinate, Y/5w 

(b) FlexIbe-wing ioadn3. 

Figure 5.- Locd d5tribution of exarnpte wirg.



'	 I-
-	 _l 

(-)u - -

0 

'I-
.	 0 

a 
>.2 

a a,

NACA TN No. 1876
	

51 

Sub5onk case	 - - - - - Supersonic case 

- - - - - - - 
UL) .

(C1=o.iio me(.) 

0	 .4-	 .8	 1.2.	 1.6 

Dynamic-pre5.5ure ratio 

Figure 6.- Li ft coeceicient, rotttn9- moment coefficient, 

and aerodynorrnc center o-f example wine.
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