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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 2289 

ELASTIC CONSTANTS FOR CORRUGATED- CORE 

SANDWICH PLATES 

By Charles Libove and Ralph E. Hubka 

SUMMARY 

The sandwich plate consisting of corrugated sheet fastened between 
two face sheets is considered . Application of existing theories to the 
analYSis of such a sandwich plate requires the knowledge of certain 
elastic constants . Formulas and charts are presented for the evaluation 
of these constants . The formulas for three of these constants were I 

checked experimentally and found to give values in close agreement with 
the experimental values. 

INTRODUCTION 

A type of sandwich plate for which practical use has recently been 
found in airplane -wing construction consists of a corrugated metal sheet 
fastened, at its crests and troughs, to two ordinary metal sheets (see , 
for example, fig. 1). The main advantage of this tJTe of sandwich is 
that the corrugated-sheet core not only serves to separate the faces 
and, thereby, to achieve high flexural stiffness, but it also carries a 
share of any compressive loading applied parallel to the corrugations 
and any edgewise shear loading . This type of sandwjch has been called 
cardboard-box construction (reference 1) and also double-skin construction. 
It is referred to herein as corrugated-core sandwich plate. 

Plate theories applicable to the symmetrical type of corrugated- core 
sandwich, illustrated in figure l(a), have been developed in reference 2 
for flat plates and in reference 3 for curved plates. a These theories 
are essentially homogeneous orthotropic -plate theories extended to 
include deflections due to transverse shear, which can be significant 
for the corrugated- core sandwich plate because of the relatively flexible 
core . 

~he precedent established in reference 4 of referring to sandwich 
plates of the type shown in figure l(a) as symmetrical is adhered to 
herein. The type of corrugation shown in this figure is also called 
symmetrical. 
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Application of the general sandwich-plate theories of references 2 
and 3 to any particular type of sandwich requires a knowledge of certain 
elastic constants for that type of sandwich plate. These constants 
describe the distortions associated with simple loadings. They include 
two ~ransverse shear stiffnesses DQx and DQy' two bending stiffnesses 

Dx and Dy , a twisting stiffness Dxy' two stretching moduli Ex 
and Ey, a shearing modulus Gxy, two Poisson's ratios ~x and ~ 

associated with bending, and two Poisson's ratios ~'x and ~'y 

associated with stretching. 

The purpose of the present paper is to present formulas for 
evaluating these elastic constants for the corrugated-core type of 
sandwich plate. For the sake of completeness, formulas are also 
developed for evaluating the additional elastic constants that would be 
needed for a rigorous extension of the sandwich-plate theories to the 
unsymmetrical type of sandwich. These additional constants, denoted 
by Cxx, Cxy, Cyx, Cyy ' and T, describe coupling - for example, the 

curvatures produced by extensional forces. The derivation and formulas 
for the transverse shear stiffness DQy are essentially the same as 

those given in reference 4 for the case in which interference between 
corrugation flats and face sheets is neglected, but are extended slightly 
to include the effects of stretching of the corrugation (in addition to 
bending) and the prevention of anticlastic curvature in the elements of 
the sandwich plate. The fo~er effect can be important when the sandwich 
cross section approaches a truss; the latter, because the length of the 
sandwich plate parallel to the corrugation axis is several times the 
corrugation pitch. The results obtained for the bending and twisting 
stiffnesses Dx, Dy , and Dxy . for the symmetrical sandwich correspond 
to the slightly less precise formulas of reference 5. (Transverse shear 
stiffness was not evaluated in this reference. A slight difference in 
definition of the symbols Dx and Dy exists between reference 5 and 

the present paper.) 

Because the formulas developed are generally rather lnvolved, charts 
are presented for one of them, the transverse shear stiffness DQy' and 

approximations are given for several of the others, together with the 
results of numerical investigations of the accuracy of these approxi­
mations. In calculating the charts and in investigating the accuracy of 
approximate formulas, a family of corrugation shapes consisting of 
straight lines and circular arcs was considered. The bend radii of the 
corrugation, measured to the center line, were generally taken as 0.18 
times the corrugation depth he, but departures from this value were 
also considered, as were departures from symmetry . 
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As a check on the formulas, bending and twisting tests were run on 
samples of a corrugated-core sandwich plate . Experimental values of 
bending stiffness Dy , transverse shear stiffness DQy' and twisting 

stiffness Dxy were obtained and compared with the theoretical values. 

The function of the elastic constants in a sandwich-plate theory 
is first briefly described . A section follows in which the formulas 
for the elastic constants for the corrugated-core sandwich are summarized . 
The tests and comparison between theory and experiment are then described, 
a discussion section follows, and a section of concluding remarks ends 
the body of the paper . The symbols used in the body of the paper are 
listed and defined in appendix A. A number of them are also defined in 
the text where they first appear. Appendixes B to E contain the 
theoretical derivations. 

THE FUNCTION OF THE ELASTIC CONSTANTS 

IN SANDWICH- PLATE THEORY 

The sandwich-plate theories of references 2 and 3 are based on a 
structural idealization of the sandwich as a plate of continuous con­
struction with material which is orthotropic with respect to the mutually 
perpendicular x-, y-, and z-directions . The modulus of elasticity in 
the z, or thickness, direction is assumed to be infinite; that is, 
local buckling of the faces is not considered and the over - all thickness 
is assumed to remain constant. Straight material lines normal to the 
middle surface are assumed to remain straight, but not necessarily 
normal to the middle surface, during distortion of the plate . 

This idealized structure can adequately represent a corrugated- core 
sandwich plate of either the symmetrical or unsymmetrical type for many 
practical purposes, provided the core has sufficient stiffness to keep 
the over-all thickness of the plate essentially constant and provided 
the plate width (perpendicular to the corrugation axis) is many times 
the corrugation pitch. If the symmetrical type of sandwich (fig. lea»~ 
is to be represented, then the elastic properties of the idealized-plate 
material may be regarded as varying symmetrically about the middle 
surface through the thickness. In order to represent the behavior of 
the unsymmetrical type of sandwich (fig. l(b», the elastic properties 
of the idealized-plate material must be thought of as varying nonsym­
metrically with respect to the middle surface. 

The behavior of a differen~ial element of the idealized sandwich 
plate under load can be described by a set of force - distortion relation­
ships. For an element of the symmetrical type of idealized sandwich 
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(fig . l (a)), subjected to forces a nd moments as shown in figure 2(a ) , 
these relationships, as developed in references 2 and 3, a re 

o2w Mx ~ 1 oQx 
ox2 = - Dx + Dy My + DQx dx ( 1 ) 

( 2 ) 

( 4 ) 

Mxy + l: ~ oQx + l: ~ ~ 
Dxy 2 DQx oy 2 DQy ox 

Nxy 
Gxy Ixy ( 6) 

o2w o2w o2w 
wher e --- --- and ----- are the curvatures and twist of the middle 

2 ' 2 ' "x "y ox oy 0 0 

surface and Ex, Ey , and Ixy a r e the strains of the middle surface. The 

quantities Dx, Dy ' ~x, and so on whi ch appear in the coefficients of 
the loading terms are the elastic constants . Each constant describes a 
distortion produced by a simple loading. For example, if all loadings 

are zero except Mx, then, according to equation (1), 1 is the 
Dx 

amount of curvature in the x- direction produced per unit of Mx. 

The behavior of the unsymmetrical type of sandwich (fig . l(b)) is 
more complex than that of the symmetrical t ype . In parti cular, a certain 
amount of coupling among the distortions may be expected; for example , 
extensional forces may in general produce curvatures as well as extensions . 
The same type of coupling can be expected in a symmetrical sandwich 
subjected to unsymmetrical loading . In setting up force - distortion 
relationships for an element of the unsymmetrical type of sandwich, the 
loading on the element will be generalized as shown in figure 2(b) . 
The forces Nx, Ny, and Nxy are no longer assumed to be applied in 

the middle plane; each has an arbitrary plane of application, denoted 

J 
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by I, II, and III, respectively . The strains EX' Ey ' and Ixy are 
measured in these same respective planes . The fo r ce - distortion relation­
ships for the element ar e then given by t he following gene r alization of 
equations (1) to ( 6 ) : 

,- - - - - -- -I Nx 
I -C xxMx - CyxMy 1 + , _ __ _ ___ __ , Ex 

1- - - - - - - - -, 

E = I - C xyMx - C~ 1 

Y ,- - - - - - - - _ I 

(1' ) 

( 2' ) 

(3' ) 

(4' ) 

( 5 ') 

(6' ) 

The boxed terms are the terms that have been added to express the 
coupling behavior . The coeffi cients Cxx, Cxy' and so on in the boxed 

terms are the coupling elastic constants. The presence of each 
coupling elastic constant in two equations is a consequence of the 

reciprocity theorem for elastic structures. (Further consequences of the 

fl fl fl~ fl') 
reciprocity theorem are that ~ = ~ and ~ = ~. 

Dx Dy Ex Ey 

Through a proper choice of locations for planes I, 
some uncoupling may be effected for any g iven sandwich . 
chosen so that Cxx or Cyx is zer o , plane II so that 

II, and III, 
Plane I may be 
Cxy or Cyy 

is zero, and plane III so that T i s zero. Thus, in general, three of 
the coupling elastic constants may be made equal to zero . In special 
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cases, proper "choice of locations of planes I, II, and III will result 
in still further uncoupling. For the symmetrical sandwich, of course, 
choosing these planes to coincide at the middle surface of the plate 
causes all the coupling constants to vanish. 

THEORETI CAL RESULTS 

Elastic Constants for Symmetrical Sandwich 

In appendixes B to E, derivations are made of formulas for the 
elastic constants for the general corrugated- core sandwich plate . The 
formulas obtained are now given in reduced form for use in conjunction 
with the force - distortion equations ( 1 ) to (6) for the symmetrical 
sandwich plate . Generally, the subscript C denot es t he core, and the 
subscripts 1 and 2 denote the lower and upper fac e s , respectively . In 
this section, however, only symmetrical sandwiches are considered and 
the subscript 1 is used for both faces . It should be kept in mind, 
therefore, that the definitions of many of the terms appearing in the 
following formulas for the elastic constants apply only to the symmetrical 
type of sandwich. 

Bending stiffnesses.- The formulas obtained in appendix B for the 
bending stiffnesses Dx and Dy are 

Dx Elx 

Dy 
Ely 

= 

"/ ( 1 
_ EIy ) 1 -

Elx 

• 
(8) 

where 

Ely 

III Poisson's ratio of face sheet material 

modulus of elasticity of face sheet material, psi 

modulus of elasticity of core material, psi 

1 
I 
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moment of inertia, per unit width, of corrugation cross­

sectional area about middle plane, inches3 

thickness of each face sheet, inches 

distance between middle surfaces of face sheets, inches 

For practical sandwiches, the moment of inertia Ie contributed by the 

core is often small compared with the moment of inertia which the faces 
contribute to~ross sections perpendicular to the corrugations. In 

EIy 
such cases} is very nearly unity, and the following approximation 

EIx 

to equation (8) may be made 

• 
(8' ) 

This approximation implies a neglect of the restraining effect of the 
corrugation on the Poisson expansion or contraction of the face sheets. 
Results of a numerical survey of the accuracy of this ap~roximation are 

given in table I for the symmetrical BandVich(~~ ~ 1.00) of the common 

type shown at the top of the table. The table gives the ratio of the 
approximate value of Dy , as computed from equation (8')} to the exact 
value of Dy} as computed from equation (8). The error in the approxi ­
mate value is seen to be small over a large part of the range of con­
figurations considered and} in extreme cases} no more than 6 percent. 

Poisson's ratios associated with bending.- The formulas obtained 
for the Poisson's ratios associated with bending ~x and ~y are 
(see appendix B) 

J..Lx = ~l 

(10) 

Extensional stiffnesses. - The formulas obtained in appendix B for 
tne extensional stiffnesses Ex and Ey ' reduced to the symmetrical 

case, are 

(11) 
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Ey 
EAy 

(12) 

1-112 (1 
_ EAy ) 1 -

EAx 

where 

EAx EcAc + 2Eltl 

EAy 2Eltl 

Ac area) per unit width) of corrugation cross section 
perpendicular to corrugation axis) inches 

If) once again) the restraining effect of the corrugation on the Poisson 

expansion or contraction of the~ace8 is neglected (that is, Ac is 

taken as zero and) therefore) EAx as 1)) equation (12) gives the following 
, t' EAy approxlma lon : 

(12 ' ) 

The error in this approximation is somewhat larger than the error 
obtained in the approximation to Dy) since the contribution of the 

core to EAx is relatively larger than its contribution to EIx . The 

error is indicated in table I) where numerical values of the ratio of the 
approximate to the exact values are tabulated. 

Poisson's ratios associated with extension . - The formulas obtained 
(appendix B) for the Poisson's ratios associated with extension l-1'x 
and l-1'y are 

1-1' = 1-1' ~ 
Y x Ex 

Twisting stiffness.- The following formula was obtained in 
appendix C for the twisting stiffness Dxy: 

Dxy = 2GJ 

( 13) 

(14) 

( 15) 

I 

I 

1 
I 
I 
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where 

Gl shear modulus of elas~icity of face sheet material, psi 

The stiffness Dxy is independent of the properties of the core since 
symmetry requires that the shear flow in the corrugated-core sheet be 
zero. 

Horizontal shear stiffness .- The horizontal shear stiffness Gxy 
is given (see appendix C) by 

9 

Gxy GA (16) 

where 

GA 

shear modulus of elasticity of core material, psi 

thickness of corrugated-core sheet, inches 

Transverse shear stiffness in planes perpendicular to corrugation 
axis.- The transverse shear stiffness in planes perpendicular to the 
corrugation axis DQy is given (see appendix D) by the formula 

where 

~C 

s 

DQy 

depth of corrugation, measured vertically from center 
line at crest to center 'line at trough (see fig . D5 of 
appendix D), inches 

Poisson's ratio of core material 

nondimensional coefficient depending upon shape of 
corrugation, relative proportions of sandwich cross 
section, and the material properties of the component 
parts 
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Formulas for evaluating S are derived in appendix D. Because of 
the complexity of these formulas, a number of charts were c omputed which 
give S directly for the common type of sandwich with corrugation cross­
sectional shape consisting of straight lines and circular arCs. 

The charts of figure 3 are for the case in which the core and faces 
have the same material properties. They give S for a wide range of 

geometriC proportions but are restricted to the value 0.18 for 
RCl 

where Rc l is the corrugation center-line bend radius. This restriction 

was made primarily for computational convenience, but it is generally 
consistent with corrugation shapes that have been considered for sandwich 
construction. The effect on S of departing from the value 0.18 for 
RC l 

hC 
can be estimated from figure 4(a), where a number of curves of S are 

Rc l given for values of 
hC 

of 0.12 and 0. 24 as well a s 0.18. Cross plots 

based on the charts of figure 3 would indicate that S becomes rela-

tively insensitive to the ratio 
hC 

tc 
at higher values of this ratio. For 

that reason (~)3 was not included in the coefficient S in equation (17). 

The effect on S of using a core material of d'ifferent modulus 
than the face material may be estimated from figure 4(b). Curves of S 

EC 
are plotted for values of of 0.23 (magnesium core, steel f ac es) and 

El 
4.30 (steel core, magnesium faces) along with the basic curves, f rom 

EC 
figure 3, for -- = 1.00. The value of S is seen to b e relatively 

El 
insensitive to large differences in ela stic modulus b etween the core 
and the face sheets. 

If both departures from the conditions of figure 3 occur simul­
taneously (that is, Rc l f 0.18hc and EC f El ), the effect on S may 

be obtained approximately by superposing the individual eff ects as 
determined from figures 4( a ) and 4(b). 

For symmetrical configurations not covered by the charts of 
figure 3, 4(a)) or 4(b), S may be c omputed from equation (D19) of 
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appendix D, used in conjunction with the auxiliary equations (D20) ' and 
(D15), with ky and kz taken as 1 . If, besides being symmetrical, 
the corrugation center line consists of straight lines and circular 
arcs, then equations (D22 ) and (D23 ) or (D24) may be used instead of 
equations (D15). This system of equations was used to compute the charts 
previously described. 

Transverse shear stiffness in planes parallel' to corrugation axis. ­
A general formula for the transverse shear stiffness in planes parallel 
to the corrugation axis DQx' as derived in appendix E, is 

where 

I 

2p 

z 

s 

( 18) 

moment of inertia of width 2p of cross section parallel 
to yz -plane , taken about cent roidal axis parallel to 
y - axis, inches4 

corrugation pitch, inches 

length of one corrugat i on leg measured along the center 
line, inches (see fig . E- 3 ) 

coordinate measured along center line of corrugation leg, 
inches (see fig . E- 3) 

The quantity Q is the static moment about the centroi dal axis (middle 
plane for symmetrical sandwich) of the cross -hatched area in figure E- l . 
If materials having different moduli of elasticity are used for the core 
and faces, a transformed cross section should be used in computing I 
and Q. 

An approximate formula, which is more practicable, is obtained if, 
in the derivation, a bending moment Mx is assumed to be resisted only 
by the face sheets. The assumption leads to constant shear flow in the 
corrugation, and the following approximation is thus obtained: 

2 2 
Sl::J GCtCh 

:= GctC (h)2 
DQx p l AC p (18' ) 

The results of a numerical investigation of the accuracy of equation (18') 
as, compared with equation (18) are given in table I. 
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Elastic Constants for General Case 

The general formulas for the elastic constants derived in appen­
dixes B to E are now to be discussed. These formulas) used in conjunc ­
tion with the force-distortion equat i ons (1 ') to (6')) describe the 
distortions of an element of either the symmetrical or unsymmetrical 
sandwich plate loaded as shown in figure 2(b). The symbols appearing 
in the formulas are defined in appendix A. 

Elastic constants associated with flexure and extension.- General 
formulas for the constants associated with flexure and extension DX) 
Dy) ~x) ~y) Ex) Ey) ~'x) ~'y) Cxx) Cxy) CyX) and Cyy are 
given by eq~ations (B25) to (B36) of appendix B. These formulas apply 
to a sandwich with arbitrarily shaped corrugation) in which the upper 
and lower face sheets may differ in thickness) modulus of elasticity) and 
Poisson's ratio and in which the loading planes I and II are arbitrarily 
chosen . 

Appreciable simplification of the formulas results from the 
practical assumption that the Poisson's ratios of the upper - and lower­
face sheet materials are equal (~2 = ~l)' Equations (B25 ') to (B36' ) 

then apply . 

It is evident from both sets of these equations (B25) to (B36) 
and (B25') to (B36') that the values of the constants associated with 
extensio~ (Ex) Ey) - ~'x) ~'y) and the coupling constants (C xx) Cxy) 
Cyx) Cyy ) are dependent upon the location of planes _I and II i n which 
the stretching forces Nx and Ny) respectively) are applied. If these 

forces are applied at the centroids of the transformed cross sections of 

the sandwich ( that is) kI == kElx and kn = kEly), then further 
simplification of the formulas takes place. Equations (B25 ') to (B 36 ') 
reduce to equations (B25") to (B36"). 

The approximations to Dy and Ey given for the symmetrical 

sandwich by equations (8') and (12 ') may also be assumed to apply to 
the unsymmetrical sandwich when kII = kEI and ~2 = ~l' When these 

y 
app-roximate express ions are used) however) Ely and EAy should be 

evaluated from their general formulas as given in appendix A or from 
equations (B20) of appendix B. Table I gives the results of a numerical 
investigation of the accuracy of the appr~Ximate expressions for Dy 
and Ey for the unsymmetrical sandwich (t~ = 0.80 and 0.50). The errors 
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resulting from use of the appr oximat e expr essions are seen to be of 
the same order for the unsymmetr i cal sandwich as for the symmetrical 
sandwich. 

13 

Elastic constants assoc i at ed with twisting and horizontal shear .­
Formulas for the const ants assoc i at ed wi th twisting and horizontal 
shear Dxy} Gxy} and T a r e given by equations (C35)} (C36) } and (C37 ) 
in appendix C. The values of Gxy and T depend upon the location of 
plane III in which the horizontal shear force is applied . Locating the 
horizontal shear force at the shear center of the cross section ( that 
iS 7 letting kIll = kGJ) where kGJ is defined by equation (C3l) or in 

the symbol list of appendix A) causes the coupling constant T to 
vanish and simplifies the expression for GX¥ ' The formulas for this 
case are equations (C35 ') } (C36 ' )} and (C37 ') . 

As for the constants associated with flexure and extension} a 
simplification in the formula for Dxy occurs if the corrugation is 
completely neglected . Equation (C35) then gives the following 
approximation : 

Dxy (19) 

The results of a numerical survey of the accuracy of this approximation 
are given in table I . The error incurred through the use of the approxi­
mate formula is seen to be generally quite small . For the symmetrical 

case (:~ = l ) } no error at all results from neglect of the core since 

symmetry requires the corrugation shear flow to be zero. 

Transverse shear stiffness in planes perpendicular to corru ation 
axis.- Equation 17 which gives the transverse shear stiffness DQy 

for the symmetrical sandwich also applies to the unsymmetrical sandwich 
provided the coefficient S is obtained from formulas or charts which 
apply specifically to the unsymmetrical sanjwich. Figure 3 gives 
extensive charts for evaluating S fo r a symmetrical sandwich with 
f aces and core of the same material and with the corrugation center line 
consisting of straight lines and circular arcs} the latter having a 
radius of curvature of a .18hc . Figure 4(a) shows the effect of using a 
radius of curvature other than a .18be} and figure 4(b )} the e ffect of 
using core material different from that of the faces. The r e st of 
figure 4 is devoted to ' showing separately the effects on S of two 
departures from symmetry for a sandwich that is otherwise the same as 
that considered in figure 3 . Figure 4(c) is for a case in which the 
nonsymmetry is due to the core and consists in the lower and upper flats 
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being of unequal width; figure 4(d) applies when the core is symmetrical 
but the faces are of unequal thickness. No chart is given for the case 
in which the core is symmetrical and the face thicknesses equal but in 
which the nonsymmetry arises from the use of a different material for the 
lower face than for the upper face. However, for non symmetry of this 
type, S can generally be cbtained quite accurately by assuming, first, . 
that both faces are of the upper-face material and, next, that both 
faces are of the lower-face material and averaging the two values 81 
and 82 thus obtained in the following manne.r: 

or 

8 
1.26 8182 

1J8l3 + 823 

In general, when the upper face is different from the lower face, either 
in thickness or material or both, 8 can be determined approximately by 
averaging in the previously described manner the two values obtained by 
first assuming that both faces are the same as the upper face and next that 
both faces are the same as the lower face. The error in such an approxima­
tion will generally be less than 3 percent. 

For an unsymmetrical sandwich not covered by the charts, 8 may be I 
evaluated from equation (D17) used in conjunGtion with the auxiliary 
equations (D18) and (D15); if the corrugation itself is symmetrical, ~ 
then some simplification results from taking ky = kz = 1 in the I 
auxiliary equations. 

If the corrugation center line consists of straight lines and 
circular arcs, then equations (D2l) and (D23) or (D24) may be used 
instead of equations (D15). If, in addition, the corrugation is 
symmetrical and if ky and kz are taken as 1 in equations (D18), 
then equations (D22) may replace equations (D2l). 

Transverse shear stiffness in planes parallel to corrugation axis.­
Equations (18) and (18') for the evaluation of the transverse shear 
stiffness DQx for a symmetrical sandwich also apply to the unsymmetrical 

sandwich. The error of the approximate formula (equation (18')) when 
applied to the unsymmetrical sandwich is indicated in table I. 
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EXPERIMENTAL EVALUATION OF Dy ' DQy' AND Dxy 

General Summary 

The elastic-constant formulas that were thought to need experi­
mental verification were those which depended to a large exten.t in their 
derivation upon the assumption that the thickness of the core remains 
essentially constant or that the corrugation cross section is undistorted. 
Among these, the formulas for 17, DQy, and Dxy were selected for 

checking because these constants , could be experimentally evaluated 
through simple bending and twisting tests on sandwich beams and panels 
~s described schematically in appendix A of reference 2. 

The test sandwich was of the symmetrical type. The core consisted 
of a readily available Alclad 24s-T36 aluminum-alloy standard circularly 
corrugated sheet having a nominal thickness of 0.032 inch and a nominal 
over~all depth of 3/4 inch. The faces were of 24s-T3 aluminum-alloy 
sheet having a nominal thickness of 0.064 inch. Two test specimens 
were used: A beam for the evaluation of Dy and DQ and a panel for 

y 
the evaluation of Dxy. Although blind riveting was necessary only on 
one side of the panel, it was used on both sides in order to maintain 
symmetry. On the beam driven rivets were used in both faces since the 
beam was relatively narrow. 

The results of the tests and comparisons with theory are summarized 
in the following table. In computing the theoretical values the following 
properties were assumed: El = E2 = 10,500,000 pounds per square inch, 

1 
EC = 10,300,000 pounds per square inch, and ~l = ~2 = 3 . 

Dy DQy Dxy 
(in.-lb) (lb/in. ) (in. -lb) 

Range of 221,000 4010 
experimental 182,000 
values 224,000 4310 

Theoretical 220,000 
a

4300 177,000 
value 

~omputed with ~l = ~2 = ~C = 0 because the 

beam tested was relatively narrow and Poisson 
curvatures were therefore assumed to be unrestrained. 
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Test and Analysis 

Evaluation of Dy .- The dimensions of the test beam are shown in 

figure 5(a). The beam was supported on two knife edges as shown in 
figures 5(b) and 5(c) and loaded near the ends so as to obtain a region 
of pure bending moment between supports. The supports were placed 
19.05 inches apart for one test (the test which yielded the value of 
221,000 in.-lb for Dy) and loads P were applied in increments of 
5 pounds up to a maximum of 25 pounds and then removed in the same 
increments; in a second test (which yielded the value of 224,000 in.-lb 
for Dy), the supports were placed 24.56 inches apart and loads P were 
applied in increments of 5 pounds up to a maximum load of 30 pounds and 
removed in the same increments . Deflections of the beam were measured 
at the locations shown in figure 5(b ) with gages having a sensitivity 
of 0 . 0001 inch. 

Despite the fact that spacer blocks were inserted in the sandwich 
at the supports to prevent local distortion, downward displacements of 
the upper face were observed immediately above the supports . These 
displacements, on the order of 2 to 4 percent of the maximum deflections 
at the center of the beam, were probably caused primarily by thickness 
change of the beam, since gages placed directly on the supports showed 
no support displacements . In correcting for the upper - face sheet 
displacements above the supports, the vertical displacement of the 
"middle surface" of the sandwich at each support was taken as one -half 
of the face - sheet displacement. The deflections at points away from the 
supports were then referred to the straight line connecting the middle ­
surface points immediately above the supports . Away f r om the supports, 
gages placed in contact with the lower-face sheet showed that no thickness 
change occurred in the beam and that the deflection of the upper face 
could therefore be taken as the deflection of the middle surface . The 
deflections varied linearly with applied load. 

The described manner of correcting the deflection for the distortions 
above the supports resulted in calculated values of Dy which were 
practically independent of the choice of station whose deflection was 
u s ed in the calculation. The calculated values of Dy were obtained 

from the deflection curve drawn through the corrected deflections at 
the gage stations . The following formula, based on the assumption 
of a uniform beam subjected to constant moment Pd, was used : 

( Pd)Ys(L - Ys) 
2bws 

( 20) 
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where 

p 

d 

Ys 

L 

b 

load applied at each end of beam, pounds ( se~ 
fig. 5(b)) 

distance between the load and support, inches (see 
fig. 5 (b)) 

distance fr'om left support t o any station, inches 

deflection at station Ys, inches 

distance between support s, inches ( see fig. 5 (b)) 

width of beam, inches (1.92 in .) 
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L L 2 
This formula was applied at three stations, Ys 3' 2' and 3L. The 

three values thus obtained differed from one anot her by no more than 
2 percent in any test; the average of the three values was taken as 
the true value of Dy. 

Evaluation of DQy' - The beam test specimen and span lengths used 

in evaluating DQy were the same as those used in evaluating Dy (see 

figs. 6(a) and 6 (b)). The beam was subjected to several different lateral 
loadings, each being of a type to produce transverse shear . These 
loadings are illustrated schematically in figure 6 ( a) and the experi ­
mental values of DQy obtained from each test are also given . A 

photograph of a typical test setup is shown in figure 6(b). Deflections 
were measured between the supports at six stations for the shorter span 
and at eight stations for the longer span and also immediately above the 
supports. 

As in the tests for Dy, slight downward displacements of the upper 
face were observed immediately above the supports . These displacements 
were generally of the order of 1 to 2 percent of the maximum deflection 
at the center of the beam but in t wo cases were as high as 3 and 
5 percent, respectively, at the right support . The measured deflections 
were corrected for the distortions above the supports in the manner 
described for ny_ The defl e ctions varied l inearl y wit h the applied 
load. 

The corrected measured deflections were used to plot deflection 
curves for the beam as a whole , from which values of DQy were computed. 

The following formula, based on the assumpt i on of a uniform beam and a 
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uniform runrling lateral load, was used to calculate DQy for those 

cases in whi ch a number of equally spaced lateral loads were applied 
to the beam: 

where 

P 

n 

2wsbL 

Pnys 

L - Ys 

1 ~3 2 J - -- L - Y s ( 2L - Y s) 
12Dy 

( 21) 

load applied at each crest or each trough of corrugation, 
pounds (see fig. 6 (a)) 

number of loads P applied to the beam (see fig. 6 ( a)) 

bending stiffness per unit width of the beam, inch-pounds 
(taken as 221,000 in. - lb when L = 19.05 in . and 
224,000 in.-lb when L = 24. 56 in.) 

The following formula was used for the case of a concentrated central 
load: 

1 ( 22) 
2wsb -- -
Pys 

where 

P load on t he beam, pounds 

The deflections substituted in these formulas were the de rlections at 
values of Ys of 0 . 2L, 0.4L, 0.6L, and 0.8L. Thus, the formulas 
yielded four values for each test. These values differed from one 
anQther at the most by 11 percent and their average was taken as the 
true value of DQy for the sandwich. 

Evaluation of Dxy .- A s andwich panel, 59 .84 inches long by 

21 . 11 inches wide , was twiste d to determine Dxy . The faces of the 

panel were bent up along the edges to form flanges to which were bolted, 
1 . on two sides and one end of the panel, three steel plates of S - lnch 

nominal thickness and 3- i nch width . ( See figs . 7( a ) and 7(b) . ) A 
somewhat wider steel plate was placed at t he remaining end and it was, 
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in turn, bolted to a rigid backstop with sufficient clearance to 
permit warping of the plate out of its plane . To the steel plate at 

19 

the opposite end of the panel was bolted an aluminum-alloy loading plate 
(not shown) to which the torque was applied . The steel plates were 
bolted to the sides of the panel in order to help achieve a state of 
pure twist in the panel. Strain gages were placed back- to -back on the 
faces and corrugation legs across the width at the midlength of the 
panel in order to determine to what extent a state of pure twist (that 
is, constant face shear stress and zero corrugation shear stress) had 
been achieved. The dimensions of the panel are shown in figure T(c). 

Loads were applied in increments of 2000 inch-pounds up to a 
maximum of 10,000 inch-pounds and removed in the same increments . 
Deflections of the panel were measured at seven stations across the 
width at each of four stations along the length ( see fig. T(d», the 
stations starting approximately 12 inches from the supported end and 
spaced approximately 12 inches apart. The measured deflections varied 
linearly both across the width and along the length and were proportional 

d~ 
to the applied load. From the measured deflections, the twist dX dy 

was computed. The twisting stiffness Dxy was then obtained from the 
formula: 

Dxy ~ 
d~ ---

dX dy 

.1...( T - T') 
2b 

( 23 ) 
d2

W , 
dX dy 

where 

b width of panel (21.11 in.) 

T applied torque , inch-pounds 

T' to(rque required to twist side
2

Plates, pound -~nCh)es2 
1 13 ~_ dW 2~ (3 )(8) (ll,OOO,ooo~ dX dy - 43,000 dX dy 

(see reference 6 , equation (156» 
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The linearity of the deflections across the width and along the 
length indicated that a state of nearly pure twist was being achieved . 
The strain- gage measurements tended to confirm the existence of this 
state of pure twist. They showed that, except in the first two cells 
near each edge of the panel, the face shear stresses were very nearly 
uniform across the width, with only one value departing as much as 8 per­
cent from the aver age . In the same region, the corrugation-leg shear 
stresses were generally less than 1.5 percent of the face shear stresses. 

In order to investigate whether the use of side plates was necessary 
to the experimental evaluation of Dxy, the test was repeated with the 

side plates removed . The shear-stress distribution across the width 
became considerably nonuniform; the deflections were still linear across 
the width but departed slightly from linearity along the length. The 
test value of Dxy' based on the twist in the central portion of the 
panel, was only about 0.85 as large as the experimental value obtained 
with the side plates on . This result indicates that side plates are 
desirable in order to minimize edge effects and achieve a state of pure 
twist when testing for Dxy . 

DISCUSSION 

Formula s have been presented for 'evaluating the elastic constants 
of a corrugated-core sandwich plate of either the symmetrical or 
11l1symmetrical type. The formulas are rather comprehensive and precise, 
but reductions to several important special cases have been made and 
practical approximations to a number of the formulas have been given. 
Tests have been run to verify the formulas for three of the more important 
constants and, indirectly, the basic assumptions in their derivations. 

The formulas given are limited to plates stressed in the elastic 
range and not subject to local buckling. Engineering adaptation of the 
results to cases involving plasticity and local buckling can probably 
be made; however, attempts at such an adaptation were beyond the scope 
of the present study. 

Each component of the sandwich (face sheet or core Sheet) is 
assumed to be composed of homogeneous isotropic material. In actual 
construction this assumption may be violated by the presence of 
perforat ions in one sheet to facilitate the driving of rivets in the 
other sheet . In evaluating the elastic constants the presence of the 
perforations can be accounted for approximately by assuming a homoge ­
neous face sheet of reduced modulus . 

1 
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When values of the elastic constants for a given corrugated-core 
sandwich plate are substituted in equations (1) to (6) or (1') to (6'), 
the resulting equations describe approximately the distortions of an 
element of the plate under load . The distortions are described only 
approximately, because the actual plate does not behave in quite the 
manner assumed for the idealized plate. In particular, straight 
material lines in the thickness direction will not remain straight 
under the presence of shear but will tend to warp . In evaluating the 
transverse shear stiffness DQx or DQy theoretically, therefore, the 

problem arises of choosing an average straight line through the warped 
one in order to define a transverse shear strain for the cross section. 
Fortunately, for most sandwiches the plausible range for choosing this 
straight line is small and causes only a slight ambiguity in extending 
the definition of DQx or DQy to an actual plate. For the corrugated-

core sandwich as analyzed in appendixes D and E, the average straight 
line was taken as the one passing through corresponding material points 
in the middle surfaces of the face sheets. This line has the minimum 

-deviation from the true warped line (as determined by least squares) 
provided the core is ignored and is probably satisfactory whenever the 
effective contribution of the core to the total cross-sectional moment 
of inertia is small. The tendency of the originally straight lines to 
warp introduces a further complication inasmuch as any restraint against 
such warping (due to the mutual interference of adjacent parts of the 
plate) will tend to increase the transverse shear stiffness. Such 
restraint will be small except in the region of concentrated loads . 
In the theoretical derivations, the conservative assumption was therefore 
made that there is no restraint at all against warping. Since the 
tendency of originally straight lines in the thickness directions to 
warp is a function of the type of loading, experimental values of DQx 

or DQy' as determined through beam tests , should, in principle, vary 

according to the type of spanwise loading distribution used. The 
variations observed in the tests to determine DQy' however, (see 

fig. 6(a)) seemed to be caused more by scatter and other factors than 
by the type of load distribution. 

Since the primary application of the elastic constants will probably 
be to sandwich-plate theory, it should be mentioned that the force ­
distortion equations (1) to (6) or (1') to (6') represent one component 
of .such a theory. If to these equations are added the differential 
equations of equilibrium of the element shown in figure 2 and equations 
relating strains and displacements, the combination of equations will 
constitute a complete formulation of a sandwich-plate theory. The 
force-distortion e.quations (1) to (6) have been presented before in 
references 2 and 3, but the generalized equations (1 ' ) to (6'), which 
include coupling terms, are believed to be new . The relative importance 
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of the coupling terms for the corrugated-core sandwich has not been 
rigorously evaluated; it would depend upon the degree of nonsymmetry 
of the cross section and the type of problem under consideration. There 
is reason to believe} however) that in most cases the effect of coupling 
will be slight. For a sandwich having faces of the same Poisson's ratio 
but different thicknesses and having a core moment of inertia and area 
which approach zero} locating the loading planes I} II} and III at the 
centroidal plane between the two faces will cause all the coupling 
constants to vanish. Since the core of practical corrugated-core 
sandwiches will probably contribute only a small part to the total area 
of the cross section and a smaller part to the moment of inertia} the 
coupling constants will very likely be unimportant for properly chosen 
locat ions of planes I} II} and III. In such cases and for some problems 
neglecting the coupling terms in equations (1') to (6') may be 
suffi ciently accurate. 

CONCLUDING REMARKS 

In order to facilitate application of an existing sandwich-plate 
theory to the corrugated- core type of sandwich} formulas and charts 
have been presented for the evaluation of the necessary elastic constants . 
Both the symmetrical and unsymmetrical types of corrugated-core sandwich 
have been considered} and the extensions of the existing sandwich-plate 
theory required to make it strictly appl icable to the unsymmetrical 
type are indicated. 

The formulas and charts presented are limited to plates stressed 
in the elastic range} whi ch are not subject to local buckling. The 
formulas are rather comprehensive and precise} but reductions to 
several important special cases have been made . Practical approximations 
to a number of the formulas have been investigated numerically and found 
to be sufficiently accurate for most practical cases. 

The formulas for three of the elastic constants were checked 
experimentally and found to gi ve values in close a greement with 
experiment . 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronauti cs 

Langley Field, Va ., November 20, 1950 
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plane I 

plane II 

plane III 
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APPENDIX A 

SYMBOLS AND DEFINITIONS 

plane in which Nx acts and in which Ex is measured, 
parallel to faces 

plane in which Ny acts and in which Ey is measured, 
parallel to faces 

plane in which Nxy acts and in which l'xy is measured, 

parallel to faces 

General Sandwich Symbols 

coupling elastic constant representing curvature in 

2i w 
x-direction produced per unit of Nx applied; 

dX2 

also strain in x - direction Ex per unit of -Mx, 
pound-l 

coupling elastic constant representing curvature in 

d~ 
x-direction produced per unit of Ny applied; 

dX2 
also strain in y-direction 
pound-l 

per unit of 

coupling elastic constant representing curvature in 

d~ 
y-direction produced per unit of Ny applied; 

Cy2 
also strain in y-direction Ey \ per unit of -My, 
pound-l 

coupling elastic constant representing curvature in 

d~ y - direction --- produced per unit of Nx applied; 
dy2 

also strain in x -direction Ex per unit of -My, 
pound-l 

t ransverse shear stiffnesses, per unit width, of a beam 
cut from plate in the x- and y-directions, respectively, 
pounds per inch 
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Mxy 

Nxy 

T 

u)v)w 

x 

y 

z 

NACA TN 2289 

bending stiffnesses) per unit width) of a beam cut from 
plate in x- and y-directions J respectively, inch-pounds 

twisting stiffness of unit-width and unit-length element 
cut from plate) with edges parallel to x - and y-axes, 
inch-pounds 

extensional stiffnesses of plate in x- and y -directions, 
respectively, pounds per inch 

shear stiffness of plate in xy-plane, pounds per inch 

resultant bending-moment intensities in x - and 
y-dire ctions, respectively, pounds 

resultant t wisting -moment intensity with regard to x ­
and y - directions , pounds 

intensity of resultant normal force acting in x-direction 
in plane I , pounds per inch 

intensity of resultant normal force acting in y-direction 
in plane II, pounds per inch 

intensity of resultant shear force acting in x- and 
y-directions in plane III, pounds per inch 

intensities of transverse resultant shear acting on cross 
sections parallel to yz -plane and xz -plane, respec­
tively, pounds per inch 

coupling elastic constant representing twist ?Pw 
dXdy 

duced per unit of 
shear strain Yxy 

Nxy applied; also one-half 
per unit of Mxy ' pound-l 

the 

pro -

displacements in x -, y - , and z-directions, respectively, 
inches 

coordinate, me a sured parallel to corrugation direction, 
inches 

coordina te, measured parallel to faces and perpendicular 
to corrugation direction, inches 

coordinate, measured perpendicular to f a ce s, inches 

shear strains associated with Qx a nd ~,respectively 
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, , 
~ x., ~ y 

al.,a2 
bl , b2 

cl , c2 

dl ,d2 

el,e2 

f}1f 2 

gl, g2 

jl,j2 

kl,k2 
RC1 ,Rc

2 

Ril ., Ri2 

0,1,0,2 

131 , 13 2 

b 

shear strain , with respect to x - and y-directions , of 
plane III 

str ains of plane I in x - direction and of plane II in 
y-direction, respectively 

Poisson's ratios associated with bending in x - and 
y -directions, re spectively 

Poisson ' s ratios associated with extension in x- and 
y - directions , respectively 

Corrugated- Core Sandwich Symbols 

25 

area per unit width of corrugation cross section parallel 
to yz-plane, inches 

area, in width 2p., lying between corrugation center 
line and lower - skin center line ( see fig . c4 of 
appendix C)., square inches 

area, in width 2p., lying between corrugation center 
line and upper - skin center line (see fig. c4 of 
appendix C), square inches 

dimensions of corrugation cro ss sect ion consisting of 
straight lines and circular arcs (see fig. D5 of 
appendix D) 

width of te s t beam or panel , inche s 
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d 

E' C 

EAy 

GA 
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nondimensional parameters in formula for S (equa­
tion (D19)) for a symmetrical corrugated-core sand­
wich, defined by equations (D20) 

nondimensional parameters in formula for S (equa­
tion (D17)) for a corrugated-core sandwich, defined 
by equations (D18) 

distance between load and support of test beam, inches 

moduli of elasticity for lower and upper faces, 
respectively, psi 

modulus of elasticity of corrugated- core sheet material , 
psi 

stretching modulus of elasticity of corrugated-core 
sheet material, used in derivation of DQ, psi 

y 

extensional stiffness of corrugated- core sandwich plate 
in x - direction (bending in x-direction prevented) , pounds 
per inch (Eltl + EcAC + E2t2) 

extensional stiffness of corrugated- core sandwich plate 
in y - direction (restraining effect of corrugation 
ignored ; bending in y - direction prevented) , pounds per 
inch (Eltl + E2t 2 ) 

bending stiffness, per unit width, of a beam cut from 
corrugated- core sandwich plate in X- direction, inch-

pounds (EcIc + ~ltlkElx2 + EcAc(kC - kE1J2 + 

E2t2 ~ - kEIJ~ h2
) 

bending stiffness, per unit width, of a beam cut from 
corrugated-core sandwich plate in y-direction 
(restraining effect of corrugation ignored), inch-

pounds (El tl kEly 
2 

+ E2t2 (1 - kEJ::)~h~ 
shear moduli of elasticity of lower - face, upper - face, 

and corrugated-core sheet materials, respectively, psi 

unit shear stiffness of corrugated -core sandwich plate 
with respect to x - and y -directions (twist prevented), 

pounds per inch (G1tl + G~C2 + G2t2) 
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h 

I 

kc;h 
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torsional stiffness, per unit width, of a beam cut from 
corrugated-core sandwich ~late in x-direction, inch- ~ 

pounds (~l tl kGf + G~c (k(jJ - kc) 2 
+ G2t2(1 - kGJ)~ hJ 

distance between middle surfaces of face sheets, inches 

depth of corrugation, measured vertically from center 
line at crest to center line at trough (see fig . D5 
of appendix D) , inches 

core thickness of sandwich plate (see fig. D5 of 
appendix D), inches 

moment of inertia of width 2p of cross section parallel 
to yz-plane, taken about centroidal axis parallel 
to y-axis, inches4 

moment of inertia, per unit width, of corrugation cross 
section parallel to yz-plane, taken about centroidal 
axis of corrugati?n cross section, inches3 

nondimensional integral parameters in equations for B3' 
B4, B6, B7, Cl , C2 , ... C7, functions of corru-

gation cross-sectiOD geometry, defined by equations (D15) 
for general case and by equations (D21) and (D22) for 
corrugation having a cross - sectional center line con­
sisting of straight lines and circular arcs 

nondimensional parameters locating orlgln of y- and 
z-coordinates, respectively (see fig. D3 of appendix D) 

distances between middle surface of lower face and 
planes I, II, and III , respectively (see figs. Bl and 
Cl of appendixes B and C, respectively), inches 

distance between middle surface of lower face and plane 
which cuts corrugation into lobes of equal area (also 
shear center of corrugation), inches 

l( Al - ~) 
2" 1 + 2ph 
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kCh 

kEI h x 

kEI h 
Y 

kEI . y 

l 

L 

2p 

p 

Q 

s 

s 

GA 
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distance between middle surface of lower face and 
centroidal axis of corrugation cross section parallel 
to yz -plane , inches 

distance between middle surface of lower face and 
centroidal axis associated with EIx , inches 

distance between middle surface of lower face and 
centr oidal axis associated with Ely, inches 

distance between middle surface of lower face and "zero­
shear plane" associated with GJ, inches 

length of one corrugation leg, measured along center 
line, inches 

distance between supports of test beam, inches 

corrugation pitch (see sketches in figs . 3 and 4), inches 

load applied to test beam, pounds 

static moment about centroidal axis of cross -hatched 
portion of cross section shown in figure El , inches3 

nondimensional coefficient in formula for 

D~ " Sh(l _E~C2)(~)3 
coordinate measured along center line of corrugation 

cross sections parallel to yz -plane ; see, for example, 
figure s C2 , D3 , and E3 , inches 

.; 

I 
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e 

approx 
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thicknesses of lower-face , upper -face, and corrugated­
core sheets, respectively, inches 

angle between face sheets and straight diagonal portion 
of corrugation leg (see sketches in figs . 3 and 4) 

Poisson's ratios for lower - face, upper-face , and 
corrugation materials, respectively 

angle between face sheets and tangent to corrugation 
center line (see fig . D3) 

Subscript 

approximate value 
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APPENDIX B 

DERIVATION OF FORMULAS FOR Dx , Dy , J.lx, J.ly, Ex, Ey , 

In the derivation of the formulas for the elastic contants associ ­
ated with bending and stretching an element of a corrugated- core sand­
wich plate is considered which is subjected to bending moments of 
intensity Mx and My and to horizontal resultant forces of intensity 

Nx and Ny at arbitrary distances kIh and kIIh, respectively, above 
the middle surfaces of the lower face . (See following fig.) 

., 

Plonell 
z,w 

~---------- 2p --------------~ 

Figure Bl 

Equations are derived relating the distortions of this element to the 
forces and moments producing them; in these equations terms corresponding 
to Dx ' Dy ' J.lx ' J.ly ' Ex , Ey ' J.l'x' J.l'y ' Cxx ' Cxy ' Cyx' and Cyy 
are evident . The general formulas thus obtained are reduced for special 
applications. 

The moment Mx and force Nx are assumed to be resisted by both 
the bending and extensional stiffnesses of the core and the extensional 
stiffnesses of the face sheets; the moment My and force Ny are 

assumed to be resisted only by the extensional stiffnesses of the face 
sheets. 
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Vertical lines drawn betwe en middle - surface point s in the upper 
and lower faces of the undistorted element are assumed to remain perpen­
dicular to the faces and unchanged in length dur ing distortion of the 
element. The distortion of the element as a whole will therefore 

consist of curvatures and The middle surfaces of the faces 

will be strained in the x - and y -directions ; it is convenient to imagine 
the existence of other horizontal planes in which the strains may be 
obtained by linear interpolation between the upper- and lower - face 
middle surfaces . 

Inasmuch as the moment My and the force Ny are assumed to be 
resisted only by the extensional stiffnesses of the face sheets, the 
direct stresses in y - direction in the middle surfaces of the lower- and 
upper-face sheets a

Yl 
and a

Y2 
are statically determinate and are 

given, respectively, by 

(Bl) 

(B2) 

If, in addition, the middle - surface strains in the x-direction EXl 

and EX2 in the lower- and upper- face sheets, respectively, were known, 

the state of deformation of the element would be completely fixed. These 
two strains can be determined from two conditions: namely, that the 
thrust intensity in the x -direction is Nx and the moment intensity in 

the x-direction about plane I is Mx , or 

(B3 ) 

(B4) 
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where 

crXl direct stress in the x-direction in the middle surface of lower face 

direct stress in the x -direction in the middle surface of upper face 

average direct stress in the x -direction in corrugation (also direct 
stress in the x-direction at centroid of corrugation) 

The terms crx ' 
1 

- d2w crx , and can be replaced by the following 
C dX2 

expressions in terms of EXl and EX2 : 

crxl E1Exl + i-llcrYl 

E1Ex + 
1 

['"Y Ny( 1 -
i-ll tl h + tl 

k n ) 
(B5) 

crx2 = E2E~ + i-l2crY2 

E2E~ + "2(-~ + t2h 
Nykn ) 
t2 

(B6) 

crx 
C EC fXl + kC(Ex2 - EX1~ (B7) 

d2w 
E ' - EXl X2 (B8) 

dX2 h 

I 

t 
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Equations (B3) and (B4) then become 

~x - ':;["2 +("1 - "2) krJ + ry[- "1(1 - kn)kr + "2kn(1 - kr)] 
(B10) 

Solution for and E~ gives 

E~ ( B12) 

---~--



where 

¢XY2 

1Jrxx1 

1Jrxx2 

1JrXY1 

*xY2 

(1 - kEIX) h2 

E1x 

1 
( kEIX = - + 

EAx 

1 
- (kEIX 

EAx 

= 1 + (kEI 
EA x x 

1 _ (kEIX _ 
EAx 

NACA TN 2289 

+ (J.ll _ 
J.l2 1) ~ ' 

) kEI h
2 

k x I _ 
E1x 

k~ (1 -~EIX)h2 
(B13 ) 

E1x 

) kEI b
2 

kn x + 
E1x 
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and 

( B14 ) 

With t he s t rains in the x-direction and the stresses in the 
y -direct ion known, the strains in the y-di rection EYl and EY2 in t he 

middle sur faces of t he lower and upper faces, respectively, are determined 
through t he p l ane-stress relations: 

'Y1 =~1 ~1"l)crY1 - "1' X1 

'Y2 =(1 ~2"22)crY2 
or after eliminat i on of ayl , ay 2 , EX1 ' and EX2 by means of 

equations ( Bl) , (B2 ), (Bll ) , and (B12 ), 

(B15) 

( B16) 

(B17) 

( B18) 
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where 

k- h2 

~ 
EI 

~ 2 Y + ~ 2¢ 
1 EI 1 XYl 

Y 

(B19) 

and 

(B20) 

and ¢XX1' ¢XX2' Wxx1 , Wxx2 ' ¢XY1' ¢XY2' WXY1 ' and WXY2 are 

defined in equations (B13) . 

1 
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With the strains €xl' €x
2

, Eyl ' and €Y2 known and the assump­

tion made that lines normal to the faces remain normal, the distortions 
of the element are completely defined. The curvatures can now be 
written as : 

(B2l) 

(B22) 

The strain in the x-direction in the plane of Nx is 

["XX1 + kreXX2 - wxxJ] Nx -r""XYl + kr02"XY2 - "">i<XyJ] Ny + 

rXX1 - kr ~""2 + ¢xx1)] ': -[ "1¢ xy 1 - k r ("2¢XY2 + ""¢xy J] ~ 
(B23 ) 



NACA TN 2289 

and the strain in the y-direction in the plane of Ny is 

~YYl - kn(¢YY2 + ¢YY~J ':; -t'¢xx, - kn ("2¢XX2 + "'¢XX'~ '::' 
(B24) 

Comparison of equations (B21 ) to (B24) with equations (1') to (4') , 
respectively, permit s identification of the following expressions for 
the elastic constants : 

(B25) 

(B26) 

(B28) 

(B29) 



Ey " EAy {[1 + (~Iy - kII)2 ~~:2](1 fl 2) + 2 [EAY 1 fl1 =- + 
. EAx 

(
k=- _ k ) 2 EAyh2J + (fl 2 _ fl 2)~ _ (k-=:- _ k ~ (1 _ lL- \ E~h2 
~Ix II Elx \ 1 2 [ ~Iy I~ ~Iy) Ely 

EAy ( ) ( ) EAYh
2j =- + kEI - kII 1 - kEI -=- kn + 

EAx x x Elx 

G ~I -1 

("1 - "2)(1 - kII)kII~l - ~I,)~IX ~~:2 - ::~J 

fl'x 

EAxh2 [ EAXh2] 
fll + (fl1kErX - fl2kII ) (kErX - kI) Elx - (fl1 - fl2) 1 + (kErX - kI)kErX ~ kn 

2 E~h2 
1 + (kEI - kI) -==-x E1x 

Ey , -
fl 'y = f.L x Ex 

(B30) 

(B31) 

(B32) 

~ 
() 

:x> 
1-3 
2: 
I\) 
I\) 
en 
\D 

VJ 
\D 
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(B33) 

(B34) 

( B35) 

(1112 _ "22)~ 1 + 
(kEly - kn) kElyh 1 _ (kEIX - kII)kEIxh] _ 

- --
EAyh Ely EAxh Elx 

01 - ~) ~ + ("1 - "2)kIJ [( 1 
- kElJkElxh 

1 J (B36 ) 
Elx - EAxh" 

For the usually encountered case in which the Poisson's ratios for 
the two face sheets are equal (that is, 112 = Ill)' the foregoing 

expressions for the elast i c constants become appreciably simplified and 
are 

(B25 , ) 

(B27' ) 
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I-ly 

(B29 ,) 

k )2 ~h2J}_ 1 
II EI x 

(B30 ' ) 

I-l IX = 1-l1 --------------
- 2 

1 + ( k- _ k ) 2 _EA_x_h_ 
E1x I E1x 

(B31 I ) 

(B32 ,) 

(B33 I ) 

(B34 I) 

(B35 ,) 
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It is evident f r om the preceding two sets of formulas that the values 
of the constants associated with stretching and a lso the values of the 
coupling constants depend upon the location of planes I and II in which 
the stretching force s Nx and Ny, re spectively, are applied . Choosing 

planes I and II at the centroids of the transformed cross sections 
parallel t o the yz - and xz - planes , respectively, ( that is, let-
ting kI = kEIx and kII = kEIy) results in further simplification of 

the formulas and reduces two of the coupling constants to zero . Equations 
( B25 ,) to (B36') become 

j..l' x 

- 1 

(B25") 

(B26") 

(B27") 

(B28") 

(B29") 

(B30") 

(B3 1" ) 

I 

~ 
1 

I 
J 

I 
I 

~~ 
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E 
bl' -~' J. y - x Ex 

(B32" ) 

Cxx = 0 (B33") 

(B34") 

Cyx = 0 (B35") 

(B36" ) 
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APPENDIX C 

DERIVATION OF FORMULAS FOR Dxy' Gxy' AND T 

In the derivation of the formulas for Dxy ' Gxy' and T, an ele­

ment of a corrugated- core sandwich plate is considered which is sub­
jected to shear flows ql' ~,and ~ in the middle surfaces of the 

lower-face, upper- face, and core sheet, respectively. (See following 
fig . ) 

m' 

n' 

h 

Y,V 

e+------ 2p --------i>-( 

.~ 
z,w 

Figure Cl 

These shear flows may be represented by a resultant horizontal shear 
force of average intensity Nxy acting in some arbitrarily chosen plane, 
denoted as plane III, and a twisting moment of average intensity Mxy 

os. 
about this plane. The shear flows induce a twist ~ in the element 

as a whole and shear strains Yl' Y2' and YC in the middle surfaces 

of the face and core sheets . By linear interpolation (or extrapolation) 
between the middle surfaces of the face sheets , a shear strain for every 
horizontal plane can be defined . In this appendix equations are derived 

o2w 
relating the twist ~ and the shear strain Yxy of plane III to 
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the resultant forces of intensities Mxy 
From these equations gener al formulas for 

obtained. These general formulas are then 
particular applications . 

and Nxy which produce them. 

Dxy' Gxy' and T are 
reduced to special forms for 

The orthogonal x- and y-axes are taken in the as yet undetermined 
plane of zero shear strain, as shown in the figure. 

Assumptions.- Vertical lines drawn between middle-surface points 
in the upper and lower faces before twist are assumed to remain perpen­
dicular to the faces and unchanged in length during twist. The shape of 
the corrugation in planes parallel to the yz-plane is assumed to be 
rigidly maintained, whereas displacements in x-direction of the corru­
gation between lines of attachment to the faces are freely permitted. 
In order to eliminate rigid-body displacements, the corner of the ele­
ment (x = 0, y = 0) is assumed to be fixed in space, and the originally 
vertical line at the corner is assumed to remain vertical , that is, in 
coincidence with the z-axis. The distortion of the element is main­
tained only through the constant shear flows ql and q2 in the faces 

and ~ in the corr ugation; that is, the face and corrugation sheets 
are assumed to be so thin that twisting moments developed in them are 
negligible. 

Displacements.- In terms of the twist and the height 

of the xy-plane above the middle surface of the lower face, the hori­
zontal displacements of points in the middle surface of the lower 
face ul and Vi may be written as . 

The horizontal displacements of points in the middle surface of the 
upper face u2 and v2 are 

(Cl) 

(C2) 

(C 3) 

(c4 ) 



46 NACA TN 2289 

The displacement in the x - direction of the corrugation middle-surface 
crest line mml is 

2 
u. = hl.D d w 

m '+" dxdy 

and that of the trough line nnl is 

o 

Vertical displacements are given by 

(c6) 

Shear strains in the f aces.- In terms of the foregoing displacements, 
the middle-surface shear strains in the faces '1 and '2 can be 

written as 

dul dVl 
- 2hl 

d2
W 

'1 '&.1+ dx dxdY (c8) 

du2 dV2 d2w 
'2 = dY + dx = 2h2 dxdy 

Shear strain in the corrugation.- The shear strain in the corruga­
tion can be determined by considering the portion between a crest and 
the adjacent trough as a beam which is being twisted about the x-axis 

2 
at a constant rate ~,with the shape of the corrugation in planes 

ox oy 

perpendicular to the x -axis rigidly maintained. (See the following 
fig. ) 
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x 

Figure C2 

The constant shear strain IC in the corrugation must be such that 
continuity of displacements in the x -direction is maintained between 
the corrugation and the face sheets. With u and v' denoting axial 
and tangential displacements, respectively, of the corrugation middle 
surface and s denoting the distance from nn' measured along the 
corrugation center line, the shear strain in the corrugation at any 
point P may be written as 

IC 
em dV' + ds dx 

- r (C10) 

where r is the perpendicular distance from the axis of twist Ox to 
the tangent at point P and is considered positive if the tangent 
passes below point 0 (as in fig.) and negative if it passes above. 
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Integration of (C10) with respect to s between points n and m 
gives 

12 em 12 d~ 12 
~ ds = Yc ds + ~ r ds o as 0 ox oy 0 

where 2 is the length of one corrugation leg, measured along center 
line, or 

(Cll ) 

The integral in equation (Cll) represents twice the net area swept out 
by the radius vector p in going from n to m, or, as can be seen 
from the following figure, it equals twice area I minus twice area II. 

With 

equation (Cll) becomes 

Area II 

Figure C3 

Area I - Area II =: M 

2 

~ - un = 2 Y C + 2 M d~ ~y 

(C12) 

(C13) 

Continuity between core and face s requires that um - un as given by 

equation (C13 ) be equal to u m - un as given by equations (C5) and (c6). 
Therefore , 
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or 

where Ac 
width. 

equals 

49 

IC 

(c14) 

HC -p-' the corrugation cross-sectional area per unit 

The area ~ which appears in equation (c14) and is defined by 
equation (C12) depends simultaneously on the vertical location h3 of 

the axis of twist and on the geometry of the corrugation. Through 
purely geometrical considerations, ~ can be related to two other 
areas, one of which ph3 depends only on the vertical location of the 
axis of twist and the other of which depends only on the geometry of 
the cross section. The relationship is 

1 l~ ~=-hp -I.A 2 3 Lj- 1 
(C15 ) 

where Al is the area, in width 2p, lying between the corrugation 
center line and the lower - skin center line, and A2 is similarly the 
area lying between the corrugation center line and the upper-skin center 
line. (See the following fig.) 

2p ------------~·1 ~ 

-------------------------

~------------ 2P----------~,1 
Figure c4 

With ~ in equation (c14) eliminated through equation (C15), 
the equation for IC becomes 

(c16) 
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Shear flows.- With the shear strains known through equations (c8), 
(C9), and (C16), the following expressions may be written for the shear 
flows: 

(c18) 

(C19) 

"iff 
These expressions give the shear flows in terms of the twi st dx-dY and 

the vertical location (hl' hJ of the plane of zero shear strain. In 
order to determine the elastic constants, the shear flows must be 

-iw 
expressed in terms of the twist ax dY and the shear strain lxy of 

plane III. The shear strain of any horizontal plane varies linearly 
with the distance from the xy-plane and must be consistent with the 
twist; hence, 

or 

and 

l~ 
+ "2 2 

d w 
~ 

(C20) 

(C2l) 
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Using equations (C20) and (C21) to eliminate hl and h2 from equa­
tions (C17) to (C19) gives the following expressions for the shear 
flows: 

51 

(C 22 ) 

(C 23) 

(c24) 

The resultants of the shear flows} namely Nxy and ~} may now be 

evaluated. 

Evaluation of N .- The shear flows 
xy 

give a resultant horizontal shear flow of 
~ } and ~ combine to 

(C 25 ) 

where ~} and <lc are given by equations (C22) to (c24) . 

Evaluation of Mxy .- The average value of Mxy can be determined 
by taking moments} in the yz-plane} of ql} q2} and the horizontal 

components of <lc with respect to plane III . Use is made in this 

section of a horizontal plane which cuts the corrugation center line 
into lobes of equal area . This plane } which is shown as plane IV in 
the following sketch at a distance kch abo ve the middle surface of the 

lower face} is the centroid (or shear center) of the corrugation shear 
flows. 

Figure C5 
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Taking mom~nts with respect to plane III gives 

where 

Mxy = - qlklllh + q2(1 - kIII)h + ~(kC - kII0 h (c26) 

~) and ~ are given by equations (C22) to (c24). 

?Fw 
Evaluation of Nxy and Mxy in terms of txy and dX dy .- Sub-

stitution of equations (C22) to (c24) into equations (C25) and (c26) 

Ai - ~ 
and elimination of through the purely geometrical relationship 2ph 

gives 

where 

_!( Al - ~, 
kc - 2 \1 + 2ph ) (C27) 

(C28) 

(C30) 

(C3i) 

(C32 ) 
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Solution of equations (c28) and (C29) gives 

Comparison of equations (C33 ) and (C34) with equations (5') and (6') 
permits the identification of the following elastic constants: 

T 

Dxy = 2GJ 

GA 

1 + GA (k- - k
III

)2h2 
GJ \ GJ 

(kGJ - kln)h 

2GJ 

Choosing kIll equal to kcJ reduces the foregoing equations to 

D = 2GJ xy 

G = GA . xy 

T = 0 

(C 35 ) 

(C 36 ) 

(C37) 

(C35' ) 

(C37' ) 
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APPENDIX D 

DERIVATION OF FORMULA FOR D~ 

In this appendix a formula for the transverse shear stiffness D~ 

is derived which is fundamentally the same as that given in reference 4 
for the case of interference of flats neglected but extended slightly 
to include the effects of stretching of the corrugation and the preven ­
tion of anticlastic curvature. The general formula is reduced to 
special forms for specific applications. 

The element of a corrugated- core sandwich shown in the following 
figure has unit width normal to the page and is in equilibrium under a 
small transverse shear of unit intensity (Qy = 1) and horizontal forces Y 
of magnitude p/h . The corrugation is assumed to be fastened to the 
skins through rigid joints at its crests and troughs. 

y=..E.
h 

Y ="* ----€~~$=======~:::r;..:J k,l 
y=* -i==~~~~1 1 

I 
y=..E. 

1-------- 2p------~. ~ 
Figure Dl 

For small Qy the relative distortions of the element are proportional 
to Qy . These relative distortions Oy and Oz are shown in the 
following figure: 

~~----~-------

r-------- 2p -----------~ 

Figure D2 

--------------- --- - --- -- - -' 
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Ov _ Oz 
An average shear strain 'y may be taken as ~ and the transverse 

h p 
shear stiffness DQy is then given by the ratio of shear intensity to 

shear strain, or 

1 (Dl) 

The sandwich··plate element is now analyzed as a statically indeter­
minate structure to determine the displacements 0y and oz. Substitu-

tion in equation (Dl) then gives a general expression for the calcula­
tion of DQy in any particular case . In the analysis of the unit -width 

element the assumption is made that the element is part of a sandwich 
having its width normal to the page equal to infinity. The corrugation 
and skin elements are therefor e taken as beams in which anticlastic 
curvature is completely restrained, which amounts to multiplication of 

1 the beam flexural stiffnesses by factors of the type In order 
1 - 1J.2 · 

to obtain values more consistent with experiments in which relatively 
narrow beams are used, the Poisson1s ratios IJ. may be set equal to zero. 

In the following figure are shown free-body diagrams for elements 
of the corrugation and skins. These elements are represented only by 
their center lines . 

Figure D3 
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The distortions of the elements) assumed small) are shown in the 
following figure : 

Figure D4 

It should be noted that the forces Y on the corrugation elements are 
considered as acting in the midplanes of the skins and transmitted to 
the corrugation through short rigid projections . Similarly) the 
moments Ml and M2 are taken about points in these planes and are 

not the actual moments in the corrugation sheets at the joints . 

Since the undeformed structure is tiymmetr ical about any plane BE) 
all forces and deformations in the two corrugation elements EA and EC 
are equal) as likewis~ are those in the two skin elements ED and EF 
and in the two skin elements BA and Be. Then the skin moments at B) 
D) and F are zero) and each skin element is in equilibrium under its 
shear Zl or Z2 and its moment ZlP or Z2P at one end. 

Since a shear of unity is assumed to act on the sandwich) the 
relation between the shear carried by the corrugation X and the shears 
carried by the two skins Zl and Z2 is 

(D2) 

Static equilibrium of the corrugation elements requires that 

(D3) 



I 
t 
) 

I 

I 
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Equilibrium of moments at joint E requires that 

or 

(D4) 

Similarly, at an upper joint 

(D5) 

Finally, the internal moment M at any point in the corrugation sheet 
is given by 

The foregoing five equations are all the static relations needed. 

With the rotation of A with respect to the horizontal tangent 
at E denoted as ¢, the deformation Oz may be written for the 
lower and upper skins, respectively, as 

Oz 
ZlP3 

3El1l/(1 - 1112) 

Oz 
Z2p3 

2 ) + p¢ 
3E212 /(1 - 112 

Deformations in the corrugation sheet are due to both bending and 
stretching. The three components of the displacement at A or C 
with respect to the tangent at E are 

------------ -

(D6) 

(D7) 

(D8) 

(D9) 
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1 2) J (Y cos 1\1 + X sin 1\I)cos 1\1 ds 
E ' etc 1(1 - ~e 

(D10) 

1 2) J (Y cos " + X sin ,,) sin " ds 
E ' etc /(1 - ~e 

(Dll) 

where the integrals are taken over one corrugation leg, as from A to E 
or e to E (excluding the short rigid projections), s is the dis­
tance measured along the corrugation center line, and 1\1 is the angle 
between the tangent to the corrugation and the horizontal ( see fig . D3) . 
In equations (D10) and (Dll) E'e denotes the stretching modulus of 
elasticity of the core. It has been distinguished from the bending 
modulus Ee in order to permit identification of the terms representing 
the stretching contribution in the derivation. The Poisson's ratios 
associated with bending and with stretching of the core have, however, 
been assumed equal. In the rest of the derivation, the moments of 
inertia per unit width 11 , 12 , and Ie will in most cases be elimi -

nated through the relations 

11 1:.. t13 
12 

12 l:-. t23 
12 (D12) 

Ie = 1 3 
12 te 

The ten equations (D2 ) to (Dll) contain ten unknowns for which they 
may be solved . The equations can first be reduced to the following four 
equations: 

allX + a12Z2 + a13 Oz + 0 rl 

~lX + a22Z2 + a23 Oz + 0 r2 

a31X + a 32Z2 + a33 Oz + 0 r3 
(D13) 

a41X + a42Z2 + 0 + a44 Oy r4 

---~------ ------ ----------
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where 

(D14) 

1 
a =-23 p 

a = a = r = 1 
33 44 1 

Equation (D14) continued on next page 
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(D14) 
Concluded 

The quantities KlyJ K1zJ . . . and so on are nondimensional functions 

of the corrugation shape and the origin location. They are defined by 
the following integrals taken along one leg of the corrugation center 
line from the crest to the trough; that is, from m to n in 
figure D3: 

1 J 2 K~ = hc 3 z ds 
(D15) 

KAy = ~2 J z ds 

Equation (D15) continued on next page 
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KLyz = ~ J sin Ijr co s Ijr ds 

61 

(D15) 
Concluded 

Equations (D13) may be solved for 0y and oz . Substitution in 

equation (Dl) then furnishes the fol lowing expression for DQy: 

(D16) 

where 

3 ; C7 (C 2
2 - C1C3) - C3 + ~(2C2 - tc Cl ) 

S = -----------------------------------------------------------

2 ~~(C1C4 - C2C5) - (C2C4 - C3c5D + ;tc7 E4(C1C4 - 2C2C5) + 

12 C3C52 
- C6(C1C3 - C2

2[] + ~(C42 - C3C6) + 2 (~ ) 2 (C 2C6 - C4CS) + 

(Eel (C5
2 

- C1C6)} + ~ ~(C22 - C1C~ 
(D17) 
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and 

Cl 

c2 

C3 

C4 == 

C5 

Kr , 
z 
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KL 
+ ~ EC (1 - 1-12

2 
\tc ) 3 L 

3 E2(1 _ ~C2) t2 he 

KA z 
+ ::r L KL 

2 he 

Kr l( ~ P ) 1 EC (tc t K z + ky he KAz + be KL + 12 E I C he Lz 

1 E ( t2) t~ ( kx L ) 
k 

K + 2" kz + 1 + tc he KAz + 2 he KL + ::x.. L KA ryz 2 he y 

2 
1 Ec CC) KLyz 12 E 'c be 

(D18) 

KAy + ~EZ ( t2t~ + 1 + tc he KL 

Special Cases 

Symmetrical corrugation.- The evaluation of the terms Kr , y 
and so on in the formula for D~ depends upon the location 

of the origin of coordinates, that is, on the choice of ky and kz . 

For the frequently encountered case in which the corrugation is sym­
metrical, computational advantages are gained by letting ~ == kz ~ 1, 

that is, by choosing the origin at the midpoint of the corrugation leg. 
As a result the parameters KAy and KAz vanish. 
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Symmetrical sandwich.- For the case of the symmetrical corrugated­
core sandwich, elimination of KAy and KAz by choosing ky = kz = 1 

is again advantageous . In addition, however, the numerator and 
denominator in equation (D17) for S contain a common factor. Cancel­
lation of this factor yields the following simplified expression for S 
to replace equation (D17): 

. he 2 
6 P B3B7 + (lc) 

(D19) S = 

12t2(lct + ';; ~B~ B3B6 - B42) + (lc? BJ + ~ lc B3} B4 

where 

r 1 EC tc 
B3 KI + 12 E1C(he KL z z 

r 1 EC tc . 
B4 K - 12 E1C(he K~z Iyz 

~ r 
(D20) 

B6 KI 
1 EC tc 

+ 12 E' C he KLy y 

B7 C7 
El 1 

- "c 2C' f 
EC 1 - 1J.12 tc 

Corrugation center line consisting of straight lines and cir cular 
arcs.- The center line of a corrugation leg in many cases consists of 
three straight -line segments (two flats and one diagonal element) 
separated from each other by two cir cular arcs. The following figure 
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hEC 

he 

~h 2 C 

~-i)hc 

I 

kZh 
2" C 
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f-+---------- P - -------1 

f---- ~ P ---t---- (l-t)P-----+-I 

Y 

z 

l-_____ ~_~~-~_.----~---y 

B 

i-______________ -+ ____ ~~==:~ 

z 

Figure D5 
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shows such a corrugation leg with its dimensions. If the integrals in 
equations (D15) are evaluated for this shape, with the origin of x 
and y chosen along the straight diagonal portion as shown in the figure, 
the results are 

KI = ! ( jl kl dl + j2 ~ d2) + ! ~ (1 _ kz) ~l _ ~)2(L)2 
yz 3 he he he he he he 4 L 2 II 2 he 

(~~ + kz~r2(fc)2 -(~)J} + ~l~(e ~ + ~ - ~l) + (D21) 

~~ -~ ~TI + ~2~(e ~ + ~ - ~2) + ~(~ - ~ ~TI 

Equation (D21) continued on next page 
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f.dl d2) 1 (Rcl Rc2) 2 KLyz = \he + he sin e cos e + 2 he + he sin e 

NACA TN 2289 

(D2l) 
Con­
cluded 

If, in addition to consisting of straight line s and circular arcs, 
the corrugation is symmetrical (that is , RC 2 = RC1' b2 = bl, and so on) 
and the origin of y and z is chosen at the midpoint of the corruga­
tion leg (that is, ky = kz = 1), then equations (D2l) become 

--~--- --_ .. 
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Krz ~ ~(~t ~ + ~~(:S -(~)J + 

2 ~1 ~ E ~ -2~1 - ~ ~ + ~~(~1 r -~ ~J} 
Klyz ~ ~ ~ ~ ~ + ~~~t -(~)J + 

2 :1~ (e ~ + ~ _ :1) + ~~ _ ~ ~~~ 

(D22) 

fl d1 2 Rc1 KLy = he + 2 he cos e + he (e + sin e cos e) 

dl 2 RCl 
2 he sin e + he (e - sin e cos e) 

The dimensions that have to be inserted in the right-hand sides of 
equations (D21) and (D22) can be obtained from a few basic dimensions 



68 NACA TN 2289 

(PJ hECJ RilJ Ri 2 J flJ f2J and t c) through the following sequence 

of computations: 

b = 
1 

i31 

RC 
. 1 arc Sln -

cl 

gl = R sin e Cl 

a 2 = kz he 
2 

Rc 2 

b
2 = ~(kyP - f 2) 

c2 (2 2y/2 a 2 + b 2 

a2 
(J,2 arc tan -

b2 

Re (D23) 
i3 2 arc sin ~ 

c2 

d2 
( 2 R 2)1/2 c2 - C2 

e
2 = R 

C2 
cos e 

g2 = R C2 
sin e 

j 2 = a
2 

+ e
2 

k2 = b 2 - g2 
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These dimens i ons required in equations (D2l) and (D22) can also be 
obtai ned f rom a different set of basic dimensions (p, hEC > Ril , Ri 2 , 

e, and t c) t hrou gh the follow i ng s equence of computations; 

tc 
+ -2 

el = He cos e 
1 

tc 
+-

2 

e2 = He cos e 
2 

(D24) 
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APPENDIX E 

DERIVATION OF FORMULA FOR DQ 
x 

NACA TN 2289 

In the derivation of the transverse shear stiffness DQx' an ele­

ment of corr ugated - cor e sandwich plate of length dx and width 2p 
under a transverse shear V is cons idered . (See following fig.) 

v 

Centroidal axis of faces 

and core combination 

dM 

) 
v 

f-I . --dx ------>-<. I k------ 2p -------0-1. If ~ 
Figure El 

The transverse shear is equilibrated by a change in bending moment dM 
from one end of the element to the other. From the equation r elating 
t he distortions of this element to the shear V, a general formula 
for DQx is obtained . A more practicable approximate formula is then 

obtained by assuming that the cor e carries no direct stress. 

General derivation. - The direct stresses produced in the element 
by the bending moment dM are assumed to vary linearly through the 
thickness. Assuming the only flexibility to be that of the corrugation 
in shear gives the following picture of the relative distort ions of the 
element : 

-=--=--===--=--=-\l 
h 

______ J 
k---- dx ---+1 

Figure E2 

-------- ---- ... ---
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The angle is taken as an average shear strain IX for the cross 

section, and the transverse shear stiffness DQx is then given by 

(El) 

An expression is now derived for Ox as a linear function of V for sub ­
stitution in equation (El). 

Elementary considerations give the shear stress in the corrugation 
at a point such as m (see fig. El) as 

where 

VQ 
2It C 

(E2 ) 

Q static moment of cross-hatc~ed area about neutral axis, inches 3 

I moment of inertia of cross section of width 2p about centroidal 
axis, inches4 

(If faces and core are not all of the same material, a transformed cross 
section should be used in calculating Q and I.) The shear strain in 
the corrugation sheet is 

VQ 

Integration of IC along one corrugation-leg center line (see the 
following fig.) 

Figure E3 

(E3) 
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gives the relative displacement Ox of one face with respect to the 
other, or 

• 

° =f I I ds 
x 0 x 

V f I = 2G It Q ds 
C C 0 

(E4 ) 

Substitution of expression (E4) in (El) gives the following general 
expression for DQx' 

(E5) 

Approximation.- If, as is usual, the corrugation carries only a 
small portion of the bending moment M, then an accurate approximation 
to DQx may be obtained by assuming that the entire bending moment is 
resisted by the faces and, therefore, that the corrugation carries no 
normal stress . The resulting formula for D~ will be the same as 

equation (E5) but with the effect of the corrugation omitted in calcu-

j I Q 
lating I, 0 ds , and the centroidal-axis location (kEIxh); that is, 

or 

1 I Q ds ~ 
o 

2ptl kEI hI 
x 

(E6 ) 

(E7a) 

(E7b) • 



NACA TN 2289 

Substitution of the approximate expressions (E6)) (E7)) and (E8) in 
equation (E5) gives the following approximation to D~: 

where the corrugation cross - sectional area per unit width Ac 

73 

(E8) 

(E9 ) 
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1\ 
tl 

t2 

1.00 

.80 

. 50 

TABLE 1. - RESULTS OF NUMERICAL SURVEY OF ACCURACY OF APPROXIMATE FORMULAS FOR Dy ' Ey ' 

Dxy' AND DQ,,' (kn = kE~) 

~1 = E2 = Ed; G1 = G2 = GC; "1 = "2 = ~; f1 = f2; and ReI = Re 2 = 0 .18~ 

2p--~ 

Ratio 
Dyapprox EYapprox (DQ,Japprox (nxy)approx 

Dy Ey IlQx Ilxy 

1\ e 60 90 60 60 60 
~deg) 

90 90 90 

heM tc tc ' 0.8 1.4 0.8 1.4 0.8 1.4 0.8 1.4 0.8 1.4 0.8 1.4 0.8 1.4 0.8 1.4 

t? (al (al (al (al 

0.30 0· 99 0.99 0. 99 0.99 0. 98 0. 98 0.97 0. 98 1.01 1.00 1.01 1.00 1 1 1 1 
10 1.00 . 98 . 97 . 97 ·97 · 95 . 95 . 94 · 95 1.01 · 97 . 97 .94 1 1 1 1 

1. 25 .97 · 97 . 96 .96 . 94 .95 .94 . 94 1.01 .96 . 96 . 93 1 1 1 1 

. 30 . 99 · 99 .99 .99 .98 .98 . 97 .98 1.00 . 99 .98 . 98 1 1 1 1 
25 1.00 . 97 . 97 . 96 .96 · 95 . 95 .94 . 95 .99 ·95 . 93 .91 1 1 1 1 

1.25 . 97 .96 . 96 .96 . 94 ·95 . 94 . 94 . 99 .93 . 92 .89 1 1 1 1 

.30 . 99 ·99 . 99 . 99 . 98 .98 .97 . 98 1.00 .98 .95 .97 1 1 1 1 
40 1.00 . 97 · 97 . 96 . 96 · 95 .95 .94 · 95 .98 . 94 . 92 .90 1 1 1 1 

1.25 · 97 .96 . 95 . 96 . 94 · 95 . 94 . 94 .98 ·93 . 91 .88 1 1 1 1 

. 30 . 99 .99 .99 .99 · 98 . 98 .97 . 98 1.01 1.00 1.01 .99 1.00 1.00 1. 00 1.00 
10 1.00 . 97 .97 . 96 .97 ·95 . 95 . 94 . 95 1.01 . 97 . 96 .94 1.00 1.00 1.00 1.00 

1.25 . 91' ·97 . 96 . 96 . 94 . 95 . 93 . 94 1.01 .96 . 95 ·92 1. 00 1.00 1.00 1.00 

. 30 · 99 .99 . 98 ·99 . 98 . 98 · 97 . 98 1.00 ·99 . 98 .97 1.00 1.00 1.00 1.00 
25 1.00 . 97 .97 . 96 .96 · 95 .95 . 94 . 95 . 99 . 94 · 93 . 90 1:00 1.00 1.00 1.00 

1. 25 · 97 .96 . 95 · 95 · 94 .95 . 93 . 94 · 99 · 93 · 91 .88 1.00 1.00 1.00 1.00 

.30 .99 · 99 .98 . 98 . 98 . 98 . 97 . 98 1.00 .98 . 97 .96 1.00 1. 00 1.00 1.00 
40 1.00 .97 ·97 . 96 . 96 · 95 . 95 . 94 . 95 . 98 . 93 . 91 .89 1.00 1.00 1.00 1.00 

1.25 .96 .96 · 95 . 95 · 94 . 95 . 93 . 94 .98 .92 . 90 .87 1. 00 1.00 1.00 1.00 

. 30 · 99 .99 .98 .98 · 97 . 98 ·97 .97 1.01 . 99 . 99 . 95 .98 . 98 .95 . 98 
10 1.00 . 96 .96 .95 .96 . 94 . 95 . 94 . 95 1.01 .96 .94 ·92 .96 . 96 .97 . 96 

1.25 . 96 . 96 · 95 · 95 · 94 .94 ·93 . 94 1.01 . 95 . 94 ·90 . 96 . 95 . 96 .95 

.30 .98 .98 .98 . 98 · 97 . 98 . 97 . 97 1.00 .98 . 97 . 96 .95 . 95 . 99 .98 
25 1.00 . 96 . 96 ·95 · 95 · 94 . 95 . 94 . 94 .98 ·93 . 91 .88 . 96 .96 . 97 .96 

1. 25 .96 . 95 . 94 . 94 . 94 . 94 . 93 . 94 .98 .91 . 90 .87 .96 . 95 . 96 . 96 

· 30 .98 .98 .98 .98 · 97 . 98 . 97 .97 . 99 . 97 . 96 . 95 .98 .98 · 99 . 98 
40 1.00 .96 .96 .95 .95 · 94 . 95 . 94 . 94 . 98 · 92 · 90 .87 . 96 . 96 . 97 . 96 

1.25 .95 . 95 . 94 . 94 · 94 . 94 · 93 . 94 .97 . 91 . 89 .86 . 96 .95 . 96 . 96 

( t ~~ aApprox1mate and exact values are identical for a symmetrical sandvich \t~ = 1.00) . 
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(a) Symmetri cal . 

(b) Unsymmetrical. 

Figure 1.- Two types of corrugated-core sandwich pla t e . 

I 

~------~-~~--- - J 



NACA TN 2289 

(a) Symmetrical loading. 

z,w 

~------ dy ----------~ / / 
dx 

£ _-------< 
PIOlle_I ____ -f--f--r 

__ ll __ _ 

-~-

(b) General loading. 

Figure 2.- Forces and moments acting on infinitesimal sandwich-plate 
element. 
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Figure 3.- Charts for evaluating coefficient S in formula for DQ 
y 

for homogeneous symmetrical sandwich with corrugation cross section 
composed of straight lines and circular arcs (E2 = Ec = El ; 

~2 = ~c = ~l; t2 = t l ; f2 = fl; Rc 2 = Bel = 0.18hc) . 
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(a) Dimensions of beam test specimen. 
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[~---- 15.65 I 19.05 I 15.65 J 

~ 

(b) Loadings and gage locations. 

Figure 5. - Specimen and test setup used in experimental determination 
of Dy . 
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(c) Photograph of typical test setup. 

Figure 5.- Concluded. 
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Figure 6.- Test setups used in experimental determination of DQ . 
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(b) Photograph of typical test setup. 

Figure 6.- Concluded. 
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L-66801 

(a) Photograph of test specimen and steel side and end plates assembled. 

~ 
L-66802.1 

(b) Photograph of test specimen and steel side and end plates disassembled. 
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~==================================================,-~-~F ~ 

f-ol,<-------------- 59.84 -----------~ ~ l (h-+t,) =0.90 

(c) Dimensions of twisting test specimen. 

Figure 7.- Specimen and test setup used in experimental determination 
of Dxy. 
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(d) Photograph of test setup. 

Figure 7.- Concluded. 
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