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SUMMARY

The sandwich plate consisting of corrugated sheet fastened between
two face sheets is considered. Application of existing theories to the
analysis of such a sandwich plate requires the knowledge of certain
elastic constants. Formulas and charts are presented for the evaluation
of these constants. The formulas for three of these constants were
checked experimentally and found to give values in close agreement with
the experimental values.

INTRODUCTION

A type of sandwich plate for which practical use has recently been
found in airplane-wing construction consists of a corrugated metal sheet
fastened, at its crests and troughs, to two ordinary metal sheets ( see,
for example, fig. 1). The main advantage of this type of sandwich is
that the corrugated-sheet core not only serves to separate the faces
and, thereby, to achieve high flexural stiffness, but it also carries a
share of any compressive loading applied parallel to the corrugations
and any edgewise shear loading. This type of sandwich has been called

cardboard-box construction (reference 1) and also double-skin construction.

It is referred to herein as corrugated-core sandwich plate.

Plate theories applicable to the symmetrical type of corrugated-core
sandwich, illustrated in figure 1(a), have been developed in reference 2
for flat plates and in reference 3 for curved plates.® These theories
are essentially homogeneous orthotropic-plate theories extended to
include deflections due to transverse shear, which can be significant
for the corrugated-core sandwich plate because of the relatively flexible
cone.

8The precedent established in reference 4 of referring to sandwich
plates of the type shown in figure 1(a) as symmetrical is adhered to
herein. The type of corrugation shown in this figure is also called
symmetrical.
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Application of the general sandwich-plate theories of references 2
and 3 to any particular type of sandwich requires a knowledge of certain
elastic constants for that type of sandwich plate. These constants
describe the distortions associated with simple loadings. They include
two transverse shear stiffnesses DQX and DQy’ two bending stiffnesses

Dy and Dy, a twisting stiffness ny, two stretching moduli Ey
and Ey, a shearing modulus Gxy, two Poisson's ratios uy and Hy

associated with bending, and two Poisson's ratios u'y and “'y
associated with stretching.

The purpose of the present paper is to present formulas for
evaluating these elastic constants for the corrugated-core type of
sandwich plate. For the sake of completeness, formulas are also
developed for evaluating the additional elastic constants that would be
needed for a rigorous extension of the sandwich-plate theories to the
unsymmetrical type of sandwich. These additional constants, denoted
by Cxx, ny, ny, ny, and T, describe coupling - for example, the
curvatures produced by extensional forces. The derivation and formulas
for the transverse shear stiffness DQy are essentially the same as

those given in reference 4 for the case in which interference between
corrugation flats and face sheets is neglected, but are extended slightly
to include the effects of stretching of the corrugation (in addition to
bending) and the prevention of anticlastic curvature in the elements of
the sandwich plate. The former effect can be important when the sandwich
cross section approaches a truss; the latter, because the length of the
sandwich plate parallel to the corrugation axis is several times the
corrugation pitch. The results obtained for the bending and twisting
stiffnesses Dy, Dy, and ny, for the symmetrical sandwich correspond
to the slightly less precise formulas of reference 5. (Transverse shear
stiffness was not evaluated in this reference. A slight difference in
definition of the symbols Dy and Dy exists between reference 5 and

the present paper.)

Because the formulas developed are generally rather involved, charts
are presented for one of them, the transverse shear stiffness DQy’ and

approximations are given for several of the others, together with the
results of numerical investigations of the accuracy of these approxi-
mations. In calculating the charts and in investigating the accuracy of
approximate formulas, a family of corrugation shapes consisting of
straight lines and circular arcs was considered. The bend radii of the
corrugation, measured to the center line, were generally taken as 0.18
times the corrugation depth hg, but departures from this value were
also considered, as were departures from symmetry.
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As a check on the formulas, bending and twisting tests were run on
samples of a corrugated-core sandwich plate. Experimental values of
bending stiffness Dy, transverse shear stiffness DQy, and twisting

stiffness ny were obtained and compared with the theoretical values.

The function of the elastic constants in a sandwich-plate theory
is first briefly described. A section follows in which the formulas
for the elastic constants for the corrugated-core sandwich are summarized.
The tests and comparison between theory and experiment are then described,
a discussion section follows, and a section of concluding remarks ends
the body of the paper. The symbols used in the body of the paper are
listed and defined in appendix A. A number of them are also defined in
the text where they first appear. Appendixes B to E contain the
theoretical derivations.

THE FUNCTION OF THE ELASTIC CONSTANTS

IN SANDWICH-PLATE THEORY

The sandwich-plate theories of references 2 and 3 are based on a
structural idealization of the sandwich as a plate of continuous con-
struction with material which is orthotropic with respect to the mutually
perpendicular x-, y-, and z-directions. The modulus of elasticity in
the =z, or thickness, direction is assumed to be infinite; that is,
local buckling of the faces is not considered and the over-all thickness
is assumed to remain constant. Straight material lines normal to the
middle surface are assumed to remain straight, but not necessarily
normal to the middle surface, during distortion of the plate.

This idealized structure can adequately represent a corrugated-core
sandwich plate of either the symmetrical or unsymmetrical type for many
practical purposes, provided the core has sufficient stiffness to keep
the over-all thickness of the plate essentially constant and provided
the plate width (perpendicular to the corrugation axis) is many times
the corrugation pitch. If the symmetrical type of sandwich (fig. 1(a))
is to be represented, then the elastic properties of the idealized-plate
material may be regarded as varying symmetrically about the middle
surface through the thickness. In order to represent the behavior of
the unsymmetrical type of sandwich (fig. 1(b)), the elastic properties
of the idealized-plate material must be thought of as varying nonsym-
metrically with respect to the middle surface.

The behavior of a differensial element of the idealized sandwich
plate under load can be described by a set of force-distortion relation-
ships. For an element of the symmetrical type of idealized sandwich




L NACA TN 2289
(fig. 1(a)), subjected to forces and moments as shown in figure 2(a),
these relationships, as developed in references 2 and 3, are
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where é—z, éfz, and oW are the curvatures and twist of the middle
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surface and ¢y, €y, and 7xy are the strains of the middle surface. The

quantities Dy, Dy, My, and so on which appear in the coefficients of
the loading terms are the elastic constants. Each constant describes a
distortion produced by a simple loading. For example, if all loadings
are zero except My, then, according to equation (1), - sL is the

%
amount of curvature in the x-direction produced per unit of My .

The behavior of the unsymmetrical type of sandwich (fig. 1(b)) is
more complex than that of the symmetrical type. In particular, a certain
amount of coupling among the distortions may be expected; for example,
extensional forces may in general produce curvatures as well as extensions.
The same type of coupling can be expected in a symmetrical sandwich
sub jected to unsymmetrical loading. 1In setting up force-distortion
relationships for an element of the unsymmetrical type of sandwich, the
loading on the element will be generalized as shown in figure 2(b).

The forces Ny, Ny, and ny are no longer assumed to be applied in

the middle plane; each has an arbitrary plane of application, denoted
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by I, I, and IIT, respectively., The strains €3 Gy, and Txy are

measured in these same respective planes. The force-distortion relation-
ships for the element are then given by the following generalization of
equations (1) to (6):

AN g My T e el | LR
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I e TR Wl g o 88, .
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—'-2—1‘174——' NX‘Y (6')
7xy ‘l___xy_:+a‘x‘;

The boxed terms are the terms that have been added to express the
coupling behavior. The coefficients Cyy, ny, and so on in the boxed

terms are the coupling elastic constants. The presence of each
coupling elastic constant in two equations is a consequence of the

reciprocity theorem for elastic structures. (Further consequences of the
1

P My Y u'y
reciprocity theorem are that — = and —— = —=,

Through a proper choice of locations for planes I, II, and III,
some uncoupling may be effected for any given sandwich. Plane I may be
chosen so that Cxx or ny is zero, plane II so that ny or ny

is zero, and plane IIT so that T is zero. Thus, in general, three of
the coupling elastic constants may be made equal to zero. In special
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cases, proper choice of locations of planes iLy - Inks Sevalel SRIMIE Sealll LS acysvale
in still further uncoupling. For the symmetrical sandwich, of course,
choosing these planes to coincide at the middle surface of the plate
causes all the coupling constants to vanish.

THEORETICAL RESULTS

Elastic Constants for Symmetrical Sandwich

In appendixes B to E, derivations are made of formulas for the
elastic constants for the general corrugated-core sandwich plate. The
formulas obtained are now given in reduced form for use in conjunction
with the force-distortion equations (1) to (6) for the symmetrical
sandwich plate. Generally, the subscript C denotes the core, and the
subscripts 1 and 2 denote the lower and upper faces, respectively. In
this section, however, only symmetrical sandwiches are considered and
the subscript 1 is used for both faces. It should be kept in mind,
therefore, that the definitions of many of the terms appearing in the
following formulas for the elastic constants apply only to the symmetrical
type of sandwich.

Bending stiffnesses.- The formulas obtained in appendix B for the
bending stiffnesses Dx and Dy Sre

R (7)

D, = e (8)

where

=y - i 2

== 2

EIy =5 Eltlh

My Poisson's ratio of face sheet material

E, modulus of elasticity of face sheet material, psi

Ec modulus of elasticity of core material, psi
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I;c moment of inertia, per unit width, of corrugation cross-
sectional area about middle plane, inches3

ty thickness of each face sheet, inches

h distance between middle surfaces of face sheets, inches

For practical sandwiches, the moment of inertia fb contributed by the

core 1s often small compared with the moment of inertia which the faces
contribute to_cross sections perpendicular to the corrugations. 1In

EI
such cases, e A T very nearly unity, and the following approximation
Ix
to equation (8) may be made

Dy % Ei& (8")

This approximation implies a neglect of the restraining effect of the
corrugation on the Poisson expansion or contraction of the face sheets.
Results of a numerical survey of the accuracy of this approximation are

given in table I for the symmetrical sandwich t; 1.00] of the common
type shown at the top of the table. The table gives the ratio of the
approximate value of Dy, as computed from equation (8'), to the exact
value of Dy, as computed from equation (8). The error in the approxi-
mate value is seen to be small over a large part of the range of con-
figurations considered and, in extreme cases, no more than 6 percent.

Poisson's ratios associated with bending.- The formulas obtained
for the Poisson's ratios associated with bending px and Hy are

(see appendix B)

fhy =g o i)
p-y = Hx % (lo)

Extensional stiffnesses.- The formulas obtained in appendix B for
the extensional stiffnesses Ex and Ey, reduced to the symmetrical

case, are

Ex = EA, (11)
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< (12)

where

EAy = EcAc + 2Bt

EAy = 2E tq
Zb area, per unit width, of corrugation cross section
perpendicular to corrugation axis, inches

If, once again, the restraining effect of the corrugation on the Poisson

expansion or contraction of the faces is neglected |that is, Eé is

EA
taken as zero and, therefore, EEE as 1|, equation (12) gives the following
approximation: Y

E, EAy (1249

The error in this approximation is somewhat larger than the error
obtained in the approximation to Dy, since the contribution of the

core to EKQ is relatively larger than its contribution to Efx. The

error is indicated in table I, where numerical values of the ratio of the
approximate to the exact values are tabulated.

Poisson's ratios associated with extension.- The formulas obtained
(appendix B) for the Poisson's ratios associated with extension 'y

and u'y are

e = (13)

1 = U‘X& (lh)

Hy By

Twisting stiffness.- The following formula was obtained in
appendix C for the twisting stiffness ny:

Dyy = 2GJ {9




G shear modulus of elasticity of face sheet material, psi

The stiffness ny is independent of the properties of the core since

symmetry requires that the shear flow in the corrugated-core sheet be
ZEero.

Horizontal shear stiffness.- The horizontal shear stiffness ny
is given (see appendix C) by

Gyy = G (16)
where
2
GAG =S + 2G3t;
Ag
Ge shear modulus of elasticity of core material, psi
te thickness of corrugated-core sheet, inches

Transverse shear stiffness in planes perpendicular to corrugation
axis.- The transverse shear stiffness in planes perpendicular to the
corrugation axis DQy is given (see appendix D) by the formula

£ F B\ 3
DQy=Sh—-C—§>EC (17)
l—}.lC
where
ho depth of corrugation, measured vertically from center
line at crest to center 'line at trough (see fig. D5 of
appendix D), inches
Mo Poisson's ratio of core material
S nondimensional coefficient depending upon shape of

corrugation, relative proportions of sandwich cross
section, and the material properties of the component
parts
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Formulas for evaluating S are derived in appendix D. Because of
the complexity of these formulas, a number of charts were computed which
give S directly for the common type of sandwich with corrugation cross-
sectional shape consisting of straight lines and circular arcs.

The charts of figure 3 are for the case in which the core and faces
have the same material properties. They give S for a wide range of
R
geometric proportions but are restricted to the value 0.18 for g
¢
where Rcl is the corrugation center-line bend radius. This restriction

was made primarily for computational convenience, but it is generally
consistent with corrugation shapes that have been considered for sandwich
constrpction. The effect on S of departing from the value 0.18 for

Re

il

G o cEm be estimated from figure 4(a), where a number of curves of S are
€

given for values of —L of 0.12 and 0.2k as well as 0.18. Cross plots

he
based on the charts of figure 3 would indicate that S becomes rela-

h

tively insensitive to the ratio Eg at higher values of this ratio. For
: C
to\5
that reason <ﬁg> was not included in the coefficient S in equation (17).
C

_ The effect on S of using a core material of different modulus
than the face material may be estimated from figure 4(b). Curves of S

E
are plotted for values of Eg' of 0.23 (magnesium core, steel faces) and
1L
4.30 (steel core, magnesium faces) along with the basic curves, from
- E
Tlonre 8, for Eg ="1.00. The value of 'S, is.seen to be relatively
ik

insensitive to large differences in elastic modulus between the core
and the face sheets.

If both departures from the conditions of figure 3 occur simul-
taneously (Fhat is, Ry # 0.18hc and Eg # E1>, the effect on S may

be obtained approximately by superposing the individual effects as
determined from figures 4(a) and 4(b).

For symmetrical configurations not covered by the charts of
figure 3, 4(a), or %(b), S may be computed from equation (D19) of

)
-
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appendix D, used in conjunction with the auxiliary equations (DEO)vand
(D15}, with ky and k; taken as 1. If, besides being symmetrical,

the corrugation center line consists of straight lines and circular

arcs, then equations (D22) and (D23) or (D24) may be used instead of
equations (D15). This system of equations was used to compute the charts
previously described.

Transverse shear stiffness in planes parallel to corrugation axis.-
A general formula for the transverse shear stiffness in planes parallel
to the corrugation axis DQx’ as derived in appendix E, is

G-It h
Co=C
i SR 18)
p Q ds
0
where
I moment of inertia of width 2p of cross section parallel
to yz-~plane, taken about centroidal axis parallel to
y-axis, inches
2p corrugation pitch, inches
1 length of one corrugation leg measured along the center
line, inches (see fig. E-3)
s coordinate measured along center line of corrugation leg,

inches (see fig. E-3)

The quantity Q is the static moment about the centroidal axis (middle
plane for symmetrical sandwich) of the cross-hatched area in figure E-1.
If materials having different moduli of elasticity are used for the core
and faces, a transformed cross section should be used in computing I
and Q.

An approximate formula, which is more practicable, is obtained if,
in the derivation, a bending moment My 1is assumed to be resisted only

by the face sheets. The assumption leads to constant shear flow in the
corrugation, and the following approximation is thus obtained:

2 2
G Sy el 8 (5> (18')

The results of a numerical investigation of the accuracy of equation (18')
as compared with equation (18) are given in table I.
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Elastic Constants for General Case

The general formulas for the elastic constants derived in appen-
dixes B to E are now to be discussed. These formulas, used in conjunc-
tion with the force-distortion equations (1') to (6'), describe the
distortions of an element of either the symmetrical or unsymmetrical
sandwich plate loaded as shown in figure 2(b). The symbols appearing
in the formulas are defined in appendix A.

Elastic constants associated with flexure and extension.- General

formulas for the constants associated with flexure and extension Dy,

Dy, Hx, Hy, Ex, BEy, W'x, H'y, Cxx, Cxy, Cyx, and Cyy are
given by equations (B25) to (B36) of appendix B. These formulas apply

to a sandwich with arbitrarily shaped corrugation, in which the upper

and lower face sheets may differ in thickness, modulus of elasticity, and

Poisson's ratio and in which the loading planes I and II are arbitrarily
chosen.

Appreciable simplification of the formulas results from the
practical assumption that the Poisson's ratios of the upper- and lower-
face sheet materials are equal (kp = Hp). Equations (B25') to (B36')

then apply.

It is evident from both sets of these equations (B25) to (B36)
and (B25') to (B36') that the values of the constants associated with
extension (Ex, Ey, 5 u'y) and the coupling constants (Cxx, ny,
Cyx, Cyy) are dependent upon the location of planes.I and IT in which

the stretching forces Ny and Ny, respectively, ‘arelappilied. - Lf these

forces are applied at the centroids of the transformed cross sections of
the sandwich (ﬁhat is, kg = kﬁfﬁ and ki = Ky ), then further

simplification of the formulas takes place. Equations (B25') to (B36')
reduce to equations (B25") to (B36").

The approximations to Dy and Ey given for the symmetrical

sandwich by equations (8') and (12') may also be assumed to apply to
the unsymmetrical sandwich when kry = kffy and Hp = M- When these

approximate expressions are used, however, ET& and EK& should be

evaluated from their general formulas as given in appendix A or from
equations (B20) of appendix B. Table I gives the results of a numerical
investigation of the accuracy of the appr%x1mate expressions for Dy

and Ey for the unsymmetrical sandwich T 0.80 and O. 50) The errors
2
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resulting from use of the approximate expressions are seen to be of
the same order for the unsymmetrical sandwich as for the symmetrical
sandwich.

Elastic constants associated with twisting and horizontal shear.-
Formulas for the constants associated with twisting and horizontal
shear Dyy, Gyy, and T are given by equations (C35), (€36}, ‘snd (C3%)

in appendix C. The wvalues of ny and T depend upon the location of
plane ITT in which the horizontal shear force is applied. 'Locating the
horizontal shear force at the shear center of the cross section (that
is, letting kry7 = kg, where k;; 1is defined by equation (C31) or in
the symbol list of appendix A) causes the coupling constant T to
vanish and simplifies the expression for Gy. The formulas for this
case are equations (C35'), (C36'), and (C37§¥.

As for the constants associated with flexure and extension, a
simplification in the formula for D occurs 1f the corrugation Hs
completely neglected. Equation (C35) then gives the following
approximation:

(G1%1)(Gat2)
Gyty + Goto

Dy 1= BOT. & ne (19)

The results of a numerical survey of the accuracy of this approximation
are given in table I. The error incurred through the use of the approxi-
mate formula is seen to be generally quite small. For the symmetrical

it

case <El-= >, no errorvat all results’ from neglect of the core since
2

symmetry requires the corrugation shear flow to be zero.

Transverse shear stiffness in planes perpendicular to corrugation
axis.- Equation (17) which gives the transverse shear stiffness DQy

for the symmetrical sandwich also applies to the unsymmetrical sandwich
provided the coefficient S is obtained from formulas or charts which
apply specifically to the unsymmetrical sandwich. Figure 3 gives
extensive charts for evaluating S for a symmetrical sandwich with
faces and core of the same material and with the corrugation center line
consisting of straight lines and circular arcs, the latter having a
radius of curvature of 0.18hc. Figure 4(a) shows the effect of using a
radius of curvature other than 0.18h¢, and figure 4(b), the effect of
using core material different from that of the faces. The rest of
figure L4 is devoted to' showing separately the effects on S of two
departures from symmetry for a sandwich that is otherwise the same as
that considered in figure 3. Figure 4(c) is for a case in which the
nonsymmetry is due to the core and consists in the lower and upper flats
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being of unequal width; figure 4(d) applies when the core is symmetrical
but the faces are of unequal thickness. No chart is given for the case
in which the core is symmetrical and the face thicknesses equal but in
which the nonsymmetry arises from the use of a different material for the
lower face than for the upper face. However, for nonsymmetry of this
type, S can generally be cbtained quite accurately by assuming, first,
that both faces are of the upper-face material and, next, that both

faces are of the lower-face material and averaging the two values 53

and Spo thus obtained in the following manner:

ey _1_<_1__+ _1_>
ge | “laid g3

or
1.26 555
3813 F 823

In general, when the upper face is different from the lower face, either

in thickness or material or both, S can be determined approximately by
averaging in the previously described manner the two values obtained by
first assuming that both faces are the same as the upper face and next that
both faces are the same as the lower face. The error in such an approxima-
tion will generally be less than 3 percent.

For an unsymmetrical sandwich not covered by the charts, S may be
evaluated from equation (D17) used in conjunction with the auxiliary
equations (D18) and (D15); if the corrugation itself is symmetrical,
then some simplification results from taking k, = k; =1 1in the

J
auxiliary equations.

If the corrugation center line consists of straight lines and
circuldr arcs, then equations (D21) and (D23) or (D24) may be used
instead of equations (D15). If, in addition, the corrugation is
symmetrical and if k, and k, are taken as 1 in equations (D18),

then equations (D22) may replace equations (D21).

Transverse shear stiffness in planes parallel to corrugation axis.-
Equations (18) and (18') for the evaluation of the transverse shear
stiffness DQx for a symmetrical sandwich also apply to the unsymmetrical

sandwich. The error of the approximate formula (equation (18')) when
applied to the unsymmetrical sandwich is indicated in table I.
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EXPERIMENTAL EVALUATION OF D, DQ » AND D
A

g xy

General Summary

The elastic-constant formulas that were thought to need experi-
mental verification were those which depended to a large extent in their
derivation upon the assumption that the thickness of the core remains
essentially constant or that the corrugation cross section is undistorted.
Among these, the formulas for Dy, DQy’ and ny were selected for

checking because these constants K could be experimentally evaluated
through simple bending and twisting tests on sandwich beams and panels
as described schematically in appendix A of reference 2.

The test sandwich was of the symmetrical type. The core consisted
of a readily available Alclad 24S-T36 aluminum-alloy standard circularly
corrugated sheet having a nominal thickness of 0.032 inch and a nominal
over-all depth of 3/& inch. The faces were of 24S-T3 aluminum-alloy
sheet having a nominal thickness of 0.064 inch. Two test specimens
were used: A beam for the evaluation of Dy and qu and a panel for

the evaluation of ny. Although blind riveting was necessary only on

one side of the panel, it was used on both sides in order to maintain
symmetry. On the beam driven rivets were used in both faces since the
beam was relatively narrow. .

The results of the tests and comparisons with theory are summarized
in the following table. In computing the theoretical values the following
properties were assumed: Eq = Ey = 10,500,000 pounds pir square inch,

E¢c = 10,300,000 pounds per square inch, and K = Hp = 5.

Dy Pgy Dxy
(in.-1b) | (1b/in.) | (in.-1b)

Range of 221,000 4010
experimental 182,000
values 224,000 4310

Theoretical a
T 220,000 4300 177,000

aCom.puted with p3 = ppo = g = O because the

beam tested was relatively narrow and Poisson
curvatures were therefore assumed to be unrestrained.
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Test and Analysis

Evaluation of Dy.- The dimensions of the test beam are shown in

figure 5(a). The beam was supported on two knife edges as shown in
figures 5(b) and 5(c) and loaded near the ends so as to obtain a region
of pure bending moment between supports. The supports were placed
19.05 inches apart for one test (the test which yielded the value of
221,000 in.-1b for Dy) and loads P were applied in increments of

5 pounds up to a maximum of 25 pounds and then removed in the same
increments; in a second test (which yielded the value of 224,000 in.-1b
for Dy), the supports were placed 24.56 inches apart and loads P were
applied in increments of 5 pounds up to a maximum load of 30 pounds and
removed in the same increments. Deflections of the beam were measured
at the locations shown in figure 5(b) with gages having a sensitivity
OHROLOOOIinch.

Despite the fact that spacer blocks were inserted in the sandwich
at the supports to prevent local distortion, downward displacements of
the upper face were observed immediately above the supports. These
displacements, on the order of 2 to 4 percent of the maximum deflections
at the center of the beam, were probably caused primarily by thickness
change of the beam, since gages placed directly on the supports showed
no support displacements. In correcting for the upper-face sheet
displacements above the supports, the vertical displacement of the
"middle surface" of the sandwich at each support was taken as one-half
of the face-sheet displacement. The deflections at points away from the
supports were then referred to the straight line connecting the middle-
surface points immediately above the supports. Away from the supports,
gages placed in contact with the lower-face sheet showed that no thickness
change occurred in the beam and that the deflection of the upper face
could therefore be taken as the deflection of the middle surface. The
deflections varied linearly with applied load.

The described manner of correcting the deflection for the distortions
above the supports resulted in calculated values of Dy which were
practically independent of the choice of station whose deflection was
used in the calculation. The calculated values of Dy were obtained
from the deflection curve drawn through the corrected deflections at
the gage stations. The following formula, based on the assumption
of a uniform beam subjected to constant moment Pd, was used:

p. = (Pd)ys(L - ys)
Y 2bws

(20)
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where
P load applied at each end of beam, pounds (see
fig. 5(b))
d distance between the load and support, inches (see
fig. 5(b))
Ys distance from left support to any station, inches
Wg deflection at station yg, inches
L distance between supports, inches (see fig. 5(b))
b width of beam, inches (1.92 in.)

This formula was applied at three stations, yg = %, g, and %L. The

three values thus obtained differed from one another by no more than
2 percent in any test; the average of the three values was taken as

the true value of Dy .

Evaluation of DQy" The beam test specimen and span lengths used

in evaluating DQy were the same as those used in evaluating Dy (see

figs. 6(a) and 6(b)). The beam was subjected to several different lateral
loadings, each being of a type to produce transverse shear. These
loadings are illustrated schematically in figure 6(a) and the experi-
mental values of DQy obtained from each test are also given. A

photograph of a typical test setup is shown in figure 6(b). Deflections
were measured between the supports at six stations for the shorter span
and at eight stations for the longer span and also immediately above the

supports.

As in the tests for Dy, slight downward displacements of the upper
face were observed immediately above the supports. These displacements
were generally of the order of 1 to 2 percent of the maximum deflection
at the center of the beam but in two cases were as high as 3 and
5 percent, respectively, at the right support. The measured deflections
were corrected for the distortions above the supports in the manner
described for Dy. The deflections varied linearly with the applied

load.

The corrected measured deflections were used to plot deflection
curves for the beam as a whole, from which values of DQy were computed.

The following formula, based on the assumption of a uniform beam and a
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uniform running lateral load, was used to calculate DQy for those

cases in which a number of equally spaced lateral loads were applied
to the beam:

R
Doy, = Zeapr (21)

Lol o 2 :J
=t Emal e [T 2L -
Pny lQDy Ys ( ¥s)

where

12 load applied at each crest or each trough of corrugation,
pounds (see fig. 6(a))

n number of loads P applied to the beam (see fig. 6(a))

Dy bending stiffness per unit width of the beam, inch-pounds

(taken as 221,000 in.-1b when L = 19.05 in. and
22k 000 in.-1b when 'L = 24.56 in.)

The following formula was used for the case of a concentrated central
load:

Dg. = . (22)
o f 2st

P @-&J‘T@- <3L2 = lF)’s2>

where
2 load on the beam, pounds

The deflections substituted in these formulas were the dellections at
Welues of ¥, ' of|0.25, O.4L, O0.6L, and‘ 0.8L. - Thus, the formilas
yielded four values for each test. These values differed from one
anqther at the most by 11 percent and their average was taken as the
true value of DQy for the sandwich.

Evaluation of Dyy.- A sandwich panel, 59.84 inches long by
21.11 inches wide, was twisted to determine Dyy - The faces of the

panel were bent up along the edges to form flanges to which were bolted,

1
on two sides and one end of the panel, three steel plates of g-inch

nominal thickness and 3-inch width. (See figs. 7(a) and 7(b).) A
somewhat wider steel plate was placed at the remaining end and it was,

!
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in turn, bolted to a rigid backstop with sufficient clearance to

permit warping of the plate out of its plane. To the steel plate at

the opposite end of the panel was bolted an aluminum-alloy loading plate
(not shown) to which the torque was applied. The steel plates were
bolted to the sides of the panel in order to help achieve a state of
pure twist in the panel. Strain gages were placed back-to-back on the
faces and corrugation legs across the width at the midlength of the
panel in order to determine to what extent a state of pure twist (that
is, constant face shear stress and zero corrugation shear stress) had
been achieved. The dimensions of the panel are shown in figure T(c).

Loads were applied in increments of 2000 inch-pounds up to a
maximum of 10,000 inch-pounds and removed in the same increments.
Deflections of the panel were measured at seven stations across the
width at each of four stations along the length (see fig. 7(d)), the
gstations starting approximately 12 inches from the supported end and
spaced approximately 12 inches apart. The measured deflections varied
linearly both across the width and along the length and were proportional

2
to the applied load. From the measured deflections, the twist 5%‘%?
was computed. The twisting stiffness Dxy was then obtained from the
formula:

M
S G
i 4 d%y
ox dy
1
(g = )
2b(T )
N (23)
ox dy
where
b width of panel (21.11 in.)
T applied torque, inch-pounds
AL torque required to twist side plates, pound-inches2

3w

i 1\3 e Ow
<2[§ (3)(-§> (11,000,000) AR 43,000 e

(see reference 6, equation (156))
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The linearity of the deflections across the width and along the
length indicated that a state of nearly pure twist was being achieved.
The strain-gage measurements tended to confirm the existence of this
state of pure twist. They showed that, except in the first two cells
near each edge of the panel, the face shear stresses were very nearly
uniform across the width, with only one value departing as much as 8 per-
cent from the average. In the same region, the corrugation-leg shear
stresses were generally less than 1.5 percent of the face shear stresses.

In order to investigate whether the use of side plates was necessary
to the experimental evaluation of ny, the test was repeated with the

side plates removed. The shear-stress distribution across the width
became considerably nonuniform; the deflections were still linear across
the width but departed slightly from linearity along the length. The
test value of ny, based on the twist in the central portion of the
panel, was only about 0.85 as large as the experimental value obtained
with the side plates on. This result indicates that side plates are
desirable in order to minimize edge effects and achieve a state of pure
twist when testing for Dyy.

DISCUSSION

Formulas have been presented for ‘evaluating the elastic constants
of a corrugated-core sandwich plate of either the symmetrical or
unsymmetrical type. The formulas are rather comprehensive and precise,
but reductions to several important special cases have been made and
practical approximations to a number of the formulas have been given.
Tests have been run to verify the formulas for three of the more important
constants and, indirectly, the basic assumptions in their derivations.

The formulas given are limited to plates stressed in the elastic
range and not subject to local buckling. Engineering adaptation of the
results to cases involving plasticity and local buckling can probably
be made; however, attempts at such an adaptation were beyond the scope
of the present study.

Each component of the sandwich (face sheet or core sheet) is
assumed to be composed of homogeneous isotropic material. In actual
construction this assumption may be violated by the presence of
perforations in one sheet to facilitate the driving of rivets in the
* other sheet. In evaluating the elastic constants the presence of the
perforations can be accounted for approximately by assuming a homoge-
neous face sheet of reduced modulus.
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When values of the elastic constants for a given corrugated-core
sandwich plate are substituted in equations (1) to (6) or (1') to (6'),
the resulting equations describe approximately the distortions of an
element of the plate under load. The distortions are described only
approximately, because the actual plate does not behave in quite the
manner assumed for the idealized plate. In particular, straight
material lines in the thickness direction will not remain straight
under the presence of shear but will tend to warp. In evaluating the
transverse shear stiffness DQX or DQy theoretically, therefore, the

problem arises of choosing an average straight line through the warped
one in order to define a transverse shear straln for the cross section.
Fortunately, for most sandwiches the plausible range for choosing this
straight line is small and causes only a slight ambiguity in extending
the definition of DQX or DQy to an actual plate. For the corrugated-

core sandwich as analyzed in appendixes D and E, the average straight
line was taken as the one passing through corresponding material points
in the middle surfaces of the face sheets. This line has the minimum

-deviation from the true warped line (as determined by least squares)

provided the core is ignored and is probably satisfactory whenever the
effective contribution of the core to the total cross-sectional moment
of inertia is small. The tendency of the originally straight lines to
warp introduces a further complication inasmuch as any restraint against
such warping (due to the mutual interference of adjacent parts of the
plate) will tend to increase the transverse shear stiffness. Such
restraint will be small except in the region of concentrated loads.

In the theoretical derivations, the conservative assumption was therefore
made that there is no restraint at all against warping. Since the
tendency of originally straight lines in the thickness directions to
warp is a function of the type of loading, experimental values of D,

or DQy, as determined through beam tests, should, in principle, vary

according to the type of spanwise loading distribution used. The
variations observed in the tests to determine D, » however, (see

fig. 6(a)) seemed to be caused more by scatter and other factors than
by the type of load distribution.

Since the primary application of the elastic constants will probably
be to sandwich-plate theory, it should be mentioned that the force-
distortion equations (1) to (6) or (1') to (6') represent one component
of .such a theory. If to these equations are added the differential
equations of equilibrium of the element shown in figure 2 and equations
relating strains and displacements, the combination of equations will
constitute a complete formulation of a sandwich-plate theory. The
force-distortion equations (1) to (6) have been presented before in
references 2 and 3, but the generalized equations (1') to (6'), which
include coupling terms, are believed to be new. The relative importance
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of the coupling terms for the corrugated-core sandwich has not been
rigorously evaluated; it would depend upon the degree of nonsymmetry

of the cross section and the type of problem under consideration. There
is reason to believe, however, that in most cases the effect of coupling
will be slight. For a sandwich having faces of the same Poisson's ratio
but different thicknesses and having a core moment of inertia and area
which approach zero, locating the loading planes I, II, and III at the
centroidal plane between the two faces will cause all the coupling
constants to vanish. Since the core of practical corrugated-core
sandwiches will probably contribute only a small part to the total area
of the cross section and a smaller part to the moment of inertia, the
coupling constants will very likely be unimportant for properly chosen
locations of pilanes I, IL, and ITI. -In such cases and for some problems
neglecting the coupling terms in equations (1') to (6') may be
sufficiently accurate.

CONCLUDING REMARKS

In order to facilitate application of an existing sandwich-plate
theory to the corrugated-core type of sandwich, formulas and charts

have been presented for the evaluation of the necessary elastic constants.

Both the symmetrical and unsymmetrical types of corrugated-core sandwich
have been considered, and the extensions of the existing sandwich-plate
theory required to make it strictly applicable to the unsymmetrical

type are indicated.

The formulas and charts presented are limited to plates stressed
in the elastic range, which are not subject to local buckling. The
formulas are rather comprehensive and precise, but reductions to
several important special cases have been made. Practical approximations
to a number of the formulas have been investigated numerically and found
to be sufficiently accurate for most practical cases.

The formulas for three of the elastic constants were checked
experimentally and found to give values in close agreement with
experiment.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., November 20, 1950
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APPENDIX A
SYMBOLS AND DEFINITIONS

plane in which Ny acts and in which €x is measured,
parallel to faces

plane in which Ny acts and in which €y 1s measured,
parallel to faces

plane in which ny acts and in which 7xy is measured%
parallel to faces

General Sandwich Symbols

coupling elastic constant representing curvature in
2
x-direction g—g produced per unit of Nx applied;
X
also strain in x-direction €x per unit of -My,
pound”

<

coupling elastic constant representing curvature in

X-direction égg produced per unit of Ny applied;
X

also strain in y-direction €y per unit of -My,

pound ~

coupling elastic constant representing curvature in

y-direction éfg produced per unit of Ny applied;
also strain in y-direction ny per unit of -My,
pound”

coupling elastic constant representing curvature in

y-direction SE% produced per unit of Ny applied;
M

also strain in x-direction €4 per unit of —My,

pound~

transverse shear stiffnesses, per unit width, of a beam

cut from plate in the x- and y-directions, respectively,
pounds per inch
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X2

Yoy
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bending stiffnesses, per unit width, of a beam cut from
plate in x- and y-directions, respectively, inch-pounds

twisting stiffness of unit-width and unit-length element
cut from plate, with edges parallel to x- and y-axes,
inch-pounds

extensional stiffnesses of plate in x- and y-directionms,
respectively, pounds per inch

shear stiffness of plate in xXy-plane, pounds per inch

resultant bending-moment intensities in x- and
y-directions, respectively, pounds

resultant twisting-moment intensity with regard to x-
and y-directions, pounds

intensity of resultant normal force acting in x-direction
in plane I, pounds per inch

intensity of resultant normal force acting in y-direction
in plane IT, pounds per inch

intensity of resultant shear force acting in x- and
y-directions in plane III, pounds per inch

intensities of transverse resultant shear acting on cross
sections parallel to yz-plane and xz-plane, respec-
tively, pounds per inch

2
coupling elastic constant representing twist 62—%; pro-

duced per unit of ny applied; also one-half the
shear strain Txy DPer unit of Mxy} pound ™

displacements in x-, y-, and z-directions, respectively,
inches

coordinate, measured parallel to corrugation direction,
inches

coordinate, measured parallel to faces and perpendicular
to corrugation direction, inches

coordinate, measured perpendicular to faces, inches

shear strains associated with Q, and Qy, respectively
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shear strain, with respect to x- and y-directions, of
TodlEhatep JE1EIE

strains of plane I in x-direction and of plane II in
y-direction, respectively

Poisson's ratios associated with bending in x- and
y-directions, respectively

Poisson's ratios associated with extension in x- and
y-directions, respectively

Corrugated-Core Sandwich Symbols

area per unit width of corrugation cross section parallel
to yz-plane, inches

area, in width 2p, lying between corrugation center
line and lower-skin center line (see fig. Ck of
appendix C), square inches

area, in width 2p, lying between corrugation center
line and upper-skin center line (see fig. C4 of
appendix C), square inches

dimensions of corrugation cross section consisting of
straight lines and circular arcs (see fig. D5 of
appendix D)

width of test beam or panel, inches
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nondimensional parameters in formula for S (equa-
tion (D19)) for a symmetrical corrugated-core sand-
wich, defined by equations (D20)

nondimensional parameters in formula for S (equa-
tion (D17)) for a corrugated-core sandwich, defined
by equations (D18)

distance between load and support of test beam, inches

moduli of elasticity for lower and upper faces,
respectively, psi

modulus of elasticity of corrugated-core sheet material,
psi

stretching modulus of elasticity of corrugated-core
sheet material, used in derivation of DQy’ psi

extensional stiffness of corrugated-core sandwich plate

in x-direction (bending in x-direction prevented), pounds

per inch (Ejty + EgAg + Epto)

extensional stiffness of corrugated-core sandwich plate
in y-direction (restraining effect of corrugation

ignored; bending in y-direction prevented), pounds per

bending stiffness, per unit width, of a beam cut from
corrugated-core sandwich plate in x-direction, inch-

= o3 A Sl SR
pounds <ECIC + E?.ltlkEIX & Bk <kc - kEI)J +

EQQG.-hﬁQﬂhﬂ

bending stiffness, per unit width, of a beam cut from
corrugated-core sandwich plate in y-direction
(restraining effect of corrugation ignored), inch-

pounds (Eltlkf:'f 2 4 Exto (l - kﬁy)ﬂh2>
¥
shear moduli of elasticity of lower-face, upper-face,
and corrugated-core sheet materials, respectively, psi

unit shear stiffness of corrugated-core sandwich plate
with respect to x- and y-directions (twist prevented),

Getal

pounds per inch (Gity +
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torsional stiffness, per unit width, of a beam cut from
corrugated-core sandwich plate in x-direction, inch-
2
Got
pounds | [G1t1kgy” + %CC (57 - kc)2 T-8ahp (1 - kg53)°|n

distance between middle surfaces of face sheets, inches

depth of corrugation, measured vertically from center
line at crest to center line at trough (see fig. D5
of appendix D), inches

core thickness of sandwich plate (see fig. D5 of
appendix D), inches

moment of inertia of width 2p of cross section parallel
to yz-plane, taken about centroidal axis parallel
to y~axis, inches

moment of inertia, per unit width, of corrugation cross
section parallel to yz-plane, taken about centroidal
axis of corrugation cross section, inches3

nondimensional integral parameters in equations for B3,
By, Bg, B7, Ls Cog v C7, functions of corru-

gation cross-section geometry, defined by equations (D15)
for general case and by equations (D21) and (D22) for
corrugation having a cross-sectional center line con-
sisting of straight lines and circular arcs

nondimensional parameters locating origin of y- and
z-coordinates, respectively (see fig. D3 of appendix D)

distances between middle surface of lower face and
planes I, II, and III, respectively (see figs. Bl and
Cl of appendixes B and C, respectively), inches

distance between middle surface of lower face and plane
which cuts corrugation into lobes of equal area (also
shear center of corrugation), inches

Al'A2>

2ph
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kGh distance between middle surface of lower face and
centroidal axis of corrugation cross section parallel
to yz-plane, inches

kgt h distance between middle surface of lower face and
e centroidal axis associated with EI,, inches

_ gEghe + Epto
. P,

kgt h distance between middle surface of lower face and
J centroidal axis associated with EI,, inches
Esrt
oue
Al
i Ay
kgFh distance between middle surface of lower face and "zero-
shear plane" associated with GJ, inches
GCtCE
Ao kg + Gotp
k= = —
GJ CGA
v length of one corrugation leg, measured along center

iEnesineches

L distance between supports of test beam, inches

2p corrugation pitch (see sketches in figs. 3 and 4), inches
12 load applied to test beam, pounds

Q static moment about centroidal axis of cross-hatched

portion of cross section shown in figure El, inches

S nondimensional coefficient in formula for DQy’
B \[tc\’
D = Sh | |l
Qy 1 = 2/\Bg
c
S coordinate measured along center line of corrugation

cross sections parallel to yz-plane; see, for example,
figures C2, D3, and E3, inches
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t1,t0,t0

p H1sHo5 M0

approx
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thicknesses of lower-face, upper-face, and corrugated-
core sheets, respectively, inches

angle between face sheets and straight diagonal portion
of corrugation leg (see sketches in figs. 3 and 4)

Poisson's ratios for lower-face, upper-face, and
corrugation materials, respectively

angle between face sheets and tangent to corrugation
center line (see fig. D3)
Subscript

approximate value
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APPENDIX B

DERIVATION OF FORMULAS FOR Dx, Dy, ix, Hy, BEx, Ey,

1

EENe) Fl'y: Cxx, CX',Y, ny: AND ny

In the derivation of the formulas for the elastic contants associ-
ated with bending and stretching an element of a corrugated-core sand-
wich plate is considered which is subjected to bending moments of
intensity My and My and to horizontal resultant forces of intensity
Ny and Ny at arbitrary distances krh and krth, respectively, above
the middle surfaces of the lower face. (See following fig. )

y
X }/[_* . — Planell

ZW

SNACA
NACA,

Figure Bl

Equations are derived relating the distortions of this element to the
forces and moments producing them; in these equations terms corresponding
to Dy, Dy, Hys  Hys o Ey, ey u'y, Coxs ny, ny, and ny
are evident. The general formulas thus obtained are reduced for special
applications.

The moment Mg and force Nx are assumed to be resisted by both
the bending and extensional stiffnesses of the core and the extensional
stiffnesses of the face sheets; the moment My and force Ny . are
assumed to be resisted only by the extensional stiffnesses of the ‘face
sheets.
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Vertical lines drawn between middle-surface points in the upper
and lower faces of the undistorted element are assumed to remain perpen-
dicular to the faces and unchanged in length during distortion of the
element. The distortion of the element as a whole will therefore

consist of curvatures QEH and égx. The middle surfaces of the faces
P aye

will be strained in the x- and y-directions; it is convenient to imagine

the existence of other horizontal planes in which the strains may be

obtained by linear interpolation between the upper- and lower-face

middle surfaces.

Inasmuch as the moment My and the force Ny are assumed to be

resisted only by the extensional stiffnesses of the face sheets, the
direct stresses in y-direction in the middle surfaces of the lower- and

upper-face sheets Gyl and cy2 are statically determinate and are

given, respectively, by

My N
Oy, = —X +-;!<1 -k ) Bl
g e =t B

—_-&Z.{.I_\I.Yk

- S T (B2)
2 Bl e e

If, in addition, the middle-surface strains in the x-direction €xq

and €xp in the lower- and upper-face sheets, respectively, were known,

the state of deformation of the element would be completely fixed. These
two strains can be determined from two conditions: namely, that the

thrust intensity in the x-direction is N, and the moment intensity in

the x-direction about plane I is My, or
Aq ‘ (B3)

ks
My = oy tykrh - OXEtQ(i - ki)h - GXCAC<kI - k5>h M T SR
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where

0xp direct stress in the x-direction in the middle surface of lower face

0x2 direct stress in the x-direction in the middle surface of upper face

BXC average direct stress in the x-direction in corrugation (also direct
stress in the x-direction at centroid of corrugation)
2 2
The terms cxl, ng’ GXC, and é—g can be replaced by the following
ox

expressions in terms of €x1 and €xp:

le = Eléxl + p.ldyl

@ lgey *Hy t1h % Ny(lt; kllf} : (B5)

gx2 = E2€x2 + “20y
= Ep€, + Ho <— tg&h + N‘{EII) (B6)
GXC EC[EX 2 ké(EXE le>:| (B7)
I e - (B8)

S
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Equations (B3) and (B4) then become
Exl[Eltl -+ ECAC(J_ - ké)] + GXQ(EQtQ - ECACK6> =

M

S\ i Ly T
€x | Brtikr + (1 - kC>ECAC<kI - kc> - _hEQ} 4

e 2\ . Eclc
er[Egtg (1 . kI) E kCECAC<kI a kc> Hils ] L

My My,
e T[“E +<“1 3 “2) kI] uf Ny[’ “1(1 i kII)kI 4 “zkn(l i kI>:|

(B10)
Solution for Exl and €x2 gives
My
S i ¢xxl i e I-llexyl M'Fy + Wxxle - Hl‘l’xley (B11)
Mx My
GXQ = —¢)U(2 ?- + }J.2¢xy.2 ? + WXXQNX - }J.EWXyENy (Blg)
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where

¢XX 1
B
¢xyl

By

W=
o
}.—J

% el b e i,
KET ¢h® <1 _@)(l kEB)kEIX 1

T EA
5 oy Bly 2
Ely)h? (1 - XET )kE_I e e
(l - kEIx/h +(Hl l> X x
G . BT B
EL, Ho Bl A
T4~
s kg
S pilkrs vk >-—
7, 3 ( BTy I 7,
e kE—Ix>h2
_i = (kE_Ix . k1> =
EAy A
1 >kﬁth 4
—— il kpg. - KiT)—
By < x Ely
i (1 - kﬁ))kﬁ B
kII e M1 Eix EAX
(1 - k§F )h
— <kEI m k11> = y
EAy 5

BTy EAy
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> (313)

oty
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and
\
EA, = Eqty + ECAC + Eotp
L KgRR + Bty
ik EA, P(Blh)
= . Sl - A\ sl N2 PR, Boo el
B, = E I, + [%ltlkEIx + EGA <kc i kEIX> + Egtg(l . kEIX>:]h

>,

With the strains in the x-direction and the stresses in the
y-direction known, the strains in the y-direction eyl and ey2 in the

middle surfaces of the lower and upper faces, respectively, are determined
through the plane-stress relations:

e ¢ (B15)
i i (e o 5
5
2
l-}le
=| ——— - €
7 R vy e R yRlod
or after elimination of Oyys. . Fyps” €x35 and €xp by means of
equations (Bl), (B2), (B1ll), and (B12),
e N Y N (B17)
b ¢YY1'7? ) p1¢XX1 Sl o e S Wi i
M M
iz i 23 5 B18
& = ¢yy2 =t u2¢xx2 & wyygNy. HQWXXENX (B18)
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where
: )
k7= h
EI
By = <l - u 2> —L + 1,°¢
4! IR, ok sl
(1 gk )h
I
L s 2
I o & (B19)
kﬁf - kg >kEI h'
in
Vyy, = <l - ng) o Ry > A4 B “lg‘V:cy
EA, EL,
& 2
St <kEI g kII)(l e )h
Vyy, = <l = “2) = + U
V2 FA, ET, Xyp
and
Epto
kil = =— (B20)
Y Ehy >
EL E.t EiNER
g o] lkEIy Bty <1 f kEIy> h
J
and ¢Xxl) ¢xx21 Wx_xl’ \yxxg) ¢xyl, ¢)Cy-2, nyl, and W}cye are

defined in equations (B13).



NACA TN 2289 ST

With the strains , and ¢ known and the assump-

S Sxp -y yo
tion made that lines normal to the faces remain normal, the distortions
of the element are completely defined. The curvatures can now be

written as:

oy Sxo - €13
sz h

- oy * Boc)im + (P + H1By)sS +

x v T
QBT S

S B )

ay2 h

lle I s

N N
NA X
(Wyyz % ‘J’yyl>~h s (**2“’;::(2 = Pl (B22)

The strain in the x-direction in the plane of Ny 1is

3 \
exl + kp <ex2 - Exy

m
|

1
= foxl s kI<Wxx2 g ‘yxx]) N, - ﬂll\l(xyl 3 kI(“ewxyZ - ul‘lfxy]):l N, +

~ m [
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and the strain in the y-direction in the plane of Ny is

LR kII<€y2 % €y1>

K ]
3 W}".Yl * kII<wYY2 3 Wyy1>jl Ny T I“ll"uxxl i kII(“QWXXQ i “l‘l’xx]_) Ny +

My

L¢yyl g kII<¢y-y2 + ¢y-y1> i L“l¢xxl = kII<H2¢XX2 =+ “1¢XX1>
~ (B2b)

Comparison of equations (B21) to (B24) with equations (1') to (4'),
respectively, permits identification of the following expressions for
the elastic constants:

-

x
2

—_—

Dy = Blg (B25)
ET ET
— 2 Y ) Yy
By = BEI_ 41 - ¢ l-__-(u u>k——-—-_-_——
¥ ity 2 o1, a0 e w7,
' e 1
2 EI EI
AN TR s ARER s
<“1 3 “2) (1 ¥ EIx>kEIx e oo (B26)
BL, EAh
b = by + (“1 : u2> RgT (B27)
By
s =g T (B28)
T
= 2 EAXh2 e
EszAX1+<—-k) =
. 1T =




»
6822 NI VOVN

% = = 2%
JEECIER 2l L SRl g — k +
EA < EIX II) < EIX) EIX ot

il
a EAgh®  EAy
(“1 i “2)(1 : k11> : ( g kEIx>kEIX T, A, (230)
. e ﬂxhg x ﬂth
LS (“1kEIx 3 “2k11><kEIx . kI) i (“1 = “2) 1+ <kEIx 1 kI>kEIx BT, |1
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et Y
(EIX = I) FI,
(B31)
E
W'y = p'x = (B32)
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(kEI - k1)h
Cxx = - %i ) (B33)
X
k5T, - kr7)h kET h
ny 3 UE( EI—_ II) 5 (Hl § Hg)(l g k11) ?fx (B3k)
BI, B,
o (KT, - ky)h N TR |
EIy EAxh EI,

o . Uy s ol(wny - ar)n (e - wmn
¥ EI, 4 ik i

+ -

EAyh EIy EAxh EI4

5 oAl (kﬁiy - kII)kﬁfyh- 1 (kﬁix - kII>kﬁth
- ) -

(1 - kﬁ§k>kgth 3

EI, EAzh

(Hl - “2) Ho + (“1 5 “e)kII (B36)

For the usually encountered case in which the Poisson's ratios for
the two face sheets are equal (that is, Ho = W), the foregoing

expressions for the elastic constants become appreciably simplified and
are

D= B3, (B25")
-1

s O TR - RO (B26")

by = By (B27")
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- -1

o[Ehy
A,

pl - u'x E_y.
y Ey
<kﬁx 3 kI>h

EIy

Lk

(B28"')

(B29')

(B30")

(B31')

(B32")

(B33')

(B3L4)

(B35")
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— e “lcxy (B36')

i e >h
2)( T
EI

ny= -(l = |J,l
b

It is evident from the preceding two sets of formulas that the values
of the constants associated with stretching and also the values of the
coupling constants depend upon the location of planes I and II in which
the stretching forces Ny and Ny, respectively, are applied. Choosing

planes I and IT at the centroids of the transformed cross sections
parallel to the yz- and xz-planes, respectively, (that is, let-
ting kg1 = kﬁfx and ki1 = kﬁfy results in further simplification of

the formulas and reduces two of the coupling constants to zero. Equations
(B25') to (B36') become

D, = EI, (B25")
3

o BT
Dy = L1 - w21 - = (B26")

ET

X
My = Hp (B27")

D
g ol "
hy = iy D, (B28")
Ey = EA, (B29")
5

(B30")

IJ.'x = kb (B3l”)
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k3

(B32")

(B33")

(B34")

(B35")

(B36")
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APPENDIX C
DERIVATION OF FORMULAS FOR ny, ny, AND T
In the derivation of the formulas for ny, ny, and . T, an-ele=

ment of a corrugated-core sandwich plate is considered which is sub-
Jected to shear flows 9, 9y and s in the middle surfaces of the

lower-face, upper-face, and core sheet, respectively. (See following
fig.)

e
&f’ ~\& X,u
/7 N
/
7\ kgh
nl
Plane III

~NACA

Figure C1l

These shear flows may be represented by a resultant horizontal shear
force of average intensity ny acting in some arbitrarily chosen plane,
denoted as plane III, and a twisting moment of average intensity Mxy

about this plane. The shear flows induce a twist i in the element
as a whole and shear strains 7;, 7p, and 7y 1in the middle surfaces

of the face and core sheets. By linear interpolation (or extrapolation)

between the middle surfaces of the face sheets, a shear strain for every

horizontal plane can be defined. In this appendix equations are derived
2

relating the twist 3 wy and the shear strain Txy of plane IIF to
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the resultant forces of intensities MXy and ny which produce them.

From these equations general formulas for D ny, and PRI ore

Xy)
obtained. These general formulas are then reduced to special forms for
particular applications.

The orthogonal x- and y-axes are taken in the as yet undetermined
plane of zero shear strain, as shown in the Tigumres

Assumptions.- Vertical lines drawn between middle-surface points
in the upper and lower faces before twist are assumed to remain perpen-
dicular to the faces and unchanged in length during twist. The shape of
the corrugation in planes parallel to the yz-plane is assumed to be
rigidly maintained, whereas displacements in x-direction of the corru-
gation between lines of attachment to the faces are freely permitted.
In order to eliminate rigid-body displacements, the corner of the ele-
ment (x = 0, y =0) is assumed to be fixed in space, and the originally
vertical line at the corner is assumed to remain vertical, that is, in
coincidence with the z-axis. The distortion of the element is main-
tained only through the constant shear flows q and g, 1in the faces

and in the corrugation; that is, the face and corrugation sheets
are assumed to be so thin that twisting moments developed in them are
negligible.
82w
Displacements.- In terms of the twist 5;—5§ and the height hj

of the xy-plane above the middle surface of the lower face, the hori-
zontal displacements of points in the middle surface of the lower
face u; and vy may be written as

2

u; = ~hjy SS_%§ (c1)
ng
Vl = —th m (CE)

The horizontal displacements of points in the middle surface of the
upper face u, and v, are

2

up = hpy o (c3)
2

v = hpx 2% (ck)
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The displacement in the x-direction of the corrugation middle-surface
crest ldne imm? | is

2
uy = P e (c5)
and that of the trough line nn' is
u, =0 (Cc6)

Vertical displacements are given by
2

vy 2 (c7)

Shear strains in the faces.- In terms of the foregoing displacements,
the middle-surface shear strains in the faces Y and 7y, can be

written as

du ov D
duy v, 3w
Rty tw T Pewy (e

Shear strain in the corrugation.- The shear strain in the corruga-
tion can be determined by considering the portion between a crest and
the adJjacent trough as a beam which is being twisted about the x-axis

2
2 wy, with the shape of the corrugation in planes

at a constant rate

perpendicular to the x-axis rigidly maintained. (See the following
fig.)
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The constant shear strain 7r 1n the corrugation must be such that
continuity of displacements in the x-direction 1s maintained between
the corrugation and the face sheets. With u and v' denoting axial
and tangential displacements, respectively, of the corrugation middle
surface and s denoting the distance from nn' measured along the
corrugation center line, the shear strain in the corrugation at any
point P may be written as

=%_rm5{2" (c10)

where r is the perpendicular distance from the axis of twist Ox to
the tangent at point P and is considered positive if the tangent
passes below point O (as in fig.) and negative if it passes above.




L8 NACA TN 2289

Integration of (Cl0) with respect to s between points n and m

gives
1 30 1 BEW 1
/;ggds=7cj; ds+m£rds

where 1 1is the length of one corrugation leg, measured along center
IHmentor

2 U
up, - uy = lyg + 62—%§\jp T ds (i1}
0

The integral in equation (Cll) represents twice the net area swept out
by the radius vector p in 'going from n to m, or, as can be seen
from the following figure, it equals twice area I minus twice area II.

Axis of twist
0
T
h
R )
n SNACA
p 2
Figure C3
With
Area I - Area II= AA (c12)
equation (Cll) becomes
32w
up - Uy = g +20A 5o (C13)

Continuity between core and faces requires that up - u, as given by

equation (C13) be equal to u - u, as given by equations (c5) and (C6).

m
Therefore,
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or
2
1 e
A <hup 2 2AA>7 X Sy
2
AEC W (c1k)

I
PN
=
e
1
M
9|
S——r
&
g

A"

where Kb equals , the corrugation cross-sectional area per unit

width.

The area AA which appears in equation (C1l4) and is defined by
equation (C1l2) depends simultaneously on the vertical location hg of
the axis of twist and on the geometry of the corrugation. Through
purely geometrical considerations, AA can be related to two other
areas, one of which ph3 depends only on the vertical location of the
axis of twist and the other of which depends only on the geometry of
the cross section. The relationship is

DA = %h?)p - 11?[}1 = p(tl - te)] (c15)

where A; 1is the area, in width 2p, lying between the corrugation
center line and the lower-skin center line, and Ap 1is similarly the
area lying between the corrugation center line and the upper-skin center
line. (See the following fig.)

£
i

Figure Cck4

With AA 1in equation (C1lLk) eliminated through equation (C15),
the equation for », becomes

A~ ANE
Yo = <h2 iy ok 2pA2>i§ aiz‘a’y (c16)
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Shear flows.- With the shear strains known through equations (C8),

(C9), and 20165, the following expressions may be written for the shear
flows:

2
o SR e % Lot
2
a4, = 2Ght, % (c18)
0 0 o Eod | fl;:—fg tcg S (c19)
s B Lt 2p ) Ag Ox Oy

2
These expressions give the shear flows in terms of the twist 52—%; and

the vertical location (hl, h2) of the plane of zero shear strain. In
order to determine the elastic constants, the shear flows must be

2
ow
expressed in terms of the twist 5§_5§ and the shear strain 7xy of

plane III. The shear strain of any horizontal plane varies linearly

with the distance from the xy-plane and must be consistent with the
twist; hence,

2 3w )
7xy = (krrrh - b) <2 =5

or

7
I O ey
hy =ikppgh ~ 5=5 (c20)
Ow
and
h2 = h o hl
e 7x y
P I)h+———L (ce1)
% £ e

& dy
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Using equations (C20) and (C21) to eliminate h] and hp from equa-
tions (C17) to (C19) gives the following expressions for the shear
flows:

3w 1;
s s <kIIIh 3x oy ~ 2 7xy) &=

2
0w i
a4 = 2G,t, El - kIII>h oy 7}9] (c23)

2
Gt Gt
Qs %CC B 5 2k111> - :lax Sy T 7xy, (ot

The resultants of the shear flows, namely ny and Mxy’ may now be
evaluated.

Evaluation of ny.— The shear flows 9, 9y, and A combine to

give a resultant horizontal shear flow of

ny =yt 0, k0 (ca5)

where gq, 4y, and g, are given by equations (C22) to (C2k).

Evaluation of MXY" The average value of Mxy can be determined
by taking moments, in the Yz-plane, of 41, 4p, and the horizontal

components of 9 with respect to plane III. Use is made in this

section of a horizontal plane which cuts the corrugation center line
into lobes of equal area. This plane, which is shown as plane IV in
the following sketch at a distance kch  above the middle surface of the

lower face, is the centroid (or shear center) of the corrugation shear
flows.
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Taking moments with respect to plane III gives

Mxy = -q;kpo7h + q, (l - kIII)h + qC<kC - kIII>h (c26)

where gq,, q,, and g, are given by equations (822) to (C2k).
Evaluation of N, and in terms of and &% Sub
Xy i MR ST i
stitution of equations (C22) to (C2L4) into equations (C25) and (C26)

A - Ap

and elimination of

e
3 2 )
kg = 5(1 + —?p'h—> car)
gives
N =7@+2W52"G7{—-k h (c28)
xy Xy X NA kGJ 2L
= N TR N 8
Mxy = 7xyGA<k§3 - kIII)h + 2 b g GJ + GA<kG—J - kIII) h | (C29)
where
s Gete
GA = Gyty + Kc + Got, (C30)
2
Gt
g g G
k3T = - (c31)

&l
4
1]

oty + (kg - ko)° + Goto) - w)n®  (c3)

~oph through the purely geometrical relationship
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Solution of equations (C28) and (C29) gives

M a7 - k
(kg - krrp)h Sape (kaz - *rrr)™®

2y N C3h
e ey GT i GA 5] (C34)

Comparison of equations (C33) and (C34) with equations (5') and (6')
permits the identification of the following elastic constants:

A 70 (G35

P - (C36)

. (C37)

Choosing kIII equal to kﬁj reduces the foregoing equations to
L 2GJ {cast)
Gyy = GA (c36')

T =0 (C3T7")
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APPENDIX D
DERIVATION OF FORMULA FOR DQy

In this appendix a formula for the transverse shear stiffness DQy

is derived which is fundamentally the same as that given in reference 4
for the case of interference of flats neglected but extended slightly
to include the effects of stretching of the corrugation and the preven-
tion of anticlastic curvature. The general formula is reduced to
special forms for specific applications.

The element of a corrugated-core sandwich shown in the following
figure has unit width normal to the page and is in equilibrium under a
small transverse shear of unit intensity (Qy = 1) and horizontal forces
of magnitude p/h. The corrugation is assumed to be fastened to the
skins through rigid joints at its crests and troughs.

p
e L3
Y= h
Qy=I
" Y

h

V.oib l
o T,
y=2
h

Figure D1

For small Qy the relative distortions of the element are proportional
to Qy- These relative distortions Sy and 8, are shown in the
following figure:
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o} o}
An average shear strain 7y may be taken as 7? - 2 and the transverse

p
shear stiffness DQy is then given by the ratio of shear intensity to

shear strain, or

18 i

B b ket Lot de (1)
T T R
h P

The sandwich-plate element is now analyzed as a statically indeter-

minate structure to determine the displacements 6y and ©,. Substitu-

tion in equation (D1) then gives a general expression for the calcula-
tion of DQy in any particular case. In the analysis of the unit-width

element the assumption is made that the element is part of a sandwich
having its width normal to the page equal to infinity. The corrugation
and skin elements are therefore taken as beams in which anticlastic
curvature is completely restrained, which amounts to multiplication of

PAL N
1 - u2
to obtain values more consistent with experiments in which relatively

narrow beams are used, the Poisson's ratios pu may be set equal to zero.

the beam flexural stiffnesses by factors of the type In order

In the following figure are shown free-body diagrams for elements
of the corrugation and skins. These elements are represented only by
their center lines.

Zal Zo
Zop C’/ 7 — i e \) Zop
e s 0
L o I ; ‘ . Merrsv et
m = ¥ T2+fc+kzhc) —
Y ey ; s [ T
~—5’05~——l\ X hike
| o 2 he h
(R 2 4
1 S
¥
CE o e 2 ®L%U°+")
Z|P/‘> (}\le I
2 2, TNACA

Figure D3
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The distortions of the elements, assumed small, are shown in the
following figure:

®
S L Y
SN N
S a0 \ | "’_I
¥ vf:ﬂ\i
L N \ / /
N // "
s_l l_—
® P ® P s ®
___~==::::::__ %
3, i/// S NACA
Figure D4

It should be noted that the forces Y on the corrugation elements are
considered as acting in the midplanes of the skins and transmitted to
the corrugation through short rigid projections. Similarly, the
moments M; and My are taken about points in these planes and are

not the actual moments in the corrugation sheets at the Jjoints.

Since the undeformed structure is symmetrical about any plane BE,
all forces and deformations in the two corrugation elements EA and EC
are equal, as likewisg are those in the two skin elements ED and EF
and in the two skin elements BA and BC. Then the skin moments at B,
D, and F are zero, and each skin element is in equilibrium under its
shear Zy or Zp and its moment le or ng at one end.

Since a shear of unity is assumed to act on the sandwich, the
relation between the shear carried by the corrugation X and the shears
carried by the two skins Z; and Z, is

X=2y=2p=1 (D2)
Static equilibrium of the corrugation elements requires that

M2—M1+Yh-Xp=O (D3)
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Equilibrium of moments at joint E requires that

Ml + le + Ml + le =0

or
Ml = 'le (DLI')
Similarly, at an upper Jjoint

M, = Zp (D5)

Finally, the internal moment M at any point in the corrugation sheet
is given by

M=M2+YEé'-(t2+tC+kzhC) +z:l-X(-l%P-+y> (D6)

The foregoing five equations are all the static relations needed.

With the rotation of A with respect to the horizontal tangent
at E denoted as @, the deformation 8, may be written for the
lower and upper skins, respectively, as

Z p3
8, = 1 . (D7)
3E111/(1 - M1 )

ZQP 3

: 3E212/(1 - up

Deformations in the corrugation sheet are due to both bending and
stretching. The three components of the displacement at A or C
with respect to the tangent at E are

6Z

+ p@ (p8)
)

i i
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1 1
By = ECIC/(l S fMEg—(te + tC + kghe) + %ds +

F \/A(Y cos ¥ + X sin V)cos V ds (D10)
E'ctc/(l - uc?)
5, = - fM<ELP R
2 ECL}/@" “Cg) ot Y) s
a:

f(Y cos ¥ + X sin V)sin V ds (D11)
E'cte /(1 - nc®)

where the integrals are taken over one corrugation leg, as from A to E
or C to E (excluding the short rigid projections), s is the dis-
tance measured along the corrugation center line, and V is the angle
between the tangent to the corrugation and the horizontal (see fig. D3).
In equations (D10) and (D11) E'c denotes the stretching modulus of
elasticity of the core. It has been distinguished from the bending
modulus Eg 1in order to permit identification of the terms representing
the stretching contribution in the derivation. The Poisson's ratios
associated with bending and with stretching of the core have, however,
been assumed equal. In the rest of the derivation, the moments of
inertia per unit width I;, I,, and Iy will in most cases be elimi-

nated through the relations

i

T tl3

Tpi= =2 to (D12)
il 3

cedi

The ten equations (D2) to (D1l) contain ten unknowns for which they
may be solved. The equations can first be reduced to the following four
equations:

a11X + aj2Zo + a13 B + O ri\

ang + a22Z2 =+ a23 SZ + 0 = TQ
> (D13)

a3lX < a32Z2 = 333 52 + 0

ath + augzz + 0 + al Sy

.

Tl
J

]
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‘ where

i
(5 e
3 2
1 83 - we?)
e <ECIC <KA i % KL)
1 3 A 2 o
he (1 - Mg ) D 1 Ec (t¢
{ a3l = ECIC KIZ o 5 k_‘y -I’PIE KAZ r ng —hE KL + I—E—E' hC KLZ—J
nc3(1 - we?)[1fe  tc k
al‘_lz ECIC )-2-%4-%4'1{2 KAZ+—éz_h%KL +KIyZ+

1 a3 - w?) g §9_3;2-5§f<39)3(1%i}il Pl

a T - —
%" "hg  Elg L_L 3B 1 - 2\k2/ \hg/|Be
g
T T ) k
b e (mc o, + 2 )R
1 N qu) t2 b ') %
o "5 o
i %% [% 2\hc "B " Y Lk
| 3E1Ih
S AIE)
i (l 5 >P
| e
| 23_p
a33=auu=rl=l )

Equation (D14) continued on next page
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s Ecle |
En 18+\°2
%Z%KAy%E%(hg) Ly b
3(1 e ts %
ru=%hc (ECIC“C )%Iy+ <hc+—h%+kz> Iy e

The quantities KIy, KIZ,

of the corrugation shape and the origin
the following integrals taken along one
line from the crest to the troughj; that
figure D3:

e L :,2
KIZ T hc3f A8
- i
KI.YZ L 3fyz as

KI = 13 fZE ds
A

z ds

NACA TN 2289

=5

(D1k4)
Concluded

~ —

and so on are nondimensional functions

location. They are defined by
leg of the corrugation center
Highssromisims tol sn\d Siin

\

? (D15)

Equation (D15) continued on next page
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1 )
KL = -h—C-de
KLy = ﬁ%xjpcosew ds
\ (D15)
" 1 S o Concluded
s At sin V cos s
KL, = %fsingﬂf ds ]

Equations (D13) may be solved for &, and 5,. Substitution in

Y
equation (D1) then furnishes the following expression for DQy:
3
E t
C G
Dy = Sh{———|[—= (D16
Qy Q—“ P02><hc> )
where
= 2 P p
S = r =
he
2 -%[_j%(clcu - cgc5> - <C2C)+ - c3c5ﬂ + 743¢7[cy (clcl+ . 20205) +
o o
124C3Cs~ - c6(clc3 - cf)il - %(cf - c3c6> + 2(—%) (0206 - cuc5> +
3
P_) (cz_cc 4B Bufo 2 gip
Shc s - o) + g 1o (2 10 !

(D17)
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and
2 )
1 Bg(1 - up")rtg)3 e
02 = KAZ o g 'hPE KL
Eq (to\2
el s ( B
Uay'= Kl £ ky hC(KAZ + ;EZ he KL> + 15 E_'C hc) KLZ
Cy = By T G L D b T R
T AR to/bo|\ Az T 2 hg "L/ T2 by Ay
2
1_E_c_(t_c) K
12 E z
e > (D18)
to\t
i 1 C
C5 - KAy & 2[%% + (l + tC)hC K1,
ta\tc 1 ta\t
Cg = KIy *+ k. + <l tC>hC KAy + E[%Z + (l tC)EE Ki,
2
deeiy
12 E'c\hc/ Ly
2
=
2 o 1 NOEE 2\tq ¥
Special Cases
Symmetrical corrugation.- The evaluation of the terms KIy,
KIz 5 s o randi goton In the formula fob Der depends upon the location

of the origin of coordinates, that is, on the choice of ky and k,.

For the frequently encountered case in which the corrugation is sym-
metrical, computational advantages are gained by letting ky =k, =1,

that is, by choosing the origin at the midpoint of the corrugation leg.
As a result the parameters KAy and Kjp vanish.
7
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Symmetrical sandwich.- For the case of the symmetrical corrugated-
core sandwich, elimination of KAy and KAZ by choosing ky = kz =1

is again advantageous. In addition, however, the numerator and
denominator in equation (D17) for S contain a common factor. Cancel-
lation of this factor yields the following simplified expression for S
to replace equation (D17):

T Lé
i 6 = B3By + <hC> o

12 -2<-hPE>2 B), + %EB7<B3B6 1 Bf) + (%)3 36] + h-hg B% Bs

where

N2
By i _LE_C_<_C> K

vz ~ 12 Eg\hg &
i (D20)
1 Ec tc)
VO gyl X U
6 I, " 12 E'C<hC Ly
2
R :E_ll_‘_ic_<2>3
i 7 ECl—uletC
/

Corrugation center line consisting of straight lines and circular
arcs.- The center line of a corrugation leg in many cases consists of
three straight-line segments (two flats and one diagonal element)
separated from each other by two circular arcs. The following figure
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T
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Figure D5
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65

shows such a corrugation leg with its dimensions. If the integrals in
equations (D15) are evaluated for this shape, with the origin of x
and y chosen along the straight diagonal portion as shown in the figure,

the results are

Kil:/ Bg * hc/ hﬂ %[ %)3

W[+

ok
IZ

% o el EH—-E e>}
i) - aa) e -2
%3(%—)-%5%}

Bf] - =) <ic—2>"]} : -—U 2
R

=

1> J
7 (Dl
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i 2;(&19_1__1&_2&@) 1E1(3+;f_1)_f_e(ze_+lfaﬂ+ 4
Az~ 2\ng Bg " B¢ Bg) T 2|Bc\Be T B hg) T Re\Be T B Bg

S i e b
>(D21)
Con-
o dy L d2 (Rcl RC2> k l(fl A £§> cluded
LR Thg "R "B/ T 2R TR
KLy = %Gg% + ii) (ié %%)cosee + %(;;l + ige)(e + sin 6 cos 6)
KLyZ (g{l; i)sin 6 cos 6 + é-(I;—Rg—l + RhC£2_> singe
dy Lol cafBe e
K1, ( ——>51n 0 + —( ) 6 - sin 6 cos 0)
2 = \ig " R 2\ ¥ B 3

If, in addition to consisting of straight lines and circular arcs,
the corrugation is symmetrical (that is, Beo = By, b2 = b1, and so on)

and the origin of y and z 1is chosen at the midpoint of the corruga-
tion leg (that is, ky = k= 1), then equations (D21) become
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Rc Rc
2__1_?_1_(9 1+e_1__;)+g1b_1_;g_)
he |he\" be * be  hg he\he 2 hg
A
Ty " 3%/ b T ¥R
2&2(93+eﬂ)+;9(“&)2+§;3] i
he |ho\ be he 2 \bg he hg
b e
=2 = 100 =4 =
M T
f a
KLy = E% + 2 E% cos2o + EEL(Q + sin 6 cos 0)
d Re
KLyz =2 E% sin 9'cos 6 + EEE sin°g
K. =2 %% sin°o + ;gl(e - sin 6 cos 9)

/

The dimensions that have to be inserted in the right-hand sides of
equations (D21) and (D22) can be obtained from a few basic dimensions




(P) hpeo, Ril: Rig}

of computations:
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f1, fp, and tC) through the following sequence

he = hge - t¢

R = b +P—(1 RC
C1 ty 2 2
= kZ
Bl = (l . 7§>hc - Rey ap
k 153
B _z) o
il o e > b,
i)
Cl = (8.12 + bl2> / C2
8
oy arc tan H Qs
R
bl
Bl = arc sin ; 52
1./
¥, 2 2
g (Cl o, > a4
8 =ay it By =g + Bo
el = RC cos 6 .ee
g =R sin 6 g
1 Cq 2
e R ¥2
B =y =g k,

> (D23)
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These dimensions required in equations (D21) and (D22) can also be
obtained from a different set of basic dimensions <p, hpe, Ril’ Rig!

6, and tC) through the following sequence of computations:

Lo e iy d

RCl =R é? RC2 =B %?

e = RCl cos @ en = RC2 cos 6

gy = RCl sin 6 8o = ch sin 6 5 e
i e | dpTeRdvi e

kl = jl cot 6 k2 = 32 cot 6

dl = jl csc 6 d2 = 32 cse e

- B Tl 5 e i

f =2 - Do - ) o o]
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APPENDIX E
DERIVATION OF FORMULA FOR DQX

In the derivation of the transverse shear stiffness DQX’ an ele-

ment of corrugated-core sandwich plate of length dx and width 2p
under a transverse shear V is considered. (See following fig.)

Centroidal axis of faces

and core combinotionT
e, = pese [

L— dx ,J L

Figure E1

The transverse shear is equilibrated by a change in bending moment dM
from one end of the element to the other. From the equation relating
the distortions of this element to the shear V, a general formula

for DQx is obtained. A more practicable approximate formula is then

obtained by assuming that the core carries no direct stress.

General derivation.- The direct stresses produced in the element
by the bending moment dM are assumed to vary linearly through the
thickness. Assuming the only flexibility to be that of the corrugation

in shear gives the following picture of the relative distortions of the
element:

|_._—____—ﬁ—
h
[
[___—_ﬁ__‘_. NS 1
A
BB % ARG
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o}

b
The angle R is taken as an average shear strain ¥y, for the eross

section, and the transverse shear stiffness DQ is then given by
>'d

Pay T 7z " Bg/n e

An expression is now derived for ©®x as a linear function of V for sub-
stitution in equation (E1).

Elementary considerations give the shear stress in the corrugation
at a point such as m (see fig. El) as

TS ‘ (E2)
where
Q static moment of cross-hatched area about neutral axis, inches3
i moment of inertia of cross section of width 2p about centroidal

axis, inches
(If faces and core are not all of the same material, a transformed cross

section should be used in calculating Q and I.) The shear strain in
the corrugation sheet is

s oL

vQ .
2Go Itg (E3)

Integration of 7o along one corrugation-leg center line (see the
following fig.)
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gives the relative displacement &y of one face with respect to the

OGher ,or
)
3 L/; .4 ds

(o4
Il

v /
- —EGcItcfo Q ds (EL)

Substitution of expression (E4) in (E1) gives the following general
expression for DQ 5
X

By (B

Approximation.- If, as is usual, the corrugation carries only a
small portion of the bending moment M, then an accurate approximation
to Dq, may be obtained by assuming that the entire bending moment is

resisted by the faces and, therefore, that the corrugation carries no
normal stress. The resulting formula for DQx will be the same as

equation (E5) but with the effect of the corrugation omitted in calcu-

1 5
leting |1, JF Q ds, and the centroidal—axis location égffl&; that is,
0 X

=

I 2ptl<kE—Ixh>2 + ETi—(E‘p)t2<l & kﬁx)zhg | (E6)

JCZ qds {?%(2p)t2<l - kETk)%]Z (ETa)

or

1
f Q ds % 2ptlkE_Ixhl (BETo)
0
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E_Q. t 7
el S B (58)
EI, Eo
'tl g EJ—-' te

Substitution of the approximate expressions (E6), (ET7), and (E8) in
equation (E5) gives the following approximation to DQX;

2

2 2
Gptrh Gat
¢ MR _cc/g) (£9)

g e ret s B \P
Ztc

where the corrugation cross-sectional area per unit width Kb = —5—.
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TABLE I.- RESULTS OF NUMERICAL SURVEY OF ACCURACY OF APPROXIMATE FORMULAS FOR Dy, E,,
Dyys AND Dg . (%II = kﬁiy)
[%1 =By = Eg5 G =CGp =G5 #y ~Mp =35 f3 = fp5 and Ry, =R, = °-18hgi
h E
he
|
D
Ratio DYapprox Happrox ( Q%)aPProx (ny)approx
Dy By U Dy
6
£ %\Sdeg) 60 90 60 90 60 90 60 90
132 hﬁ D
to| tc \az| 0.8 1.k 0.8 1.kl 0.8 1.k 0.8 1% 0.8 ] 1.kt] 0.8 2.l 0.8) . k| 08Tk
to (a)] (a)] (a) | (&)
0.30 [0.99/0.99]0.99]0.99]0.98(0.98]0.97{0.98]1.01|1.00{1.01 {1.00|1 i i 1
10| 1.00 981 .97| .97| .97 -95| .95| .94 .95|1.01| .97| .9T| .9k4|1 1 P 1
i1 55 97| .97| .96| .96] .94| .95| .94| .9k|1.01| .96] .96| .93|1 b 1 i
.30 .99] .99| .99] .99 .98 .98 .97| .98]1.00| .99| .98 | .98(1 il ol 1
1.00(25| 1.00 97107 96| <96 ~95]: .95] 9k <951 <994 =95k 493} <911 i i 1
11025 97| .96| .96| .96] .94| .95| .94| .94| .99| .93| .92| .89|1 1 1 1
.30 .99| .99| .99| .99| .98 .98] .97 .98]|1.00| .98 .98 | .9T|L b 11 1l
4o | 1.00 97| .97| .96| .96| .95| .95 .9%| .95| .98 94| .92 .90(1 pl 1 1
1.25 .97{ .96| .95| .96 .9k} .95 .ou{ .ok{ .98{ .93} .91| .88]1 il 1 1
.30 .99 .99| .99| .99 .98| .98| .97| .98|1.01[1.00(1.01| .99(1.00|1.00(1.00 |1.00
10| 1.00 97| .97] .96| .97| .95| .95| .94| .95]|1.01| .97| .96 .9%[1.00|1.00|1.00 |1.00
1525 .97 .97| .96! .96 .94| .95| .93| .9%|1.01| .96| .95| .92{1.00(1.00|1.00 [1.00
.30 .99 .99| .98 .99| .98 .98] .97| .98|1.00( .99| .98 .97(1.00|1.001.00 (1.00
.80(25 | 1.00 97| .97| .96| .96 .95| .95| .94 .95| .99| .94| .93 .90(1.00(1.00|1.00 [1.00
1525 97| .96| .95| .95] .9%| .95| .93| .9%| .99| .93]| .91| .88]1.00{1.00(1.00 [1.00
.30 .99 .99 .98 .98| .98 .98| .97| .98(1.00| .98| .97 | .96|1.00(1.00 |1.00 |1.00
40 | 1.00 97| .97| .96| .96[ .95| .95| .94 | .95 .98 .93| .91 .89{1.00(1.00 [1.00 |1.00
1.25 .96| .96| .95| .95| .94| .95| .93| 94| .98 .92 .90| .87|1.00(1.00|1.00 |1.00
.30 .99| .99 .98 .98 .97| .98 -97| .97[|1.01| .99] .99 | .98 | -98| .98 .98 .98
10 | 1.00 .96 .96] .95| .96| .ou| .95| .ou! .95(1.01| .96( .9k | .92| .96| .96| .9T| .96
1.85 .96 | .96] .95] .95| .ou| .94 | .93 .9k |1.00| .95| .9%| .90 | .96| .95 96| .95
.30 .98 | .98 .98] .98/ .97| .98| .97| .97|r.00| .98 .97 | .96| .98| .98| .99 | .98
.50(25 | 1.00 96| .96] .95] .95 .ou| .95 .9k | .ok| .98| .93| .91| .88| .96| .96 .9T| .96
1.25 96| .95| .ok| .ok | .ou| .ok| .93| .94| .98| .91| .90| .87| .96| .95| .96| .96
.30 .98 | .98 .98] .98 .97| .98| .97| .97| .99| .97| .96 .95| -98| .98 .99] .98
40 | 1.00 .96 | .96| .95 .95| .ok| .95[ .ok| .9%| .98 .92| .90| .87| .96| .96{ .9T| .96
e5 .95] .95 .9k| .ok | .ou| .ok| .93| .94| .97]| .91| .89 .86| .96 .95| .96 .96

8ppproximate and exact values are identical for a symmetrical sandwich (%L =
2

l.OO). Isl

Eis
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> g%
' \\_//ﬂ\_// N\ |

(a) Symmetrical.

AVAN

~_NACA —

(b) Unsymmetrical.

Figure 1.- Two types of corrugated-core sandwich plate.
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i

dy —>/
y ;
X&
zw
dx Myydx
My dx
Nydx
Nyyd
Mxydy o4 nydx
/ Mydy ’
Middle surface )/i nydy el
Qydy
Nydy
(a) Symmetrical loading.
dy
y
X/
Zw
dx
Myydx //
Mydx : ¢
A/
dey nydx/{/ Nydx
7/
Myydy , Qydx
Plane I Nxdy ¥ 4
II A
5 e % e A
Qudy

(p) General loading.

Figure 2.- Forces and moments acting on infinitesimal sandwich-plate

element,
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Figure 3.- Charts for evaluating coefficient S in formula for DQy

for homogeneous symmetrical sandwich with corrugation cross section
composed of straight lines and circular arcs (E2 = EC = El;

o = Mg = B35 tp = 615 fp = £1; Rg, = Rey = 0.18hc ).
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Figure 3.- Continued.
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Figure L4.- Charts showing effects on S of four departures from the
conditions of figure 3.
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Figure k4.- Continued.
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Figure 4.- Continued.
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Figure k4.- Concluded.
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(a) Dimensions of beam test specimen.
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(b) Loadings and gage locationms.

Figure 5.- Specimen and test setup used in experimental determination
Ghi 10k
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(c) Photograph of typical test setup.

Figure 5.- Concluded.
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Type of loading

B A N LA, AN ST e e

T

a £ [
ST

i J

1905

94
Maximum Load Experimental
value of P incrementin P value of Dqy
(Ib) (Ib) (Ib/in.)
10 2 4310
15 5] 4040
60 10 4040
25 5 4250
25 5 4010
100 20 4150

(a) Loadings and resulting values of DQy'

Figure 6.- Test setups used in experimental determination of DQy'
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(b) Photograph of typical test setup.

igure 6.- Concluded,
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L-66801
(a) Photograph of test specimen and steel side and end plates assembled.

L-66802 [ 1
(b) Photograph of test specimen and steel side and end plates disassembled.
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(c) Dimensions of twisting test specimen.

Figure T.- Specimen and test setup used in experimental determination

of ny.
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(d) Photograph of test setup.

NACA-Langley - 2-16-51 -1050

Figure 7.- Concluded.
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