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NATIONAL ADVISORY COMMITIEE FOR AEIRONAtJTICS 


TECBNICAL NOTE 2273 

SIMILARITY LAWS FOR TEANSONIC FLOW


ABOTY2 WINGS OP FINITE SPAN 

By John B. Spreiter 

SUMMARY 

Similarity laws for transonic flow about thin wings of finite span 
are obtained by considering the equations of transonic small-perturbation 
potential theory. By this means, functional relations for the pressure, 
lift, pitching moment, and pressure drag coefficients ar derived and 
compared with the corresponding relations given by von Karman for two-
dimensional transonic flow and with the relations for linearized subsonic 
and supersonic wing theory. 

It is found, in contrast to the two-dimensional case where simili-
tude depends upon the constancy of only one parameter, that two parame-
ters must be held fixed to insure similitude for wings of finite span. 
It is further shawii that the transonic similarity law coincides with one 
form of the similarity law of linearized subsonic and supersonic wing 
theory. The behavior at sonic speed of the two limiting cases of wings 
of infinite aspect ratio and wings of vanishingly small aspect ratio is 
discussed in terms of the similarity laws. 

ThODUCTION 

The small-perturbation potential theory of transonic flow proposed 
apparently independently by Oswatitsch and. Wieghardt, Sauer, Busemann 
and Guderley, von Krmn, Falkovich and others (references 1 through 8) 
is producing a marked change in the general concept of the nature of the 
transonic problem. It was the general opinion a few years ago that the 
interaction of the boundary layer and shock waves was of paramount impor-
tance and little hope was held for the usefulness of any potential 
theory of nonviscous transonic flow. Comparison of the early results of 
the traiisonic theory with those of experiments indicated, however, that 
perhaps the viscous effects were not always as dominant as had been sup-
posed.. In any case, investigators began to feel that a imowledge of 
transonic potential flow is necessary to the understanding of the vis-
cous effects. 

To date the applications of the transonic theory have dealt prima-
rily with two-dimensional flows and, occasionally, with flows with axial
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symmetry. Progress has been slowed, however, by the meager knowledge of 
the properties of mixed-elliptic--hyperbolic-type differential equations 
such as must be solved to obtain the velocity potential. Consequently, 
most of the early results were limited to simple two-dimensional flows, 
such as the Prandtl-Meyer expansion and the oblique shock wave, and. 
to the flow in Laval nozzles. More recently, Guderley and Yoshihara 
have succeeded in obtaining a solution for a double-wedge airfoil at a 
Mach number of 1 (reference 9). In papers as yet unpublished, the cor-
responding problem for double-wedge airfoils in slightly supersonic flow 
has been treated by Vincenti of Ames Aeronautical Laboratory and the 
problem for finite wedges in slightly subsonic flow has been treated 
by Cole of California Institute of Technology. These results were shown 
by Liepmann and Bryson, in their paper "Transonic Flow Past Wedge Sec-
tions" presented at the July 1950 meeting of the Institute of Aeronau-
tical Sciences, to be in good agreement with experimental pressure-
distribution and drag data. Further support for the transonic potential-
flow theory is provided in the recent work of Oswatitsch (reference 10) 
who investigated the flow around circular-arc airfoils in slightly sub-
sonic flow and found that the theory predicted the presence of a shock 
wave which increased in intensity and moved rearwards with increasing 
Mach number and increasing airfoil-thickness ratio. Although these 
results have not been compared quantitatively with experimental results 
as yet, they are clearly in at least sensible agreement with observed 
physical phenomenon. 

In contrast to the two-dimensional case where a moderate, but 
cogent, body of theory has been built up in the last few years, no anal-
ogous work has been done regarding transonic flows about wings of finite 
span. A major difficulty in the three-dimensional problem stems from 
the nonexistence of transformations enabling the linearization of the 
equations of motion as is accomplished in the two-dimensional case by 
the hodograph transformation. Because of these difficulties, the present 
study has been confined to the determination of the similarity laws of 
transonic flow about wings of finite span. 

A knowledge of the similarity laws governing a given phenomenon is 
always of importance for the correlation and extrapolation of data. 
Some similarity rules are intuitively obvious (for instance, the concept 
of testing a model geometrically similar to the prototype); others are 
more obscure and can be discovered only by careful analysis of the fun-
d.amental aspects of the problem. An example of such a similarity law 
is the Prandtl-Glauert rule relating the flow of a compressible fluid 
around a given airfoil to the flow of an incompressible fluid around a 
second airfoil differing in geometry from the first airfoil in a mrnmer 
prescribed by the similarity rules. The trazisonic similarity laws 
derived in this paper are of this type, two flows at different transonic 
Mach numbers being said. to be dynamically similar when the geometry of 
the two wings is related. in a prescribed manner.
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It should be emphasized that similarity laws are always only approx-
imate and that complete practical similarity never exists in nature 
uniess the two systems are identical in every respect. Similarity , rules 
are found from the equations representing the physical system and are 
therefore of the sa order of approximation as the equations describing 
the phenonnon. Thus, for instance, the validity of the Prandtl-Glauert 
rule for the subsonic compressible flow about airfoils depends upon the 
flow being adequately described by the linearized equations of compress-
ible flow, ansi, in the sair mRmler, the transonic similarity laws depend 
upon the accuracy of the approximate differential equations of transonic 
flow. Therefore, similarity laws are useful not only for correlating 
the results of experinnts, but also for inferring the validity. of the 
basic equations, even though no actual solutions may be known. 

The similarity laws for two-dimensional transonic flow about air-
f oils were first given by von Kt.rman to the Sixth International Congress 
for Applied Mechanics, Paris, September, 1911.6, and subsequently restated 
without proof in reference 6. Derivations of the results were published 
by von K&rinn in reference 7 and. by Kaplan in reference 11. The present 
paper represents an extension of the transonic similarity laws to include 
wings of finite span.

SYMBOLS 

A	 aspect ratio 

a	 speed of sound 

a*	 critical speed of sound 

b	 semispan 

CD	 drag coefficient 

CL	 lift coefficient 

Cm	 pitching-moment coefficient about most forward point of wing 

C	 pressure coefficient 

c	 wing chord 

D '	 drag function 

f -,	 ordinate-distribution function 
c bj
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L	 lift function 

M	 pitching—moment function 

M	 Mach number 

P	 pressure function 

p	 - static pressure 

S	 wing area 

s	 stretching factors defined in equation (9) 
(The subscripts denote the reference quantity, e.g., 

= xt/x) 

t	 maximum thic]Qless of wing 

U0	 free—stream velocity 

u,v,w	 velocity components in the x,y,z directions, respectively 

x,y,z	 Cartesian coordinates where x extends in the direction of 
the free—stream velocity 

a	 angle of attack 

r	 7+1 

7	 ratio of specific heats, for air y = 

arbitrary constant 

p	 mass density 

T	 ordiflate-ilitude parameter 


velocity potential 

perturbation velocity potential of transonic theory 
(p = _a*x) 

perturbation velocity potential of linearized theory 
(='z —U0x)
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Subscripts 

o	 conditions in the free stream 

z=O	 conditions at the z=O plane 

BASIC EQUATIONS 

Differential Eq.uat ions 

To the accuracy of the present theory, it is sufficient to consider 
the flow field as isentropic and irrotational. The velocity potential 

then satisfies the following quasi-linear partial differential equa-
tion: 

(l-2)^(l4)+ c--2) - 
2 xy	 ___	 zx 

a2	 a2 yz - 2 
a2	

= 0	 (i) 

In which the local speed of sound a is given by 

a2 + Z! (x + c1y2 + 2) =	 a*	 (2) 

In equation (2), a* is the critical velocity of sound, that is, the 
speed of sound at points where the local Mach number is 1. 

In linearized theory, either subsonic or supersonic, it is assuiid 
that the velocity at any point in the field differs only slightly in 
magnitude and direction from the free-stream velocity. The differences 
between the local velocities and the free-stream velocity are_considered 
as perturbation velocities; thus the perturbation potential p of lin-
earized theory is defined by

(3)
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Then equation (1) reduces, through the neglect of second and higher 
powers of the perturbation velocities, to the well—known Prandtl equa-
tion of linearized compressible flow 

-2— 2—
(l_2)	 2	 z2

	
(II.) 

where the free—stream. velocity is directed along the positive x axis 
as shown in figure 1 and where M0 is the Mach number of the free 
stream. This equation has been found to lead to satisfactory wing theo-
ries and has been widely used for both subsonic and supersonic flows. 
As sonic velocity is approached, however, these theories often lead to 
absurdities. To review briefly: For wings of infinite span, the 
linearized—theory value of the longitudinal component of the perturbation 
velocity on the surface of a fixed airfoil is proportional to 

( 11_-MO2 I)_12 ; consequently, u approaches infinity as M 0 approaches 1 
and the theory is clearly inapplicable. For wings of finite span, how -
ever, u may be large or small at sonic velocity depending on the par-
ticular problem, as discussed in detail in reference 12. Specifically, 
for three—dimensional lifting surfaces of zero thickness the velocities 
remain finite everywhere except at the leading edges, their magnitudes 
generally increasing with increasing aspect ratio and angle of attack. 
For wings.of nonzero thickness, however, u generally becomes large 
logarithmically as 1—NO2 approaches zero. Thus, linearized theory of 
three—dimensional flows is applicable to lifting surfaces of small or 
moderate aspect ratios at transonic speeds, but cannot be applied in 
this speed range to wings of finite thickness. 

These difficulties led to the abandoning of the restrictions of 
linear theory and to the search for a more exact equation for transonic 
flows. In the ensuing small—perturbation transonic theory, it is 
assumed that all resultant velocities, including the free—stream veloc-
ity, differ only slightly from the 'critical velocity of sound. The dif -
ferences between the ' local velocities and the critical velocity of sound 
are considered as perturbation velocities; thus the perturbation poten-
tial is defined by

Cp=_a*x	 '	 (5) 

In contrast to the linearized theory where second— and higher—order terms 
in the perturbations are neglected, it is necessary in the small pertur -
bation transonic theory to retain the second—order terms and to neglect 
the third— and higher—order terms. To this degree of approximation, 
equation (1) reduces, for the case of three—dimensional transonic flow 
with small inclination, to the following expression:
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(6) 
2	 z2 a	 x x2 

It may be noted that this differential equation is not only quasi—
linear but is also ci' mixed type, changing from a hyperbolic equation in 
the supersonic regions where 	 p/x is positive to an elliptic equation 
in the subsonic regions where cp/x is negative. Direct application 
of this equation presents an extremely difficult problem. 

Although equation (6) has received little attention, the correspond-
ing equation for the flow in a plane (i.e., where 2 p/y2 = 0) has 
formed the basis for a considerable body of theory relating to airfoils 
and two—dimensional nozzles. A great aid in this work is the fact that 
the two—dimensional counterpart of equation (6) can be transformed into 
a linear equation, although still of mixed type, by means of the hodo-
graph transformation. The resulting expression has been the subject of 
extensive study by Tricoini (reference 13) and others. 

Returning to wings of finite span and to equation (6), it is impor-
tant to note that for many lifting—surface problems involving pointed 
low-aspect—ratio wings it is not necessary to solve the complete equa-
tion since, as discussed previously, the right side remains small and 
can be neglected. In these instances, the resulting equation is of 
parabolic type in the number of dimensions considered. Since this device 
does not succeed in general, however, it appears necessary to study 
equation (6) in its entirety. The first step in such a study is to 
determine the similarity rules, if any exist, of three—dimensional tran-
sonic flows about wings.

Boundary Conditions 

The determination of similarity rules depends not only upon the 
differential equation, as expressed in the present instance by equa-
tion (6), but also on the boundary conditions. Consider the boundary 
conditions at infinity where the velocity ratio u/a is equal to the 
free—stream Mach number N0, then equations (2) and (5) yield, to the 
order of the perturbation analysis, the following: 

(2) =	
= - 2a	 141o2	 a* 

0	 7+1 (Uo+a*) -	
(l) 

(o =0
	 =0	 (i)
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The boundary conditions at the wing surface will be assumed to be 
replaceable by boundary conditions on the z=O plane. This approxiina-
tion, used almost universally in all small—perturbation wing theories, 
actually becomes better as the Mach number approaches 1 because of the 
small change of streamline cross section at sonic speed. At z=O the 
vertical component of velocity is given by 

( cp\	 _____	 _____ 
(\ —)=Uo (	 = UOT() f(' ,a*T	 f(f'	 (8) 

	

c b)	 (x/c)	 c'b) 

where the shape of the wing profile is given by 

z = ci- f(x/c, y/b) 

where f(x/c, y/b) represents the ordinate—distribution function and T 

is an ordinate—amplitude parameter. Note that, in general, a variation 
of T results in a simultaneous change of the thickness ratio, camber, 
and angle of attack. In the special case of a noalifting wing having 
symmetrical sections, T is proportional to the thickness ratio; for 
inclined flat—plate wings of vanishing thickness, T is proportional to 
the angle of attack.

IERDTATION OF SIMILARITY LAWS 

If equation (6) is now transformed into a system with primed quan-
tities and the proportionality or stretching factors are denoted by s 
with appropriate subscripts such that 

XSx X 	 y'=syy	 z'=sz 

cp' = s cp	 a*?	 Sa* a*
	

(9) 

(y+i)' = r' =	 r = 5 j (y+l) 

we find

+	
(2t\	 SaSxS (7+1)' ±! 2cpt 

i2)	 s	 2) =	 [ a*?	 xT xt2
(1°)
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The flow in the primed system is similar to that in the original system 
if cp' satisfies the same differential equation and. boundary conditions 
as cP. Consequently, for similarity to exist, it is necessary first of 
all that the differential equations for the two flows (equations (6) and. 
(10)) be the same. Therefore, the following relations between the 
stretching factors must be satisfied: 

sy
_______ = 1 

= 1;	
5a*5x3	

(U) 

After adjusting the stretching factors as described above, the next 
step is to investigate the boundary conditions satisfied by cp' in 
order to determine the kinematics of the flow and the geometry of the 
wing in the primed system. The flow at infinity in the primed system 
may be expressed in two ways: First, 

-	 a*t	 (l_MO2)' = -	 .- (1—Mop ) '	 (12a) 
-	 (y+l)'	 y+l 

and second,

(cp'\ = .2 (P'	 = -	 a	
(1—MO2)	 (12b) 

sx	 sx 

The relationship between the flows at infinity in the two systems may be 
found by equating the end forms of equations (12a) and (12b), and sim-
plifying the result by means of equation (11), thus 

(12)	 - X	 (l2) - X	 (12)	 (13) = F	 (l—) -	 - 
-	 a*x 

The boundary conditions at the z0 plane, important for fixing the 
thickness and. angle of attack of the new wing in the primed system, are 
given similarly, on the basis of equation (8), by

ft(,L = a* t T V	 fi	 = sa*a*T? (x
T /c t )	 C? b') 

(14a)
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ath by

	

cp'\	
=-a*T	 (1!b) 

	

s z	 s	 (x/c) \c b) 

The relationship between the ordinate—amplitude parameters necessary for 
transonic similarity may be found by equating the end forms of equa-
tioiis (l4a) and (14b) and simplifying the result by means of equa -
tions (ii) and (13). Thus, if the two wings have the same ordinate—
distribution function (i.e., f'(x'/c',y'/b') = f(x/c,y/b)), we have 

	

T t =	 T= 
S	 s	 .1 [ (l_14o2)h132. 

Sa*Sz	 srsz3 
•r 
= ;-j::	 (l_2) •j	

T	 (15) 

The pressure coefficient is given to first—order terms by 

	

PP0	 - 2(uUo) = - 2{q/x+a*_Uo J ,.,, -	

- "-" 1	 (16) 2 

	

POUO	 a* L x	 x)o j 

The pressure coefficients on the wing in the primed system are then 
related to those on the original wing as follows: 

	

2	 7Rcp'\ 1 - s	 1 2 Rcp (cp\ 
cp,	

L)0 i 	 5a*Sx 1-;L--L;)0 II. 
S cp	 1 ( 1 2 )t	 ____ 

	

= sa*sx	 =	 (i) P = sr/3	

2/3 

Equations (13), (15), and (17) may be considered as representing 
the similitude conditions for transonic flows about wings. Since the 
significance of these equations is difficult to visualize ,in their 
present form, they will be recast into a form more familiar to aerody-
namacists. Equation (13), expressing the coordinate transformation, may 
be interpreted as the relationship between the aspect ratios of the two 
wings, thus

(17) 

/(1_MO2)t A' = A/1_ 2 A	 (18)
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Equation (15), expressing the relationship between the thickness param-
eters of the two wings, may be rewritten as 

____________ 
= 

[(+i)'T' 
jl/3	

[(y+1)T)"

	 (19) 

Finally, the pressure coefficients at corresponãing points on the two 
wings having their geometry related according to equations (18) and (19) 
are given by 

{ 

/(lM1)' ,(12)? A';	
} = c' 'b'

(20) 

	

r 7+i/3	 ,\2/3	 r	 ,J1—Mo2 A; X 

()	 i[(7+1)T)' 

This relationship may be expressed in still another form, less 
suitable for coniparing the pressures on two wings but more appropriate 
for correlating the results of tests on a family of wings, as follows: 

	

2/3	
[
_dl—M0 	 _____ - 

= (y+i)'f 	 L[(7+1)T]'3	
A; c'b	

(21) 

The lift coefficient is given similarly by 

-	 I 
72/3 

L	
jl_2 

CL 
=	 = (^i)'	 L [(7+1)7)1/3 ,

	 A]	 (22) 

the moment coefficient by 

Cm =	 I c x dxdy = T2/3	 r	 /l—MO2 
ScJ	

(1)l/3M[ [(y+1)T]'I , JloA] 	 (23) 

and the drag coefficient by

T'	

D [ 

Jl4I2 
CD =	 C	 dxdy	 ( 7 ^1) 1/3	 [(y+l)TJ'/ ,

	 A]	 (2k)



12 NACA TN 2273 

where P, L, M, and D are undetermined functions of the indicated. 
arguments . Recall that the ordinate-amplitude parameter T is a 
rather general quantity proportional, for example, to the thickness 
ratio for the limiting case of nonlifting wings having symmetrical air-
foils and to the angle of attack for the limiting ca se of inclined flat-
plate wings. 

A typical example of the use of the foregoing similarity rules is 
illustrated in figure 2 by sketches of two related wings in transonic 
flow. Figure 2(a) shows a triangular wing having an aspect ratio of 
2.0, thickness ratio t/c of 10 percent, and. angle of attack a of 
100 . If this wing is in an air stream with a Mach number of 0.90, the 
related wing for another air stream ( y ' =y ) with a Mach number of 0.95 is 
as shown in figure 2(b). The second wing has an aspect ratio of 2.78, a 
thickness ratio of 3 . 75 percent, and an angle of attack of 3.75 g . Both 
wings have triangular sections. The lift, pitching-moment, anddrag 
coefficients are related as indicated in. the figure. 

If the preceding equations (equations_(21) through (24)) are applied 
to airfoils in two-dimensional flow, A/i-Mo 2 A disappears from the 
arguments and the corresponding expressions for the pressure, lift, 
pitching moment, and drag coefficients are as follows: 

T2/3	 [_	 xl 
= (y^l)'/	 [[(y+l)T11/ ,	 j	 (25) 

T2/3 
L 

[_
Jl_MO2 

CL = (y+l)'/	 [(y+l)T]h/& 1	 (26) 

T2/3 
M 

[_
Jl_.NO2 

Cm = (y^l)'/3	 [(y+l)T]1/3 ]	
(27) 

T'	 r/l_2 
CD = (7+1)1/3 D

	

	 (28) 
L[(y+l)i-1'/3 

1After completing this paper, the author became aware of another treat-
ment of the same problem by Sune B. Berndt in report KTh Aero. TN 1 
(1950) of the Royal Institute of Technology, Stockholm, Sweden. 
Berndt's analysis differs from that given here because of the inclu-
sion of some higher-order terms in his statement of theequations of 
transonic si ll -perturbation potential theory. In this respect, 
Berndt's analysis departs from conimonly accepted practice in transonic-
flow theory. The results of the two papers, although different in 
general, become identical at sonic speed, that is, 'as A/l-4402 	 0. 
It is not clear at the present time whether the inclusion of the 
higher-order terms produces any greater accuracy in the results.
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These results are equivalent to those given by von Krman in reference 7 
but differ slightly from those given by Kaplan (reference ii) and previ-
ously by von Karnian (reference 6) as a result of minor differences in 
the perturbation analysis. In particular, l-MO2 is sometimes factored. 
and approximated in the following manner: 

= (1-i-M0)(l-M)	 2(1-Me)	 (29) 

The choice between the two representations appears quite arbitrary at 
the present time. In the present analysis, the results are expressed 
in ternLs of l_42 rather than i-M0 for the purposes of obtaining 
unity with the similarity rules of subsonic and supersonic wing theory. 

DISCUSSION OF RESULTS 

Wings of Infinite Span 

The transonic similarity laws for two-dimensional flow (equations 
(25) through (28)) imply that, if a force or moment coefficient for.a 
single airfoil is lmown as a ftinct ion of Mach number throughout the 
transonic range, it is also known for related airfoils of arbitrary 
thickness parameter. Since the extension of_airfoil data in this manner 
depends on a single similarity parameter 1lMo2/[(y+l)TJh/3, the 
results of transonic experiments with a family of related airfoils 
should be correlated by plotting, as a function of the similarity param-
eter, the appropriate force or moment coefficient multiplied by the 
reciprocal of the coefficient of the undetermined function P, L, M, 
or D. For example, lift results woul,Qgiven by plotting 
[(y+l) h/3/ i 2/3]CL as a function of A/l-MJ[(y+l)T]'/3; drag results 
by plotting [(7-i-i)'//T5/] CD versus A/MO 2/[(y+l) T 1 1 /3, and so 
forth. To the accuracy of the present small-perturbation transonic 
theory, airfoil data so plotted should all fall along a single line. 

If equations (25) through (28) are applied to airfoils in a flow 
having a free-stream Mach number of one (i.e., when Jl-M O2/ [( 7+i)i] 1/3) 
the functions L, M, and D are all equal to constants and P depends 
only on the coordinate x/c at which it is evaluated. Therefore, as 
pointed out in reference 7, airfoils having similar thickness, distribu-
tions have pressure, lift, and pitching-moment coefficients proportional 
to the two-thirds power and drag coefficient proportional to the five-
thirds power of the thickness parameter T. Allthe coefficients are 
inversely proportional to the one-third power of (7+1).
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Wings of Finite Span 

The transonic similarity laws for wings of finite span (equations 
(21) through ( 211)) imply that similitude depends upon two parameters 
rather than only one as was the case for two-dimensional flow. Conse-
quently, if' data are correlated as described in the preceding section, 
the results will no longer fall on a single line but will form a number 
of lines each corresponding to a particular value of the second similar-
ity parameter ,f 1-NO2 A. 

Since the dependence of similitude on two parameters introduces the 
possibility of indeterminant forms as M0 approaches unity, no state-
ments can be made regarding the nature of wing characteristics at sonic 
speed as was done for the two-dimensional case. In addition, the con-
clusions of two-dimensional transonic flow analyses may appl3r only to 
wings of extremely large aspect ratio since it is not only necessary 
that the aspect_ratio itself be large but also that the similarity 
parameter */l_Mo2 A be large. Since such a condition cannot hold, even 
approximately, for actual wings of finite span as M0 approaches unity, 
it would be of interest to seek a solution of equation (6) for the tran-
sonic flow about a three-dimensional wing. 

Although no solution of equation (6) for a wing of finite aspect 
ratio has been found as yet, the case of a pointed wing of zero thickness 
and. of vanishing aspect ratio can be treated. This example, when taken 
together with the infinite-aspect-ratio case will serve to give further 
insight into the nature of transonic similarity laws. It has been shown 
previously (references 12 and l) that the slender-pointed--wing theory 
of B. T. Jones (reference 15) yields values for the differential pres-
sures, lift, drag, and pitching moment of moderate-aspect-ratio wings at 
sonic speed that are consistent with the assumptions of linearized theory 
as exemplified by equation (3). It can be shown further that this same 
solution satisfies the equation for transonic flow (equation (6)) in the 
limiting case of vanishing aspect ratio since, in approaching the limit, 
the magnitude of the right-hand side of the equation diminishes much more 
rapidly than does the left-hand side. The lift, pitching-uoinent, and 
drag coefficients at sonic speed of pointed wings of vanishing aspect 
ratio are then given by the following expressions where, since the wings 
are considered to be flat lifting surfaces of vanishing thickness, the 
parameter T represents the angle of attack: 

CL =AT	 (30) 

CmAT 	 (31) 

CD = AT 2	 (32)
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The nature of the functions L, M, and D of equations (22), (23), 
and (21i. ) can be determined for the ?resent special case by rewriting the 
above expressions in terms of the similarity parameters, thus 

T2/3	 T2/3	 iit [(y+l)T]1I 

	

(7^1)1/3 
L= 

(y^i)'I	 l2	
(12 A)}	 (33)
CL= 

	

=	 T1	 M= -
	 T2/3 [t [(+i)]1"	 (ul.^1o2 A)- (3) 

m (y+i)'/	 (y^l)'3b	 *Jl..Mô2	 J 

5/3	 i-S/s	 [(7+1)T]" 

	

CD 
=	 T	 D = (7^1)1/3	

(u1-MO2)	 (35) 
(y+l) 

These results furnish an interesting contrast with the two-
dimensional results described previously. Consider, for instance', the 
lift and. drag coefficients of very thin flat-plate wings. The two-
dimensional results of von Karman show that, at sonic speed, the lift is 
proportional to the two-thirds power and the drag to the five-thirds 
power of the angle of attack. With wings of low aspect ratio, however, 
the above example shows the more familiar relationship of the lift being 
proportional to the angle of attack and. the drag to the square of the 
angle of attack. 

COMPARISON WITH SIMILARITY LAWS OF LI11EABIZED

SUBSONIC AND SUPERSONIC WING THEORY 

It is of interest to compare the transonic similarity rules with 
the similarity rules of linearized subsonic and. supersonic wing theory. 
The analysis for linearized theory proceeds as follows. The differen-
tial equation is

(l-MO2)	 +	 +	 = 0	 (36) 
x2	 y2	 z2
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The boundary conditions at infinity are given by 

=	 =	
= 0	 (37) 

and at the wing surface, again approximated by specifying conditions in 
the z=O plane, by

	

f()	 (38) =	 = U0 T 
(x/c)	 c b 

The pressure coefficient is given by 

-	 2P	 (39) 
Ux 

Once again the procedure consists of transforming the differential 
equation and boundary conditions into a system with primed quantities 
related to the original quantities as follows: 

xl = sx	 = 5yY	 ZI = SZ 

________	 _____	 (li.0) 

= S	 / ( l—M0 )' = s 3 J1Mo2	 Uo? = 5UU0 

From the differential equation in the primed system 

2	
2	 1	 y2	 2t 

)' 
x'] +	 yt2 +	

= 0	 (4]) 
53 S	 [ 

two relationships between the stretching factors may be found. They are 

(42) sx	 sz 

An immediate consequence of this transformation is that the aspect 
ratios of wings in similar flow fields are related according to the 
following expression, identical to equation (18) for the transonic case:



I'TACA TN 2273	 17 

f(1MO2 )' A' = ,
fj2 A	 (11.3) 

Since ( I is proportional to p, the boundary conditions at luff in-
ity are auton.tically satisfied.. The boundary conditions at the wing 
may be given in either of two fornis 

=	 =	
uo i	

i (, )	
(li4i.a) 

s	 =o	 s	 (x/c) 

	

f (__\\	 _____ (x' '\ 

U!T' (x'/c')	 c"b') = sUUOr' (x'/c')

(1ii.b) 

whence, if the two wings have the same ordinate-distribution functions, 

that is,	 = f t ( . T,--), the ordinate-amplitude parameters are


related as follows: 

= s	 s	 A/(1_Mo2)1	 x 

sus	
S S	 A/*J2	 T )t A/i-Mo2	

T	 (11.5) 

	

z	 Ux 

where x/x' is a constant equal to S/sTjsx. The relationship between 
the pressure coefficients at correspont.ing points is given by 

	

2	 s	 (	 2 cp'\	 Sp	 (11.6) 

	

0	 Ux	 U0	 5U5x 

or more completely by 

cp, 
((l2)t J2), 

A'	 = 
X ? T ?	 '	 ' c''b' ) 

	

_____	 (11.7)


cp (J1_, dl2 A; 

In this analysis, X has .remained a completely arbitrary coeffi-
cient to be seiected as best suits the particular problem at hand. For 
instan, the compressible-flow relationships between two wings having
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identical pressure distributions afound by setting X=l. If, on the 
other hand, X is tt equal to A/1_McJ2, the thicimess ratios, camber, 
and angle of attack of the two wings are equal. This degree of arbi-
trariness in the similarity laws for the subsonic and supersonic flow 
about wings is in contrast to the case for transonic flow in which no 
undetermined coefficient like X is to be found. 

To facilitate comparison with the transon.ic similarity rules, the 
similarity rules given by linearized theory for the pressure, lift, 
pitching-moment, and drag coefficients of wings in subsonic or supersonic 
flow will be expressed In a form analogous to that of equations (21) 
through ( 21. ), thus 

Cp =	 P
(° XT

A/lMo2 A;	 (18) 

= J1.402 
A)	 (i9) XT 

-' (Il2
jl2 A)	 (50)

CD =	
_(l2	

12 A)	 (5') XT 

It is seen that the similarity rules o± linearized subsonic and 
supersonic wing theory may be expressed In a wide variety of forms 
depending upon the choice of the parairter X. The question then arises: 
Amongst the many possible representations of the similarity rules of sub-
sonic and supersonic wing theory, is there one which coincides with the 
transcnic similarity rule? It would be useful if there were such a 
representation since then the results of experiments with families of 
related wings could be correlated throughout the entire !'ch_number range 
by plotting the_results as a function of two paranters All—Mo2 A and 

[(y+l),Jh/3/Jl_Mo2. 

It can indeed be shown that there is such a representation of the 
similarity rules of subsonic and supersonic flow. Thus, by letting 

=
T213	 (52) 
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it can be seen that the expressions for the pressure, lift, pitching-
moment, and drag coefficients are identical in form to the corresponding 
equations for transonic flow (equations (21) through (214.)). 

CONCLUDING REMARKS 

Similarity laws for transonic flow about thin wings of finite span 
have been obtained by considering the equations of transonic small-
perturbation potential theory. By this means, functional relations for 
the pressure, lift, pitching-woment, and drag coefficients were derived 
and compared with the corresponding relations given by von K&rman f or 
two-dimensional transonic flow. 

It was shown that similarity of transonic flows_about wings of 
finite span depended on two parameters: First, .Jl_.Mo2/[(y+1)TIh' 3 as 
for two-dimensional flows and second, I1_Mo2 A. The similarity laws 
reduced for wings of infinite aspect ratio to the form given by 
von Krmn and showed, for example, that at sonic speed the lift of thin, 
flat airfoils is proportional to .the two-thirds power and the drag to the 
five-thirds power of the angle of attack. For thin, flat wings of van-
ishing aspect ratio, however, the more familiar relationships of the lift 
being proportional to the first power and the drag to the second power of 
the angle of attack were found. Equally simple results for wings of 
intermediate aspect ratio could not be ascertained and only the similar-
ity rules were given. 

The, corresponding similarity laws of linearized subsonic and super-
sonic wing theory were also derived and compared with the transonic sirn-
ilarity rules. The similarity laws of linearized theory contained an 
arbitrary parameter and could therefore be expressed in many ways. It 
was shown that one of these forms coincides with the transonic similarity 
laws. 

Ames Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 


Moffett Field, Calif., Nov. 1, 1950. 
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