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NATTIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2279

THREE-DIMENSIONAL COMPRESSIBLE LAMIﬂAR BOUNDARY -LAYER FLOW
By Franklin K. Moore

SUMMARY

The equations governing the three-dimensional compressible
laminar boundary layer with variable viscosity and thermsl con-
ductivity are shown to be simplified by:

1. The introduction of a two-component vector potential

2. The use of a transformation to change the éqﬁations into
nearly incompressible form

3- The use of a further transformation thet changes the equa-~
tlons into nearly Cartesian form when a coordinate system
appropriate to axial or conical symmetry is used

Flow over flat plates with arbitrary leading-edge contours is
discussed and it is deduced that, under certain circumstances, the
boundary-layer equations are inapplicable in certein restricted
regions of the boundary layer.

Problems involving conical potential flow are discussed, and
it is shown that use of the Blasius simllarity variable permits
reduction of the number of independent variables.

INTRODUCTION

The techniques for predicting the behavior of the two-dimensional
laminar flow of a viscous fluld are rather well develcped. Because
of the interest in aircraft applications, most of the effort has been
applied to problems of the boundary layer, which is assoclated with
flight at substantial aspeeds through a medium of low kinematic
viscosity. An investigation of methods for treating the three-
‘dimensional compressible laminar boundary layer was conducted at the
NAGA Lewls laboratory and is presented herein.

Certain features of the present body of theory for plane cases
furnish guidance;
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l. Iagrange's stream function may be introduced in order iden-~
tically to satisfy the equation. of continuity, thus permitting two
of the dependent variables (velocity components) to be expressed in
terms of a single function. !

, 2. In the absence of a pressure gradient, Blasius (reference 1,
paragraph 53) shows that, for the incompressible case, the two inde-
pendent variables (space coordinates) mey be combined into a single
cocrdinate of similarity, thus reducing the problem to that of solving
an ordinary differential equation for the stream function.

3. The Kdrmin-Pohlhausen integral method (reference 1, para-
graph 60) provides a valuable engineering approach, the simplicity
of which is obtained .at the expense of restriction to a particular
family of velocity profiles. ’

4. Howarth (reference 2) shows that a certain transformation
of coordinates results in momentum equations of nearly incompres-
sible form, provided that a linear dependence of viscosity on tem-
verature is assumed.

5. With regard to the energy equation, if the Prandtl number
ig 1 and the wall is an insulating surface, the enthalpy remains
constant through the boundary layer. Furthermore, if no pressure
gradient existe, & term in the solution for temperature depending
linearly on the velocity profile may be introduced in order to take
into account heat transfer fromva wall at constant temperature
(Crocco, reference 3, and von Kbrmén, reference 4).

In all the theoriles previously mentioned and in the present
report, use is mede of the usual order-of-magnitude essumptlions pro-
ceeding from the concept of a thin boundary layer beyond which exists
potential flow undisturbed by the presence of the boundary layer.
(See, for example, reference 1, paragraphs 44 and 45.)

The three-dimensional problem is, of course, greatly complicated
by the number of dependent snd independent variables appearing in the
equatlons of motion. When such difficulty is encountered, an inte-
gral approach would appear to provide adequate simplificetion of the
problem. Prandtl (reference 5) proposes a method (for incompressible
flow) utilizing two parameters; nemely, a boundary-layer "thickness"
and the local angle of divergence between the outer streamlines and
the limiting streamline at the wall. This method is not the only
possible way of formulating an integral approach; in fact, the very
complexity of the three-dimensional problem tends to make it possible
to devise a number of such formulations. For example, the two
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independent parameters cen be defined as the two boundary-layer thick-
nesses O, and J; corresponding to the two velocity components u

and w in planes parallel to the wall. This formulation would
presumably be useful if it were expected that one component would
approach its stream value much more rapidly than the other.

The relative merits of Prandtl's formulation and some other, such
as the one Jjust described, are difficult to assess; nor is it a
simple matter to make a Jjudiclous selection of profile functions to
be used in a three-dimensional problem. Prandtl (reference 5) points
out that the setting-up of an integral method requires a background
of experience gained from solutions to the complete equations of
motion. For this reascn, the present report is concerned with means
of attacking the differential boundary-layer equation and will not
discuss integral methods further.

The equations of motion have been solved in several three-
dimensional cases: Prandtl (reference 5), Sears (reference 6), and
R. T. Jones (reference 7) have contributed to the incompressible solu-
tion for a yawed infinite cylinder. The most striking result in this
problem is that the velocity components in a plane normel to the
cylinder may be obtained by two-dimensional theory and may then be
used to determine the axial component. Problems involving spherical
or axial symmetry have received considerable attention. Mangler
(reference 8) provides an analysis of the axially symmetric incompres-
sible flow over bodies of revolution, wherein wvarious changes of vari-
able permit the direct use of plane boundary-layer theory. In unavaila-
ble work, Mangler has extended this analysis to permit consideration of
compressibility.

The solutions mentioned in the preceding paragraph are obtained by
discovering methods by which plane-flow results may be directly adapted.
Many problems in the mechanics of the laminar boundary layer remain in
which this simplification is impossible and the analysis to follow will
investigate methods of solving this type of problem. .

SYMBOLS

The following symbols are used in this report:

c constant appearing in viscoslity-temperature relation

Cp specific heat at constant pfessure

cy specific heat at constant volume
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E internal energy, cT

F component of vector potential in implicit coordinates
f component of vector potential in conical coordinates
G component of wvector potential in implicit coordinastes
g component of vector potential in conilcal coordinates
H total enthalpy in boundary layer, cpT + %(u2+w2)

k arbitrary constant |

Pr Prandtlvnumher, cpu/n

P pressure

R gas constant

r(x) distance used in definition of implicit coordinates

S=8 dimensionless coordinates
T absolute temperature
t time

u,v,w velocity components

X,¥;Z  coordinates

-+
2

X,Y,Z equal to x, (f?-) £ dy, and z, respectively
- -]

P
0

e) boundary-layer thickness

g enthalpy, cpT

K coefficient of thermal conductivity
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-+
. 2
A Blasius similarity variable, nf
u coefficient of viscosity
X
- 2 ‘ 2
£,k equal to k. r dX, krY, and S, respectively
0
P density N
2
o] similarity variable for flat plate, Y(X-X,)
P,9
Vv components of vector potential
s .
Subscripts:
1 denotes conditions in flow at outer edge of boundary layer
o denotes evaluation at some reference condition
0 denotes conditions at leading edge (see figs. 1 and 2.)

Subscript notation for partial differentiation is used where convenlent.
Primes denote ordinary differentiation.
THEORY.
Equations of Iaminar Compressible Boundery layer

In Cartesian tensor notation, the equations governing the motion
of a compressible viscous gas mey be written as
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dp _2 d auj 3 duy auJ
T3 T3 ax—i(“azg)* 3; [(axj 3%

Jov—

o o
o (G » u_ja_“z>
>
3¢+ 5!

OE OB } duk ouj , Ouj\| dw . (1)
- [513 (P * “&;)* “(axj =) &=

p = PRT

- Equations of motion in Carteslan coordinates. - On the assumption
of "boundary-layer flow® an obvious extension to three dimensions of
the argument presented in reference 1 (paragraph 44) permits equa-
tions (1) to be reduced to the following form, where a Cartesian
system of coordinates (x,y,z) and velocity (u,v,w) is used; y and
v are taken normal to a plane surface bounding the flow:

(Bodegd)--23() @
gﬁzo (Zb)
y
ow , .0 (B owy _ _op . 9 {0
D(B_%+u§+v§‘yi+w$> z+§§(;> (2¢c)

® 4 %(pu) + %(pv) + aaz(ow) =0 (24)

2%02
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2 2
OF JF OF OE ou , Ov , oW ou ow
QEH&W$WQ=¢GT$+Q+4%f+%y}

% (K%% (2e)
p = PRT (2f)

The argument contained in reference 1 (paragraph 45) indicates
that for plane flow, these Cartesian eguations apply in general
orthogonal cocrdinates, where y isg taken norwal to the surface, and
thus apply to flow over curved surfaces, provided that the surface
curvature 1s moderate and with the exception that, for curved surfaces,
dp/dy is, in general, of order 1. Of course, even through JOp/dy is
of order 1, the change in pressure across a thin boundary layer is
small and may be neglected. This argument applies equally well to
three-dimensional flows. ‘

Equations of motion in implicit coordinates. - The boundary-layer
equations are now written in an orthogonal coordinate system wherein:

l. The body surface isg defined by y = O.

2. A point is defined by the distances x, y, and r(x) s
where the distance r(x) s depends implicitly on the distance x,
and where r(x) has the dimensions of length.

This coordinate system would be useful in the enslysis of flow
about bodies for which a coordinate x can be defined such that body
crogs sectlons are similar for various values of x. The guantity
r(x) then gives the variation of scale of these cross sections. For
a body of revolution, x may be measured along generators; the cross
sections are circular; and r(x) may be taken as the radius of a
cross section. For a conical body, =x may be measured along rays
from the apex, and r(x) 1is & linear function of x, glving the scale
change of the (in general) noncirculer cross sections. The velocity
components are taken to he u, v, and w in the directions x, ¥,
and s, respectlvely. The equations of motion are:

ou du Ju ou _r* 2 _ _
P (5% + u5§ + v + wl W'>

d du
B A *E@ﬁ (32)

18
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g% = order of 1 (3b)

oW , 4OV , O 3 ' __16p'5 dw
9(55”6;””5‘5“’%55“%“6‘ ;5§+55(H5—5) (3c)
3%(91')) + %(pru) + %(prv) + :J[‘.: ség(pm) = 0 (3{1)

D(g-‘:i+ug—g+vg§+l g-}?—) plj%—%(ru)-kgg--k%gweji-

ou\2 o \2 5 (. or |
“[(s?) * (ay) } 5 ("asr') (se)
) p = PRT (3r)

Simplification of energy equation. ~ Equations (2d) and (2f) may
be combined with equation (2e) to yield

99 w8 op dp , Op
( + vt + v 3;> s + L + v+

2 2 ‘
Ju ow 190 (,08
“ [(as;) * (65) J =5 (“65) “
where 6 = ¢, T. The specific heats cy and c¢p, and the Prandtl

number Pr = ch/n are consldered congtant. Furthermore, if the

Prandtl number is assumed equal to 1, the sum of equation (2a) mul-
tiplied by wu, equation (2¢) multiplied by w, and equation (4)
yields, for steady flow,

o (s ga) 2 (& )

TIRNAT
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vwhere

HZep

e, T + -:-"2—(u2+w2) (8)
A special solution of equation (5) is, in accordance with defi-
nition (6),

H=c,T + %(uz+w2) = constant (7)

P

This solution is presented in references 3 and 4 for the plane case.
Evalvation of the derivative of equation (7) at the wall, where

u =w = 0, shows that equation (7) is the solution of the energy
equation (5) for the case of zero heat transfer through the wall

¥y = 0. The result of equation (7) is, of course, independent of

the coordinate system used and hence is & specliel solution of
equation (3e).

In reférences 3 and 4, it was observed that for plane flow,

®

when Pr = 1 and op - 0, a solution to the energy equation is
‘ ox

H=A + Bu (8)

where A and B are constants to be determined from the boundary
conditions on the temperature profile. In three dimensions, it is

clear that if 53. (but not necessarily ) vanishes, then the steady-

state form of equation (2a) for u is 1dentical to equation (5) for H.
Thus, equation (8) is a solution of equation (5). Inasmuch as the
velocity components venish at the wall, equation (8) must correspond

to cases involving heat transfer from a wall at constant temperature.
Because H must be constant in the outer potential flow, solution (8)
is further restricted to cases wherein wu _ (the value of u at

outer edge of boundary layer) is constant. An example of a situation
wherein solution (8) applies is furnished by the yawed infinite cyl-
inder, where u is in the direction of the cylinder axis. The anal-
ogous result for incompressible flow is mentioned in reference 6.

. Vector Potential

Definitions. - In order to reduce the number of dependent vari-
ables appearing in the boundary-layer equations, it is customary in
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problems of steady plane flow to introduce the stream function,
which identically satisfies the equation of continuity (equation (2d));
that is, ' ' g

pu = M
" dy
(9)
It would be desirable to secure a simlilar advantage In the analysis
of three-dimensional steady flows, which may be done by writing
= OV w
pu =
oy
- _ R 10
PV = 5 5 > (10)
- 09 ,J
W oz
=Sy

Equations (10) represent one of several ways in which two functions
can be defined in order to satisfy equation (24) identically for
steady motion. The particular arrangement of equations (10) is chosen
to provide symmetry of V and x against ¢ and z. Of course, for
plane flow, equations (10) reduce to equations (9)- ‘

For every steady plane flow satisfyling the eguation of continuity,
a stream function exists, according to definition (9). Proof of this
theorem is provided by Lamb (reference 9, paragraph 59). Existence
of the functions ¢ and V¥ defined by equations (10) for every
three-dimensional flow should, however, be proved.

A well-known theorem of vector analysis states that any contin-
uously differentiable vector having a vanishing divergence may be
expressed as the curl of a vector potential. By the equation of con-
tinuity, the mass-flow vector pg = p(ip+gy+§w) has vanishing
divergence. Thus, for any steady flow, a vector potential
1A+ JAtKAz  exists that 1s defined by the equation
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pg = curl A

or, Iin Cartesian coordinates,

Az Ay ]
Pu = 5= - 5
oAy OAg 3
Py = 3z " 5% (ll)
) aAz aAl
V=35 "3 i

Therefore, for every three-dimensional steady flow the following
functions exist:

aAz
¥ = A3 - 3o dy

OAo
¢z -A+ 5% dy

Differentiation of these expressions yields equations (10), provided
that

"OA Oho
sl Fu-5) 5w (12)

The foregoing argument suffices to show the existence of the func-
tions ¥ and @ for three-dimensional steady flows in general.
Requirement (12) is certainly met by most flows encountered in
practice.

Apparently, the theorem guoted at the beginning of the pre-
ceding paragraph may be extended to provide that the three-dimensional
vector potential may be written as any one of the three pogsible two-

- component vector potentials. The existence of each of the three
arrangements may be contingent on a restriction similar to equa-
tion (12), which, it might be noted, has been shown here to be suf-
ficient but has not been shown to be a necessary condition.
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Equation (3d4) is satisfied in two-dimensional (axlally symmetric)
steady flow by defining y such that

SV
pru = gz}-
(13)
z -9V
prv o
and in three-dimensional flow by defining V and @ such that
= oY
pra = 55: W
= _ oy _ 109
Y X TP L (14)

DI’WE%}S? J

For two-dimensional flow, definitions (14) reduce to definitions (13).
The existence of the functions V and ¢ defined in equations (14}
my be established in a manner similar to that employed to show the
existence of the analogous functions appearing in equations (10).

The gquantities V and 9 are hereinafter referred to as "com-
ponents of the vector potential" because (in the Cartesian system,
for example) equations (10) may formally be obtained from equa-
tions (11) by setting Az =y, Ay = -¢, Ay = 0.

Differential equations for vector potential. -

(a) Cartesian coordinates: Substituting equations (10) into
equations (2) and (4) for steady flow and adopting the subscript
notation for partial differentiation yield
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‘l’y(‘%" Wy)x - (Wx*‘pz)(% Wy)y +<Py(‘g"wy)z = -px(x,z) +

n
_W)}
El(p Iy |y (152)

l »
\}(_‘?%) y:l'y (15b)

Yooy - (Yet9)oy + 9y8,

1 lZ l ‘ 2

1 1 1 1 1

=...Wp + =9, p, + 1 (_\V> + (..Cp) + =—(uoy)

p JX " p ¥Z p Y y P Iy | Pr J (15¢)

or, for Pr = 1 and zero heat transfer, equation (15¢) is replaced by

cpl + %— [(];Wy>2 + (bl-@y) j = constant (15d)

(v) Implicit coordinates: Substituting definitions (14) into
equations (3) and an equation analogous to eguation (4) yields, for
steady flow,
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1 1 1 1 1 1 1 rt 1
T ¥y ('; Wy) e ;(‘V X %) (5;’4’ y>y- + 2% (5‘-; y)s -Eer iy

1
- - pglxe) + Ex(af y)y] v (162)

r' lyg
erryy

- i 1
= - = ?s(X:S) + [H (5; y>yJ v (16b)

™
<
e
~
'O]‘_,
)
Nl
1
R
1
-
8
N
o)
Fsl"’
8
N,
o+
ml—-‘
<
L
0
i)
S
b
N
fes]
o+

2 2
=2 1 - Ly 1 + 1
= pr VyPx t &.'Ecpyps tH [(DrWY>yJ * Ij(prq)y‘) y } Pr(uey)y

(16c)

or, for Pr =1 and zero heat transfer, equation (16c) is replaced by

rel|(2v )% (2o )7 tant (164)
Cp +2 Er—‘ y + or y = cons

Boundary conditions on vector potential. - The usual boundary con-
ditions on velocities applied in problems of the steady laminar bound-
ary layer are, using Carteslan coordinates,
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W(Xy0092) = ul(x:zv) or Wy(x:oo;z) = Pquy (%,2) ]
W(Xy002) = W (x,z) or @ y(x)awz) = plW_]_(x:z)
5 (17)
w(x,0,2) = 0 or Py(x,0,z) =0 .
v(x,0,2) = 0 or V4 (x,0,z) +9,(x,0,2) =0 (18)
Another boundary condition is usually required; for example, at the
leading edge of an airfoil it is necessary to establish the condi-
tions under which the initial growth of the boundary layer takes
place. .
~ Boundary condition (18), which involves & combination of V
and @, would probably be rather awkward to apply; the separation
of V¥ and @ with respect to their boundary conditiong therefore
geems desirable. The following argument shows that this separation
can be made, so that condition (18) may be replaced by
v (x,0,z) = 9(x,0,z) =0 (19)

Suppose that a solution has been obtained for a given problem, sub-
Ject to conditions (17) and (18). Equation (18) implies that

WX(X)O)Z) = hy(x,z)
¢,(x,0,2) =h (x,2)

where h] is some srbitrary function. Thus,
¥ (x,0,2) = fhl dx + hz'i(z)
@®(x,0,z) = -fh_:[_ dz + hz(x)

where hp and h3z are arbitrery functions. New quantities V ¥
and @* are now defined:
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Y *

W’-‘/~hl dx - hz(z)

(:p*

cp+f h, dz - hs(_x)

Thus, in accordance with definitions (10),

#
i

Y*y =¥y = Pu

-V -p¥*, =V‘Wx -9, =PV
*_ = =

The functions VY* and ¢ % yield the correct velocity compo-
nents, satisfy the same differential equation as V¥ and @, and sat-
isfy conditions (17) and condition (19), which is a special case of
condition (18). It is therefore correct to replace condition (18)
by condition (19), with the sole effect that the solutions for
and ¢ will be made unique. '

The same argument applies in cases wherein definitions (14)
are used.. o )

Transformations of Equations of Motion

Viscosity-temperature relation. - It is assumed that the equation

s T 20
~= 5 (20)

may be used to represent adequately the variation of viscosity in the
boundary layer. The constant C and the reference state T, may be
chosen to give the best possible agreement with, for example, Suther-
land's formula, over the temperature range contemplated. A complete
discussion of equation (20), as applied to flow with vanishing pres-
sure gradient, is provided by Chapman and Rubesin in reference 10.
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Howarth's transformations. - From reference 2, the following
transformations are made in order to bring equations (15) and (16)
into forms approaching those of the corresponding incompressible
equations:

-
/2 (Y
Y = -E-> .&.dy
Pe o Pe
X=x
Zzz {ors :cs) L (21)

v s(i%‘)) e v

v (ﬁ:) l/'zc'p‘

Before transforming equations (15) and (16) acecording to defini-
tions (21), it is desirable to make the physical quantities involved
dimensionless. Hereinafter, the following quantities on the left
will be considered to be measured relative to the quantities on the
right, where the subscript o denotes some reference condition:

wn—

u,v,w relative to wue
X,y,z,r,X,Y,Z relatlive to Hé:/pmum
P relative to Pow

T relative to u,Z/2cy

; 2 »(22)
p relative to P u,

V, ¢ (as in equations (10) and (15)) relative to (U@C/pw%)%um

¥, 9 (as in equations (14) and (16)) relative to (pr/pmum)quua

6 relative to u 2

<o gt
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With the conventions (22) and equation (20), equation (15a),

for example, becomes

1 . ' 1 1
Vy (p"‘l’.‘)Jc - Wx®,) (EWy)y + % (5\"3)Z

T (1
= -p -+ ___(_.W ) ]
x [Tm 09y |y

(23)

From equations (21), inasmuch as p‘ is not to be considered & func-

tion of y,

3 -, p) /2
3y Tos Y

> _d L,
X X &

o _9 93
dz % T 3z &Y

and from equations (10),-

<]
]
!
<
e
]
|
(]

1 —
vEpPy =Py

, (24)

S

—

After relations (24) are introduced, egquation (23) becomes

Ty (Yt T, T v Ty s 1% 1P\
¥y (Uyt T Uy) - P (WXW*YX‘VY‘*YZCPY +-]2—'- XW +;__ Z@)‘VYY +

PPy (Wyz‘szWYY) = -y +P

rd]éd
P__"D
9‘**’7“
H_
>

Zvoa
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or, using the equation of state (2f), equation (26a) is obtained. The
rest of equations (26), corresponding to equations (15) in Cartesian

" coordinates, and equations (28), corresponding to equations (16) in

implicit coordinates, are obtained In & similar manner.

In Carteslan coordinates,

Vyley - (Fgp) Wy +Fy¥gy = - 2ox + 3 (E;;W+%a)vﬂ + Ty (262)
Voy - Gy Ry + By = - 29, + 3 (yxv )wn + Fyyy (260)
x - (Vgt@g)oy + Byoy,

= "WYPX'KPYPZ) 3 (‘%V*'bé )GY + [(WH)2+@IY)E‘ + ‘:‘L“ + Oyy (260)

Y ‘
= 26d
Py e ( )

H| 3
]

or, for Pr = 1 and zero heat transfer, equation (26c) is replaced by

T + (VY)2 + (5.;.)2 = const@_nt ’(26e)

Combining equations %7) s (19_2_, and (25) leads to the following 'boun-
dary condlitions on

VY(X}Q,Z) = ul(X,Z) ]

Ty (Em,Z) = v (X2) U 2er)

—\FY(X,Q,Z) =$Y(‘X)O:Z) EV(X)O}Z) =$(X)Olz) =0

Boundary condltions on temperature are required (only at Y =e if

equation (26e) is used) and a condition must be imposed to describe
the initial growth of the boundary layers. (See Boundary conditions
on vector potential.)
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In implicit coordinates, from equations (14),

1.
I‘u=5Wy=VY
(27)
- - @
rw = 5‘¢y = ‘Py
FEquations (16) become
- [1 1 = o~ rt s (2
Yy (?VY)X ’(vx*fws) (r Y) ¢+t 2y (r Y) g " rz(wy)
- 1 (Pxg.1 Ps 17 T
) 'i'PX*'z‘("ﬂ“’*; "pj) (;“’Y>Y ¥ orry (282)
v @) _vw) ) 1% () L@
Y(I.YX (X*rs Yy TE YR Y e
1 1 (Px= 1%~ 1-—) —
= ‘51’5’*?(’5“’*;'5“’) (; Yy + Pyyy (28b)

(28¢c)
P
P Te (284.)

or, for Pr =1 and zéro heat transfer, equation (28¢c) is replaced by‘

T+ E@)zﬂ?ﬁy)i] = constant (28e)

r

2902
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Two advantages are providsd by use of transformation (21):

1. The velocities are directly related to the vector potential;
thus the satisfaction of boundary conditions is easler than under the
original formulation, which included a variation with density.

2. The transformed equations themselves closely resemble the
corresponding equations of incompressible motion.
*  Mangler's transformations. - Equations (27) and (28) wmay be
brought into forms approaching those of equations (25) and (26) by
means of a transformation introduced by Mangler (reference 8) for the

purpoge of relating axially symmetric flow to plane flow. The fol-
. lowing transformation is to be applied:
X
£ = k2 ré ax
0
z kr
ek > (29)
¢ = 8
F=kV
GEkQ _

where k is an arbitrary constant.

not transformed. Thus,

a.

Ho

2 .2
® ¢

)

= kr 5

The functions p, P, and T are

2.2 O 3
X kér 5{ + Ny Sﬁ
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whence,

—d

Under definitions (29), equation (28a) traneforms as follows:

2m L 1 ' 2
*Fy (0B pinglgg ) - ("R 4 Fo gz JTkFny + Gefipg - 7' (Gy)

= 3 PE + 3 (kzrs F+—-—G) Frn + X2r3Fpon

vhich mway be divided throughout by k°rS, yielding equation (3la).
The rest of equations (31) are obtained in a similar manner:

1 rt 2
¥ g - ( **“‘zrch> * 505 O g - 3 (On)

!
g (’;S‘F*kz J > Fon + Fynn

—3 Onf

_ 11 1 1 P¢
ST EEs N tE (?F'*k"'zr“‘s D G) Gqn * Gy

1
qug - (?2 Gé) 9 + ;E;g Gne ¢

P 2 2
N Ol A 1 4 1 . L

(30)

(31a)

(31v)

’

Onn

(31c)
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2o-p X (314)
Te
or, for Pr =1 and zero heat transfer, equation (3lc) is replaced by

T+(Py )2+(c;n )2 = constant (31e)

Equations (27) and the analog of condition (19) lead to the following
boundary conditions on F and H:

Fo (bseort) = up (§,8) A
Gn( Gy 8) = wy ( E:C ) L (31f)
Fq( i:o: C) = GT]( €?O,€) = F(ElOJC) = G(i)O:C) =0 ]

Boundary conditions on temperature are needed (only at 1N =e if
equation (3le) is used) and the initial growth of the boundery layer
must be described. (See Boundary conditions on vector potential.)

Transformation (29) thus confers the following advantages:

1. The velocities are related to the potential in the same
menner as in Cartesian coordinates, thus simplifying the application
of boundary conditions.

2. The transformed equations approach Certesian form.

Further direct simplificétion of the boundary-layer eguations
does not seem feagible. Further simplifications, expecially with
regard to the reduction of the number of independent variables, must
be gought in the consideration of special cases or classes of problems.

APPLICATIQONS
Reduction to Problems of Known Solution

The following examples are chosen to show how the foregoing
theory specializes to some of the known boundary-layer flows.
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Two-dimensional flow. - If it is supposed that two-dimensional
flow obtains in the x,y-plane, then

w =0
d . 9O _
dz %
whence, from equations (25),
u ZRKY
9 =0

Ses

——t

and so forth. These are the eguations of motion for plane flow, in
terms of the stream function V.

Axially symmetric flow. - In the case of axially symmetric flow,
the implicit coordinate system is used and r(x) is identified with
the radius of a body of revolution. Thus, by the axlal symmetry,

w =0
_a__za =
38 ot
whence, from equations (30),
u = En
Gzo

and equations (31) reduce to equations of the same form as equa-
tions (32). ‘ ‘
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Flow about yawed infinite cylinder. - The Cartesian coordinate
system 1s used for flow about a yawed infinite cylinder; the x,y-plane
is taken as the cross-sectional plane of the cylinder and the coor-
dinate 2z 1s measured parallel to the axis of the cylinder. Thus,

“the potential flow has components in both the x- and z-directions.
Therefore, in this case,

o _

=9 =0
dz

€
e YHe
o &ﬂcx

S
(o]

and equations (26) become

= 1 1%x__ T
Vy¥ey = VeWy = "5 Px ¥ 2 5 Wy * Vyyy
VT, VB, =52V, + @ L (33)
vy " Vxyy T2 D Yy Y Yy
Vbx - Wy = S¥yPx + 5 S VOy * (yy) +(@yy) | + 5 Oyy

If Pr =1 and the wall temperaturé‘is constant, then, from equa-
tions (8) and (26e),

— 2 — ’
T+ @)%+ @) =a+ bV,
where a and b are constants to‘be determined from boundary con-
ditions on the temperature profile.

Because of compressibility, the anslytiecal separation of Vy and
Py discussed in references 5 to 7 does not strictly apply. If incom-
pressible flow is considered, then equations (33) become
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— — —— l ——
Vixy - Vylyy = - 5 x +Vyyy
Woxy - VxPry = Pyyy

where £ 1is constant. It is then possible to solve first for TF,
and subseguently to solve for P , knowing ﬂﬁ

Boundary layer cn Flat Plates of Arbitrary Leading-Edge Contour

The three-dimensional body considered here and the coordinates
used in the analysis of its effect on 2 uniform stream are shown in
figure 1(a). The surface of the body is a flat plate at zero angle
of attack with respect to the stream.

The differential equations of motion are, from equations (26a)
and (26b), written for zero pressure gradient as

Vylry - (it Wy *@9¥py = Vyyy (54a)
Voxy - (Vg9 )oyy @ yozy = Pyyy (34b)
where
u =Yy
— (34c¢)
wW = CPY

When uo=w = constant, the boundary conditions are

Vo (X,0,2) =VY(XO,Y,Z) =1 (358.)
9 y(X,,2) = Py(Xy,Y,2) = 0 (35D)
V y(X,0,2) = ¥(X,0,2) =0 (35¢)
9 4(%,0,2) =F(x,0,2) =ﬂo (35d)

2%07
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The result @ = O cbviously satisfies equation (34b) apd boun-
dary conditions (35b) and (354). This solution is presumably unique
and may be interpreted to mean that in this case there is no secondary
flow in the absence of a pressure gradient transverse to the stream.
Equation (34a) then becomes

Vi¥ry - Wy = ¥y (56)

' The solution of equation (36), subject to boundary condi-
tions (35a) and (35c), may be obtained by defining, by analogy with
plane flow over a flat plate (reference 1, paragraph 53),

4 ‘
o8 ——L (37)
’X-onzs
and
7= % B(O) (38a)
whence,
u =Yy = B'(g) (38Db)

The application of equations (37) and (38) transforms equation (36)
as follows:

B@” + 25111 = 0 (59)
The appropriate boundary conditions are
(=) = 1

(40)
Br(0) = g(0) =0 '

The solution of equation (39) subject to conditions (40) was given
by Blasius and is presented in reference 1 (paragraph 53).

Clearly, this solution to the problem of figure 1(a) is valid
for any form Xo(Z) of the leading-edge contour. In particular, it -
is vaelid for the special configuration shown in figure 1(b). In this
case, however, the Z-derivatives of flow properties in the boundary
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layer (for example uy , which is related to the shear stress uug)

suffer discontinuities at the plane Z = 0. This discontinuity may
be shown by writing,; using equation (37),

X' (Z)]| o
5 - % 77| 5

and noting that Xp'(Z) discontinuously changes sign at the plane
Z = 0. Not cnly is this 01rcumstance physically 1nadmissable,
52 >>52
ot 22
Apparently, there exists a narrow region extending in the stream
direction from the apex of the body in figure 1(b) wherein the
usual boundary-layer assumptions, and hence equations (33), do not
apply. Outside of this region, hereinafter referred to as "wake",
the usual quasi-two-dimensional solution of the boundary-layer
equations for an infinite yawed flat plate is correct.

but it violates the boundary-layer assumption that

A qualitative indication of the existence of such a wake in
the flow shown in figure 1(b) 1s obtained by imegining a viscous
wake in the form of a parabolic cylinder extending downstream from:*
each point of the leading edge. On either side of the X,Y-plane,
these wakes then provide parabolic envelopes that, although not tan-
gent to each other, are each tangent to the cylindrical wake pro-
ceeding from the origin. Thus, in the neighborhood of the X,¥Y-plane,
where the parabolic envelopes Jjoin to the cylindrical wake, 1t is
clearly incorrect to meke the usual boundary-layer assumption

It ie natural to suppose that the "wake" shaded region in fig-
ure 1(b) has an effective width of the order of the boundary-layer
thickness and thus that the gross effects of viscosity on the body
are adequately given by the solution of equations (39) and (40).
There is the possibility, of course, that the wake herein discussed
has an over-all effect on the Tlow due to a difference in stabllity
characteristics, as compared with the surrounding bourdary layer.

A wake such as is discussed in the preceding paragraph extends
downstream from any corner in a leading-edge contour and presents a
situation similar to that existing close to the leading edge of the
flat plate, irrespective of the shape of the leading edge; as is

28BN
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well known, the boundary-layer eguations do not apply in the immediate
vicinity of the leading edge-

The inapplicability of the boundary-layer assumptions to a wake
region extending downstream from a leading-edge corner is also asso -
clated with body configurations neighboring that of the flat plate
with a leading-edge corner; that is, if the plate of figure 1(b) is
given a small thickness, the solution of the boundary-layer equations
then shows a variation of wuw,; at the plane Z = 0 which, though

not discontinuous, 1s too rapid to be consistent with the boundary-

2 2
layer assumption S~§ >>§—§ . Ag the thickness is further increased,
Y oz

this variation becomes less and less rapid, and, for some order of
thickness, becomes consistent with the boundary-layer assumption. A
similar argument applies if the curvature of the leadlng edge is
imagined to be changed from infinity at the corner to some large
Tinite valus.

Boundary leyer Associated with Supersonic Conical
Potential Flows

If the inviscid equations of motion are subject to boundary con-
ditions on fluid properties that are constant along rays having a
common focal point, it has been shown (reference 11) that the solution
yields fluid properties that are constant salong any such ray in the
flow field; that is, that fluld properties (velocity, pressure, and
so forth) are constent along each of a family of rays proceeding from
a common focal point. This property ls referred to as "conical
symmetry." Solutlons of this type exist, in general, only for super-
sonic flows. ‘

For boundary-layer calculations, the significant feature of
flows wherein the outer (potential) gsolution is conical is that pres-~
sure and veloclty gradients at the outer edge of the boundary layer
vanish in the dirsction of rays from a focal point. In this circum-
stance, the equations of motion (31) appropriate to the implicit
coordinate system are used. Distance along a ray is denoted by x,
distance normal to the ray in the surface of the body by xs (that
is, r(x) = x)sand ‘distdnce normal to the surface by y. (See
fig. 2(a).) Equations (29) thus become
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X i
1
£ =% | xfax=mx°
0 L
N = kx¥ = KXY A (41)
¢ =8 -

Equations (31) may therefore be written, inasmuch as, by conical
symmetry of the potentisl flow, pg = 0,

LA 1 1 2 _ 1 p(8
FnFni“(Fg+?EG{;> Tan * 3¢ Gy - 5 &) = 5 T g * Ty
(42a)
Fcn‘-F+1G>Gn+leGn+lGnF
Wy T \TE T BE Ty M T BT T B
1, 1 pt(l) .
= - 3555 2 + g7 T G Gy * Gy (42b)

1
Fﬂ%g (? + _ﬁz(};) "—E §

= _il_. Gy (£) + glz P'lé'c“)' GO * I}an)z”“(("’nn)z:\* 7 m (42¢)

The circumstance that pi = 0 suggests that the Blasius simll-

arity variable ng /2 (reference 1, paragraph 53) can be employed;
that is, the boundsry-lsyer development along rays from the origin
may be expected to be parabolic. Thus, the following definitions
are made, by analogy with the Blasius analysis:

e~
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Thus, equations (42) become

1p'(f) .2 2 L2 2 =
(f“’"i 85 8 | T\ "3 8N+ 3 (87 + 2, =0 (44)

>
il
g
*E
~
®
(S HaV]
m

2 2 2
e\~ 3 & -z &l (g + 2g\)\=0
g) MTE S TT AN P MAZ O )

l1p(fp 2 2 2
(f+g > 83 gc> O - 3E\O ¢+ '5‘5‘87\1)'(;) +

2 2 1
2 lr(fm) ‘“%}JJ t2pp O =0 (44c)
or, for Pr = 1 and zero heat transfer, equation (44c) is replaced by

T +‘ (fh)2 + (gh)g = constant (444)
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or, using the equation of state,

5;,27 (£ ) + (%\) = constant (44e)

The value of p given by equation (44e) may be Substituted directly .
into equations (44s) and (44b). The following boundary conditions
apply:

£, (e ) = wg (8) 7
g, (est) = Wy (0) L

\ (44r)
f}\(O)C) = 8}\(0’;’) = f(O,C) = E(O)C) =0

T{ws §) = Tl(C) (if equation (444) is used)

The equations (44) involve (if equation (44e) is used) two
dependent variables f and g and two independent variables A
and §{. It seems reasonable to conclude that the solution of these
equations for many cases is feasible provided modern high-speed com-
puting technigues are used.

In the light of the discussion of flat-plate flow contained in
the preceding section, certain observations may be made concerning
applications of equations (44):

The flow about the body shown in figure 1(b) may be considered
a speclal case of boundary-layer flow about a body with conilcal
symnetry. In figure 2(b) this flat delte wing 1s drawn with reference
to the coordinate system used herein for conical bodieg. It may be
shown that the solution given in the preceding section in Cartesian.
coordinates is consistent with the form required by equations (43)
in conical coordinates: From equation (38b), the velocity com-
ponents in conical coordinates (fig. 2(b)) are seen to be

= B' (o) cos ¢
(45)
w o= - B'(0) sin ¢

ZEN
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The distance X-X; in Cartesian coordinates (fig. 1(b)) is, in con-
ical coordinates, )

X cos {-X sin { cot (o

Thus, the ¢ of equation (37) is, in conical coordinates,

-1/2
O =Y (Xcos {~Xsin {cot {,)
-1/2 : -1/2
=YX cos § (1 - cot € cot Co)
or, from equations (43),
T -1/2
o =L N lecos £ (L - cot ¢ cot CO) (46)
{3 '
Therefore, when equations (45) and (46) are combined, it is seen that
u = u(M¢)
w o= w(Ng)

as supposed in equations (43).

The example Just discussed concerns one of a class of conical
bodies for which the boundary layer contains a wake of the type dis-
cussed in the preceding section; that is, the boundary layer contains
a narrow region to which the boundary-layer assumptions, and hence
equations (43), do not apply. This class of bodies includes flat
(or nearly flat) delta wings or rectangular wing tips.

CONCLUSIONS

Certain of the difficultles encountered in dealing with the equa-
tions of three-dimensionsl motion for a laminar compressible boundary
layer may be overcome by:

1. The introduction of the vector potential in a manner that

permits the expression of the three veloclty components in terms of
two scalar functions.- '
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2. The use of a transformation of coordinates that has the
simplifying effect of relating the vector potential to the velocity
components in the same manner as for incompressible flow. Further,
the transformed equations are of nearly incompressible form. This
transformation requires the use of a linear type of viscosity-
temperature relation.

3. The use of a further transformation of coordinates in cases
vhere an implicit coordinate system is employed (for exemple, when
axial or conical symmetry is involved), such that the velocity com-
ponents and vector potential are related in the same way as in Car-
teslan coordinates. The transformed egquations are of nearly Carte-
gian form. '

The condition of constant total enthalpy is a solutlon to the
energy equation in three- as well ag in two-dimensional cases, when
the Prandtl number is 1 and for zero heat transfer. When the
restriction of zero heat transfer is removed, an additional solution
exists for the total enthalpy depending linearly on the velocity
component in the direction of isobars of the flow, provided this
component is constant in the outer flow.

The equations herein developed for three-dimensional motion
reduce directly to two-dimensional form for plane or axially sym-
metric boundary conditions.

In cases of flow over flat plates at zero angle of attack, when
the leading edge is some arbitrary curve, the flow viewed in planes
parallel to the stream and perpendicular to the plate is given by
the plane Blasius solution. When the leading edge has a corner,
this solution contains discontinuous derivatives at the normal plane
passing through the corner in the streamwise direction. It is inferred
that, in a narrow region extending downstream from the cornsr, a '
"smoothing" process occurs to vwhich the boundary-layer equations are
not appliceble. This efi'ect is not sxpected to be physically impor-
tant, although the possibility exists that it affects stability and
transition.

When the boundary layer is associated with supersonic potential
flow having conical symmetry, the Blasius similarity variable may be
applied with respect to variations in normal planes containing the
apex. Thus, the laminar boundary-layer development is parabolic
along rays from the apeéx. Thne use of this informetion reduces the
nunmber of independent variables to two and is thus considered to bring
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such problems within the range of effectiveness of modern computing
techniques, especially if the assumptions of Prandtl number equal
to 1 and zero heat transfer are made.

- Lewls Flight Propulsion laboratory, ,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, September 5, 1950.
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(a) Smooth leading edge.
Y

(b) Leading edge with corner.

Figure 1. - Three-dimensional flow over flat plate.
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(b) Flat plate with leading-edge corner.

Figure 2., - Conical bodies described in implicit coordinate -
‘ system. '
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