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NATIONAL ADVISORY CONNITTEE FOR AERONAUTICS

TECHNICAL NOTE 2335

A PLAN-FORM PARAMETER FOR CORRELATING CERTAIN

AERODYNAMIC CHARACTERISTICS OF SWEPT WINGS

By Franklin W. Diederich

SUNNARY

On the basis of approximate expressions for the lift-curve slope

and the coefficient of damping in roll of swept wings at subsonic

speeds, the finite-span effects on these aerodynamic characteristics

are shown to be functions primarily of a plan-form parameter, which is

the aspect ratio divided by the cosine of the sweep angle and by the

ratio of the section lift-curve slope to 2n. The use of this parameter

in presenting concisely and in correlating certain aerodynamic charac-

teristics and the limitations attendant upon such use are discussed.

INTRODUCTION

The conventionally defined geometric aspect ratio has long been

recognized as a very convenient means for correlating, interpreting,

and analyzing certain aerodynamic parameters of unswept wings.

Specifically, aerodynamic parameters which depend primarily on the

over-all level of pressures on the wing surface rather than on the

distribution of these pressures depend more on the geometric aspect

ratio than on any other geometric parameter. For swept wings the signif-

icance of the aspect ratio is not obvious. In fact, neither the geometric

aspect ratio nor any other known parameter associated with the geometry

of the plan form serves to correlate aerodynamic parameters for swept

wings as readily as does the geometric aspect ratio for unswept wings.

In this paper approximate expressions are derived for the lift-

curve slope and for the coefficient of damping in roll of swept wings

in compressible subsonic flow. On the basis of these expressions, a

plan-form parameter is defined which is a function of the aspect ratio,

the sweep, and the section lift-curve slope. As is shown in this paper,

this parameter aids in the correlation and interpretation of certain

aerodynamic properties for swept wings in a manner similar to that of

the aspect ratio for unswept wings.
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SYMBOLS

aspect
span (wing tip to wing tip)

wing induced-drag coefficient

lift-curve slope of section perpendicular to leading edge or

quarter-chord line at a Mach number equal to M cos A

per radian

wing lift coefficient

wing lift-curve slope, per radian

coefficient of damping in roll

plan-form parameter (_ cosA A)

free-stream Nach number

wing area

section-liftefficiencyfactor{°L]

angle of sweep

taper ratio ( Tip chord 1

\Root chord/

ANALYSIS

Lift-Curve Slope

Incompressible flow.- According to lifting-line theory, the lift-

curve slope of an elliptic unswept win_ is given exactly and that of

most other unswept wings, approximately by the relation
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A
CLn - A + 2N cga (i)

where the section-lift efficiency factor _ is defined by

cza
T]= (2)

2_

The lift on a section perpendicular to the leading edge of an

infinite swept wing, according to the effective-velocity-component

concept (reference i), is the same as that of a section of an infinite

unswept wing which has the same chord and section as those perpendicular

to the leading edge of the swept wing, which is exposed to a free-stream

velocity equal to the component of the free-stream velocity perpendicular

to the leading edge of the swept wing, and which is at an angle of attack

equal to that of the swept wing relative to this component. As a result

of this concept, the lift-curve slope of a section of an infinite swept
wing parallel to the free-stream velocity is

(c_alSwept = c_ cos A (3)

so that

A_.)m = c cos ACL_ _

where c_a is the lift-curve slope of the section perpendicular to

some swept reference line, such as the quarter-chord line, and where

is measured in planes parallel to the plane of symmetry.

On the basis of reasoning concerning induction effects of swept

wings of finite span which takes into account the results of lifting-

line theory for unswept wings and the results of the effective-velocity-

component concept for infinite swept wings, an approximate expression

for the lift-curve slope of swept wings of finite span has been _iven
in reference 2:

A

CL a = A + 20 cos A cza cos A (5)
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This expression indicates that the lift-curve slope of a swept wing

depends separately on the aspect ratio and the sweep. However,
equation (5) may be rewritten in the form

CLa F

C_a cos A F + 2

(6)

or

CLa F + 2 Za Swept (7)

where the plan-form parameter F is defined as

F = A (8)

cos A

As indicated by equation (7) the use of the plan-form factor serves to

reduce equation (5) to an expression which depends only on the plan-

form factor, rather than on the aspect ratio and sweep separately,

although the sweep is also contained implicitly in the section lift-

curve slope of the swept wing.

By comparing equations (i) and (7) the plan-form parameter is seen

to determine the lift-curve slope of swept wings in the same way as does

the aspect ratio in the case of unswept wings. For this reason, and

because the plan-form parameter reduces to the aspect ratio in the case

of unswept wings with a theoretical (incompressible-flow, thin-airfoil)

section lift-curve slope of 2_, the plan-form parameter may conveniently

be regarded as an equivalent aspect ratio for certain purposes.

Since equation (i) and hence equations (5), (6), and (7) are based

on lifting-line theory, they are valid only for wings of moderate and

high aspect ratios. At low aspect ratios they yield results that are

too high. A modification to equation (i) based on lifting-surface

theory for elliptic wings has been introduced in reference 3. With a
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generalized interpretation of the results of reference 3 for the case

of arbitary section lift-curve slope, the wing lift-curve slope of an

unswept wing may be written as

A

I C_ (9)CLa

A 2

In reference h this relation has been modified for swept wings.

The expression for the lift-curve slope obtained in this manner gives

good results at low-subsonic speeds but does not yield the correct

limit for wings of very low aspect ratio as given in reference 5, that
is_

lim CL_ : _ A (I0)A--_O 2

or, in terms of the plan-form parameter,

lim CLa = ! F

A--CO c_ cos A h

However, if in equation (9) the value of the section lift-curve slope

that appears both as such and in the factor _ is corrected for sweep

as in equation (3), equation (9) becomes

= A

CLa Cga cos A (Ii)

A _/1 + hD2 + 2N cos A

V

which does go to the correct limits given by equations (h) and (i0).

With the plan-form parameter defined by equation (8), equation (ii)
may be rewritten either as

= _ _ Swept
CL_ F + 2
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analogous to equation (9) or as

CL_ F

cos A ,_ Lc_a F + -- + 2
F2

(13)

analogous to equation (6). As in the case of equations (6) and (7),

the expressions for the lift-curve slope given by equations (12)

and (13) depend on the plan-form parameter F rather than the aspect

ratio and the sweep separately. The fact that they serve to reduce the

lift-curve slopes of wings with widely varying aspect ratios and angles

of sweep to a single function is illustrated by figure l, which shows

CLc
the lift-curve slope ratio of a wide variety of plan forms

c_a cos A

calculated by the method of reference 6 as a function of the plan-form

parameter F. Also shown in figure I are a few po[nbs which correspond

to lift-curve slopes measured in some of the wind-tunnel tests mentioned

in references h and 7; these points are in good agreement with the line

defined by equation (13).

Compressible subsonicl flow.- The lift-curve _slopes _iven by_

equations (12) and (13) can be corrected for subsonic compressibility

effects by means of the three-dimensional Glauert-Prandtl rule. This

rule states that the pressures and forces on a thin wing at a low angle

of attack in compressible subsonic flow may be calculated by multi-

plying by i/_i- M2 the incompressible-flow pressures and forces on

a fictitious wing which is obtained from the actual wing by stretching

all its coordinates parallel to the free stream by the factor

iI_ - N 2 and which is set at the same angle of attack as the actual

wing. According to this rule, equation (12) becomes

A_I - M 2

i T] cos A e

- c _ cos A e

CLc _f_ - 112 A _i N2 / hrl2C°S2Ae

- _i+ +2
D cos A e A2(1 - 1!2 )

where c_ is the incompressible-flow lift-curve slope of the section

of the fictitious wing perpendicular to its leading edge or
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quarter-chord line, where _ is based on this value of c_, and where

A e is the angle of sweepback of the fictitious swept wing, so that

i
tan A e = tan A

- M2

and hence

_I- M 2

cosA - cos A (15)e

_l - M2cos2A

By combining the effective-velocity-component concept and the two-
dimensional Glauert-Prandtl rule the value

(cza) Compre s sible

VI - M2cos2 A

(c_a)Incompressible (16)

may be obtained for the lift-curve slope of the section of a swept wing

perpendicular to the leading edge or the quarter-chord line. (The same
result may be obtained by an application of the three-dimensional

Glauert-Prandtl rule, except that _-1_llncompressible refers to the

fictitious/_rather than the actual wing.) If the values of cos A e

and of _)Compressible given by equations (15) and (16) are substi-

tuted in equation (i_), equation (i_) reduces to equation (12). Conse-
quently, equations (12) and (13) are valid for compressible subsonic

flow, provided that the section lift-curve slope c_a , which enters

into equations (12) and (13) both directly and through the definitions

of _ and F, is that of the section of the actual wing perpendicular

to its leading edge or quarter-chord line at a Mach number equal to

M cos A . If that value is unavailable, the quantity i

_I- M2cos2A

times the lift-curve slope of the same section in incompressible flow
may be used instead.

In figure i several points represent lift-curve slopes measured

at Mach numbers in the vicinity of 0.7 in the tests mentioned in

references _ and 7. These points are close to the line defined by



8 NACA TN 2335

equation (13) and follow the trend of the points representative of lift-

curve slopes which were calculated theoretically or obtained in low-

speed tests.

Coefficient of Damping in Roll

The coefficient of damping in roll may be obtained for swept wings

of moderate or high aspect ratio in incompressible flow from reference 2,

modified for lifting-surface effects in a manner similar to that employed

for the lift-curve slope (see also reference h), and corrected for

compressibility effects by means of the three-dimensional Glauert-Prandtl

rule. The resulting expression may be written as

or

K2 F

= - -- _ (cZa)Swept
+ 16 + h

F F2

(17)

C _ K2
p _ F

c_ cos a 8 ._ 16
F +_+h
V F 2

(18)

where K is the ratio of the ordinate of the effective lateral center

of pressure in roll to one-half the semispan and is equal to twice the

YL'
term P used in references 2 and h. The factor K varies between

b/2
about 0.92 and 1.09 as a function primarily of the taper ratio and, to

a lesser extent, of the aspect ratio and the angle of sweep. The

variation with aspect ratio can be expressed equally well as a variation

with the plan-form parameter F or the aspect ratio proper in view of

the smallness of the aspect-ratio effect. As F approaches _ the

factor K approaches _/$ i + 3k for tapered wings or i for elliptic
V3 i + k

wings; as F approaches 0 the factor K approaches i for all plan

forms.

Equations (17) and (18) give values of which approach the
C;p

proper limit as F approaches 0 and _, that is,

i I +3k

lim C - (cF--_ ;P 12 i + X _a/Swep t
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and

lim C gp AF--_O 32

or

F

(See reference 8.)

As in the case of the wing lift-curve slope, the section lift-

curve slope C_a that appears in equations (17) and (18) both directly

and through the term D in F is that of the section of the actual

wing perpendicular to its leading edge or quarter-chord line at a Mach

number equal to M cos A . Also, as in the case of the wing lift-curve

C_p
slope, the coefficient of damping in roll and the ratio

C;a cos A

are functions only of the plan-form parameter F, except for the presence
of the term K2. The plan-form factor can therefore be used to plot

the coefficients of damping in roll of a wide variety of plan forms
(with a given taper ratio) and a wide range of subsonic Mach numbers
on a single line.

Induced Drag

The drag of a wing is usually considered to consist of two parts,

the profile drag and the induced drag. At low Mach numbers the profile

drag is largely independent of aspect ratio and sweep. The induced

drag associated with a given lift distribution depends only on the

aspect ratio of the wing; it may be expressed in the form

CDi i + 6

CL2 _A

(19)

where 6 is a positive number, usually small compared with I, which
depends on the deviation of the spanwise lift distribution from an

elliptical distribution.

If the lift-curve slopes and coefficients of damping in roll for

a variety of plan forms and Mach numbers are plotted in the form of
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C_
CL_ and P

c_a cos A cos A' respectively, against the plan-form param-c_

eter F as suggested by equations (13) and (18), a parallel method of

presenting information concerning the induced drag may be of interest.

Such a method can be deduced by rearranging the terms of equation (19)
to obtain the relation

c ; cos A
a l+&

,, 2- (20)

c _a cos

which suggests plotting the function of the induced drag defined by the

left side of equation (20) against the plan-form parameter F.

DISCUSSION

Limitations of Plan-Form Parameter F

The wing lift-curve slope and the coefficient of damping in roll_

both as fractions of the swept-wing section lift-curve slope, have

been shown to depend only on the plan-form parameter F, in both

incompressible and compressible subsonic flow, provided that the effects

of taper are disregarded. The exact manner in which these fractions

_mry with the plan-form parameter is immaterial for the purpose of

establishing the utility of the plan-form parameter, so that the limi-

tations inherent in equations (13) and (18) are not necessarily limi-

tations of the applicability of the plan-form parameter; nonetheless, a

discussion of the limitations of these equations serves to shed some

iight on the applicability of the parameter F as well.

The lift-curve slope given by equations (12) and (13) has been

derived from incompressible-flow lifting-line results with approximate

lifting-surface corrections for elliptic wings together with a rational

but approximate correction for sweepback. For tapered wings these

equations give results which approach the proper limits as the aspect

ratio approaches zero and infinity and which are k_own to be in good

agreement with measured or more accurately calculated results for

unswept and sweptback winFs with taper ratios from i:{ to I:i.%. For

sweptforward wings with taper ratio less than I, for unswept and swept-

back wings with taper ratio greater than i, and, in general, for wings
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with spanwise lift distributions which differ greatly from an elliptical

distribution, equations (12) and (13) cannot be expected to yield accu-

rate values of the lift-curve slope in all cases (although the few points

in fig. 1 representative of plan forms which are swept forward follow the

pattern set by the other plan forms quite well). This limitation is a

reflection of the fact that these equations are, in effect, concerned

only with average pressures but imply a more or less elliptical spanwise
lift distribution.

Equations (17) and (18) for the coefficient of damping in roll are

derived in the same manner as equations (12) and (13) and are s therefore,

subject to the same limitations. The coefficient of damping in roll is

more sensitive to the spanwise distribution of the pressures and, hence,

to the effects of taper, than is the lift-curve slope, as evidenced by

the presence of the factor K2 in equations (17) and (18). Consequently,

although the lift-curve slopes of a wide variety of plan forms (within

the aforementioned limitations) can be presented as a single line in a

plot of CLa
against the plan-form parameter F, the coefficient

c_ cos A

of damping in roll plotted in a similar manner may require several
lines for different taper ratios.

The foregoing discussion applies directly only to wings in incom-

pressible flow; however, by means of the Glauert-Prandtl correction the

results of equations (12), (13), (17), and (18) have been shown to be

applicable to subsonic compressible flows as well. The assumptions
inherent in the Glauert-Prandtl correction are those of small flow

disturbances, that is, small angles of attack, small thicknesses, and,

for Mach numbers near i, low aspect ratios or high angles of sweep.

By interpreting the term (1-M2cos2_ -1/2 __(cz_IIncompressibl e

as being the lift-curve slope of the section perpendicular to the

leading edge or quarter chord of the actual wing at a Mach number equal

to N cos A, as implied in equations (12), (13), (17), and (18), and

using experimentally obtained values for this lift-curve slope in these

equations, the limitations of the Glauert-Prandtl correction can be

circumvented to a large extent. This manner of incorporating the
section characteristics in the framework of the Glauert-Prandtl cor-

rection is equivalent to, but much more general than, method 1 of

reference 7, which has been shown in reference 7 to be superior to a

strict application of the Glauert-Prandtl correction. Nonetheless, for

high angles of attack, for thick wings, and at Nach numbers near l, the

plan-form factor F and the equations for the lift-curve slope and coef-

ficient of damping in roll given in the present paper must be used with
caution.
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The limitations of the plan-form parameter F in correlating
aerodynamic characteristics can then be summarized as follows: The

aerodynamic characteristics which may be expected to be amenable to

correlation by means of the plan-form parameter are those which depend

primarily on the average pressures and to a lesser extent on the span-

wise distribution of the pressures. Aerodynamic characteristics which

depend on the induced drag can be correlated by means of the plan-form

parameter F, but no more satisfactorily than by means of the aspect

ratio. The plan forms amenable to treatment by means of the plan-form

parameter are those which are unswept or swept back with taper ratios

less than I; for other plan forms correlation of aerodynamic charac-

teristics by means of the plan-form parameter may not be altogether

satisfactory. The application of the plan-form parameter F is

restricted to subsonic Mach nmmbers preferably not too near i.

Applications of Plan-Form Parameter F

As has been shown, the lift-curve slope and the coefficient of

damping in roll can, within certain limitations, be expressed as

products of functions of the plan-form parameter F and the swept-

wing section lift-curve slope c_a cos A. Consequently, by using the

plan-form parameter F, the lift-curve slopes for a wide range of plan

forms and subsonic Mach numbers can be plotted on a single line and the

coefficients of damping in roll on a few lines, with taper as a param-
eter. This possibility of presenting a large amount of information

concisely also facilitates the correlation of lift-curve slopes and

damping-in-roll coefficients of widely differing plan forms and Mach

numbers, as well as the interpolation between measured or calculated

values of these aerodynamic characteristics. Similarly, with the

correlation of measured or calculated results for these characteristics

facilitated in this manner, fewer plan forms need be tested at fewer

Mach numbers, or fewer calculations need be made to determine these

characteristics for a given range of plan forms and Nach numbers. This

statement is not to be construed as implying that, in making systematic

tests of, or calculations for, a wide variety of plan forms, the plan-
form parameter F need be held constant in different series of these

tests or calculations; this procedure is neither necessary nor par-

ticularly desirable, inasmuch as the parameter F includes the section

lift-curve slope which varies with Mach number, so that a given plan form
has a given value of F at only a certain Mach number.

The potentialities of the plan-form parameter in analyzing and

interpreting the physical phenomena which affect the lift, rolling

moment, and associated aerodynamic characteristics have not as yet been

explored. Some considerations invelved in such an analysis are given

herewith. Equations (!2] and (17) indicate that the i]ift-curve slope
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and the coefficient of damping in roll of a swept wing are products of
the swept-wing section lift-curve slope and functions of the plan-form
parameter F which give the finite-span reduction to be applied to the
swept-wing section lift-curve slope. Consequently, if the sweepand the
plan-form parameter F, instead of the sweepand the aspect ratio, are
considered as the two pertinent variables which, except for the taper
ratio, serve to define any plan form, then the effect of sweepon these
aerodynamic characteristics maybe considered to be confined to the
swept-wing section lift-curve slope, and the finite-span effect is a
function only of the plan-form parameter.

This repartition of sweepand of finite-span effects is not entirely
arbitrary. According to the effective-velocity-component concept
(reference i), the section characteristics of a swept wing depend on the
chord perpendicular to the leading edge, but the finite-span effects
depend on the induced downwash,which dependsprimarily on the spanwise
location of the bound and trailing vortices. Therefore, the wings of a
series of plan forms obtained by sweeping the wings back in such a manner
as to maintain a constant span and constant chord perpendicular to the
leading edge or quarter-chord line maybe expected to have similar
finite-span effects; according to equations (12) and (17) they should have
the samelift-curve slopes and the samecoefficients of damping in roll
at low speeds, except for a factor of cos A. For a plan form which is
swept back in this way the factor A/cos A is maintained constant in
the sweeping process.

This and several alternative ways of sweeping wings back are illus-
trated in figure 2. The wings with sheared chords are those in which
the chords parallel to the plane of symmetry are constant; wings with
rotated chords are those in which the chords perpendicular to the leading
edge or quarter-chord line are kept constant. Sheared-span wings are
those for which the span is invariant in the sweeping process; rotated-
span wingsj those for which the span varies as cos A. The sheared-span -
rotated-chord wing is the one mentioned in the previous paragraph; both
it and the rotated-span - sheared-chord wing are shownin figure 2 by
dotted lines, and the corresponding plan forms scaled up by the factor

1
or downby the factor c_os A in order to obtain areas equal

to those of the unswept wings, by solid lines. Both these wings appear
to be more nearly related to the unswept wings than do either the sheared
wing, which appears to be of larger span, or the rotated wing, which
appears to be of smaller span.

Since both the aerodynamic argument concerning induction effects
of swept wings and the corroborating geometric argument are largely
intuitive in nature, any attempt at using the plan-form parameter F
in the analysis and interpretation of the physical phenomenaassociated
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with the lift-curve slope and coefficient of dampiny in roll should be
made with caution.

CO[.tCLUDI}JG REMARKS

On the basis of an approximate expression for the lift-curve slope

and the coefficient of damping in roll for swept wings in compressible

subsonic flow, the finite-span effects on these aerodynamic character-
istics have been shown within certain limitations to be functions

primarily of a plan-form parameter

F= A

c_
cos A

2_

where A is the aspect ratio, c_, the section lift-curve slope,

and Aj the angle of sweep. The use of this parameter in presenting

concisely and in correlating aerodynamic characteristics which depend

primarily on the average pressure rather than the spanwise pressure
distribution has been discussed.

Langley Aeronautical Laboratory

National Advisory Committee for Aeronautics

Langley Field, Va., February i, 1951
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(a) Sheared wing. (b) Rotated wing.

\l.'/ \\ h.."

/ V I/___ Dimensions _x _ \\

/ / Zshrunk by _ A \

iI / k

/

c) Rotated span, sheared chord. (d) Sheared span, rotated chord.

Figure 2.- Illustration of several ways of sweeping wings.
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