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SUMMARY

Charts are presented that enable convenient determination of the
pressure drop sustained by monatomic gases (ratio of specific heats,
5/3) flowing at high subsonic speeds in a constant-area passage under
the simultaneous influence of friction and heat addition.

Although the charts are constructed for determining pressure
drops when heat is added at constant passage-wall temperature, pres-
sure drops can be determined with good accuracy for other modes of
heat addition through the use of an effective wall temperature in
conjunction with these charts.

The effective wall temperature is given in terms of the passage
dimensions, gas-flow conditions, and gas-temperature rise across the
flow passage. The gas-temperature rise is related to the maximum
passage-wall temperature for the cases of heat addition at constant

wall temperature, constant rate of heat input along the passage length,

and sine variation of heat input along the passage length.

INTRODUCTION

Many problems arise in aircraft heat-exchanger practice that
involve the transfer of heat at high flux rates to a compressible
fluid flowing at high speeds through constant-area flow passages.

For example, in some recent heat-exchanger designs, the temperature
differential between heat-exchanger wall and fluid approached values
of the order of 1200° R and the fluid velocities approached the choke
condition (Mach number, 1).

Methods have been developed for determining the pressure drop
experienced in the passage of air through the radiator tubes of
reciprocating engines (references 1 and 2). These methods contain
simplifying assumptions that, although adequate over the range of
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conditions encountered in aircraft radiators, cause appreciable error
at the high airspeeds and heat-input rates considered herein.

In reference 3, the basic differential flow equation describing
the pressure variations of a compressible fluid under the simultaneous
action of friction and heat addition is numerically integrated for the
specific case of air heated at constant passage-wall-temperature con-
ditions. A closed-form solution of the basic differential flow equation
is obtained in reference 4 for the special case of an exponential vari-
ation of fluid temperature with distance along the flow passage. In
reference 5, the basic differential flow equation is formally integrated
by use of a simplification that is shown to introduce little error in
the description of the flow process; the integration results are pre-
sented for air in convenient chart form and are applicable for arbitrary
heat-input distribution to the fluid along the flow passage.

Recently, interest has arisen in the use of monatomic gases as
the working fluid in various aircraft closed cycles. The closed cycles
involve the use of heat exchangers wherein heat is added to or sub-
tracted from the monatomic gas. In the calculation of the performance
of such closed cycles, a convenient means of determining the pressure
and temperature changes of the monatomic gas flowing through the heat-
exchanger passages is desirable.

In this report, which is the result of an investigation made at
the NACA Lewis laboratory, charts are presented for calculating the
pressure drop of monatomic gases (ratio of specific heats, 5/3) flowing
in turbulent motion through smooth constant-area passages wherein heat
is added to the fluid at constant passage-wall-temperature conditions.
In the construction of the charts, the recent heat-transfer and fluid
friction relations obtained in the experimental investigations of
references 6 to 8 are used. Although the charts are for constant
passage-wall-temperature conditions, it is shown that through the use
of an effective passage-wall temperature the charts can be employed
with good accuracy for other modes of heat input. The effective
passage-wall temperature is taken as the constant passage-wall tempera-
ture that results in the same gas-temperature rise as obtained with the
given mode of heat addition for the same gas-flow conditions and passage
dimensions.

Plots are presented that relate the gas-temperature rise to the
gas-flow conditions, maximum passage-wall temperature, and passage
dimensions for the following modes of heat addition:

(a) Constant passage-wall temperature

(b) Constant rate of heat input along passage length
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(c) Sine variation of heat input along passage length

Detailed examples are given that illustrate the use of the charts

presented herein.

SYMBOLS
The following symbols are used in this report:
cross-sectional area of flow passage, (sq ft)
specific heat of gas at constant pressure, (Btu/(1b)(°R))
equivalent diameter of flow passage, which is equal to 4A/s, (ft)

drag force due to friction, (1b)

_dp
S o
Al

frietion Ffactor,

mass conversion factor, 32.2 (1b/slug)
heat added to gas in distance x per unit time, (Btu / sec)

heat added to gas in total tube length L per unit time,
(Btu) /(sec)

heat-transfer coefficient between wall and gas, (Btu /
(sec)(sq ft)(CR))

constant

thermal conductivity of gas, (Btu/(sec)(sq f£t)(°R)/(ft))
total tube length, (ft)

Mach number

mass flow of gas, (slugs/sec)

total pressure, (1b/sq ft absolute)

static pressure, (1b/sq ft absolute)

gas constant, (ft-1b/(1b)(°R))
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s wetted perimeter, (ft)

i\ total temperature of gas, (°R)

08 temperature of passage walls, (°R)

Ty, e effective temperature of passage walls, (°R)

T, max maximum temperature of passage walls, (CR)

t static temperature of gas, (°R)

v velocity of gas in flow passage, (ft/sec)

x distance along flow passage (ft) as measured from station

where T/‘I‘w equals 0.20. This reference station may be a

hypothetical one located in the forward extension of the
given flow passage.

Y ratio of specific heats

0 mass density of fluid, (slugs/cu ft)

i sbsolute viscosity of fluid, (1b/ft-sec)

“w,av absolute viscosity of fluid evaluated at effective wall tem-

perature of flow passage, (1lb/ft-sec)

Subscripts:
en entrance of flow passage
ex exit of flow passage
W gas conditions evaluated at passage-wall temperature TW
s gas conditions evaluated at average of fluid and passage-wall
T+Ty;
temperatures 5

The following groupings of variables are involved:

mV + DA
m AJgRT

M? total-momentum parameter,

2100
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= o passage-distance parameter
Mgl e
A 0.2

& passage-length parameter
nge De
PA

total-pressure parameter

static-pressure parameter

ANALYSIS

The steady-flow process occurring within a constant-area heat-
exchanger passage involves the simultaneous action of fluid friction
and heat transfer. Analysis of this steady-flow process for the case
of constant passage-wall temperature is presented herein. In addition,
the applicability of and the method of conveniently using the analysis
results for modes of heat input other than constant passage-wall tem-
perature are determined.

Pressure drop and temperature rise for case of constant wall
temperature. - One form of the differential momentum equation describ-
ing the one-dimensional steady-state motion of a compressible fluid in
a constant-area passage under the combined influence of friction and
heat transfer is

d(mV + pA) + dDp = O (1)
From the conservation of energy and mass equations and the perfect gas
law, it is shown in reference 9 that the total-momentum parameter
el (herein denoted Mp) is uniquely related to each of the flow
m A/gRT

parameters M, E’ T and g for any value of y associ-

PA T
P on\EE \ERT

ated with the total temperature of the fluid. The equations relating

2
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Mp to the aforementioned flow parameters for Yy equal to a constant

during the process are presented in convenient form in reference 5
(appendix B).

It is evident, then, that knowledge of the variations of Mp and

T during the flow process is sufficient to completely specify the vari-
ations of all the fluid-flow conditions (P, p, t, and V).

The variation of M.p during the flow process results from the
variation of both mV + pA and T. Differentiation of Mp with
respect to these two variables for constant A and m gives

am, = d(mv+pA) _ 1y 4T (2)
= m A/gRT z Mp T

The differential drag force dDp is-

iC 4 dx
aDp = F 3 oVeA = (3)
e
or, more conveniently,
dDp = 2FmV %ﬁ (4)
e

The variation of T is given by the differential relation equating the
heat transferred from wall to fluid to the heat absorbed by the fluid

dH = mgcpdT = hs(T, - T)ax

—~
w
g

The heat-transfer coefficient h and friction factor F are
evaluated by use of equations (Al) and (A2) of appendix A. These
equations are based on the recent data of references 6 to 8 obtained
over a wide range of conditions, including Reynolds numbers up to
500,000, average tube-wall temperatures up to 2050° R, and heat-flux
densities up to 150,000 Btu per hour per square foot. A comparison is
presented in appendix A of pressure drops and temperature rises across
the test tube as measured in a number of experimental runs and as cal-
culated by means of equations (Al) and (A2).

00Tz
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In view of the analogy between fluid friction and heat transfer
given by equation (A4) of appendix A for flow through smooth-wall
passages, equation (5) is rearranged and presented as

h
cpng

aT = 2

4 ax 5
(e~ T w B (8)

2

where, in reducing equation (5) to equation (6), the definition of Dg
and the continuity equation m = pAV are used.

From equations (1), (2), (4), and (6), the variation of M, during
the flow process is expressible as

aT

iy T (7

]
ol =

v
e, = -
\/eRT h
cpng
4
&

2, = 1)

The subsonic flow relation between My and V/A/gRT for constant

v 1is pre¢ sented in appendix B of reference 5 as

(03]
S~

v '8 1 o Bl E1)
P W e (

VgRT

Fuck n's rule between Cpp/k and 7y, as based on kinetic theory of
gases, is

L (9)
XK~ 95

Beri T equal to a constant during the flow process,

1y aT
a <T;>= - (10)

For monatomic gases, Y equals the constant value of 5/3 (hence

c_ 1is constant so that in equation (44) c¢_ /Je_ = 1). On the basis
1o P,w D

of equations (A4), (8), (9), and (10), equation (7) reduces to

W
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abd. 2 X6
e I et
iy _8(1 5 MP) Y

& @F-2) &)

w

The variation of My is uniquely related to the variation of T/TW
during the flow process by equation (11).

In the integration of equation (11), the lower integration limit for
is arbitrarily taken constant as 0.20, whereas the lower integration

B

1limit for MP is assigned about 35 different values that cover the range

of Mp corresponding to Mach numbers from 0.10 to 0.90. The integration

is numerically performed to values of M? corresponding to choke (Mach
number, 1) or to an arbitrarily assigned value of T/Tw equal to 0.92,
whichever is attained first in the integration.

By equation (11), Mp is shown to be explicitly independent of
the position variable x; hence each corresponding pair of values of
T/TW and obtained in an integration performed for a given set of
lower integration limits can be considered as a possible entrance condi-
tion of a flow passage. It is evident, then, that although the lower
integration 1imit for T/T,, is 0.20, the integration results are

applicable for any values of T/TW at the passage entrance greater
than 0.20.

From the integration results and the relations between Mp and.
PA/m\/gRT (or pA/m \kRT) presented in reference 5, the variation
between PA/m‘VgRT (or pA/ngRT) and T/T, is obtained. The
results are presented in figures ] and 2 as plots of PA/m‘VgRT and
pA/ngﬁﬂL respectively, against T/T,. Included in figures 1 and 2

is a scale giving the Mach number values M corresponding to the
values of PA/m i\’gRT and pA/m ‘VgRT.

The foregoing analysis relates the variation in the fluid-flow
conditions to the T/TW variation obtained during the process. In

order to obtain the fluid-flow conditions as a function of position
along a flow passage, it is therefore necessary to know how T/‘I‘w

varies with distance along the flow passage. The following analysis
provides the required relation between T/TW and x:

2100
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Substitution of equation (Al) into equation (5) and use of the
continuity relation m = pAV and the definition of De result in

0.6 0.8 0.2
c A
dT = | 0.092 E’W - . Ti G -”"’T ];E (12)
iY pywHw w g5 e

From equations (9) and (10), for monatomic gases
(Y - 5/3’ Cp,‘q/cp = l)

(%) -
IR .
S/ = 0513 (A“W) ax (13)
T 0.5 1 TED, D,
TW TW

Integration of equation (13) gives

0.2 &
Ll Y Ay =l . I vaemonh DS i
’ mgD D v e 0.309
7 < %o El-Z)ZZ - 0.6180 7 + 1ﬂ

z
1.9021 tan~! (22 - 0.6180) . 1 1755 tan-1 (2% + 1.6180 (14)
Al feTopeat 1.1756

Z0
15
where 7 = (T/T.) / .
The lower integration limits are arbitrarily taken as Xg =0
and Zg = (0.20)1/5. These limits are consistent with those taken in

integration of equation (11).

A plot of equation (14) is presented as figure 3 wherein T/T, is

AU‘W 0.2
the ordinate and i is the abscissa.
mghDg De

Applicability of figures 1 and 2 for other modes of heat input. -
Although figures 1 and 2 are for the case of constant wall temperature,
they can be applied to other modes of heat input through the use of an
effective wall temperature T ,e’ as shown herein. The effective wall

w
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temperature is defined as the constant wall temperature resulting in
the same temperature rise of the gas for the specified gas-flow con-

ditions and passage geometry as that obtained with the given mode of I
heat input. Hence, by definition, Tw,e is the same as T,, plotted in g
figure 3. Inasmuch zs figure 3 is not in convenient form for determining Q
Po for Tw,e)’ a replot of figure 3 is presented as figure 4 where
A Oz
: . W, av L .
Tox/Ten 1S plotted against —m-é;)—e D, with Tgp/T, o as the

curve parameter.

The following table is presented to show the validity of using
the effective wall temperature in conjunction with figures 1 and 2 to
determine pressure drop for modes of heat input other than constant wall
temperature. Two modes of heat input are considered herein; namely,
constant rate of heat input, and sine variation of heat input along the
passage length, both of which represent a radical departure from the
case of constant passage-wall temperature. The table gives a comparison,
for these two modes of heat input, of the pressure drop obtained by use
of figures 1 and 2 in conjunction with the effective wall temperature
and the pressure drop obtained by integration of the flow differential -
equation for the particular mode of heat input. The comparison is made
over a range of flow Mach number for Tex/Ten equal to 2.0.

Men Mex Type of heat aP & Difference
distribution Pio loavetd \Pasi)orane (percent)
0.207 | 0.348 | Constant rate 0.124 @225 0.8
of heat input
. 240 .4583 | Constant rate ~lsl 2183 q5e
of heat input
S .600 | Constant rate . 244 SR G) D
of heat input
<280 .710 | Constant rate ST . 285 e
of heat input
< 20T .348 | Sine variation SALZ S29 1216
with distance
. 240 .458 | Sine variation S1BS . 185 0
with distance
261l .800 | Sine variation S50 e 200 0
with distance
. 280 .702 | Sine variation Aratate) .285 Tl
with distance L4
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The agreement indicated in the foregoing table is of the same
order of magnitude as the accuracy with which figures 1 and 2 can be
read. It is evident, then, that figures 1 and 2 can be used with
good accuracy to determine pressure drops in flow passages where
the heat-input distribution radically departs from the constant
passage-wall condition by assuming the heat input to the gas to be
at constant passage-wall temperature with T,; equal to Tw’e.

Effective wall temperature for two special modes of heat input. -
In appendix B, an a2nalysis is presented that relates the temperature
rise of the gas to the passage dimensions, gas-flow conditions, and
maximum passage-wall temperature for the cases of constant rate of heat
input and sine variation of heat input along the passage length. In
figures 5 and 6, which give the analysis results, is

Ten/Tw,max

mgDg Do

As demonstrated later in Example IIT, figures 5 and 6 used in con-
Junction with figure 4 enable convenient determination of Ty
for the two modes of heat input treated herein.

0.2
A 3 Ay av L "
plotted against |——2— = with T_./T. . as the curve parameter.

e/ W, ax

DESCRIPTION OF CHARTS

In figures 1 and 2, the ratio of gas total temperature to passage-
wall temperature T/Tw for the case of constant passage-wall tempera-

ture along the passage length is plotted against the total- and static-

pressure parameters PA/mIVER_T' and pA/mVﬁ. (In figs. 1 and 2 the
lines are alternately dashed and solid for convenience in reading.) A
scale of Mach number to give the values of M corresponding to those
of PA/mAeRT and pA/m ABRT is included. The path described by any
of the curves in figures 1 and 2, - going from right to left, describes

the varistion of PA/mAIgRT and pA/mAfeRT (or M) with T/Tw in a

constant-area flow passage where T is constant. Hence, if T/Tw

W
and M (or PA/m«/gRT, or pA/m VgRT) at the flow-passage entrance
are known, the point on figure 1 or 2 representing the gas conditions
at the passage entrance is fixed. The curve on which this point lies
(in fig. 1 or 2) is the line describing the flow variations along the
passage. If 'T‘/Tw at the passage exit is known (Tex/T will be greater

than Ten/'l‘w because of heating), proceed along the curve to where the

curve intersects the ordinate value T/T, = Toy/T,. This point
represents the flow conditions at the passage exit and hence gives the
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values of M., and (PAJ%lVgBT)eX (or (pA/m AfgRT)ey). This pro-
cedure is later illustrated in step-by-step fashion in Example I.

In figure 3, the ratio of the gas total temperature to the
passage-wall temperature T/TW is plotted against the distance para-

Qe

Ay

meter o X for constant passage-wall temperature along the
nge De

passage length. If T/Ty, at the passage entrance (that is, T.,/T,)
is known and is equal to or greater than 0.20, figure 3 first gives

Ay g Xen
the distance parameter for the passage entrance (that is, T .
e e

Note that x_, is the distance between the passage entrance and a
station in the hypothetical forward extension of the passage character-
ized by T/Ty = 0.20. The distance parameter for the passage exit is

022
Auw Xen + L

then calculated as = where L 1is the passage length.

e
Figure 3 is then finally used to determine the ‘I‘/’l‘W corresponding to
the distance parameter for the passage exit; this value of T/TW is

the required value of Ten/Tw‘ This procedure is later illustrated in
step~by-step fashion in Example II.

In figure 4, which is a replot of figure 3 in a form more conven-
ient for determining Ty, is a plot of the ratio of the exit to entrance

total temperature of the gas Tex/Ten against the passage-length para-

0.2
Ap'w,av L

mghDeg De
of the gas to effective wall temperature Ten/Tw,e' As a result of the

meter for various ratios of entrance total temperature

definition of Tw,e’ figure 4 is applicable for any mode of heat input.

The use of figure 4 in conjunction with figures 1 and 2 to determine the
pressure drop of a monatomic gas flowing in a heated passage for modes
of heat input other than at constant passage-wall temperature is briefly
outlined as follows:

(a) For the given heat-input distribution along the passage
length, the temperature rise of the gas 1s determined from the heat-
balance relation
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where the integration is numerically performed for complicated heat-
input distributions.

(p) The value of Tw,e can be obtained from the known gas-flow

conditions, passage dimensions, and entrance and exit total tempera-
tures of the gas by use of figure 4.

(¢) Figures 1 and 2 are then used by treating the problem as one
for constant wall-temperature conditions with TW = 'I'w o
2
Steps (b) and (c) of the foregoing procedure are illustrated
later in detail in Example IIT.

The relations of the gas total-temperature rise in a flow passage
to the flow conditions, passage dimensions, and maximum passage-wall
temperature are given in figures 5 and 6. In figure 5, which is for
the case of constant rate of heat input along the passage length, the
ratio of the fluid-entrance temperature to the maximum passage-wall
temperature Ten/TW,max is plotted against the passage-length para-

0.2

Aj

meter |_tW,av L for various ratios of the exit to entrance total
mgDg De

temperature of the gas Toy/Ten. A similar plot for the case of sine

variation of heat input along the pessage length is given in figure 6.
The use of figures 5 2nd 6 is described later in detail in Example III.

For convenience, a plot of the agbsolute viscosity of helium
against temperature, as given by reference 10, is presented in figure 7.

EXAMPLES ILLUSTRATING USE OF CHARTS
Example T

The use of figures 1 and 2 is illustrated for pressure-drop
determination with heat input at constant passage-wall temperature.

A monatomic gas is heated during flow through a constant-area
smooth-wall passage. The passage walls are at a constant temperature
throughout their length. The flow and heating conditions are as
follows:

R T R
L e R O R T

e L L L e e e




14 NACA TN 2328

Determine: Mg, and Pg./Po,

(4) The point in figure 1 representing the flow conditions at
the passage entrance has abscissa (top scale) = 0.20 (item (3)) and
ordinate = 0.30 (item (1)). This point is designated point a in
figure 8, which is a small-scale reproduction of figure 1 and is
presented for illustrative purposes.

(5) For point a, the lower abscissa scale reads

(8) From point a, follow the flow-path lines up to the point
where T/T, = 0.80 (item (2)) in the manner illustrated in figure 8.

The point where T/TW = 0.80 obtained by this procedure is designated

point b in figure 8 and represents the flow conditions at the passage
exit.

(7) For point b, the lower abscissa scale reads

and the upper abscissa scale reads

Moy = 0.49

(8) For T, = a constant, from items (1), (2), (5), and (7),

Pog A

—_— Tex
Pl VT N vsas, foie0 oty
Pan Dk T " HEWL 050 % O

m'\/ gRTen TW

The procedure for determining the static-pressure ratio Pex/Pen is
the same as that illustrated for the total-pressure ratio Pex/Pen

except that figure 2 is used instead of figure 1.

2100
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Example II

TSN

The use of figure 3 in conjunction with figures 1 and 2 is illus-

trated for pressure-drop determination with heat input at constant

passage-wall temperature.

The flow and heating conditions are as

(7)

Determine:

(8)

(9)

(10)

IR B Al o R
o R i S R
T R R S
LA G S e
LR R R e € T

M B all v sl s el @ mak e e

386.4)

en’

Helium gas (R

e end PSP

ex

follows:

As in Example I, from figure 1 and item (

b
s 3y o

m A/gRTep

From items (1), (3), (7), and (3),

(0]

S

1 3000
S74
94 /32,2 x 386.4 X 500

0.303 (slugs/sq ft-sec)

From figure 7 and items (2) and (7),

wy = 28.1 X 107° (1b/ft-sec)

500
1667
3000
0.02
1.98
0.20
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(11) From items (4), (5), (9), and (10),

0.2 0.2
<A“w > e 28.1 x 1076 1.98

= 16.87

2100

mgD_ 0. " 0005 % 32,2 X 0.02 0.02

(12) From items (1) and (2),

(13) From figure 3 and item (12),

0.2
By Fen _ .45

nge De

which is the distance parameter between a hypothetical station in the *
forward extension of the flow passage, as characterized by T/Tw =S@20]
and the passage entrance (where T/T, = 0.30 in this case).

(14) The distance parameter between the hypothetical station
characterized by T/'I'W = 0.20 and the passage exit is given simply as
the sum of items (11) and (13):

A, 052 %,
mgDe De

L - A5y BB 20,52

(15) From figure 3 and item (14),

=

X = 0.80

3

W

(18) In order to determine Mgy and Pex/Pen) proceed as in
Example I. Inasmuch as Mg, Ten/TW, and TeX/Tw are the same as in

Example I, the required values of Mg, and Pex/Pen are the same as
determined in Example I. i
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Example IIT

The use of figures 4 and 5 to determine effective wall temperature
and the application of figures 1 and 2 to the case of constant rate of
heat input along the flow-passage length are illustrated.

The heat input to helium flowing in a constant-area smooth-wall
passage is assumed to be at a constant rate along the passage length.
The flow and heating conditions are as follows:

L s T e P S S S 500
(2) Ty, max? R R g SR RS o e o M T s
02
(3) Bty av T e I e
mgDe De
B R R R R P e

Determine: TW, e Ten/Tw, e’ TeX/TW, e’ Mex) and Pex/Pen

(5) From items (1) and (2),

T
en _ 500 _ o,263
i T

(6) From figure 5 and items (3) and (5),

(7) From figure 4 and items (3) and (6),

T
0 . 0.30
Tw,e

so that from item (1),

i

e (6]
Ve = 1667 (°R)
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(8) From items (6) and (7),

T T T
Tex S Ten Tex = 0.30 % 2.687 = 0.80
Wye wye ~en

(2) Figures (1) and (2) are used to determine M

NACA TN 2328

ex”’ Pex/Pen’

and Pex/Pen in the same manner as illustrated in Example I except

that T/T, o is used in place of T/Ty.

is a constant, whereas in this example Tw

Wye

(Note that in example I, T

W

is a function of distance
along the passage. However, T is a constant by definition and

herein corresponds to the constant T, of Example I.)

For the case of sine variation of heat input, the same procedure
as outlined in this example is followed except that figure 6 is used

in place of figure 5.

Example IV

The determination of the mass flow of gas through a constant-area
heated flow passage corresponding to a specified pressure drop is

illustrated.

The flow and heating conditions are as follows:

(1) p_,» T T s R CA

(2) Py e R
T R I A
TR T S IR SP AT R S

e R S

Determine: m/A

(6) From items (1) to (4), the ratio of
parameter at the exit and the entrance of the

_ 3000

B30 .

4000

0.80

0.459

4000
3000
0.30
0.80

500

the static-pressure
passage must be

2100
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. - penA
(7) The problem is to determine the value of __€% _  such
i that
a Doyl nlﬁ@RTen
n1VgRT
0 (a) ——2X = 0.459 (item (6))
o Penh
< R
m '\ gRTen
Tex
(v) T = 0.80 (item (4))
wye
The procedure used is illustrated in figure 9, which is a small-scale
reproduction of figure 2 presented for illustrative purposes.
Panh
(8) Assume ——S% = 3.50, point a in figure 9. From item 7(a),
m'VgRTen
DEA
it is necessary that X = 0.459 X 3.50 = 1.607. Hence, follow
i m‘VgRTeX
the flow-path line in the manner illustrated up to the point where
Pasch
. — = 1.607, point a, in figure 9.
m {/eRT o«
Peph :
(9) Assume —"CI'° = 4,00 and repeat the procedure outlined
mA/gRTen

in item (8). Designate the point representing the entrance conditions
point b and the corresponding point representing the exit conditions
as point bl in figure 9.

(10) Repeat the procedure for an assumed value of ——————— = 4.50,
designating the points in figure © points c¢ and -

(11) Drew a curve through the points a1, by, and c; and one
through the points a, b, and c¢. The point on curve alblcl with

ordinate vslue T/Tw = 0.80 represents the conditions at the passage
exit consistent with the given conditions (items (1) through (4)). This
point is designated point d1 in figure 9.
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(12) The corresponding condition at the passage entrance is
obtained by following the flow-path lines back from point d; to

intersect the curve abec. This intersection is designated point 4
Peph

m {/eRTey

fying the conditions given in items (7(a)) and (7(b)).

.

2100

in figure 9. Point 4 gives the required value of satis-

(13) The lower abscissa value for point 4 is

Dan:A
o = 4,780

(14) Hence from items (1), (5), and (13) for R = 386.4 (helium)

P - 4000 = 0.374 (slugs/sec-sq ft)
A 4.282 Af3272 X 386.4 X 500

Lewis Flight Propulsion laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, November 3, 1950.
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APPENDIX A
HEAT-TRANSFER AND FLUID-FRICTION RELATIONS

Some recent data available on heat-transfer coefficient and
friction factor for fluid flow through smooth passages are given by
the extensive experimental investigations of references 6 and 7.

These data were obtained with air flowing through an electrically
heated Inconel tube with an inside diameter of 0.4 inch and a length

of 24 inches for various types of tube-entrance section. The range of
conditions investigated included Reynclds numbers up to 500,000, average
tube-wall temperatures up to 2050° R, and heat flux densities up to
150,000 Btu per hour per square foot. Based on the correlation results
of references 6 to 8 obtained for the entire range of surface tempera-
tures and for Reynolds numbers above 10,000, the following equation

for local heat-transfer coefficient h 1is used in the analysis of this

report:
0.8 0.4 0.8
hD VgD c M r
=% = 0.023 <p___9;> Fp,wtw = (A1)
kw Py kw TW

A comparison, for a number of experimental runs, between experimental
and calculated temperature-rise values (using equation (Al)), gave
agreement within 10 percent.

Several equations for correlating friction factor, none of which
is completely satisfactory, were used in references 7 and 8; neverthe-
less, improved correlation over that given by the conventional correl-
ation method was obtained. The two more satisfactory correlation

equations are given by
0.2
P
T M. 4.4 (22)
Py VEDe P

o NOZ /s
0.046 <m> (?f> (A3)

The validity of using equation (A2) or (A3) for calculating local
friction factors is measured by how accurately pressure-drop predictions
can be made through the use of these equations. Comparison is made herein
between calculated and measured pressure variations along the test passage
of references 7 and 8 for a number of experimental runs conducted at high

5|
I

o
1]
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heat inputs to the fluid at both low- and high-flow Mach numbers.

The calculated pressure variations were determined using both equa-
tions (A2) and (A3) in order to determine which of these two equations
results in best agreement with the experimental data. The test condi-
tions of the experimental runs and the comparison results are tabulated

as follows:

Men Mox Wyav Ten Tex A‘p/PEI’l
Experi- Calculated Calculated
mental |(equation (A2))|(equation (A3))
0.410(0.722( 1072 (554|753 | 0.361 0.348 0.418
.400| .770[1273 [530| 798 .346 2326 TSl
<308 S S2IM 6T 15251937 s 981 361510) .433
<411 | .836[1196 |543|781 $ 552 .326 - 392
172| .234|1246 |552]|904 .063 .058 <063
<S4 S8331679 528|903 5 D85 s D97 425
S0981IRNI652 M 2720 5291812 + 316 2269 LT

00Te

Inasmuch as in the experiments the heat was added to the fluid at
essentially constant rate along the passage, the fluid temperature was
taken to vary linearly across the passage. In order to reduce entrance
effects, the fluid conditions to start the calculations were taken as
those existing in the test passage at a distance of 4 inches (10 diam.)
downstream of the entrance.

The foregoing table indicates that equation (A2) gives better
agreement with the experimental data at the high Mach numbers; at the
low Mach numbers, equation (A3) gives better agreement.

For the analysis presented in this report, equation (A2) is chosen
to represent the friction process.

From equations (Al) and (A2),

h

CPpVg & Cp,w\ [ Cp,whw f s
e

(a4)
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APPENDIX B
RELATION BETWEEN GAS-TEMPERATURE RISE AND MAXIMUM WALL TEMPERATURE
FOR CONSTANT HEAT FLUX ALONG PASSAGE AND SINE HEAT-INPUT
VARTATION ALONG PASSAGE

Relations are derived herein that will permit determination of
the temperature rise of the gas in terms of the passage dimensions,
gas-flow conditions, and maximum passage-wall temperature for the
cases of constant heat flux along the passage and sine heat-input vari-

ation along the passage.

Constant heat flux along passage. - The case of constant heat flux
is characterized by

dH
N (B1)

From equations (5) and (Bl), the continuity equation m = pAV, and the

definition of Dg,
= (B2)
(L/De)mgcpT pVgc

Subs itution of equation (Al) in equation (B2) results in

B 0.6 0.2 0.8
e = 0.092 i (B3)
{ L7DE mgcpT n,w“’w ng > ( >

wherein, for monatomic gases, Cp w/ Cp = Il
’

The tc(tal amount of heat added to a fluid in the over-all passage
length I. can be given as

Hy = mgep o (B4)
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At any flow cross section of the passage, equation (B3) is appli-
cable. When applied to the exit of the passage, T in equation (B3)
is replaced by Lo and subscript w is replaced by subscript w,ex.
Hence, from equations (9), (B3), and (B4) for y = 5/3,

1 - r.r.e_fl
0.2 T
Apv,ex _L_= ex (BS)
mgDe De m 0.8 7 0.8 T T
0.1174 en ex W,6X “en _ 1
Wyex Ten Ten Tex

For the case of constant heat flux along the passage, the exit passage-
wall temperature Tw,ex is the maximum wall temperature Tw,maX' A
plot of equation (BS) is presented as figure 5. Because (uw)o'2
varies only slightly with temperature, Hy, ex is replaced by “w,av in
figure 5 in order to permit convenient use of figure 5 in conjunction
with figure 4 for determining effective wall temperature.

Sine heat-input variation along passage. - For the case of sine
heat-input variation along the passage,

dH:Ksin%dx (B6)

Combination of the relation dH = mge, a7 (equation (5)) and equation (B6)

and integration result in

T KL X
= =1+ ———— (1 - cos = (B7)
Ten mngcp'l‘en ( L>
In equation (B7), vhen x =1, T =T, so that
i
mgilT e %' Tex i (38)
pien 5 en

2100
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n

Combination of the relstion d4H = hs(T,-T)dx (equation (5)) and
equation (B6) and substitution for h from equation (A1) give

X
l 058 _Tl’_ g s:.ni—— (Bg)
Tw AL % L

K
where
0.6 0.8
Y = 0.023 c 0.z [ *w o s )
i D, wHhy S e o (B10
D, wHw e

The condition of meximum wall temperature is given by dTW/d_x = 0

Differentiating equation (BS) with respect. to %  and selbbing
dT /dx = 0 give

0.8 03 COS——
@:, _08 __-1 YLdT=o (B11)
T dx

Substitution of equation (B9) into equation (Bll) and use of the

relation 8 = _K _ gip EL}—( (given by equations (5) and (B6)) result
mgc
in P
X nx
~2) 0.8 sin — cot =
i L L (B12)
Ty IT 1L
K mgcpn

From the definition of Y, let

Q56 02
8 000 Ky Ay, av o (B13)
TMGCy, T cp, g mgD,, De
nmge T :

Note that %g = _;;}EL.K, which, from equations (B7) and (B8), gives
YT _ 2 o omx 4
= A T + <l cos L> (B14)

S - l
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Hence, equation (Bl2) may be written as

—

Sty
0.8 sin —
(T )0'8 e L X

_— - cot =—
Tor N ———EL——-+ (l - cos 2%) -
ex

Ter

>18

(B15)

vhere @ is a function of x/L and T.,/T., as defined by equa-
tion (B1S).

Substitution of equations (Bl4) and (B1lS) in equation (B9) and
solution for A give
Wst
sin =

N=J1s - $ P (B16)
T

i

TEE -1+ (l - cOoS %?) )

- = e

In equations (B15) and (B18), A and @ are given as functions of the
basic variables x/L and Tex/Ten' From equation (B15), the corres-
ponding value of T/T_, which is given by dT,/dx = O and hence is

actually T/TW , is determined. From equations (B7) and (BS),

,Max

Ten/Tw,max is then obtained. Note that for monatomic gases (y = 5/3
Aw, 0.2
and c,u/k = 2/3 by equation (8)), M = 0.03736 'Egﬁéz %: by
e e
A B e
equation (B13). A plot of T.,/T. ... against P, av L rfor
i mgDg De

various values of T is presented as figure 6.

GX/TED
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