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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2252

FORMULAS FOR SOURCE, DOUBIET, AND VORTEX DISTRIBUTIONS
IN SUPERSONIC WING THEORY

By Harvard Lomex, Max. A. Heaslet,
and Frarklyn B. Fuller

SUMMARY

The formulas of supersonic wing theory for source, doublet, and
vortex distributions are reviewed and a systematic presentation is
provided which relates these distributions to the pressure and to the
vertical induced velocity in the pleme of the wing, It is shown that
care must be used in treating the singularities involved in the analysis
and that the order of integration is not always reversible. Further, it
is .shown that the use of the complex varisgble can often facilitate the

. calculation of the Integrals involved. Certain special applications are
included to illustrate the concepts presented.

INTRODUCTION

One of the most fundamental approaches to the analytical investiga-—
tion of linearized wing theory, throughout the subsonic and supersonic
Mach nunmber range, stems from the use of certein elementary mathematical
expressions which are identified physically with sources, doublets, and
vortices in the fluid medium. By means of these expressions, boundary—
value problems involving wings with thickness, camber, and angle of
attack can be solved. These problems are divided into two categories:
one, involving symmetrical bodies with thickness and no 1ift, 1s analyzed
by means of source distributions; and the other, involving lifting plates
without thickness, is analyzed by means of doublet and vortex distribu—
tions.

Al]l these distributions require the treatment of singularities In
the mathematical analysis. Thus, for subsonic Mach numbers, the concept
of Cauchy's principal part plays an important role in the calculation of
integrals arising in the development of lifting—line and two—dimensional
section problems. In supersonlc wing theory, the Cauchy principal part
ig again used in the treatment, for example, of conical—-flow problems as
in reference 1, but, because of the Mach lines and cones appearing in
the physical flow and in the hyperbolic geometry of the differential
equation, other technigues in handling Improper integrals are needed.
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The integrals in supersonic wing theory thus require, in genersl, more
careful attention to the discontinulties in the integrend and, as an
illustration, indiscriminate use of such standard devices as inversion
of the order of integratlion may lead to incorrect results.

When problems of the first kind are involved, that is, when pre—
scribed distributions are to be integrated (as for the problem of finding
the pressure on a wing with symmetrical thickness), a guide to the proper
method of calculation 1s often furnished by physlcal intuition. However,
when problems of the second kind arise, that 1s, problems, the solution of
which depends upon the inversion of an integrasl equation (as the flat
plate of arbitrary plan form), the mathematical methods are more abstract.

The purpose of the present report is: first, to review the formulas
of linearized wing theory in which source, doublet, and elementary-
vortex distributions are introduced snd to relate these distributions to
the pressure and to the vertical induced velocity in the plene of the
wing; second, to show that the use of the complex varisble can often
facilitate the calculation of the integrals involved; and finally, to
present certain special applications which will illustrate the basic

concepts.

LIST OF IMPORTANT SYMBOLS

CP pressure coefficient <—-2 V'l>
o]
Mo free—stream Mech number
é%i loading coefficient (pressﬁre on the lower surface minus pressure

on the upper surface divided by free—stream dynamic pressure)

free—stream dynamic pressure <% Po V02>

q

T, hyperbolic distance between polnts x,y,z and x;,y1,0;
r, =/ (z=x1)% $%(y1)% 8%

Vo =~ velocity of the free stream

X,y,z Cartesian coordinates
r,s8,z characteristic coordinates
€ ,n,z oblique coordinates

my cotangent of the angle hetween the n and =x axes
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mo cotangent of the angle between the ¢ and x axes

M1 N 1+m 2
Mo A Ll4mz®

u perturbation velocity In x dirsction

W perturbation wvelocity in z direction

B VAT

A slope of stream surface (w/v,)

o) perturbation velocity potential

A Jump in valus of the quantity considered across the z = 0 plane
Subscript

u value of a quantity on the upper surface of a wing (z = 0 plane)

GENERAL THEORY

It 18 well known that the anelysis of thin wings at supersonic
speeds and at small angles of avtack can be expressed in mathemastical
terms as a boundary—value problem for the wave equation. If Q repre—
sents a velocity potential or any one of the velocity components them—
selves, this equation can be written

B2 Qpy — O — 0y, = 0 (1)

where ¥he 2z = O plane is the plane of the wing, the free—stream veloc~
ity Vo, 1is directed along the =x axis and BZ = My2-1, M, being the
free—stream Mach number. .

0f the many ways of solving the boundary—value problems associated
with the wave equation, the most convenlent for the present purpose is
the Volterra solution. In reference 1, a dlscussion was given of the
application to aserodynemic problems of Volterra's method. Thus, the
solution for  in terms of AQ and %’, the jump im O and ite
gradient in crossing the z = O plane can be written, if
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re =y (221)2 B2 (y3.)2 —p222 (2)
in the form
o0 | XX,
E:t - ff arc cosh - = dx; dy. +
BN (y=y1)2 + z
1 3 f z(x—x;) dx; dy: :
2n ox J_ fAQ [(y=y1)2 + 28] rc (3)

where the region T 1s that portion of the .z = O plane lylng within
thg foricone from the point x,y,z (the forebranch of the hyperbola
0

Equation (3) represents a gemersl solution to the wave equation and
has yet to be put in a form which represents directly a solution to a
problem arising in the study of wings. When equation (3) is so adapted
in the next section, it will represent the velocity potentisl due to a
distribution of sources, doublets, and elementary horseshoe vortices,
the strength of which are glven in terms of the wing shape and loading.

The Pollowing study of the adaptation of equation (3) to the partic—
ular boundary~value problems of wing theory requires the introduction of
' two axial systems other than
the x,y,z Carteslan coordi—
nates already defined. First,
Yo the ¢&,1,z coordinate system
is defined so that z 18 normal
_ to the plane of the wing while
v . . »7 are .both normal to =z
1.e., lie in the plane of the
wing) and meke arbitrary angles
X= oy with the x,y sys‘bem (see sketch).
Ir .

-l

=/ TrmZ, up =,/ 14me2 (%)

The equations which relate the
n t,n,z to the x,y,z system
are -

X=M1y
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\
o tm  Eme  _ po(=my)
B 3%=3 my +Hmp ..

g=T1_% n = bal{ztosy) & (5)

Lt T ) my +mp

)

and the Jacobilan, the relation between the differential areas in the two
systems, is .

my +ne -(6)

dx dy = dg  dn
|35 A 2% -]

Finally, the value of r, 1is transformed by the equation

. - (q-n21)2(m2-p2) . 2(n-n1) (g —g1) (mamo+B?2) . (t—£1) 3 (m=2—5%) _Bgzé
¢ u12 . Hilk2 l-l22 _(7)

Second, the r,s,z coordinate
system is also defined so that
z 1s normel to the plane of o
the wing while r,s &re both ‘L
normal to z and lie along
the traces of the Mach cone

/ lT \

emeneting from the origin
(see sketch). It is apparent
that the r,s,z coordinates / \

are a special case of the ¢g,n,2 x=—By— 3 y—x=By

system formed when m;=mo=B. /
(Notice also that the =x,y,z : /\\

coordinates are obtained from

g1,z when mi=O and mp=o,) r/ \s

The equations which relate Mach

r,s and z to x,y and z c
lines

are
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x = Mﬁo (s+r) r = %% (x-By) 1
G IR NCU R (8)
Z =2 z =2 J

and the Jacobian is

d.xdy-:z—Bédrds . - (9)

The vaelue of r; 1is transformed by the equation

re =/ (482/M3) (r-r1) (s—s1) 72" (10)

THE THREE FUNDAMENTAL FORMULAS

As has been indicated already, the next purpose is to relate equa-—
tion {3) to the three fundamental formulas arising in wing theory which
are those relating the velocity potentlial to source, doublet, and vortex
distributions. These distributions can be expressed in terms of the
discontinuity in either ¢ or 1ts gradients in the plane of the wing.
In this way, the expression for a source distribution is obtained when
the perturbation velocity potential @ 1is an even function with respect
to the z = 0 plane and is expressed as & double integral involving
A(d9/dz) where the A notation denotes the jump in the value of
d09p/dz in crossing this plane; that is .

3G Gl

Similarly, a distribution of doublets is obtained when @ 1is an odd
function with respect to the z = 0 plane and 1s expressed as ar double
integral involving A @. Finally, & vortex distribution results when @
18 an odd function and given as a double Integral involving the loading
coefficient Ap/q which is, in turn, equal to QACPX/VO. In these

formulaes A(dp/dz), Ap, and Ap/q are, respectively, the strexgths

per unit esrea of the sources, doublets, and elementary horseshoe vo_rtices.

L
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The Source Distribution

The veloclty potential at the polnt x,y,z2 of a unit source &t the
point x1,y1,0 is given by the equation ¢ = — 1/2wr.. The manner in
which a distribution of these sources affects the potential will now be
developed from equation (3). If, in equation (3), @ 1is set equal to
the veloclty potentlial, and the potential in turn is assumed to be
symmetrical above and below the x,y plans (as in the case of a symmét—
rical airfoll at zero 1lift), then equation (3) becomes

X=X
__deffz_\.azarccosh mdxldyl

Since the inverse hyperbolic term vanishes on the Mach forecone, the
partial derivative can be carried through the double integral sign end
there results

9 (x,5,2) =—%[fﬁl'(x—rl;-yj-—)dxl dys | (11)

where Wy 1s the vertical induced velocity on the upper slde of the

=0 plans and A(39/dz) = 2wy by reasons of symmetry. Equation (11)
is ‘bhe famlliar equation for the velocity potential due to a distribution
of sources in the xy plane.

In the £&,m,z coordinate system equation (11) becomes

m; Hho Wu( E,ym.)
= - —_——d a 12
@ ( E sMs2Z) PR /;f g Ex dma (12)

where the area T 1s trensferred to the ¢, plene, and r, is given
in these coordinates by equation (7).

The Doublet Distribution

The velocity potential at the point x,y,z of a doublet at the
point X3,¥y1,0 1is given by the equation o= B z/Eﬂrc « The effect on
the potential of a distribution of these doublets is not so obvious as
it was in the case of the sources and considerebles care must be shown
in the development.
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If the vertical induced velocity is comnsidered alweys to be equal
sbove and below the xy plane, but the potential to be discontinuous
across it, then equation (3) for the velocity potential becomes

19 ffZ(x—xl)AMxl,yl)dxl dy1
-T

In this case the integrand does not vanish at the Mach cone and the
partlal derivative cannot be moved directly through the double integral
sign. Writing in the limits of integration so that the first integration®
is made with respect to yi,

x—Pz Y. . = A
B[P [Tz te com
B T1  [(352)2+22] f (2% ) 282 (7721 ) 2-p%22
(132)
where
Y. =y - %—/ (xx1)2 —p=2°
and

T2 =5 + %‘- ,‘/(1—11)2 —$%22

If in the y1 integral x; 18 replaced by the value =x$z, the
result is indeterminate. Such an indeterminate form can be evaluated,
however, by excluding the limit =x-Bz from the area of integration.
Hence conslder the integral

z(x"'xll) A (x1,51)
[(y52)24221 ./ (x2)2-B2 (352 ) 7B

iSince in what follows the order of integration is important, the nota—
tion will be sdopted that [dy [ax #(x,y) = [ [[£(x,y)ax ldy; thet is,
the integration is made first with respect to x. When the notation
[[ £(x,y)dx ay 1is used, the order of integration is immaterial.
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By formal manipulation

o= 1in _Z_fy+e J 22+ Acp(x—B,/ 72+¢2, Yl)d-Fl
€0 2 he (y=y1)32+22] A/ 52"'(Y_Yl)2

z(x=x1) AP (x1,71)
[ (352)2+221,/ (x=x1)2-82(3y1)3-5222

(13pb)

Application of the mean valus theorem to the first Integral in eque—
tion (13b) yields

PEN J— ay1
S ARG RS, 309 /3‘7—6 [(y=y1)3+221,/ ee~{y=y1)®

e——>

which becomes
1 N ==
g S A @(x-BN2%+e2, y+6€) = 5 Ag(xBz,7)

The second integral in eguation (13b) is simplified by introducing
the notation of the finite part. Define the symbol gt by the equation

2(2)3 sy)ay _ _13e J[a"‘) )y J[a“" £(3)éy
o ox :\/a—y 2 ox (a—y) 3/2 = A a=y

When applied to a single integral thils definition is consistent with the
usual ones for the finlte part given as
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a f(ylay _ 2 £(y)-£(a) £(a) _ £t (y)ay  £(o)
“/; (a—y)3/2 _‘/; (e—)2/2 dy—efg_ —e[ffi'—_y' +J?J

However, when applied to double integrals an inconslstency with regard to
the order of imtegration between the two symbols [ amnd f arises.
Hademsrd (reference 2) and Robinson (reference 3) both use the convention

that the order of integration in the operation | ff £(x,y)dy dx is
reversible; that is,

[far fax 2(xy) =[] ax [ a5 2(x,7)

Such a convention excludes from the area of integration all singularities
over which the order of integration is not reversible. These singuler
reglons are then treated separately. This convention has the disadvantage
that, In constructing a series of integrals, the value of a given Iinte—
gral is not Independent of - succeedlng Integrals. .

The operator: :F avoids the above difficulty. The value of an Inte—

grel defined by -f-a £(y)dy 1is independent of succeeding operations.® At
the sams time, however , the order of integration of operations involving

the sign - cannot be reversed. Hence

[ ay fdx £(x,y) # [ax fay 2(x,7)

2For example, according to reference 2 '

fﬁ & _,
o (§—ﬂ)a/2ﬁ

buf according to the same reference

x £ an |
I ——
o o (e-n)*2/%

However,

X .
f§__d_n___= f dgfg__.___d{l__ 0
° 3/2 3/2 oo

(e=n)™"" /A o o (g=n)"" /M
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Return now to the second integral in eguation (13b). Applying the
vuefinition slready mentioned for j'—, it is found for this type of inte-—
gral that

a A(x)+G(x) 2(x,7) A+G B [ 2(x,7) de
A(X)—G(x) ;7G2—(A—y)2 ox L, /2 (a5)2

By meens of the last formule, the equation for @ becomes

P %ACP(X—-Bz,y)—gEi f dx; j[dyl éﬂﬂgil (1ka)
X r

T c

vhere r, is given by equation (2).

Notice that 1f the integratian hed been made Pirst with respect to
X3 the result would be

2 2
13 - By (y-y1) +z
@: — — f dylf N dxl
o1 ox J_ —e

<0

z(x—x1)A ¢(x1,¥1)
PP e ey

which reduces immediately to

Q= — iz. fdy ][ dxy A @(x1,y1) (1lb)

Te

Equations (14a) and (14b) illustrate the vital importance of the
order of integration. In fact by subtraction the result can be derived

that

fdxl f dys ——— delJ[ dxy —553 3/2 = — AQ (x~Bz,y)
T rc zB2

If the ¢,M,z coordinates are used, equation (13) becomes in the
notation presented in equation (5)
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cp“el_rr L_a_ ula§>f[{

[(n—n:.) — + (g—f.l) —}Acpdnldél

|28-3

[(n—«u) - ) i]awz} ro o

The limits of integration depend
now upon the position of the

axes ¢t and 7 with respect to
the Mach lines In the x,y plane.
The area T 1is still bounded by
the curve r,?=0 and Infinity.
The asymptotes for the curve
ro2=0 are given by the two equa—

X= By - x=By tions
ok i
T (-, my—B
(16)
K1 mo—P
- I e 5—-
i = (&-¢,) —

asymptotes The sketch shows how the
area T In the xy plane trans—
fers to the &, plane. In the
3 m < B case in which both m; &nd mp
mo < B are less than P (the case for

which the sketch was drawn), the
asymptotes are straight limes having positive slopes and the limits of
integration are always from one side of the cone to the other and from
minus infinity to some maximum value. Consider the case in which the
integration ils made first with respect to mn1. Then defining

my mo+B2
Lo =1 “"—" (e~ty) rl—a_-gz-

1 mme\ 12,
I, = e /[(§—§1)< = } + 27 (my 2-p®)

(17)




there results g
2 2 5
/13 _ padl (22N (B ® LoHlo, [(n-m) T+ (et )2 ] A9
= Z 1 my Hio a a: E
P El-:;o o \llz P-l ag gl - ML 1 1 F=] [3
o™ {[(Tl_ﬂl)ﬁ —(ﬁ—'ﬁl) ™y J + z2} r, ]
(18)
where the 22 haes been Inecreased by e since again when the ¢ derivatlve is taken throvugh the first
integral an indeterminate form results. The evelustion of equaticon (18) procseds Just as for sgue—
tion (13). Thus '
2__ 2
my |, 2o/ PT-m ( /a2 )
== 4 Zi B —'ml
¢ = lim X i—JPL°.+L1' ana T AN 0
€> 0 24 pyJy, 1-g,4 {!’ = 'le T
o _z i =) 2} c
d(n—ﬂl)% TR |t
' ' m me
+L (n-na) — + (&—4,) —
Z- [ 7 o - ® de - Totla dna ) ta Kz Ap(ts,n)
SN e T ls N A
-ﬂ S R - —
L g el B |
(19)

where the prime on the L iIndicates 1its value when ¢, is given by the upper limit of equation (18).
The first term in equation (19) becomes

L hlZ(mlm:a+Bz) o zme A p%-my®

1im z ml'HJE) \ BE ml""nE Aq)( Ea,'fla) l"'a.’ d.'l‘]l

. €20 2nuy J’r Z(m:.m2+l32) F""“_m“l"‘ 2 . /P2 ® ./(lz-nl)(
L L (my +mp ) o/ 52—1111 1 +2 J f ./ Ho? !

|-.|

€T




1h ' NACA TN 2252

which reduces to 1
| 5 AO (Ea:ﬂa_)_

where : 3
2 2
£ - zZip of BT—m

a my -+

g
1]

(20)

ziy (mama+pZ)

n —
(my+mp) of BEZ—my 2 J

The second term in equation (19) simplifies when the finite—part notation
is introduced so thet finally '

Ma =

1 zp2(my +mp ) A (g, ,M1)
P = EAQ’(Ea:na) - ~Smus d§1f ana ——-i:é'a—— (21)
T

If the integration had been mede first with respect to ¢ 13 the results
would hsave been . }

=1A )_M a fdg A (g ,m) oo
¢ =38 ol&m o~ mf 48 T (22)
where
6 -8 - zity of BE—mo? ]
m; +z
(23)

zi (mymp+8%)

(mtme) o B2me® - |

<3
o'
|

The geometric interpretation of the points £y,m, &and E,,ne is
a8 follows: They are the points at ~hich the forecone in the §,q
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plane (given by one branch of the curve r2=0) attains meximum values
for n and ¢, respectively, (see sketch).

Asg the ¢ and 1 axes approach
the Mach lines in the X,y plame, that

is, as mx and m; approach B, the trace of
residue terms in equa'bions (21) and (22) forecone
approach (1/2)A ¢(tgs—c) and in &,n plane

(1/2)A@(—=,np), respectively, which
represent the Jump in potential infi-—
nitely far distant from the point P
(and hence may be teken as zero). Thus,
when the ¢, eaxes lie along the Mach
lines, thereby becoming the r,s eaxes
of equations (3), the equations for o
are without the residue terms and the
order of integration is immaterial.
When m; and me are greater than B
the same is true (i.e., the terms ¢
(1/2)29(ggsmg) &nd (1/2)A o (gp,mn)

are missing from equations (21) and

(22), respectively), so that the effect

of a distribution of doublets on the

velocity potential can be summarized as

being

m
(g‘b:'ﬂb)

for 0<m <B, 0<mp <o

0= L ag(tng) - 2t gy [ gy, 2oltym) (2be)
. C

21111 Ko

for 0<m<B,0<m<w

9 = %A q)(g.b,n.b) - z[32(__n_1;_l_+£)_ dﬂlfdgl Aﬂ_ﬂ) (2kb)
T

2npyuz roS
for B <m < e B <oz <w

o = zﬁz(m1+m2) ff Aq)( §1 ;T]l) dnidk, (2ke)

2muaps

where £g,7g, £ps &nd 1wy, are given by equations (20) and (23).
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There exists the Iinteresting corollary obtained by subtracting equa—
tion (2ka) from (24b); namely, that the difference between an integration
of supersonic doublets mede first in one order and then in the reverse 1s
equal to the difference in the magnitude of the distribution at two points
in the plane.

The Vortex Distribution

The velocity potential at the point =x;,y1,z of an elementary
horseshoe vortex at the polnt =x;,7:,0 1is given by the equation
¢ = —z(x-x1)/2n [(y-y1)Z+z2]r,. If O 1in equation (3) is taken to be
the induced velocity u in the directlon of the free stream, and, as in
the case involving doublets, the flow fleld is considered to contain no
bodies with thickness (so A(Bu/az) is everywhere zero), then equar-
tion (3) reads

* 1 0o (x—x1)Au dx;dy, \
U = === e - 2
on 3 f y—y1)2+2%1r, (23)
KNow, since by definition
x
o=/
-~00
the potentiasl for & distribution of vortices can be written
- }_[f z(x—x3 )Au(xy , ¥y )dxydyy (26)
x (y1)2 +22] r,

In terms of the £,n,z coordinastes, equation (26) transforms by
simple substitution to the equality

o
(m+me) (nna) = + (e42) oo Sl gy ,n2)
- 2l ff 1 1 3 - r, d§; dna
{{orm &= et 2 ]+ 22} o
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APPLICATION OF FUNDAMENTAI. FORMULAS TO THE PLANE OF THE WING
Pressure in Terms of Slope for Symmetrical Bodies

Since in linearized theory the equations for pressure coefficient
and surface slope are

. 2u
Cp =7,
(28)
A = -
Vo

the equation for the source distribution, equation (11), can be rewritten

as
22 [ f’"u(xl’yizdxldyl (29)

where Ay 1s the value of the slope on the upper surface of a symmetri—
cal body. In terms of the £,m,z system this becomes (compare the
transition from equation (13) to equation (15))

Al E1,m1)dEy ana
CP 3 <l-12 Bq T K1 g-> ro . (30)

In carrying the partial derivetive through the integrals there results
(as in equation (19)) for 0 < my < B the equation

"y < 212 o/BZ-m 2 >

5 Lot+Lgt - £ — "'T:_-l-l_ng_’n
Cp = lim — dna

€>0 T LO:_th_
2(my+ms) - N (T]—ﬂl) — + (&= 51) T » ( )
Thipa f 1 J€ " rca F

and this reduces to the expression
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for 0 <m <B, 0 <me <
-

5 o(my +ms) (1]—"]1)—— (§—§1
Cp = w Au(Egong) — ﬂutua fd§1jfdn1 T, 7*~u(§1:'fll)
(31a)
Similerly, for 0<mx< B, O <m<ow
(n=na)= + (g=g,)—
2 2(my +mo) Ha Ypz
O = ey Miltwmy) — SR fanf et —P oty )
~ (31p)

and for B <m; < w, P<m< ™

(Tl"'Tll) — + (§ —¢ ) -
2(m1 +mz) \][' 1’ Uz
T -

p = - A ae. & 1
P T2 I'cs U-(ﬁlﬂll) €, dna (31c)

where £.,Mg,8,, and 17y, are given by equations (20) and (23)

As special cases of the results given by equations (31), comsider ¢
and 1n to represent the x,y and the r,s eaxes, respectively. In the
former case, X replaces £ &as mp —> o and y replaces 17 as
my - 0; hence

[+

Cy = f Mu(x—Bz,y) ~ %—fdxl £_le (x__xl)iu(;l’yl) (32a)

and

=__fdylj[ (x—xl)ku(m,yl) (32b)

3
Te

In the latter case r replaces ¢ as mz—>P and B replaces 7 as
my —> B; hence . : ' '
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2
Cp =;§§a f ][T(r—r1l+(:_sl) My(Tiss1) dridsy (33)

c

In each of the equatioms (31) through (33), z can be set equal to
zero without affecting the validity of the equalities. When 3z vanishes,
the following ldentities hold

(gb)z=0 = (ga)z=o =t )
(), o = (1), =1 WED
(rc)z=o =T J

where

ro =/ (xx1)28%(y52)°

3
vy = 2/ ) (oe) \ (3

oxr
2
Ty = /(n—nl)z (mlLZ
My

With these equations the pressure coefficlent on the surface of & sym—
metrical nonlifting wing can be determined if the surface slope is gilven.
The speciel cases of equations (31) in the plane 2z=0 and in the x,y
and r,s coordinate systems are glven in the summary of this section
(see equations (47) and (50)). '

mp 82 2p
>+2(Tl—ﬂ1)(§—§1) (%—)ﬂg—el)a <52_ng J

Verticael Induced Velocity in Terms of the Jump in Potential
It is proposed next to f£ind the vertical induced velocity in the
z=0 plane as a function of the jump in potential across that plane.

Consider equations (24) for the doublet distribution and take the
partial derivative with respect to z of both sides; then find the limit
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of the resulting expression as z goes to zero. If equation (2kha) is
used, for example, there results for the first term

1lim

O
z-=> 0 % % A_cp (ga:na) a§a> Qa  L(2® .a__n.é.

g z=>0 Oz

which becomes

— l 2 2 __8_ . o = —a_
2(my +mz) o/ BZ—my & [HZ(B . .) 3t 2ol ’n)'."“l(_ 1ma+B=) 3 A9( E,,Tl):l
(36)

‘and for the second term

9z~ 2mpius

- 1lim 2 A
o Lm, B 28 (my +mo) dglf'dﬂl CP(IE‘i;]]J.)
T
But this reduces to

_ B2(ml+m2) d,&.l fd’ﬂl FAY q)(g:;,‘ql) _
T

27 o

B5(m +mo) -1 o Z“‘ﬁﬁlfdﬂ ACP(él,nl) (37)

“emuing

and. since
Az

J[ - dna -0
Ay [(Az—n1) (n1—ha)1%/2

the second term in expression (37) vaenishes. -Finally, therefore, the
verticel induced veélocity in the plane of the wing w,, becomes

for 0<m <B, 0<m< w
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w =

_ 1 [
" 2(my +mp) o/ BZ—=my 2 ¢

HZ(BZ—mlz)% Afp (§;n)+u1(m1me+{32)-% AP(E,n) ] -

B2 (m1+mo ) at, J[d n1 Ae(E1,ma) (38a)

2nu3pe roa

and similarly

for 0<m=<B, 0<m <

Wyg,.= —

[ul('sz—mgz)i Ao (£,1) Hin(mmet8?)2 A (g,n)] —
ot _ on

1
o(my+ma) / B2—me?

B2 (my +mz) J[ A (E1,m1) .
_— a 4. _— Sh
EP T N1 . gl I‘oa (3 )

and for B <mp < y B m < =

vy = =P (ml'l'me)ff Acp(gl,nl) aty dny (380)

2L s

The special cases of equations (38) obtained when the &,7 coordi—
nates represent the =x,y or the r,s systems are given In the summary
of this section (see equations (48) and (51)).

Vertical Induced Velocity in Terms of the Loading

The equation for the loading coefficient in linsarized theory can
be written

2. 2= (39)
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so that equation (27) for the vortices yields for Wy the expression

1 3 (m,;|_+in2)zvo
W’u =g _g'o X

dz. Eﬂull-l2- : : o T -

D , B2 A
(T]_nl) t1 + (5_51) Lo . "g (§l:ﬂ1)

L7

The evaluation of wy can be divided Into two steps; first, the pro—

[ (nna) & - (8¢, 2 T+ z'z} r

cedure necessary for carrying the derivative through the first integral, —

end second, the calculation of I where

7 o lim (mtme)vo
=>0 bauspa
f 5 f [(n—m) E% + (&~,) E]z %E (£55m1)
R [ N I O e S S

dgl dnl(h‘l)

Again the order of integratlion is important. To begin with, the
first integration will be teken with respect to mn;. Further the case
0 <m< B will be considered. Hence, the equation for wy becomes
(just as in the derivation of equation (18))

o  22+€2 A2 2

1im (g 4mo)Vea O E— . Lo+Ly
Wy = z—>0 _—_—(ll-l m2) 2 -—f Iy +l2 — d_glf
€~>0. 4muipe . Oz J Lo—La

dny

['(T]"ﬂl) :;i'- + (&-¢,) E] z %E (g15m1)

{ [ (n—nz) i — (&-¢,) f‘z— T + 22} e

(h2)
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where the values of L, and Ii are given by equation (17) and the
limit as e goes to zero is to be taken first. Equation (36) reduces

to
ol tliL?
e - lim B —1111 1
u A éO
€ =0 ).l.;n:p_l _Ll

2 _ 2
zlg & B —amg

(n—n1) B> 2 (tg,m1)
H1 Iy -+l - 4 _ FT (b3)
( )L_z__”ﬂz-mz}”a} .
L™ my e _

The quentity within the integral of the first term of equation (43) is
the same as the similer term in equation (19); hence by analogy

oV B=om; * Ap

oy = — 2T R ey T (1)

The evaluation of I requires some care. Consider the following
integral which contains all the difficulties involved in I.

11m zf(y1,2) :l
I, = P> v>
/ 3z [z 2+(y=y1)2 e o

where f(y,z) and its derivative is bounded and continuous in the inter—
val a <y <b.

Integrating by parts

Z

-—-—gg—- arc tan Z—;—yi dy.l]
a
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end since

. _
Lin [P 3a(y1,2) ywa
z >0 /;_ o arc tan - dyy, = :tfz(.Y,O)— > [fz(a,o)+fz(b,9)jl

this bécomes

b
I, =M-ﬁﬂ_£' ﬁ(_yii)iiﬂ+:tfz(Y:0)

It is, however, more comvenlent to write I, in terms of £(y1)
and not its derivative. In order to do thie, it is necessary to intro—
duce another notation involving singular integrels. The concept of
Cauchyt's principal part is adopted and defined in the following weay:

b d b . -
f M = ——f f(yi)in |y=y1| dys
2y -y a‘_y' a

This procedure can be generalized (see also appendix D in reference 4)
so that for-

P p(yi)ays  [PO flyidayr D [P £(yidays
P —————— . p—————— T S— e ——————— ' h.
j[ j[ L o (454)

a (172 Ya oy wmy Oy Yi-y

This definition of the symbol f can be made In another way. If the
indefinite integral is expressible in the form

ki d,
f LY&)_J_T_;_ = G{y.1,y) + constant
(yi~3)

then
b _ - o
jF ME G(v,y) — &(a,y) o (451)
a
(y1-7)

Thus the conventlonal rules for eveluating a definite integral from the
indefinite Integral can be used.

Using equation (45b), one can derive by integration by parts the
relation ' .
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j[b £(y1,0)dy: _ 2(¥) _ 2(a) _ fb £4(31,0)d7s
a (172 | ¥  yv= -1

Hence the equation for I, becomes

b £(y1,0
Io =f 232,008 7 £, (5,0)
a (1)

25

(45c)

By means of the concepts introduced by equations (45), I cen be

evaluated® and finally wy, can be written

for 0<m < B, O$m2<oo

Wy  BE—m?Z Ap

V—o=f"-—"——""-—"(§:n)+ _

m
_myme (n—=n1) ﬁ + (g—¢,) ey Ap/q
)_HJ. dgl dna 1 1 T2

2t [ (1) = - (et = } o

Similarly, for 0<m<pB, 0<m<=

Vo L q
| Do, (e ) T2
m +ms jrdnlj‘r ae (na) e (e-t,) iz  Ap/q
)'l'“llll-’-z 1 1 1 2 To
T [: (n-n1) o (E_él) = :]
’ and, finally, for < m <o B<mM<w
. my _ E

ml+m2ff (n-na) 7=+ (e-¢)) o= 2p/a . ans

RIS L (e )y L 1B T

[ (nmn1) = = (&=ty) = } °

(46a)

)

(k6c)

8Tn the evaluation of I the term representing f(y1,2Z) can be written
as a function of z2. Hence, the term nfy(y,0) in equation (45c)

vanishes.
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Agein the speciel cases of equations.(46) when E,n become X,y
or r,s are given ,An the following summery (see equations (49) end

(52)).
Summery of Formula for w and Cp in the Plane of the Wing

For the x,y coordinates.— In these cases g-—}x, ¥ =0, m->0,
and mo —> w.

=2 -2 . {z—x1)My(x1,51)
% B Xu(x?y) "f'Xm 'rdyl [(zx1)2-82(3—y1)21%/2 (472)
' (x=x1)My(x1,51)
Cp==2 [any axn == (470)
P . f J{ [ (x—x1)2-8%(y-y.)21%/%

e =B oau(x,y) - fam Lay Ao (x1,71) L
s - o fam e e
_ 5_2_ AP(x1,71)
Tu T ox faylfr . [(x—x1 )2—B2(y-51)21%/2 )
Wy B Ap 1 (x—x1) (2&p/a)
X = (x,y)+ — Fdx1 4 dy2 (49a)
Vo *a b J[ j[: (3=y1)3Y (xx1 ) 282 (y32)
;__u - E:'L;t' fd}’l dxy - (x~x1) (AP/Q.) _- (49b)
° g (7=71)2/ (x-x1)2~62(3-y1)2

For the r,s coordinates.—.In these cases £ —>r, N —>s, m >,

_ .1 M (r—ri)+(s—s1) .- -
CP_"_ '_27.(13 Jff[(r L )'u(rl}sl)d-?ldiSl (50)

~r2) (s=2)1%/%
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Mo ¢©(ri,s1)dridsy’
- T8 (51)
LY 8xn [(r—r1)(8—s1) ]s/z
Y _ Eé_ff [(r—=1)+(s—s1)] (Ap/g)dridsy - (2)
Vo MU [(gegy)Ar-r1) 15/ (r=re)(5—51)

It should be emphasized that in the r,s coo_rdinate system the order of
integration is immaterial.

SOME ATTERNATIVE EXPRESSIONS

It is sometimes very convenlent to be able to express the equations
given in the previous sections in a slightly different form. Consider,
for exemple, equation (11) which gives the velocity potential due to a
distribution of sources, thus

1 Wu(xl,y'l)dxldyl wing plan Vi
=== form
T e
- e e e = =} -
where the area T can be defined P(x,y,0)

(see sketch) as the area bounded
by the wing plan form?* and the
forecone from the point P(x,y,z).
Define now the area T, &as being
the area bounded by the plane

x=x3 and the wing plan form
ahead of the plane =x=x1 (see
sketch). It is apparent that r,
is a pure real quantity everywhere
inside the area T =and is a pure Ja
imaginary quantity everywhere out—

X1

slde T and inside Ty'e The same 1
is true, of course, of r.S. Tt - - \ -“-\0
is clear that all other terms in P(x,y,0)

the integrands of the integrals

which have been considered in the
preceding section, in particular
wu(x1,71) 1in equation (11), are

X3

IThe sctusl definition of T, that it is the area within the Mach fore—
cone, is often replaced by the one used here since the strengths of the
sources, etc., are zero shead of the wing.
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always real over the entire wing plan forms,__Hence “the integral

_ _f f“u(XJ.:Yl)d-xld-YJ.
T,

is 8 complex qua.n'bity, the real pert of which is ’che velocity potential

thus
éx
¢ = -;--r.p.ff.wu(xlﬂl) 18y (53)
. T e

Similarly, each of the integrals in equations (47) and (48) may be
replaced by the real parts of thelr values taken over the area T;.

The evaluation of the terms involving the finite part are particu—
larly simple when the =, area is used since, if

then for positive a and b £ a

b £(y)ay _ _ ' .
I‘.p.Jg W r.p_. [F(b) F(O)] (5)4-)

For example, consider

T = ]

a  yAay ' b yRay
(a252)%/2 - r.P.Jg

wvhere & < b. From the relstion

f y2dy = 24 — arc gin L

( a_2.—y2 ) 3/2 / 32_y2 - a

together with equation (54)

I=r.p.<——2—-—-—a.rc s_in%>=—g
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Notice the simple extension that

L a(aa—;?z/; »75: (a7 )3/2 T

Further examples using the reel part of the integration taken over
the area T, Wwill be given in the next section on special applications.

SPECIAT, APPLICATIONS
An Integral Equation

Applications of the results given by equations (48) through (52) are
apparent. One of the more important uses, however, comes in the develop—
ment of integral equations necessary for the solution of many supersonic
wing theory problems.

An example of such an spplication
arises in the analysis of the slender
rectangular wing at an angle of attack
. Since the wing chord is long com—
pared to its span, and since along the
side edges the loading falls to zero,
an approximation to Ap/q is given by
the equation

%P- = har(Z) /1y/s)? (55)

where f£(x/s) 1s an unknown fume—
tion. The assumption made when
using equation (55) is, of course,
to fix the spanwise variation of
loading but leave the chordwise
variation arbitrary.

The function f can be determined by the condition that the value
of wy 1In equation (49a) is a constant all along the center line of the
wing., The area T 18 indicated.by the shaded region in the last sketch
so that equation (49a) for the case y=0 (and for added simplicity

B=1) becomes for x > 8
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u —«m_f<§>+ “fox_s (X—X1)f<%>d11fs J Hya/s) e,

—s y12;7 (x—x1)2=y1%

%fx (x—x:.)f(i;-}-)dxlf == f 14y./e)® ay
X8

—(z-x1) le/ (z—=x1)%-y1 2

and for 0<x< s

A R

Introduce the notetion

*

x) X
01 = 6_=E’ k1=6_el, kp = 6 — 6,
. v
and these equations become,® since o = — W_TE
o \
for 0 <@<1
. 5 8
1=2£(6) + i-f kB22( 61)a6;
)
for 1 <@ ' ' ?(55)
o e > 6—1
1=17r(6) + Ef koBof (01 )d6:+ Ef B1£(6,)d6;
61 S o
J

SThe symbols B and E indicate elliptic integrals. Thus

R 3 o dt
o /B e e -

S (1-63) (1-%2 +3)

Ep—1-%5 3K,
By = o
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The solution to these equations has been cobtained numerically and
has the form shown in the sketch.

Since from equation (55) the
average spanwise loading P can .
be readily calculated as £(6 )

P=Lfségdy=aﬂf<§,>
28 q 8
—S .

the curve for average span loading

can easily be constructed. This \ 7 e
curve is also shown in a sketch

together with a portion of the

variation of P obtalned from an
exact linearized analysis. L/‘exact linearized

In the interval where the compar—
ison can be made (1.e., near the \ from eq. (47)
leading edge) the agreement will P <x>

be the poorest because in this
region the spenwise veriation
deviates most radically from the
value assumed in the construction
of the integrel equation.

A\ 8

0|

Drag Reversibllity Theorem

The well-inown theorem that the drag of a symmetrical nonlifting
body is the same in forward and reversed flight at the same speed (see
reference 5 or 6) can be derived In another way using the results of the
preceding sectimms.

By definition :
@ =§ [ [ outxmiopxylay ax (57)

where

S - area of the wing
Ay slope of the upper surface

Cp pressure coefficient

Using equation (47b),
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o = - o INESC A NS f = e e -

[¢]

Now the equetion for the drag coefficlent in reversed flow can be
obtalned by:

l. Replacing the area T3 by T, such that T, + T, =S
2, Rotating the axial system in the xy plane through 180°

3. Reversing the signs of M(x,y) and Ay(xa,y1)

There results

C, =-—§L:-;‘/Sﬂflu(X;Y)dY Xm:r;P-de1 f;"‘dil (xl—xl)‘x;(xl,yl) }(59)_

o]

and subtracting equation (59) from (58) gives

CD—CDr = - -S&z; r.p.f dyf d_xf dyil dx; .xxu(xl,?_)hﬁ(_x,y) N v
S S . B o )
Y oo Tay [ax [agy L axy, 2Mulmoyaddu(zy) o))
Sx s S 7.8

Since the symbols X1;¥1;X,y &re dummy veriables of integration, the
last term in equation (60) can be written

<= r.p.fdylfdxlfdyj[‘ (x:Y): w{x1,¥1)

and reversing the operators [dy, [dx; and [dy fdx (but always
preserving the seme order within the operation) yilelds for the second
term in equation (60) the same expression as the first term except for

sign. Hence

o = Cp, =0

as was to be shown.
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Lift on Wings With Supersonic Edges
The 1ift on any wing can he written
L _ f f 4p dy dx
e Jg .Cl
Moreover,
fT'E' Ap ax = ko T.E.
—4 = —
L.E. ¢ o
where T.E. and L.‘E.. denote
the trailing edge and leading edge, Vs
respectively, and P q g is the
value of the velocity potential on
the upper surface of the wing at
the trailing edge. '
Y1

Consider now a wing with all
edges supersonic and a straight
trailing edge not necessarily at

right angles to the free—stream [~

direction. Iet the wing be a _

plate having arbitrary twist and 81—

camber., Then for, & point on the

wing,the velocity potential from =82 —*‘

equation (53) can be written

X1

1 ' Wy X1,y1)dx1dy1
Cp = - ’_(' TePe f f
™  (zx1)2-82(y—y1)2

and if the equation of the tralling edge is

X=8a+y tan A

where &a 1s some constant, then

1 w2, y0) dx; dy:
¢ E, T~ % TP f
S ,/ (a+y tanA-x1)2-82(y—y1)2

so that the total 11ft on the wing can be written

33
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I, L rp 52 Lénf wo(Z1,y1)dx1dys
q ’fvc? J (a+y tan A—x;)2B2(y-y1)2

The area S, being that of the wing plan form, does not depend on ¥y

so the y Integration can be made first and, since the edges of the wing
ere supersonic, the interval s1 <y < s must always contain the roots
A1 and Mz of the expression under the raedical. Hence

2 f &y r2 &
J (%= tem® 8) (Aay) (702) “ J (82- tan® A) (A1) (y=rz)

and since

s

“’[ J (a=v) (y—hz)
then
~lt wu(x1,71)

E = f f ettt dxldyl (61)
T Jee- tamea Js Vo

An alternative expression for equation (61) is

Cp, = (62)
B2 EA -

where & 1is the average engle of attack of the surface and by defini-
tion
- - wyy(X1,71)
g=2 [ ~—~ dx1651 (63)
S s Yo

It is interesting to notice that the 1ift coefficilent for such a wing is
the same as that for a two—dimensional flat plate flying at an angle of
attack o 1into a free stream, the speed of which is given by the com—
ponent of velocity normal to the trailing edge of the three—dimensional
wing Jjust studied. This result has been derived previously in refer-—
ence T. '

Amss Aeronautical Lsboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif., Oct. 16, 1950.
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