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NATIONAL ADVISORY COMMITTEE lKIRAERONAUTICS

TECHNICAL NOTE 2252

FCRMULAS F(IRSOURCE, DOUBIET, AND VQRTEX DISTRIBUTIONS

IN SUPERSONIC WING THEORY

By Harvard Lomx, Msx. A. Heaslet,
and Franklyn B. Fuller

SUMMARY

The formlas of supersonic wing theory for source, dotilet, and
vortex distributions are reviewed and a systematic presentation is
provided which relates these distributions to the pressure and to the
vertical induced velocity in the plane of the w5ng. It iS shown that
care must be used in treat@ the.singularities involved in the analysis
and that the order of integration is not always reversible. Further, it
is shown that the use of the complex variable-cm often

* calculation of the integrals involved. Certain special
included to illustrate the concepts presented.

s

INTRODUCTION

facilitate the
applications are

One of the most fundamental approaches to the analytical investiga-
tion of linearized wing theory, throughout the subsonic-and supersonic
Mach nwiber range, stems fYom the use of certain elementary mthemxtical
expressions which are identified physicaU.y with sources, dotilets, and
vortices in the fluid medium. By means of these expressions, boundary-
value problems involvimg wings with thickness, camber, and emgle of
attack can be solved. These problems are divided into two categories:
one, involving symmetrical bodies with thickness and no lift, is analyzed
by mans of source distributions; and the other, involving lift5ng plates
without thiclmess, Is analyzed by mans of doublet and vortex distrib~
tions.

All these distributions require the treatment of singularities in
the mathematical analysis. Thus, for mibsonic Mach nunbers, the concept
of Cauchy:s principal part play6 an iqortamt role in the calculation of
integrals ‘arisingh the development of lifting-line and twtiimensional
section problems. In supersonic wing theory, the Cauchy princip”~ part

. is again used in the treatment, for example, of conical-flow problems as
in reference 1, but, because of the Mach lines and cones appearing in
the physical flow and in the ~erbolic geometry of the differential.
equation, other techniques in handling improper integrals are needed.
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The Integrals b supersonicwimg theory thus reqtiire,in general, more
careful attention to the discontinuities in the integrand and, as an
illustration, indiscriminateuse of such standard devices as inversion
of the order of integration may lead to incorrect results.

When problems of the first kind are involved, that is, when pre-
scribed distributions are to be integrated (as for the problem of finding
the pressure on a wing with symmetrical thickness), a gqide to the proper
method of calculation is often furnished by physical intuition. However,
when problems of the second kind arise, that is, problemsjthe solution of
which depends upon the inversion of em inte~al equation (as the flat
plate of arbitrary plan form), the mathematical wthods are more abstract.

The purpose of the present report is: first, to review the formulas
of linearized wing theory in which source, doublet, and elementary-
vortex distributions are introduced and to relate these distributions to
the pressure and to the vertical induced velocity in the plane of the
wing; second, to show that the use of the complex variable can Oftin ,
facilitate the calculation of the inte~als involved; and finally, to
present certain special applicationswhich will illustrate the basic
concepts.
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LIST OF IMPORTANT SYMBOLS

()
pressure coefficient 4? ~

To

freestream Mach nuniber

loading coefficient (pressure on the lower surface minus pressyre
on the upper surface divided by free-stream dyuamic pressure)

free-stream dynamic pressure
(ipo’$

@perbolic distance between points x,y,z end xl,yl,O;

‘c =J (X-Xl) 2+2(y-yN-P2Z2

velocity of the free stream

Cartesian coordinates
,

characteristic coordinates

oblique coordinates

cotangent of the angle between the ~ and x “axes
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J&? cotangent of the angle between the ~ and x axes
4

!J1

IJ2

u

w

P

L

Q

A

.

u

,

perturbation velocity in x direction

perturbation velocity in z direction

~~i 1

slope of stream surface (w/Vo)

perturbation velocity potential

jump in value of the quantity considered
.

Sibscript

value of a quantity on the upper surface

GE- THEaRY

It is well known that the analysis of thin

across the z = O plane

of a wi~ (z = O plane)

wiugs at supersonic
speeds and at small angles of aztack can be ~ress~d in ma&matical
terms as a boundary-value problem for the wave equation. If 0 repre-
sents a velocity potential or any one of the velocity components the-
selves, this “equationcan be written

p $-l= -am-nzz.o (1)

where the z = O plaue is the plane of the wing, the free-stream veloc-
ity V. is directed along the x axis and P2 = ~2-12 ~ being *be .
free+ tream I&oh nuniber.

Of the _ ways of solving the boundary-value problems associated
with the wave equation, the most convenient for the present purpose is

. the Volterra solution. In reference 1, a discussion was given of the
application to aerodynamic problem. of Volterrais method. Thus, the

aothe jump h Q and itssolution for Q in terms of A$l and
%’

gradient in crossing the z = O plane canbe written, if
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.

rc =J!(x-xl)+ (y-y. )’+’z’ (2)
●

—.

la

ff

2(X-X1) dxl dy~
——
.ZW ax ‘Q [(Y-Y1)2 + Z21 rc (3)

T

where the region T is Ihat portion of the z = O plane “lying within
t% forecone from the point x,y,z (the forebr~ch Of the ~erbola

rc ,= o).

Equation (3) represents a general solution to the wave equation and
has yet to be put in a fcmm which represents directly a solution to a
problem arising in the study of wings. When equation (3) is so adapted
in the next section, it will represent the velocity pobntial due to a .
distribution of sources, dotilets, sd elementary horseshoe vortices,
the strength of’which exe given in terms of the wing shape and loading.

*

The followhg study of the adaptation of equation (3) to the partic–
boundary-value problems of wing theory requires the introduction of

1
To

x= -@y

I

x

two E&L systems other than
the x,y,z Cartesian coordi-
nates already defined. First,
the ~,q,z coordinate system
is defined so that z is normal
to the plane of the wing while

t
~q are.both normal to z
i.e., lie in the plane of the

wing) smd make arbitrary angles
with the x,y system (see sketch).
If

The equations which relate the
~,q,z to the x,y,z system
are .
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.

“VU+* ~
x=— 1V2(X+W,Y) “=—

P1 P2 ml+~..

(5)

22= 22= J
and the Jacobian, the relation between the differential.areas in the two
systems, is

.(6)

Finally, the value of rc is trtisformed by the equation

Second, the r,s,z coordinate
system is also defined so that
z is normal to the plane of
the wing while r,s are both
normal to z and lie along
the traces of the Mach cone
emanating from the origin
(see sketch). It is apparent
that t% r,s,z coordinates
are a special case .ofthe ~,q~z
system for~d when ml=m2=P.
(Notice also that the X,Y,Z
coordinates are obtained from
~q, z when ml=O and M2=m.)
The equations which relate
r,s and z to X>y and z
are

ITo
*“”

Y“
/ \

/ \
X=+y– y px=py

/
\

r/ \6
Mach
lines

‘P=m
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= ~ (s+r) r = ~ (x-@y)
‘&

=~(s7r) = * (X+PY)
‘% s

Zz= Zz= 1

and the Jacobian is

2p
dxdy=zdr

The value of rc is tr~formed by the

ds

equation

rc =f(@2/%2) (Xrl) (s-s1) -P2Z2

(8)

(9)

(lo)

—

.

As has been indicated already, the next purpose is to relate eqw-
tion (3) to the three fundame~tal formulas erising in wing theory which
are those relating the velocity potential to source, doublet, and vortex
distributions. These distributions can be expressed in terms of the
discentinuity in either q or its gradients in the plane of the wing.
In this way, the expression for a source distribution is obtained when
the perturbation velocity potential Q is an even fmction with resPect
to the z = O plane and is expressed as a double integral involving .
A(@/bz) where the A notation denotes the jump h the value of
&p/az in crossing this plane; that is

—

Similarly, a distribution of dotilets

().* ‘
~z z+

is obtained when q is an odd
function with respect to the z = O pleme - is expressed as a“do~le.
integral involvhg Aq. Fina13y, a vortex distribution results when c?
is an odd function and given as a dotibleintegral involvimg the loading
coefficient &/q which is, in turn, equal to 2AQXPJO* In these
formulas A(&q/az), ACP,and Ap’/q are> resm.ctively> the stre@hs
per uuit area of the sources, dotilets, and elementary horseshoe vortices.

.-

.

1.
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The Source Distribution

.

The velocity potential at the point x ,y,Z of a unit source at the
point xl,yz,O is given by the eq~tion q = - l/2strc● The mmner in
which a distribution of these sources affects the potential.will now be
developed from equation (3). If, in equation (3), S2 is set equal to
the velocity potential, and the potential in turn is assumed to be
symmetrical above and below the x,y plane (as in the case of a sym&-
rical airfoil at zero lift), then equation (3) becoms

Since the tnverse hyperbolic term vanishes on the Mach forecone, the
partial derivative can be carried through the double integral sign and
there results

[f

TqJxl , yl )
q (X,y, z) = – * dxl dyl

rc
(SL)

.
where w~ is the vertical induced velocity on the upper side of the
z = O Plane and A(b/az) = %rU by reasons of symmetry. Equation (11)
is the familiar equation for the velocity potential due to a distribution
of sources in the xg plane.

In the ~,q,z coordinate system equation [XL) becoms

(X2)

where the area T is transferred to the ~,q plane, emd rc is given
in these coordinatesby equation (7’).

The Dotilet Distribution

The velocity potential at the point x,y,z of a dotilet at the
. point Xl,yl,o is given by the equation q= P2z/27crcs. The effect on

the potential of a distribution of these dotilets is not so obvious as
it was in the case of the sources and considerable care must be shown+
in the development.
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If the vertical induced velocity is considered always to be equal
above and below the xy plsae, but the potential to be discontinuous
across it, then equation (3) for the velocity potential becomes

la

f]

Z(X-XL)A~(XL,yl)dXI dyl
~=~~.T

[(7-YL)2+z21 rc

In this case the integrand does not vanish at the Mch cone and the
partial derivative carmotbe moved directly through the double integral
sign. Writing in the limits of integration so that the first integration
is pade with respect to yl,

9=
&M:+z~lJ:$@= ~

Z(X-X1) Aq (XL,yl)

[( y-yl)2+z21 J(x-xl)2+2(y-yl )2+2z2

where

Y~=y- +J (X-X.)2 +222

If in the yl titegral. xl is replacedby the
result is indeterminate. Such an indeterminate form
however, by excluding the limit x-@z from the”area
Hence consider the integral

(13a)

value x+z, the
can be evaluated,
of integration.

Z(x-xl) Aq(xl,yz)

r(y-yl)2+z21J (X-X1)2+2( Y-Y1)2+27%

&

%Mnce in what follows the order of integration is important the nota-
tion”willbe adopted that ~dy fdx f(x}y) = J [ff(x,y)dx jay; that is, -
the integration is mde first with respect to x. When the notation
~~ f(x,y)dx@ is used, the order of intetiation is inmaterlal.

.
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By formal manipulation
4

.

2(X–XI) AQ (X~jyl)

[ (Y-Y1)2+=I / (X-X=)242( y-yl)2+2z2
(13b)

Application of the mean value theorem to the first integral h equa-.
tion (13b) yields

.

~~$ACP(X+3fi Y+6~) ‘“f
m

Mm
E-o 21t

Y- [(7-Yl)2+a/-

The second integral in equati= (13b) is simplified by introducing
the notation of the fInite part. Define the symbol ~ by the equation

When applied to a single integrsl this definition is consistent with the
usual ones for the finite part given as
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Ifa f(y)dy

J’

a f(y)-f(a) ~~ Q . +2

[f

fi(y)dy+ f(o)

0 (.-y~/2 = 0 (*-y~/2 J&

——

OJG$F 1

However, whea applied to double integrals an inconsistencywith regard to
the order of htegration between the two synibols ~ and $ arises.
Hadamard (reference 2) and Robinson (reference 3) both use the convention

that the order of integration in the
reversible; that is,

o~eration IJJ f(x,y)dy dx is

)

Such a convention excluded from ths area of integration all singularities
over which the order of integration is not reversible. These singular
regians are then treated separately. This convention has the disadvantage
that, in constructing a series of titegrals, the value of a given inte-
gral is not independent ofsucceedhg integrals.

The operator + avoids the above difficulty. The value of an inte-

gral defined by $Oaf(y)dy is independent of succeeding operations.= At
the same time, however, the order of integration of operations involving
the sign -& cannot be reversed. Hence

J dy$~f(x,y) # ~ti$dyf(x,y)

%For example, according to reference 2

=0

but according to the same reference

=-23f

However, .

.
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Return now to
. uefin.itionalready

gral that

I-1.

the second integral in equation (13b). Applying the
mentioned for ~, it is found for this type of int~

.

.
.

a
f

A(x)+ @x) f(x, )

~ A(x)-G(x) ~$:k

By means of the last formula, the equation for

where rc is given by equation (2).

[

f(x,y)

1J- o

q becomes

Aq (Xl,yl)
r=3

(14a)

Notice that if the titegration had been =de first with respect to
xl the resuit would be

v= && &=~:G)2+z2 dx.

z(x-x1)A ~(Xl,yL)

[(Y-Y1)2+Z21J(X-X1)242(Y–Y1 )2+2Z2

which reduces immediately to

Equations (lka) and (lkb) illustrate the
order of integration. In fact by mibtraction
that

(14b)
rc

vital importance of the
the result can be derived ‘

If the ~,~,z coordinates are used, equation (13) becomes in the-
notation presented in equation (5)
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.

(u) “

x. +iy

&

lx X=>y

The limits of integration depend
now upon the position of the
axes ~ and q with respect to
the Mach lines in the X,y Pkllec
The area T is still-bouded by
the curve rc=a W ~fiitY.
The asprptotes for the curve
rc2=0 are given by the two equa-
tions

(16)

“

.

asymptotea The sketch shows how the
area T b the xy plane traus-
fers to the 5,7 plane. In the

E ml<p case in which both M &d n12
*<p are less than S (the case for

which the sketch was drawn), the
asymptotes are straight limes havimg positive slopes and the limits-of
integration are always from one side of the cone to the other and from
minus infinity to some maximum value. Consider the case in which the
integration is made first with respect to T1. Then defining

Lo=+

I@
Ll=—

P2+U2

(E+ :>=:2

/[(,%1(%)]2+’Z%DH
,

(17)

● ✍

✎



. , , ,.

there results ~

(18)

where the Z2 haB been increased by E2 dnce again when

Integral an &deterndnate form results. !Che evaluat Ion of

tion (13). ThUz

the ( derivative iB taken through the first

equation (M) proceeds Jx3t as for equa-

where the prime on the L indicates its value when
The flr6t term in equation (19) becom3s

El is given by the qpper limit of equation (18).

L

mlz(ml*+p2) , ‘m2$KF

mza) JZFMm A ml* 1. E* o2WL

{[

z(mlm2+.32) -z J- ;Z, ‘P( ~’~”)

(m~i-m2)bf~ ml* 1}
~:~~ti) (5
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which reduces to

where

mlcflm 2252

Ea=E - W24/zF

ml+m2

zill(nlp2+132)
qa.~-

(m+u) J“

/
(20) .

The second term in equation (19) simplifies when the finite-p&rt notation
is introduced so that finally

If the integrationhad been made first with reswct to gl, the results
would have been

1.

where

as
The geometric interpretationof

(~+m2)J i32-n&

(23)

the pointS ~bYqb ~d Ea>qa is
followi: They are the points at vhich the forecone in the k )n

.

.

1
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.

plme (given by one branch of the curve rc2=O) attain mti~ values
. for q sad ~, respectively, (see sketch).

.
As the ~ and q axes approach

of
one
lane

b)

.
(22), respective), so that the effect
of a distribution of doublets on the
velocity potential can be sunumrized as

for p~ml<rn,13<m2em——

(24a)

(24b)

(Ac)
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.

There exists the interesting corollary obtained by mibtracting equa-
tion (24a) from (24b); namely, that the difference between an integration .

of supersonic dotilets made first in one order and then in the reverse is
equal to the difference in the magnitude”of -thedistribution at two po3nts
in the plane.

—

The Vortex Distribution

The velocity potential at the point Xl,yuz of an elementary
horseshoe vortex at the point x1,Y1,O is givenby the equation

9= -Z(X-X1)/2YC[(y-yl)2+z21rc. If O in equation (3) is taken to be
the induced velocity u in the direction of the free stream, and, as in
the case involving doublets, the flow field is considered to contain no
bodies with thickness (so A(&@z) Is everywhere zero), then equ&-
tion (3) reads

● la Jr (X–X~)AU dx=dy=
u
‘ZST tiy-yl)2+z2lrc

(25j

.

Now, since by definition

f

x
~= Udx ,

-m

the potential for a distribution of vortices canb~ written

91 u Z(X-X1)AU(X1,yl)dxldyl=—
2a [(Y-Y1)2 +Z21 rc

(26)‘ “

In terms of the ~,q,z coordlnatesj
simple substitutionto the equality

eqpation (26) transforms by

.

.
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APPLICATIONOF TUNDAMENTML FORMUIAS TO THE PLANE OF THE KtNG
.

Re ssure in Terms of

Since in linearized theory
and surface slope are

Slope for Symmetrical Bodies

the equations for pressure coefficient

=,2U
CP -T. 1

17

I (28)

h=+
o

the equation for the source distribution, equation (I.1),can be rewritten
as

Cp=:
.

. where ~ is the value of
cal body. In terms of the

.

JY’
Xu(xl,yl)&i@yl

k (29)
rc

the slope on the upper surface of a synm&ri-
E>qYz system this becomes (compare the

transition from equation (13) to equation (25))

In carrying the
(as in equation

part ial derivative through the integals there
(19)) for O ~ m= < ~ the equation

results

.
and this reduces to the expression
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(l]fl=)~ + (HJ~

“=* ‘“(’’”a)-2:.::)J’E’J$”=- ‘Cs
M@l)

(31’)

Similarly, for O ~ m2 < P, O < ml < KO-,- —

-. (31b)

As special cases
and q to represent the x,y
former case, x replaces ~
ml ~ O; hence

and the r,s axes, respectively. In the
as ~ ~ cnand y replaces q as

~b are givenby equations (20) ad (23)

of the results given by equations (31), consider ~

and

(32b)

In the latter case r replaces .g as m2-si3 and s replaces ~ as
●

ml + B; hence —

.

#
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+32
ff

(~r=)+(s-sl)

c~ ‘*= T s
rc

Lu(rl,sl) drldsl (33)

In each of the equations (31) through (33)y z c= be set eq~l to
zero without affecting the validity of the equalities. When z vanishes,
the followhg identities hold

(.%)Z4 = (~a)za = T’

/

(34)

(rc)z@ s r.

where
.

-1

‘o =/(x-xl )2-@2(Y-yl )2.

‘o =

or

ro =

these equations the pressure coefficient on the surface of a ~With —
metrical nonlifting wing can be determined if the surface slope is given.
The special cases of equations (31) in the plane z=O and in the X,Y
and r,s coordinate systems are given in the summary of this section
(see equations (47) and (50)).

Vertical Muted Velocity h Terms ot the Jump in Potential

It is proposed next to find the vertical induced velocity in the
z=O plane as a function of the jump in potential across tkt plane.

. Consider equat}ons (24) for the doublet distribution and take the
partial derivative with respect to z of both sides; then ftid the limit
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of the res@.ting

NflcATN2252
.

expression as z goes to zero. If equation (24a) is
used,for &ample, there results for the first term ?

which becomes

[

alJ2(132-m12)~ Acp(~,q)+vl(ml%@2) —Ac?( &v)
a~ aq 1

(36)
and for the second term

But this reduces to

and since

the second term in expression (37) vuishes. -F~llY~ therefore) the
vertical induced velocity in the plane of the wing Wu becomes

(37)

—

. ..

.

.
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.
1

[

Za
1

2 a ACp(~J~) –
w =—
u lJ2(~2+U1 )~ ACFI(~,~)~l(?hm2@ )—aq

2(ml+mp)i~

B2(ml+m2)

f$

AQ(~uTl)

23rplp~ dE1 dq1 (38a)
T ros

‘(38b)

P2(ml+m2)

Ji

ACP(EUTI1)
wu=- d~l dql (38c)

21qll&2
T ros

The special cases of equations (38) obtained when the ~,q coordi-
nates represent the x,y or the r,s systems are given in the sumary
of this section (see equations (~) and (51)).

Vertical Induced Velocity h Terms of the Loading

The equation for the loading coefficient in line~ized theory
be written

. Ap 2AU
—=—
~ To

.

can

(39)
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so that equation (27) for the vortices yields for Wu the expression .—

.— . --

The evaluation of Wu can be divided into two steps; first, the pre “.
cedure necessary for carrying the derivative through the first intepyal,
and second, the calculation of I where

.

lim (nll+nk)vox
~ “+() kq.ill.lz

Again the order of ,integrationis important. To.be@n with, the
first integrationwill he taken with respect to 71. ,Furtherthe case

—

O < ml< P will be considered. Hence, the eqktion for Wu becomes
(Sust as in the derivation of equation)

1(v-h) ;
1

+ (E-Q ~“ ‘ * (E@ll)

{[

(42)
.2

(7-91)~-(HJ &
1}

‘c
+ ‘2

P1

.

..—
.-

..—

?

}

. -.

.

.
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where the values of L~ and LZ are given by equation (17) andthe
limit as e goes
to

to z&o is to be taken first. Equation (36) reduces

Wu =-z:g’-o
E +0

{[
(ml) & -

‘i!s12’.=21 ‘c

(43)

The quantity within the integral of the first term of equation (43) is
the same

The
integral

as the similar term in equation (19); hence by analogy

70 J!!2+Q2Ap

wu=- ~@,q) +1

evaluation of
which contains

I requires ‘somecsre. Consider
all the difficulties involved in

h

J[
10 = zl& ~

Zf(yl,z)

1
W1

a az Z2+(y-yl)2

“(44)

the following
I.

b>y>a

where i’(y,z) and its derivative is bounded and continuous in
val a<y <b.——

the inter-

Integrating by parts

h a
[

y+
f(a,z) arc tan — -

y4 +
Io=z+o~ f(b,z) arC tan —

z z
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and since
.

.

f

b~fz(Yl}Mm . z)
arc tan = dy. = .fz(y,o)- :

z+oa ay~ [ .1
a fz(a,O)+fz(b,O)

z

this becous

f(b) f(a)
Io= —-—-

L

b f’(Yl)wl

y+ ye Y-YX

It is, however, more convenient to write 1.

+ 31fz(y,o)

in terms of f(m)
and not its derivative. In order to do this, it-is necessary to intro- “

.-—.

duce another notation involving singular integrals. The concept of
Cauchy:s principal part is adopted and defined in the following way:

. b f(yl)ayl a
f f

b,

a
_.Ga
Y-Yl.

This procedure ,canbe generalized
so that for

f(yl)tn Iy-yll dyl
.

(see also appendix D in reference k)
.

$b f(yl)dyl

f
b~ f(Yl)dYl

a (Y1-Y)2 = a ~ Y~-Y

This definition of the
indefinite integgml is

then

{

b

a

a Jb f(Yl)dYl
,“ (45s)~—

b a YI-Y

can be made in another way. If the
e~ressi~le in the form

f(y=)dyl
— = G(yl,y) + constant
(Y1-Y)2
,

f(yl)dyl
-.

—~ G(b,y) -G(a,y) ““ ‘(45bl
(YrY)2

Thus the conventional rules for evaluating a definite integral from the
.

indeftuite integral can be used.
,

Usfng equation (45b), one can derive by integration by parts the
k

relation
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b f(Yl)o)@i
J’

f(b) f(a)

f

b f$(yl>o)dyl● =—. —-
a (Y1-Y)2 1 @ yti a Y-Y1

Hence the equation for 10 becomes

,

+’
b f(YIYo)ayl + X f= (Y)o)

10 =
a (YKY)2

(45C)

By mesms of the concepts introduced by equations (45), I canbe
evaluated3 and finally Wu can be written

for O~ml~p,0<m2<rn

% l=AP;E,V)+—=. — .
V. 4

—

*

5=. m AP
V. 4 &Tl) +

(46a)

Wu ml+m2

ff

(V+ll) ; + (g-g=) ~ Ap/q
-— — d~= dq= (MC)

~- 4Yrw=jl~
T

[ 1
(qfil~ * – (E–E1) & 2 ‘o

s In the evaluation of I the term represent@g f(yl>Z) can be written
as a function of Z2. Hence, the term Tcfz(y,O) fn equation (45c)



26 NACA TN 2252
.

Again.the special cases of equations. when ~,q become X~Y —

or r,s are given,in the following summarylsee equations (49) and ●

(52)). .

Summary of Formula for w and Cp in the Plane of the Wing

For the X,y coordinates.- In these cases ~+x, Y%> ml~j
and ro2~w.

H (X-XJAJX,,YI,)
(47*)

CP = $ ~(%Y) - ; %1 ml
T [(x-xl)2+2(y–y=)2]~/2

L/.-2 dy~ C& (x-xl )AJ xl, y,)

CP fi T
[ (=1)2+2( y-y=)zfiz

(4P)

~ Au(x,y)%=-z -g f~l&= AQ( ,Y.) (47C)
[ (x-xJ=&Y-yl)=]@

J$
~ dy~ ax.

AQ(x1,Y1)
%=-2K

T [(X-X1)2+2(y-yl)=]3/2

(4a)

Wu _ - ; *~x,Y)+& fax={dy, (x-x=) (Add
(49a)

V() “T (y-y=)2#!(x-xl)2+2(y-Yl)2 “-”-““”’

w~ 1 L#’ (X-XI) (Add—=— dyl dxl ~
V. 4TC

T (Y-Y1)2A42+2( y-yl)’

I?’orthe r,s coordinates.-. In these cases ~ ~r, q -s,
and @ ~.

(4gb)

ml +,

.

(50)
b
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% JP
q)(rl,sl)drldsl”

%=--
8Yr [(r-rl)(S-sl)]3’2

jf

lh=J& [(==)+( s-s=)] (Ap/q)ti@l .

To [(s-sz)-(r-rl)]2j (r-rl)(s-sl)

It should be emphasized that in the r,s coor&nate system
integration is imaterial.

(50

(52)

the order of

SOMEAII!ERNATIVEEXPRESSIONS

It is sometimes very convenient to be able to express the equations
given b the previous sections in a slightly different form. Consider)
for example, equation (n) which gives the velocity potential due to a
distribution of sources, thus

.

9
1

JJ

Wu(xl,yl)dxldyl
=--. Z

T rc

where the area T can be defined
(see sketch) as the area bounded
by the Wing ph?l form4 and the
forecone from the point P(x,y,z).
Define now the srea Tl as being
the area boundedby the plane
X-=1 and the wing plan form
ahead of the plane x-l (see
sketch). It is apparent that rc
is a pure real qumtity everywhere
inside the area T and is a pure
imaginary quantity everywhere out-
side T and inSide Tl”. me Same
is true, of course, of rcs. It
is clear that all other terms in
the integrands of the integrals
which have been considered b the
preceding section, in particular

. Wu(xl,yl) in equation (il.),are Ixl

3 ~The actml definition of T, that it is the area within the Mach fore-
cone, is often replaced by the one used here since the strengths of the
sources, etc., are zero ahead of the wing.
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always real over the entire wing plan forms..~ence

NACA TN 2252

the integral

.

is a complex quantity, the real part of which is the velocity potential;
thus

9
1 r.p.

JJ

wu(xl>Yl)til@l=-- (53)
n

T1 ~c,-

Similsrly, each of the integrals in equations (47) and (48) maybe
replaced by the real parts of their values taken over the area TII

The evaluation of the terms involving the finite part are particu-
larly simple when the TI =6a is used Since, if

J f’(y)dy
= F(y)ti

(a-y)‘/2

then for positive a andb#a
._

f

b f(y)dy
rep. —=r.p. [F(b)-F(o)]

o (@y) ~/=
(54)

For example, consider

,.1’ Y% J’b Y-%= r.n. —
“. Jo ~#+)3/2‘O (a2+’)3i2

where a < b. From the relation . .
,.

together with equation (54)

I
(

= r.p. —
&-

22
b

-)
-e.rcsin Z =-~.2
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Notice the simple
.

exi%nsion that

“a

f

Y2ZY
2b 3%Y= r.p.

.a ( a=fi) 3/2
(a2-fi)3/2 = - sc

Further examples using the real part of the integration taken over
the area 71 ,will be given in the next section on

SEWCIKG APPLICATIONS

An Integral Equation

special applications.

Applications of the results given by equations (k8) through (52) are
apparent. One of the more important uses, however, comes in the develo~
ment of integral equations necessary for the solution of many supersonic
wing theory problems.

4
An example of such an application

arises in the analysis of the slender
M

s“
. rectangular wtng at an angle of attack

a. Since the wing chord is long con+
pared to its span, and since along the
side edges the loadimg falls to zero,
an approximation to Ap/q is given by
the equation

AP . ~f(~)~~
q

(55) “

where f(x/s) is an unknown flmc-
tion. The assumption made when
using equation (55) is, of course,
to fix the spanwise variation of
loading but leave the chordwise
variation arbitrary.

The function f can be determined by the condition that the value
of Wu in equation (hga) is a constant all along the center line of the
whg. The area T is indicated.by the shaded region in the last sketch.
so that equation (kga) for the case y=o (and for added simplicity
P=l) becomes for x > s

.



+

and for O<x<s

2-Y1”2

Introduce the notation

●

1el=~$e=~$kl=~ k2=e-el
- el’

‘Jand these equations becom,5 since a = - ~
o

for o<e<l I ,

for Ice
f

e
1= f(e) + # k>2f( el)del

o

I
56)

J
e e-l

l= f(e)+~ k~2f ( el)del+ :
f

J

Elf (e=) de~
e-1 o

5The symbols B ati E indicate elliptic tite.~als. ~Us .-

.

?
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The solution to these equations has been obtained numerically and
. has the form shown in the sketch.

Since from equation (55) the
average spanwise loading P can
be readily calculated as

the curve for
can easily be
curve is also
together with
variation of

average spau load~
constructed. This
shown in a sketch
a portion of the
P obtained fhoman

exact linearized analysis.

In the interval where the compar-
ison canbe made (i.e., near the
leading edge) the agreement will

.
be the poorest because in this
region the spanwise variation
deviates most radically from the.
value assumed in the construction
of the integral equation.

f(e)

L- exact linearized

()P> :

0
s

Drag Reversibility Theorem

The well~own theorem that the drag of a symmetrical.nonlifting
body is the same in fo~ard and reversed flight at the sam speed (see
reference 5 or 6) can be derived in another way using the results of the
preceding sectims.

By definition

m=$
L[

2Mx>Y)cp(x,Y)dY dx “ (57)
where

s area of the wing

Au slope of the upper surface

~ pressure coefficient
●

Using equation (47%),
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L/’k~ [ J’~’&’’(x-~:x’’”)l’58’hu(x,y)dy & r.p.

1
SD=- i

1

{

w

Now the
obtafned

Squation for the drag coefficient in reversed flow can be
by:

1.

2.

3.

Replacing the area T~ by Ta such that TL + T2 = S

Rotating the axial system in the ~ plane through 180°

Reversing the signs of ~(x,y) and Lu(xz,y=)

There results

and s@tracti& eq~tion (59) from (58) gives
--

w

.

~Jxl,yl)xJx,y) +

rcs

(60) “

Since the

last term
synibols xl,yl,x,y are d- variables of integration, the
in equation (60) cw be written

xhu(x,Y)hu(xlYYl)

rc 3

and reversing the operators ~dyl ~dxl and
preserving the same order within the operation) y-ields
term in equation (60) the ssme expression as the first
sign. Hence

for the second
term except for

!D-%r=o

or

%=%r
as was to be shown.
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Lift on Wings With Supersonic Edges

The lift on any wing can be written

Moreover,

f

T.E.*L ~ = ‘p !l!.E.

Ir.E. q V.

where T.E. and L.X. denote
the trailing edge smd leadhg edge,

1

V.
resPectfve~, _ q T●E is the
value of the velocity po;ential on
the upper surface of the wing at
the trailing edge. ,

Consider now a wing with aIL.
edges supersonic and a straight
trailing edge not necessarily at

. right angles to the free-stream
direction. Let the wing be a
plate having arbitrary twist and
camber. Then for.a point on the
wing,the velocity potential froI.u
equation (53) csm be written

xl

1 Jv’ %( xl JY1 )~lm
~ ~ r.p.=--

-rl J (X-X.)242( Y-Y1)2

and if the equation of the trailing edge is

.

x= a+y tan A

where a is some constant, then

J7 .wu(x~, yJ dx~ dy~
~T.E. =- * r.p.

s ~ (a+y tanA-x=)242(y-y=)2

so that the total lift on the wing can be written
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L-=
q ~Or.p.J’’~JJ %(XL,Y1)tildyl

J( a+y tan A-x=)2+2( y-yl)2 .

The area S, being that of the wing plan form, does not depend on y
so the y integration can be made first and, since the edges of the wing
are supersonic, the interval S1 ~ y ~ sz must always contain the roots
LI and A2 of the expression under the radical. Hence —

L
s @r.p.

~(~2- tan’ A)(A1-y)(y+a)”

and since

Php w
—,

=YI

; ‘*fJ’ “u(x;:Y=)‘“y’
h alternative expression for equation (61) is

c’=J&
where & is the average angle of attack of the
tion

(61)
v ● _

-1?za— u’ Wu(xl,yl)
ihcldyl

‘s V.

(62).

surface and by defini-

(63)

It is interesting to notice that the lift coefficient for such a wing is
the same_as that for a twtiimeasional flat plate flying at em angle of
attack a into a free stream, the speed of which is given by the co~
ponent of velocity normal to the trailing edge of the thre~imensional
~ just studied. This result has been derived previously in refer-
ence 7.

Ames Aeronautical Laboratory,
National Advisory Committee

Moffett Field, Wlif.,

. .

—

for Aeronauticsj
oct. 16, I$?50.
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