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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2356

TWO-DIMENSIONAL TRANSONIC FLOW PAST AIRFOILS

By Iung-Huai Kuo
SUMMARY

This report concerns the problem of constructing solutions for
transonic flows over symmetric airfoils. The aspect of the problem
emphasized is, of necessity, not how to form a solution for compressible
flow but how to simplify the initial phase of the problem, namely, the.
mapping of the incompressible flow. In the case of the symmetric
Joukowski airfoil without circulation, the mapping is relatively simple,
but the coefficients in the power series are difficult to evaluate. As
a result, the problem requires simplification. Instead of the exact
incompressible flow past the airfoil, an approximate flow is used, which
is derived from a combination of source and sink. This flow differs
only slightly from the exact one when the thickness is small., By the .
same method, the flow with circulation is also considered.

After the incompressible-flow functions are approximated in this
fashion, the numerical calculation of the corresponding compressible
flow, by the hodograph theory, does not present any essential difficulty.

INTRODUCTION

) .

The problem of transonic potential flows has been considered in two
previous reports (réferences 1 and 2). The object was, in the first
place,. to construct a solution for a closed body, and, secondly, to devise
a method by which the flow can be easily calculated. The method of con-
structing a solution is essentially a method of analytic continuation.
That is, a complex potential, which is known as a function of the complex
velocity, is represented by a Taylor series about the origin of the hodo-
graph plane and by another series in an annular region. Both series are
convergent in their respective domains and agree on the common circle of
convergence. In the interior region, a solution for compressible fluid .
can immediately be obtained by replacing the proper particular integrals

"in the Taylor series. The new solution does not affect the radius of

convergence and, as Mach number tends to zero, reduces to that of the
incompressible flow. The solution for the annular region cannot be
formed by simply replacing the corresponding particular integrals in
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the outside series of the incompressible flow, because the solution S0
obtained does not agree with the inside series on the circle of con-
vergence and, consequently, does not represént the same function.

The problem is then not so simple as it first appears to be. In
‘ order to make both series represent one solution, the idea of retaining
| the coefficients in both series of the incompressible flow must be
abandoned. Instead, both the coefficients as well as the form of the
solution are modified to satisfy the conditions on the circle of con-
vergence (reference 2). A different approach to the same problem is
that due to Lighthill and Cherry (references 3 and 4). Instead of
choosing in advance the form of tlhe outside series, they first transform
the Taylor series into a double series, which, on interchanging the
order of summation, can be summed to yield a single series. As a result,
the series is valid anywhere except at the singularities in the domain
| considered, and analytic continuation is automatically accomplished.
| The continued outside series consists of two series; one is derived
j from the outside series of the incompressible flow and the other is s

Taylor series.

‘The status of the hodograph method is then this: If a complex
potential is given in series form, a corresponding solution for com-
pressible fluid can be constructed, the body shape being unknown until
the end of the calculation, - It is.apparent that the fundamental problem
of determining the flow pattern about a given body remains unsolved.
Moreover, even the transformation of the complex potential often poses
many practical difficulties. Nevertheless, the hodograph method is
still the only one available by which an exact solution may be sought.
For this reason, there is still ground for further exploration along
this line. '

It is the object of this report to examine a case of more practical
interest than that previously considered, in order to discover possible
means of simplification. As a first attempt, a symmetric Joukowski air-
foil is studied. In this case, if the rule of transforming incompressible
to compressible flow is strictly followed, the calculation becomes
extremely laborious. However, if a special case of small thickness -
which is also of practical interest - is considered, the functions can
be simplified to such an extent that numerical calculation is practical.
The process is, in a sense, approximate. But as far as the compressible
flow is concerned, the merit of a method lies only in whether it yields
a good aerodynamic body or not. It-has never been demonstrated that an
exact incompressible potential function gives a better result. From this
point of view, this is just another way of choosing a complex potential.

.
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Finally, it must be emphasized that the present investigation is
only the beginning, as far as practical calculations for useful airfoil
profiles are concerned. Taklng the approximate function as a guide,
refinement is not difflcult to make by introducing additional terms.
according to the ‘character of the function. For instance, when circu-
lation is present, the hydrodynamic functions for compressible flow
transformed from those of incompressible flow for a symmetric body will
give a negatively cambered airfoil, The necessity of applying correc-
tion terms is obvious.

This work was done at the Graduate School of Aeronautical Engineering
of Cornell University under the sponsorship and with the financial assist-
ance of the National Advisory Committee for Aeronautics.

FUNDAMENTAL EQUATIONS AND THEIR PARTICULAR SOLUTIONS

A steady, potential, and isotropic motion of a perfect gas in a
plane satisfies a system of equations in the hodograph plane (refer-
ences 1 and 2):

d_ PO @2
4 dq P ( )56

> (1)
06 - P dq .

Here ¢(q,6) and V¥(q,6) are, respectively, the velocity potential
and stream function; g and 8, the magnitude and inclination of the
velocity vector, respectively; o and M, the density of the fluid and
'the local Mach number, respectively;  and Pyps» the value of p at gq = O.
(See appendix A for definitions of all symbols. )

This fundamental system, as shown previously (reference 2), can be
solved and, in the case of V¥(q,8), the particular integrals are

e
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aa_VETVFV(T) cos VG:I

and

9.andk/mr(l-'r)Bd—'r | | (1*)'

and, in the case of ¢(q,8), are

(- Par 0 e
> (5)
- T)‘Bq‘”F_v(ﬂg_v(T){_:i;‘} v
- C J
A
(1-7)P aa—v[TVFv(T)gv sin Véﬂ
| , . ¢ (6)
| B
(1-7)"PB -a—v-[erv(T)gv(T) cos val ]
’ T
(1-- T)'B - %f (1 - T)—B Q‘Tl and 6 : (7)

All these results are well-known except equations (3) and (6) which can
be found in appendix B. Here F, (1) and F_,(r) stand, respectively,

for the hypergeometric functions F(av,bv; v + 13 'r) and

F(av - V’bv'" v; 1 - v; 'r) for nonintegral parameters V. In case v
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is an integer n, the definition of the second integral is modified.
The new function will include a logarithmic term (cf. reference 2) and
is denoted by F_p(v). The functions gv(T) and 'g_v(T) are defined

by‘

[ d v/2 -

ng(T) =27 = logg T FV(T)

.. d -v/2
vg_v(T) = 27 m log, T F_V(T)
and the constants a, and bv are defined by
a, + bv =v -8 _ »
) | B = (9)
aVbV = = E BV(V + l)
and the variable T is
- o 5
T il (10)

2B col

where 7 1is the ratio of specific heats of the gas and cg, the speed

of sound at q = O.

Furthermore, F,(7) is an analytic function of both variables T

.and v. For fixed T <« - i, it has simple poles at v = -n and,
7 + : TN
accordingly, possesses an expansion of the form (references 3 and k4):

Ry (1) = £(r)1¥ - ) B By )™Vg (o (11)

+ m
m=1 v
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where

o , 4 A
(‘1-7)71/ L : '

(1 -y )1/h

f(T‘)'

2 [71(1 - T)l/2 * (1 - 7127)1/2']71 . ’7 T 1
(1) (l - 71)71 (l _ T~)l/2 . (l- 71%)1/2 71 = ——1 \ (12)1

1

r(am)f(m +1- ‘bm)
P(am - gDD(l - bm)m!(m - 1)

This expansion is valid for all values of Vv except negative integers,

When Vv = -n the limiting process gives
-Nn . ® ¢ C
F_ (1) = £(1)T (1) =) —B tPB(r)E (T) -
-n +m
m=1
n o (;n (13)
cp |7 Fplr) loge T + .y Fo)l -

n 4

where the prime indicates that the term m = n is to be excluded.

~ From these particular solutions one can construct a solution for
any boundary. in the hodograph plane. Once the functions ¢(q,8) and
V¥(q,6) are known, the flow pattern in the physical plane is given by
integrating : :

o  x s(coseéz-p_osmea_w) ]
. ¥ q 6 P

-

él‘ 1 sin 6'99 +_Eg cos 6 éi ‘
09 a 06 .

"
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and
ox _ 1 9 _ Po o
Sq = qézos 6 3 5 sin 6 Bq>
X - | 0 (15)
o _ 1 % , o ov
Bq q(snn 6 Bq + 5 cos 6 Bq) J

where x and y are the coordinates of a point in the physical plane.
'MAPPING OF AN INCOMPRESSIBLE FLOW

The potential flow of an incompressible fluid. past a symmetric
Joukowski a1rf01l without circulation is determined by a complex
function  W(z)

2 . ' ’
W(z) = + ¢ + Ei—i—il— z =0+ % (16)

° t + ¢

where

Z =X + iy

T
I

€ + in

Here all the physical quantities are made dimensionless by dividing,
respectively, every length and velocity by the radius of the generating
circle and the free-stream velocity. Then € 1is a purely real number,
The complex velocity w for such a flow is :

L+ 1+ 2e)
T+ 1)(E + €)2

(17)

This equation expresses the relationship between w and (. It
can also be interpreted as a transformation function from the {-plane
to the w-plane. In other words, if a flow field in the Physical plane
is given, its image in the w-plane is immediately known by means of
equation (17). Since the present problem is formulated in the w-plane
instead of the z-plane, the flow field in the z-plane can be calculated
from the inverse transformation ¢(w), which is given by solving
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: €3 & (1 + 26)t% - G(Gl ’: i)w t - 1€-ww -0 ' (18)
% The three solutions of this equation are:

C16w) = B(w) + Q(w) - 232€ )

o) = 200 + @] - BB - awl] - 2225 L ()
E3(w) = -L[pw) + atwl] + L) - a)] - g

1 where )

9¢(1 + ¢ + ¢°) |

| P(w) = ~24(1 - ¢)3 + =5 creEs.

3 ' l -w

133/26(1 + 2es)3/2w1/2[l (1 -3+ e {l

- (1 - w3/ 1+ 2e)?

> (20)

9e(l + € + €2) .
l -w

Qv) = % (1= 63+

133/2¢(1 + 26)3/2Wl/2|:1 S Q-3 e w

(1 - w)3/2 (1 + 2¢)3

-

This indicates that to a neighborhood in the w-plane there corre-
spond, in general, three distinct neighborhoods in the §-plane or the
z-plane (see fig. 1). The exceptional points where two of thé three
solutions become equal -are given by dw/dC = 0., This yields three

1+ 2¢ '
2 + ¢

points £ =0, § = , and § = » about which two of three
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solutions join. Furthermore, it remains to investigate how the axis of
reals, that is, v = O, is mapped in the t-plane. By separating into
real and imaginary parts, the velocity component v in terms of E

and 7 is:

o 2en(E2 + et + né)[z2 + e)§'+ 1+ 2&
(¢f + 28 + 1)(EE + 2¢¢ + ¢2)?

Then v = O corresponds to
. ) =0
(2+e)E+1+2=0

€\2 o _ EE
(3 =%

In other words, the axis of reals of the w-plane corresponds to: (a) The
axis of reals of the {-plane, (b) a straight line through one branch
point parallel to the n-axis, and .(c) a circle. Moreover, while u
increases from zero to one along v = O, gl(w) decreases from the for-

ward stagnation point to negative infinity, Cz(w) increases from zero
to positive infinity, and §3(w) decreases to a negative number. Evi-

dently, brénches I and IT join smoothly at the line ¢ = - 1+ 2e and

2+ €

branches II and IIT meet along the circle (g + %)2 v 2 = %?,
Branch III then lies entirely inside the circle of radius ¢/2. Hence,
the flow over a body with a sharp trailing edge, complicated as it is,.
remains essentially the same as that over the body which is symmetric
about two axes with two stagnation points, Finally, by substituting
equations (19) in equation (16), the corresponding branches of the com-
plex potential are. Wy(w), OWQ(W),\and oW3(w).

’

When circulation is present, having the magnitude required by the
condition of finite trailing-edge velocity at an angle of attack a,
the complex potential is

. o .
S C (1 + ¢) oo

ow(z) =.(§ + ¢e)e o +21(1 + €) sin o logy (§ + €) (21)
+ .
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with 2z = + %; and the complex velocity is N

2 (¢ + ede™i®@ 4+ (14 e)eic{l

(¢ + 1)(E + ¢)?

(22)

’

The inverse transformation function ¢(w) in this case consists in the
solution of

(éfi“ - w)§3 + [;e'i“ + kl + e)eia‘- (1 + ge)é]gz -c(2+ e)wt - e2w =0

(23)

The solution of this equation can, of course, be given, but the
expressions are so complex as to make any practical manipulation dif-
ficult. To bring out the complicated character of the Reimann surface
it is sufficient to determine the branch points and branch lines., Now
the branch points are { =0, { =« and

(1+ e)(l _ e2ai)§2 + el§‘+ e + (1 +_E)e2ai £+ 26[; + (1 + s)e2a%] =0

of which two are inside the body; and the wind axis in the hodograph
plane, that is, the axis in the direction of the wind, corresponds,-even
for small values ‘of a, to curves in the {-plane:

\

al(l + €)(& + 1 + Ze)ql‘+ e[(e + €)8 + 1 + 2€]q3-+ a(l + e)[5§3 +

6(1 + e)§2 - (3 - 2¢ - 62)§ - (1 + e)é_.ln2 + eE(E + e,)[(z + e)év +

1+ 2¢|n + ol + €)§2(§ + 1)(t + 6)2 =0

This equation is of degree four in 7 and five in t. It would be
interesting to trace. this equation for given values of ¢ and «a.

This was not done for the sole reason that the exact problem is too
difficult, if not impossible, to handle. It should be remembered that
the present procedure of constructing a solution of a compressible flow
depends primarily on the knowledge of an incompressible-flow solution
in the form of power series. Even in the case of zero circulation, as
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can be seen from equations (20), the series expansion of the complex
potential yields sets of coefficients which are, at least, double
infinite series (cf. appendix C). -One can easily see that the initial
task alone is a formidable one, not to mention the later computation
of the compressible-flow solution. This amount of labor is particularly
unjustifiable in this problem because, even if one starts with an exact
solution, he may still end up with a body very different from what he
expected because of the distortion due to compressibility. For this
reason .deviation from the formal procedure is recommended wherever it
is convenient. In this report, the case of small thickness and small
angle of attack is studied first.

Before proceeding further, it is mentioned that the Joukowski air-
foil is characterized by having a cusp at the trailing edge. Although
the velocity is finite there, the acceleration is infinite and, con-
sequently, the analyticity of the mapping function breaks down; namely,
ddW/dW = 0. In order to preserve this property in the case of compress-

ible flow, the stream function Vv(q,p) must satisfy

-

2 _ |

dq '
. (2k)

N _

36 )

In the case of symmetric flow,Jthe first is satisfied identically.h The
second serves to determine the speed at the trailing edge. '

v

APPLICATION TO THIN SYMMETRIC AIRFOILS

Consider the case of a thin symmetric airfoil present in a uniform
flow without circulation, namely, a = O. Since the thickness ratio of
a Joukowski airfoil is directly proportional to the parameter ¢, for
thin airfoils e must be small. Suppose that the airfoil is so thin
that terms higher than ¢ are negligible. Equation (18) is then
simplified to ‘

=0 (25)
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of which the solutions are:

600 = -1 (1 + 201 L- e
= -= + +
1 2 ) l-w
, > (26)
Eo(w) = -1 (1 + 20)(1 \’1'”2"
W) = -= + 2¢ -\ —
2 2 1l -w
, J
1 - 2¢

» being.of the order of magnitude unity.

wvhere €7 = 1+
€ .

By making such an approximation it 1s seen that the third solution
disappears. This is explained by the fact that the third branch lies

wholly inside a circle of area % nez which, acecording to the present
approximation, is zero; therefore §3(w) = 0. The branch points are

now located at ¢ =-%-(1 + 2€¢) and §{ = o, connected by the branch
line (fig. 2) 2t + 1 + 2¢ = O,

The problem is indeed simple. The question, however, is: What
flow is represented or, in other words, how is the complex potential
modified? By using the simplified transformation function, a straight-
forward integration gives

l+ 2¢
Wz) =80+ €+
oM(z) = ¢ =

loge (l + %f) | (27)

The flow in the {-plane is then that produced by the superposition of

a sink and a- source at, respectively, { =0 and ¢ = -2¢ in a uniform
flow. It is very easy to see that, if ¢ is .small, the vanishing of
the stream function corresponds closely to a circle with radius 1 +.¢
and center at § = -¢. Hence for small values of € the curve in the
z-plane will not differ much from a Joukowski airfoil. By substituting
{y and &, from equations (26) in equation (27) the two branches

of the complex potential are
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i -
' ’ 2
l -¢y7 W
1 : 1
owl(W) =-§l+ (1+2€) -1_—w]+
(l € 2 1/2
1l + 2¢ e = lw)
— 1o 1l - - + 1
2¢ 8e 1l + 2¢ 1l - W
. .? (28)
N . -
l - 697w
-1 1 .
owg(w)—-el-(l+2e) "
: 1l - e1°w
1_+2_610g l__he__ - _..__._l_ + 1
2¢ €l 1+ 2¢ 1 -w ]

By taking ¢ = 0.08, the hodograph ,(q,6) = 0 from equations (28)
and that of a symmetric Joukowski airfoil are compared in figure 3. It
is seen that, except in the neighborhood of. the singularity w =1,

the agreement is quite close even for a thickness ratio of about

10 percent.

For the case where a weak circulation is present, by the same
method of approximation, equation (23) simplifies to

2 2ai ) 2ew
+ 1+ 2¢ + - =0 2
(® e (14 2e v 22 L RO | (29)
Here o is assumed to be the same order of magnitude as €, and there-
fore the product of ¢ and a is also dropped. The solutions of this
equation are ’ .

-

. : 2 )

l-¢€1"w

Cl(w)=—l+.2€l+ - = +ai-ll. - L
2 -W -W (1 —w)l/z(l -612V)1/2
r(30)
2

l-¢yw .

Eo(w) =;_ljé§£ 1 - 1" +ad |-t 4 ; 1

l - l - ’
w w (1 _w)l. 2(1_ €12W)1/2
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the correépondiqg complex potential is

1+ 26 + ai

oW(w) = (1 - ai)f + € + e

loge (l + 2?€)+ 2ai loge (¢ + 2;) |
31

The body in the {-plane is again a circle, provided both € and «o
are small., A substitution of '§{; and {5, from equations (30) in

equation (31) gives, respectively, oW1(w) and  Wo(w).

It should be noted that, in the previous case when circulation was
present, it altered radically the nature of the singularity of the flow,
Now by comparing equations (30) with equations (26) one can see that
circulation has introduced essentially no complication and hence the
problern can be similarly handled as in the case where no circulation
exists. : - :

EXPANSIONS OF oW(w)

When o = O.- For thin airfoils, as seen from the previous section,

the domain of interest has two branch points ¢{ = -% (1_+ 2¢) and § = o«

the corresponding péints in the w-plane are w=1 and w = 12, at

€1
each of which ,W(w) becomes singular. As a result, two different
expansions are required to represent each branch of Ow(w). In the
case of oWi(w), the origin is a regular point; for oWo(w) it is a
logarithmic singularity.

Consider Wj(w) for the case. o = 0 first: About the forward
stagnation point |¢] # 0 and Wy(w) can be simplified in the form:

1+ 2¢ e(1 + 2e)‘+ 0(62)

£1 o3 (32)

oWi(w) = §; + e+
By means of the relation:

_ 2¢ew
§1§2 = 1 - w
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oW1(w) can be reduced to two elements (1 - w) '1/2(1 - elew) -1/2 and

(1 - w)l/z( - €1 w)l/2 ‘which possess the following expans:Lons in the
respective domains:

“ _,w)-l/z(l ) 1/2 2:: s, (i)

. lvl<1 b (33)
(l.— W)l/2(l - fslgw)l'/2 =Z lSn(i)Wn
. O ) .J
where . | _
(;) n (1N \ a(pem ]
Sn = (-1)" Z 2>(u 2 m)el n-m
m=0 \m -
. ; (34)
i) n <& l)(ﬂ 1 2(n-m)
= (-1 2 2
. (v %(m - ‘1 4
and

R VIS wMCNC
. X 0

i Sn( o )w‘n .
T A

- | | | o<l 2 39

. 612
(1 - W)l/e(l - elgw)l/2 = Z 1Sn(°)€12nwn "
. 5 _

A:lsn(o)w-n | J
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where '
\ 1/ .1 1
sn(o) = (-1)" 2 2 1
o .
S (36)
1/ 1
1S(°-(l) (2 2’)2111.
m +
A simple reduction then yields |
oW (W) = -A'O - ; AWl + 0(62) vl <1 (37

where

Ap = 1+ 2¢ (Sh(i) - 61285_1(1)) + ———(1' b 2.6)2‘I§n+1(.i) - (l '+ ,€l2)sn(i) +

2. . he

8¢

| 3 )
€12Sn—1(l):| * (_l:_ai)—[-smz(l) M (2 + e2) Sn+l(i) -

26,2 (1) -5 (1) 4 'elesn_l(iﬂ

-

(38)

---—— —~Here~“A5 ~is Zé€ro, as is easily shown from equation (27); in the above
| " expansion it would have been of the order of 52 and hence is included
_in the symbol O(G2 )‘. The velocity potential and stream function are,

neglect‘ing 0 (62) ’

. .
oq’l.= -Ag _;.g: Anqn cos né

q<1l

o0

= g Apq™ sin né

(o]
<
-
|

- (39)
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If the expansions (35) are introduced, in the annulus region one will
have - '

M (W) = B_zw“?f B_ywl+ B+ i i: (B,w + cvw‘{’) < |v| <1_12_.

0 €1
where ) - (1#0)
. _(l + 2¢)(3 + 8¢)
° 8¢
_ (1 + 2¢)
B‘l B 2¢
by - L+ 203
8¢ -
1+2 (1 + 2¢)?
By = > G(Sn+l(o)" Sn(p)) - lre - 1Sn+1(°) =
1+ 2¢)3
( ge é) (lsn+l - 15n+2 ))
: - f (41)
- € 28
1l °n+l

8e .
c 1+ 2e(s (0) _ ¢2g (0)) _(1+26)2 o (o) _
1/2 > o 1 le 1%
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Separating into real and imaginary parts,: ¢, and are
> 0"l o¥1 2.

approximately,

0 .
B a2 cos 20 + B .q"L cos 6 + B + 2:: Ba" - Cyq-") sin o]
o1 o9 , 14 o & va va

. . e p (42)
_ 2 o i v -v) '
oV = B_,q7° sin 26 + B_;q7" sin 0 + 2;: (Bvq + Cvg ) cos Vo
for 1l <gq <:—2Ln
€2

In the case of Owg(w), as w =0 1is not a regular point, a Taylor

expansion does not exist. It can be expanded, however, in the following
form: « :

Wolw) = 22: A_v B+ 2;: AWt + O(eg) - |ﬁ| <1 (L43)

where A, is defined in equation (38) while A_,, A_y, and A_, are

-y

- _ 30 + 2¢)
N S P
| 2 o
oy = ttr2e” | . (44)
- < .
(14 2¢)3
Ao = Le )

On the other hand, in the region 1 < Iwl < 51'2 the expansions are

NG

oMal™) -3 Bwen - 1) (B +ep) + o(?) (45)
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Here the constants B_,, B_;, Bg, Bv,~and C, are defined in equa-

tions (41). It is clear that by circling once about w = 1 branch I
goes smoothly over into branch II, as is easily seen from equations (L40)
and (45). Similarly, the velocity potential and stream function are,

omitting 0(62 3

. P 7
P = E A_pq”" cos nb + 22 An?n cos nf
o<g<l L ()

2 0 '
oV = 2;:-A_nq'n sin né + 22 A q" sin né

and for 1< q < 2

-

. 2 .
0P = 2:: B_,q7" cos né + Sf: (BvqV - vq"’) sin vé
0 0 .

b ()

2 -
-n gi - v -V
Z;: B_nq sin nb E;: (Bvq + qu ) cos v6 J

i}

'o¢2

When a # 0.- When o is finite but small in the case of a thin
airfoil, equations (30) show that -

£, =600 4t (D
L (48)

6, = 6,000 4 ag (D)

7/

where Cl(o) and gg(o) 'are'the transformation functions for o = 0

. \ o .
and Cl(l) ‘and -§2(l) are correction terms due to circulation. There-

fore, they are defined as follows:
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R - .
Cl(O) =_l+2e<l+ 1‘912V> '
2 1l - w R
(0) 14 26 _,’1-e2w)
§2 T2 (l ) 1 -Ww
' , (L49)
_icl(l) - 1 _ ' 1
1-v (. w)1/2(1 __Glgw)l/z
(1) 1 | 1 :
-1 =-
o T - w o W)1/2(1 _ elzw)l[2
=,
Similarly, the complex potential can be written as
o1 E owl(O) ta owl(l) .
’ - (50)
oW2 = owe(o) ta owz(l)
A v}here ow_l(o) " and ow2(°) are .defined in equatiovns‘(28) and owl(i)
and Owe(l) are found to be
A A RO S S (ORTS e
: (1)
1 (o) _ (1 +2e)ty
2 loge b1 §1(°)<§1(°) + 26)
| b
-iWé('l) - ge(_l) - gz(o) + _1__;_€i€ log, .(51(0) + 26) -
' ' (1)
— log, & - A
2e 1Ot LD - 29 - )

which are valid if g(°) £ 0.
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(l) . . . -

To expand oW(w)'~’, besides the fundamental forms, expansions- (33)

‘and (35), it is required also -to consider

log, [(1' - 2¢)(1 - w)l/2 + (14 ee)(l - € w)l/zil

and

log, El - w)l_/2 + (1 - € w)l/2]

For the first expression let

-

F(w) =§w- iége El»- 2e)(1 - w)l/? + (1 + 25)(1 - w)l/zjl

By direct differentiation one obtains

-1/2( _

1 - ¢

2w) -1/2

F(w) ='-% (1 - w)

By making use of equations (33) and (35), a term-by-term integration
. gives

/2 1/2
log, ‘:(11—26)(1-»1)/~+(1+2e)(l-el )/]_
. & :
€ &S, (i) . :
1 -1
- Y BBy loge 2 : vl <1 (52a)
2 l n ) . ’ . .
and, aside from a constant,

loge [1 - 2¢)(1 -w) 1/2 + (1 + 26)(1 - 1w ) /2]

g

\ i-;—-l g \7( GO Sn(o)’ €l2nwv) (s52b)
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A similar method yields

logé [(l - w)l/2 + (1 - el2w)l/2:] =

e (1) _ ~ A . ,
- % ; 2— v + log, 2 vl <1 (53a)
and ‘
Log, El."w)l/z s (1 ) 512")1/2] . - o

tfiog v + 1 5 om0 - sn<o>w-1)} <o (53
- 0 ‘ Lo DT
net

51(0.) (Cl(O) . 6)

can be written in an expansible form:

Furthermore,

’

3

1 l—ir
-.—l+€l _.-—.—2—
2¢€ l-elw

Collecting all the individual expansions, one finds
00
. : s : 2 ,
i gt - an e 3 s oD i< b

where -

NS (1 - 5,) : L:é_Eg(sn<;> )

1+ he 1(1 _ Glas 4(1)) . _1_-;(1 _ Sn('i)). +

ke D n-1 e n

1o ;fe(sn_l(i) - s_n(i)) | S 9)
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Here Al(l) is of the order of €2 and therefore neglected. The real
and imaginary parts of the correctiop term of ow(w) are, to the order
of approximation considered,

oD = 2x+ Y (VR sin no
o'l 5

q<1 $ (56)

owl(l) = };::An(l)qn cos nf -

In the region 1 < |w| < 51'2,.with the exception of a constant

00

oo (1) _ 1+ ke i 1\.-n
-1 Wy = TTThe loge we™ " + 5;: -1 + oy LA

00

>?>—— (Bv(l)w" * Cv(l)-W'V)f of &) (57)

where’

.ﬁ(58)_

,CV_“) _s (o) _ %-(S,n“)
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The corresponding functions oq)l<l) and Ollfl(l) are

o(pl(l) ='1h: 1&'6"(,( - 8) '.; (l‘+ %.)q"n sin né +

i (Bv(l)qV - Cv(l)q'v) sin V@ + Constant
0 S

00

Wl(l) 1 ; he 1°ée q + Z (1 + .];)q"n cos nf +
€ T :

n

n

.00

Z (B (l)qv + C (l)q'v) cos v + Constant
5 \V v

Similarly, for the second branch the expansion is’

' . 0
VAT ¢ 0 NI G ) R S (1) 2
-1 W, = C, - 5 i - = logew-tgcn wn+0(e)
where
© (1) 1+ ke R 1+ 2¢
C = log, € = — log + 2
° Le € pe™®

o) 3(1 ) sn<i>), ) %ﬁ(sn("i’ ) elzsp—l(i)) .

1—4'—35(1 + Glsn-l(i)) - —l‘—(l + S,l(i)) +
hen €n *

l . .
_;€2—€(Sn( 2 - Sn-l( l)>€1

> (59)

vl <1

(60)

\ (61)




NACA TN 2356 ' 35
For the region 1 < jw| < €1-2’ it 1is

. N oo .
: 1) __1 ni 1) -n ~
-1 ow2( ) = "5 loge w - log, we'~ + ; (1 + E)w -

i (Bv(l)ﬁv' + va-v) + 0(62) (62)
) .

where a constant of order unity is again left out. The co_rfesponding
real and imaginary parts are:

00

OCPe(l) = 2—15 (n - 6) + E Cn(l)qn sin né
: 2 o
a<l p (63)

2¢

01],'2(1) = Co(l) - ilogequ Cn(l)qn cos né
. ) _ : :

J
and, aside from a constant, in 1 <q < €1_2’
% B
(1) - _L - 0) - L\q D sin no -
o® == 6+ (n - 86) ; 1 * SJa " sin né
i (Bv(l)qv - Cv(l)q_v) sin v@ -
0 .
> (6L)
- (] .
l .
O\lfz( )= _l_+l_*£. log, q + Z (l + }_)q-n cos nb -
CT he 1 n :
t (Bv(l)qv + Cv(l)q-v) cos v@
) - | J
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CONSTRUCTION OF A SOLUTION FOR A SYMMETRIC AIRFOIL

The complex potential oW for a flow over a thin Joukowski airfoil

has now been transformed and expanded in power series of w for both
the case of zero circulation and of a weak circulation. Knowing the
form of expansion of oW, a solution relating-to a flow of 1ncompres—

sible fluid about a certain body’ can be obtained immediately by
replacing each term of the series by the proper particular integral as
given in the section "Fundamental Equations and Their Particular
Solutions." For instance, thé complex potential in the case of zero
circulation is '

- o °
Hilw) = - g Apw? vl <1

The complex potential Wy(w,7) relating to a compressible flow is,
accordingly,

Wy W,T = Z )wn+ EZ hmcm(FlTDm Ype 0 -

Ao gag K‘J—T_lTl)n Wneinﬂ n=2 lv] <1 (65)

of which the imaginary part gives the stream function, namely,

n(g,0) = mfin(w,n] (66)

Here the definition of Fn(r)('r) may be either F () / (Tl) (refer-
ences 1'and 2) or Fn(T)lTl(Tl) (references 3 and 4), where T = Ty
when ¢ = 1. It follows from equation (66) that the stream function is

¥y.(q,8) = ZAnan (r)(T) sin né + Z hmc \rlTl) o Sin mo -

d n ' |
Ascs g;[if?iTl) Y, sin n%]n=? Q<1 (67)
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From equation (5) the velocity potential is

@1_(Q:9) = A - (1-7)7P E:: Anan (r )gn( ) cos nb +

Efi hmc lTl) Vpbp cOs m6 - Asco — [}-iTl Vpé, cos n;]

g<1 (68)

Both series (equations (67) and (68)) converge only within the unit
circle gq = 1. In order to have a function to cover the whole field of
flow, both series must be continued across the circle .of convergence,
There have been two alternative methods proposed to effect this con-
tinuation. The first method (references 1 and 2) is to have the solu-.
tion corresponding to the. flow in the upper z-plane arranged in one

w-plane. After the series, for example, equations (39), (42), and (L6),
are modified, they are required to be continuous with continuous normal
derivatives on the circle gq =1 (fig. 4). On account of compressi-
bility, the modified solution will be discontinuous in normal derivative
and hence- Wy_ and Wi can no longer represent the same function. To

n=2

correct this, one set of coefficients is left free and an extra series:
is added to Wl. These two sets of coefficients can then be determined

by the condition at q = (reference 2). The second procedure (refer-
ences 3 and 4) is to proceed from a Taylor expansion, equation (67), say.
Expressing the function Fp(r) in the form of equation' (11) gives rise
to.a convergent double series which, when the order of summation is
changed, is transformed into a form being convergent even for values of gq
greater than unity. Analytical continuation is thus accomplished. In the
following discussion, the latter procedure is adopted for simplicity.

At this point, .the convention for. numbering the branch of W(w)
is altered. Instead of dividing the z-plane fore and aft, it will be
-more convenient to divide the plane into upper and lower halves. Then

oW1(¥) indicates the upper half and oWo(¥W), the lower. The parts
o . =2

corresponding to the regions q <1 fore, 1 < Q<€ ,and 0 <gqg<l1

aft are, respectively, oW1-» oW1s and oW1+4e

By the second method, replacing Fyp(T) in equation (65) by equa-
tion (11) and, for ev1dent reasons., adoptlng the definition
Fn(r)(T) F (T)/Tl l)’ equation (65) can be written as

0

Wi(w,T) = -£(1 Z Ay (tw)R L‘ﬁ An(tw)ni —= TmeFm( ) +

m=1

n=2

; hmcm(FlTl)m‘mee 0 - hpep aa—n IKFlTl)n\lfneinﬂ
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where t = T/Tl. The first series can be summed and, by changing the

) - order of summgtion, the second series can be transformed into a single
| series. Thus

[+]

N x X 'ﬁ "
- wl(w,T) = £(7) Owl(ﬁ) - EE; cm(‘?iTl)me(T)eimetjw wm'lowl aw +
i m= o

; by (AT Ve - Aecz\%‘KFlTl)n‘yﬁeiﬁgJ - (69)

n=2

o /2 .
where W = tw and yy(7) = F,(1). The first term corresponds to

that resulting from the asymptotic summation (references 1 and 2) and,
in the special case 7y = -1, reduces to the Kérmin-Tsien approx1mat10n.
The integral in the second term is bounded and the series can be shown
to be convergent for q > 1 (references 3 and 4). :

By taking a path starting from the forward stagnation point to an
arbitrary point in the annular region, namely, :

W : % |
f V=1 Wy (W) aw= f LW () aw + Jq =1y (w) dw
0 . . 0 Wl .

where %1 is a fixed point in the annular region, a simple transforma-
tion leads to

2 . | o

Wy = Z, B—nF-n(r)(T)W—n +1 Z EVF;V(I‘)(T“)WV + CVF_v(r)(T)w;\] +

0 0

(o2 + B,_e.cg)-a%ﬁwl)%neiﬂ o | (T0)

n=2



NACA TN 2356 29

by replaciﬁg oW1 by the proper expansion under the integral sign,

where
: ~1 ' 2 . B _w.-n B w. VW
m-1 ' Fen”l 1
= W W, dw - —_—-i — 4
P 0 0"l g -n -+ m g (.v + m
o. % -V+w) -
..L_f - B_, loge Gl (71)
-y + m

The integral in equation (T71) can be evaluated in the {-plane; namely,

1 :1 gl 1 dw
wo oWy aw = wm"'owl —§ at

0 ¢ d

(o]

The fact that Bi[(\rr_lTl)n\lrnelne:l is a solution is shown in appendix B.
: n

Equation (70), evidently, is the continuation of equation (65). Pro-
ceeding further to a fixed point %2 inside the unit circle but below

the real axis, by describ:ing a loop surrounding the point w = 1, the
following proper transformation is arrived at:

= E ey \'T_lTl)mwme + ZA aF. n (T)
— BuCa

Zo: A F (F)(r)wn | (72)
where
E 2 ¥ -n+m A ¥ n+m
_ -1 ' 2 n"2 ~
hm(f2)-~§0wm o"1 gdc"; -n+m_g n+m-A__2logew2

(73)
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The path is quite arbitrary; in order to preserve the. property of sya-
metry of the function it is so chosen that the hy's are real. Equa-

tions (65), (70), and (72) together represent the first branch of the
Riemann surface covering the entire upper z-plane. Separating intc
real and imaginary parts, the stream function is

¥1(q.6) = };E.quFv(r)(T) + qu'VF_V(r)(Tﬂ cos VO +

2

%:B_nq'nF_n(r)(T) sin nd - (A2c2 -

l<g<e™@ (74
—An=2

B_202)% [(FlTl)nwn sin nel

and

\Ifl+(q,6) = ihm(zz)cm(\]?l’l‘])/m Y,(T) sin mé -
5 B

i Anann(r)('r) sin né +
2

i_A_nq-nF_n(r)(T) sin n‘e Q<1 (75)
1
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'I‘h.e'velociﬁty potential corresponding to equations.(T4) and (75) is

Q)l(Q;e) =(1-17) Z B_,a"%F_, E_n cos nf -
Z E q"F (r)(T) + c,qVF_ )(T)g \] sin v6 +
0

(Aecz - B-ecz)aa—n KﬁlTl)n‘i’ngn cos n{ln=2' L<a<e™ (76)

and

"9;4.(q,8) = (1- )P4 g Ihn(té)cm(ﬁlTl)me(T)im cos mé -

2 .
Z A_nq'nF_n(r)('r) E_, cos né +
i

00

E;'Anann(r)(T)gn cos né 0<gxl (77)
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By taking a path from the forward stagnation point but in the
reverse direction, the second branch of W(w,T) can be joined. Now
the solution OW(w) to be'considered in the integral appearing in
equation (69) will be o

OW2_ = - ; Anwn ‘ |W| <1
\ 2 oo. W ) ‘ . P
Mo = ; Bgw ™ - 1 ; (va" + Oy ) 1< <™ % (78)

2. w - _
for = I A s o<1 -
1 ' :

J

Complete symmetry with respect to the u-axis makes it unnecessary to
repeat the process. -

In the case of the flow with circulation, the complex potential
consists of two parts as shown in equations (50). The one which corre-
sponds to zero circulation is given in equations (37), (40), and (43).

The functions for the compressible flow are then given from equations (67)
o (77). The part which takes into account the effect of a weak circu-
latlon is -

-3 Owl—(l) = g An(l)wn |W| <1 ' I

-i OWi(l) = B, - ﬁ%.we“i~+ 2:: (} + %)w'n-k,i:: (Bv(l)wvc+

T o .
: > (79)
Cv(l)w‘v) - loge we™l

0 .
-i oW1+(l) =-5 logg w + }E: Cn(l)wn 0 <|wl <1
0 . J
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By the convention é.dopted Wy (l), o¥1 (l)

o and ‘g1, (1) form the

and correspond to the whole upper z- pla.ne The
same method yields a solution for a compressible flow:

first branch of W(l)

-

';iWIp(l) i §:: -An(l)Fn(-r)(T)WIl * ;ibm_(l.)cm(ﬁll‘l‘)m?meme -

.' ; (1 + Eli)cn -a%lzﬁltvl)ﬁvneifﬂ,

> (80)

-i_W1+(l) = Z T&n(z)cm(FlTl)me(T)eme -
2 - o
L; 1+3 Cn l:‘rlTl ¥ne me] - . |
- T | ' L) |
‘561 +f (1 - -r)B c:_i| + Z Cn(l)Fﬁ(r)Wn
1 0 ‘

N
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The real and imaginary parts are

Wl_(l) = ;-An(l)ann(r)('r) cos .né +

eNOr—

i |
>; (1 ¥ flf)cn gagﬁﬁl?l)n’lfn cos ne:l -oaxt

. T / |
Wl(l) -2 ‘;el‘ef (1 - 1) i_"' - t(l + %)q‘nF_n(r')('r) cos no +
| R v

Z Ev(l)qu'v(r)(T) + Cv(l)q-vp_v(r)(-rﬂ cos V6 +
0 C |

" Constant l<ax €1_2

‘l'1+(l) = - .é]-:J:T (1-7)P -d—_:- + ;i hm(E)Cm(\{T_lTl)m‘Vm cos mé -
1 .
i (1 + %).cn 9-[(\‘?1'1‘1)11%1 cos né-] +
2 on 37

i Cn(l)ann(r)(T) cos né 0<g<1l
0

y (81)
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a.nd'

cpl_(_l) =(1-7)B {; An(l)ann(?)(T)gn sin né +

;i hm(l)cm(FlTl)m‘Vmgm sin mé -

Ebehalores 4|
(l) (1-7)P {Z (1 * %)Q‘I‘F-n(r)(ﬂg_n sin n@ + |

1 i
Z E;n(l)q\JFv(r)(—r)gV + cv(l)q—vF_v(r)(-r)g_V] sin ve} +1 (82)

1+ ke : :
" (n - 06) Cl<ag< e ?

Constant -
(pl+(l) .= (1 - ._T)'B|:_ i }&n(g)'cm(FlTl)mqﬁn sin m@ - |
; (1 + ﬁ)c [FlTl)an n 5in n6] 4+

chl) o (r (T)§ sinnG-L(ﬂ-GZ]' -'-q.’.<lv
5 2¢
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In a similar fashion, the second branch can also be connected by
taking a path in the reverse direction and introducing successively the
functions:

~

g (D) - (;tAn(l)wn - Ml<1 7

he 1
| , (83)
2;: (Bv(l)wv + Cy(l)w_v) + Constant 1< vl <e@
i oW2+(l) _ _21_€ logg w + }‘;‘: Cn(l)wn vl <1
! . ‘ | ~

However, it should be added that, since the functions Wl(l) and We(l)

do not merely differ by a sign, the hm(l)'s in W2+(l).‘and Wl+(l)

‘will not generally be equal. As a result; the two branches may not be
Joined with each other across the branch line y =0, % <Xx<w. In

order to avoid this difficultj, the lower limit in the integral, for
instance, equation (73), should be adjusted to make them equal.

Having the stream function and the velocity potential so chosen,
the flow pattern in the physical plane can be calculated by integrating
equations (14%) and (15) to give the coordinate functions x(q,6) and
v(q,6). When the flow is free of circulation, the stream function is
antisymmetrical about 'the x-axis. By taking x = X1, ¥ = 0 . as the

stagnation point and x = X, ¥y =0 as the trailing edge, the constants

of integration can be determined on the unit circle for 6 > 0. By
symmetry, the reversal of the sign of 6 gives the lower half of the
flow.

When circulatioﬁ is present, the symmetry property is destroyed
and hence both branches have to be calculated separately. Since
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both W(O) and . W(l) are properly joined functions, the determination
of integration constants on the unit circle for both branches would be:
sure to give a pair of continuous coordinate functions.:

Cornell University o
Ithaca, N. Y., August 10, 1948
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q
Po
p
M
¥
P
FV(T);F.V(T)
v
m,n
2
T:—J‘.‘_L
28 g2
&y, by
p=—%
y -1

§V(T):§_V(T)

7
Co

(1)

£(7)

APPENDIX A
SYMBOLS

magnitude of velocity vector
inclination of velécity vector
value of o at q =0
density of fluid

local Mach number

\ Btream function

velocity potential
hypergeometric functions
nonintegral. parameter

integers

NACA TN 2356

parameters of hypérgeometric functions

functions defined by equations

ratio of specific heats of gas
speed of sound at q = O
defined by equations (12)

defined by equations (12)

defined by equations (12)

(8)
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1
71 Y -1
X,y
OW(Z)

P(w),Q(w)
u,v

£(v)

£1(w) ,Ep(w),E5(w)

M1 (W), Holw) , oW3(w)

a

- 1l-2e
61 1 + 2¢€
oW(w)
Vo
Po
8 (1),,8,(1)
Sn(o)’lsn(o)
An

oP170V1

39

coordinates of point in physical plane

complex potential

geometric parameter of body
compiex velocity defined by equation (17)
defined by equations (20)

velocity components

v transformation function defined by

equation (18)

solutions of equation (18) given by equa-
tions (19)

branches of complex potential

angle of attack

complex potential for incompressible flow -
In w :

stream function for incompressible flow

velocity potential for incompressible flow

defined by equations (34)

defined by equations (36)

coefficient defined by equation (38)

defined by equations (39)
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- B_p,B_1,By,Cy

oP2so¥2
51(0)’52(0)

§1(1)2§2(l)

owl(o)’OWE(o)

owl(l)’owz(l)

Bv(l)icv(l)
o¢1(l)’oW1(})
Co(l)’cn(l)

oPo(1), v (1)

Wl(w,'r)

Fa(*)(1) = Enlr) |11 (r)

1
Ty
Yp_s¥yo¥y,
P1-,915%Py,

t = T[Ty

defined by

defined by

NACA TN 2356

equations (41)

gquatioﬁs (46) and (47)

transformation functions

correction

_ defined by

defined by

defined by

defined by

defined by

defined by

defined by

value of T

terms due to circulation

equations (28)
equations (51)
equations (58)
eqﬁgtions (59)
équations_(6l)

equations (63) and (64)

equation (65)

at q =1

value of T at q =1

branches of stream function

branches of velocity potential



y
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oW1 (¥)

W = tw

-¥

al™) = 7 2ry(r)

by

owl-(l)’owl(l)’ow1+(l)

vl_(l),wl(l),v;+(

1)

o, (1,0 (1), (D

ow2—(l)’ow2(l)’ow2+(l)

defined by equation (69)

defined by-equation (71)

corréction terms due to circulation
defined by equations (81)
defined by equations (82)

defined by equations (83)

L1
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APPENDIX B

PARTICULAR SOLUTIONS OF FUNDAMENTAL EQUATIONS OF MOTION

If Wmeine is a particular integral of differential equations (1),

3

,_(\lrneine) is also a solution. For the differential equation then
on .

becomes - -

afe av P
—_— _.O_ q __E - 2 ._o(l - M2)\l[n =0 N
dg\p "-dq P , -

alPo . af%¥a)]._ 20—0‘1'—M2%“=2 Po(y1 - M2)y
dq[p qdq(an ):l . pq( : )Bn i p( )n

As \lln(q) satisfies the first equation, the second equation determines’

awn/ dn. Now

-

' P b
dq):--bg(l -M2)2—gdqf?0-q-g—gd6

By substituting %Ekn(q)elnej for V¥, it is easy to show

. ) N :
to-L2(4 Poq TV Pod a"’n,,ipoqa’*’neine aq +
0 3q P dndq P d3qg ™ P oq
1 .é_ -1 Pod 82‘¢'n + B Pod awn + i poqba\l‘n ej‘n6 de
} - Do\ P dndq - P dq n p QJq
Therefore

Re]
1]

_iﬁfﬁﬁla_“’&eine)
p On\n oq
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k3
APPENDIX C
SERIES EXPANSION OF COMPLEX POTENTIAL
The Taylor expansion of the complex potential of a flow over a
symmetric Joukowski airfoil is, for 0 < |v| <1,
, : Owl = E Anwn
B ‘
M =5 2 Apv" 5 B, W
[o4]
1 KZ: 3 v
M3 = -3 2 Anwn+?i B W
where
Ap=cy+ (1+ oPp,
B, = Cy + {1+ &)7p,
2(1 + 2¢) iz <}-> 3 \fx -] -k n-3.25-% EJ(l + et GZ)J-Zk(l - )31 e):l
.- -1)
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1 3 3(x-1) 2)3-2k
Dy = 2(1 + 25) é J ( 1)J+n 23-k (l + s) (1 -¢€)" {1+ 2¢) (l + €+ €
g ; k) ) (2 + )3 ~ )
2‘1 + 26) k +5)(3-% - g 25k -5 (1 + 0™ - 0% g’ “%)(1 T M
Py~ ; g‘ ) +k-l+l)(1) 7
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