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NATIONAL ADVESORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2372

RECTANGULAR-WIND-TUNNEL BLOCKING CORRECTIONS USING
THE VELOCITY~-RATIO METHOD

By Rudolph W. Hensel
SUMMARY

In this report calculations of the ratios of the wvelocity increments
at test bodies to those at the tunnel walls caused by the solid blocking
of these bodies within the walls of a closed rectangular wind tunnel are
presented. The bodies treated include two-dimensional airfoils; small
bodies of revolution; straight, untapered, finite-span wings of varying
span; and swept, untapered, finite-span wings of varying span. It is
shown that, after wake blocking effects have been removed, the present
method furnishes semiempirical blocking corrections for most wind-tunnel
models and their components. Results are presented for all the cases
mentioned. The test-section proportions of the Southern California
Cooperative Wind Tunnel at the California Institute of Technology (viz.,

ratio.of height to width equal to l/VE) are used in calculations.
INTRODUCTION

The velocity-ratio method of obtaining blocking corrections in -
high-speed, subsonic wind tunnels was first solved by Gothert for the
cases of a body of revolution and of a finite-span wing of span-to-
diameter ratios of 0.25 and 0.5 in a closed circular tunnel (reference 1).
This work was later extended in an unpublished report to the cases of a
wing having a span-to-diameter ratio of 0.75 and of a wing spanning a
closed circular wind tunnel.

In the present report, the methods of reference 2 are used to extend
the previous results for straight wings of varying span in a closed rec-

tangular tunnel whose height-to-width ratio is l/V?: For swept wings, a
slightly different approach involving the use of line doublets has been
utilized.

This work was done by the California Institute of Technology and
has been made available to the NACA for publication because of its



- NACA TN 2372

general interest. The author wishes to express his thanks for the
assistance rendered by Dr. Clark B. Millikan, Mr. Josiah E. Smith,

and Mr. Richard W. Bell in the preparation of this report, and also to
thank Misses Dorothy Lodter and Donna Deeney for their performance of
the extensive computations.
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SYMBOLS

distance of point source and sink from doublet origin
center, or axis of test secﬁion

wing chord

maximum diameter of a bddy of revolution

x~coordinate of a source segment

tunnel height

length of a body of revolution

Mach number, corrected for blocking

tunnel calibration Mach number, uncorrected for blocking
(may include strut calibration)

integer, indicating image number in y-direction
integer, indicating image number in z-direction
line-source strength, square feet per second
point-source strength, cubic feet per second

distance from source or doublet element to point at which
velocity increment shall be obtained; r2 = x2 + y2 + z°

remainder

semispan of model wing (measured in y-direction)

maximum wing thickness
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u total axial wvelocity increment in test section due to all
images except primary one (model)

u' total axial velocity increment in test section due to all
images, including primary one (model)

uy axial velocity increment in test section due to a single
image
U tunnel axial velocity
Vx velocity in x-direction due to a point doublet
W tunnel width
W radial coordinate; we = y2 + 72
X axial coordinate
X = X
y lateral coordinate
¥y =75 - mW
2 vertical coordinate
27 = z - nH
6 =sinl &
r
o line~doublet strength, cubic feet per second
! point-doublet strength, feeth per second
A angle of sweep of a given wing at any Mach number M,
Ag equivalent angle of sweep at M, =0

¥ Stokes stream function, cubic feet per second
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Subscripts:
A, B, G, and particular points in test section or on test-section
so forth walls

For further explanation of the symbols see figures 1 to l.

DETERMINATION OF INTERFERENCE VELOCITIES

Two-Dimensional Wing

A two;dimensional wing may be represented by a chordwise distri-
bution of infinite line sources and sinks. The axial velocity increment
produced by any single infinite-line-source image (fig. 1) is

-9 _ _ ag
u = 5— sin g = 1)

2nr2

at a point A in the center of the basic tunnel, rA2 = n2H2 + g2. Thus,

qg 1 qg 1
1 = 22 = (2)
1p 2n<;2H2 + g%) 2nH2 > g2
n- + 5

o

Omitting the central source and summing for the remainder gives

©
qg 1
uy=B> (L (3)
MH® n=1| 2 , 87
H2 1

Similarly, the axial velocity at the wall of the tunnel, point B,
including both the central source and all the images, is

00

u'y =_g§_zz: 1 (L)
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For normal chord sizes, g is small compared with the tunnel dimensions

2
and hence gz/H2 may be neglected in comparison with n® or (n - %) s
with the result

_ 1
-3 (5)

, = 2
n=1 a - 1
& A 2

Thom has shown in reference 2 that ¢g for a single line source may be
replaced by z:qg, the distribution of sources and sinks representing
the wing section. Therefore, since the E:qg terms would also cancel

each other, the result obtained for a single line source in equation (5)
is identical to that for a complete wing.

Body of Revolution
A body of revolution may be represented by a distribution of point

sources and sinks along the tunnel center line. The axial velocity
increment due to a single image point source (fig. 2) is

- .a' . _a's
uy hnr2 sin 6 hﬂr3 (6)

at point A in the center of the basic tunnel, rA2 = g2 + n°H2 + mPue.
Then, substituting into equation (6),

q'g 1
u, = - (7)
1 3 3/2
unw ug‘?- + n2 EE. + m2
W2 W2

Again omitting the central source and summing for the remainder with the

. 252 s . . 2 G 2 .
assumption that g /w is negligible compared with n ") and m© gives

W
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1 ® = 3/2 = 3/2
= a8 ..._.....__-——.1 + 1 + 2
E (PEpE B 2 2; n2H2 Z()
W2 (m=0)\" w2 (n=0)
(8)

Similarly, it can be shown that the wall velocities u'y and u'g are

.00 o0 3/2 o 3/2
u'p = a'e h—j{: :E: 21H2 + 2 2{: — L L P e

ywd | el el (n _ l) H ., 2 n=1 |/, _ l>2 B
(9)
and
== L 32 & 3/2
u'c‘q'ghz}: — 5 v2) f—tes 3
wo® | BT Wl | 2 B, /o _ L w1
W2 ( 2 (n=0) 2
(10)

The latter two equatlons include the effect of the primary source, Wthh
must be omitted in the calculation of w,.

Straight, Untapered, Finite-Span Wing

A finite-span wing may be represented by a distribution of finite-
length sources and sinks. The axial velocity increment produced by a
single source element is (fig. 3), for this case,

q dyq qg dyy
duj = sin 6 = ) (11)
nre hnr3

For the point A in the center of the basic tunnel, the general expres-
sion for the square of the distance from the source element is

rA2 = g 2H2 + <mw + yl)zm Integration across the image span gives

the total contribution at A of one image; namely,
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s [® dy
M1, T %ﬁ(/P - 573/2 (12)
-S [82 + n2H2 + ( oW + yl) Z]

Performance of the integration leads to the result

a qg J—~ mW + 5 W ~ 5
1 1/2
A hn(n H° -+g 1[?2-+n2H2-+(me+s)é] /2 [g2-+n2H2-+(mw-s)ZJ %

(13)
which is the same as equation 16, reference 2. Making equation (13)
2
nondimensional and again neglecting the 55 terms give
W
2
m+§- m_é
qg [ 1 W W &

- = —
I pwd| o w2 \ 2 514/2 2 511/2
1 n2 —2 {HZ ,I;I___ + (m + E)} [I’l2 E_ + (m - E):I
W | 2 W 2 W
(1h)

As before for the case of the body of revolution, the total velocity
increment 1is

w =Ly > +2> 2> |y (15)
n=1 m=1 m=1 n=1

(n'o) (=)

However, it will be noted that the single summation for which n = 0

leads only to the indeterminate quantity'%g This may be evaluated by

the application of L' Hospital's Rule, finally giving for a single
source line
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/2" 7"
1/2 1
2 2 2 2
.I;I_.-}- m+..s.. n2 ..H_+ m_é)
-
S
o0 2__
1 W (16)
n=l o B° 2 2\/2
we e

Similarly, the total axial ﬁelocity increments at points B and C on

the walls of the tunnel are

©w o 5
qg 1 mry
o o ]
-
n-S : w0
Ll S+ 2
1\2 B s\ [V :Z;l (n__l_>2 2
F (I’l —§> [,_J§ + (Hl—w) ( =O> 2 w2
-
~ a
258
W
(17)
ﬁ (n_;>2£+§3 1/
2) w2 2
&
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2 B [(m_%>_§]2 1/2 (m:é) [(m_%>_%]2“[(m_%>+%2

—
e

-
(18)

Furthermore, at any point y along the span of the wing, the result is

» D)

v %22 Z 12 - 1/2 "
b® | p=l w5 H e g2
n ——2- n2——-+ m_z + =
4 W2 W)W

N -

Z J l T ( | (19)
o (604 [0

(n=0) _

—

As before, the primary source line which corresponds to the wing is not
included in calculating the velocity increments at any point in the wing.
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Swept, Untapered, Finite~Span Wing

In the preceding treatment for unswept bodies the analyses were
carried out for single line and point sources as a simplification for
bodies which could be represented by a combination of line and point
sources and sinks. Thus, for a given value of g, all the image
sources are in the same plane and a constant distance from the plane
of A, B, and C, namely, g. Obviously, this condition no loriger holds
for swept bodies in which g would be a function both of span and
angle of sweep, and hence the simplified treatment is no longer appli-
cable. It is then necessary to proceed to a more general representation
of the flow field involving the use of both sources and sinks. One of
the simplest of such combinations is the doublet and that is what is
used.

The Stokes stream function for a point doublet is given by
(reference 3)

2
3
2 1
where W' = —Eg—. The point-doublet strength w! remains finite as a,
i

the distance of the point source and sink from the doublet origin,
approaches zero and q' goes to infinity. The velocity in the x-direction
caused by the doublet element, whose axis is parallel to the x~axis

(fig. L), is given by

2

¥ 2—3W2

:_..]:._._.z H r
Vx wan W 3 (21)

Then, for a swept-wing element, with doublet-element axes parallel to
the x-axis,

(22)
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The square of the distance from the doublet element to A is

rA2 = x12 + nlHe + (mw + yl)2a Considering A positive for sweepback,

then for the right wing with respect to the model, §l = tan Ap, and
—X 1

for the left wing, i tan Ag. Having eliminated X1, the expres-

1
sion for the contribution of a single-image doublet is

- :
1y J-

3/2
5 2 2 212 2
[%l tan“Ay + n°HT + <mw + yl):]

o[#42 (s )]

‘ , 5/2
E%lztanZAo + n°H + (i + yl)é] /

-

> dyl (23)

It should be noted that a change of sign between the right and left
halves of a wing makes no difference mathematically. Therefore, the
swept wing acts in exactly the same manner as a wing yawed at an
angle AO' Performing the integration and letting

2
ap' = n? E . me
We
bA' = 2m
c = tan?AO + 1

dA' = lLaA'C - (bA')Z

S
g = =
W

..
It

ap' + bylst + c(s!)?

=a,' - by'st + ?(51)2
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leads to the result

i by' +2cs') 1 8e\[(ba)? ‘
ulA—v—«% 11/2 (AdA 1“()‘ ' c)( o) -
(Xa+')

- +
CdA' CXA+'

2<haA'°*(bA')2> by <l_2aA'>_S'<2(bA')2‘haA'°>

| _ 2
< 1)1/2 (bA;Afcs') “(xAl di) Ca) .
X! -

Z(haA'“(bA')Z) bA"(1”2%')*Sl(z(bA')z'l‘a‘“'c) (2h)

+
CdA' CXA_ CdAlXA_I

The total velocity increment at A may be obtained by the same summation
as indicated for the straight wing in equation (15). However, for m
and n equal to zero, the constants given above become:

For m = 0,
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The final result is then

S D uEES w | M S
uy — = [} + 2
A n=1 m=1 m=1> (XA+')1/2 dp’
(n=0

-
1 1 2 1
2hag'e + (0007) | by (e *((0P-keye)
CdA' CXA_' - dA‘ ¥ CdA'XA_' > *
= 1 2s1fay' 1), 2st
2 - 1), 2s!
;;1 (XA'>1/2l: aA'\XA' * C>+ CXA'} . (25)
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In following a similar procecure to obtain u'g and u'm, it is found
that the constants are the same as for uy except that the subscripts

are changed to B and C, respectively, and n—> n - % at B and
m—> M = % at C. The summations are the same as for the straight

wing; namely,

o 00 LIS ! 12
uty 2SS 1 (bg' +208") h+< 1 +8c> (b5') ~2ag!) -

3 B+’ dp'/\ ©

1
1 25138 1 25t
2 Z - (X ] +_c—)+cX 1 (26)
B B .
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and

= s %o, ') 1/2
jat m (n=o) ( C )
1o + ! 2 1 i
PRV 2_2a | f(hac o+ (og')?)| g 220 >_
dc'/\ ¢ ¢ cdg ' cXo+'\ 4’
1 1 2 1 | B— 1
S (2(bC ) -hac«c> ) 1 (bC 2cs ) h-+< 1,
cdg'Xg4' (X" Y2 dg' X!
' 12
sy (G ) 2o (),
dC' c C CdC'
12 !
bg' [, 2ag' +S(2Gh) “h%:c) 1)
CXC_ ! d C' Cd.c 'Xc_ !

Support Struts

The method previously used to calculate the velocity ratios for
aerodynamic bodies may also be applied to support struts. However, in
order to avoid infinite velocity increments at the junctions of struts
and model, it is necessary to consider the support system in the tunnel
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as an integral part of the model. With this viewpoint, velocity ratios
could also be calculated for struts in the same manner as for wings, in
which just the images are summed in order to calculate wu,. The span

of the struts would be constant at 2s/W = 1.0 in a reoriented tunnel
for which H/W = \2.

Using points A and C, where C would now be at the top of the reori-
ented tunnel, the velocity ratio uA/u'C for half wings or struts would

be identical to those for complete wings or double struts, both com-
pletely spanning the tumnel. There is one simple case for which the
result is immediately known, namely, a single, centrally mounted,
unswept strut for which the two-dimensional result of 1/3 applies (see
section Two-Dimensional Wing). In general, if other than a single-strut
support system were used, the velocity ratio would be a function of the
strut spacing used as well as of the angle of sweep. The problem would
be further complicated by the presence of a rear strut, which is fre-
quently the case.

Because of the additional complexity involved and the expected
~difficulty in separating the total wall velocity increment intoc the
separate effects due to the solid blocking of the support system, model
wing, and model fuselage and to the wake blocking of each component, all
of which may have different velocity ratios, no general solution of the
support-strut case has been presented. It would be simpler and probably
more accurate to perform a complete calibration of the area in which a
model would normally be mounted, with the struts installed., During this
calibration, the wall pressures at B and C could also be obtained, thus
giving base values which include both the solid and wake blocking and
interference effects of the model support system.

NUMERICAL CALCULATIONS AND RESULTS

The methods used in summing the doubly infinite series are
explained in detail in appendix A. Briefly, calculations are made for
each image up to a finite number n = m = nj. The remainders are

‘obtained by direct integration from n; to infinity after making certain

simplifying assumptions. Unfortunately, the series convergence is not
very rapid and it is necessary to take n; as high as seven in most
cases. Fortunately, however, there is a negligible difference between
the remainder terms for the swept and straight wings, since the effect
of sweep rapldly diminishes as the distance between images and tunnel
increases. Hence the very difficult problem of attempting to integrate
the complicated remainders for the swept wings is avoided. In all
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cases, the dimensional ratio of the Southern California Cooperative
Wind Tunnel, namely, H/W = I/JE; has been used.

Figures 5 and 6 show the variation with 2s/W of the velocity
ratios wuy/u'p and uy/u'c, respectively, for sweep angles of 0%, 300,
L5°, and 60°. It should be noted that each set of curves begins from a
common value at 2s/W = 0, which corresponds to the body-of-revolution
case, and that the effect of sweep is to increase the ratios over the
values for Ap = 0. The effect of the side walls upon uA/u'B and

uA/u'C for the straight wings as 2s/W approaches unity is also of
some interest. In the former case, as the wing approaches the side
walls their effect upon uA/u'B continues until the wing Just touches

the walls, at which point the ratio discontinuously drops from the
three~dimensional result which includes the effect of the side walls to
the purely two-dimensional value of 1/3 in which the side-wall effect
has been eliminated. As the wing tip nears the side wall at point C
(2s/W—>1) it also causes u'c to approach infinity while wu, remains

finite, so that uA/u'C approaches zero.

It should be noted that, although the velocity ratios for swept
wings are greater than those for straight wings, the absolute magnitudes
of u, and u'p decrease with increasing sweep for a given span. The

value of u'C is also less for AO # 0 than for Ag = 0, but behaves
irregularly beyond 2s/W = 0.7. These three blocking velocity incre-

2
ments, made nondimensional by multiplication with hTy , are plotted

in figures 7, 8, and 9 as a function of wing span. The numerical values
given for these wings are based upon line doublets. The corresponding

3 3 3
haw , u'p h&w , and u'g E&g— for a body of revolution,

values of up

which is represented by a point doublet, are 16.2, 56.8, and 29.L,
respectively. From figure 9 it can be seen that u'C becomes negative

for small angles of sweep as the wing tip approaches the wall
(2s/W—> 1.0).

In reference 2, Thom has used an arbitrary line or point source of
strength q displaced a distance g from the origin, giving the
multiple qg which appears in his equations. Thom considered two
elementary shapes in two and three dimensions, namely, a Rankine oval
and ovoid, and the shapes corresponding to a line and point source of
strength +q at a distance g from the origin, a line and point sink of
strength =2 g at the origin, and a line and point sink of strength = q

3 3
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at a distance -g from the origin. For the Rankine oval and ovoid,
which are the bluntest bodies obtainable by this method, >aqg is Z2qg,

which must be a maximum. For the latter cases, E:qg = 3 qg. Thom has

calculated g/c and %% as a function of thickness ratio t/c for

both two-dimensional shapes and g/l and —g§ as a function of d/1
Ud

for both body-of-revolution shapes. This procedure may be repeated for

any arbitrary source-and-sink distribution to facilitate a more correct

calculation of /U, u'g/U, and u'C/U by Thom's method for a given

shape of wing or fuselage.

Although the numerical values of figures 7, 8, and 9 are based
upon line doublets, they have been divided by W and hence are equiva-
lent to the results for a line source divided by gqg, since p = 2qg.
Therefore Thom's method, wherein 5 qg for a specific shape replaces
Qg or y when using these figures, is still directly applicable.

Using the values of é%’ and g/c given in figure i of reference 2

for a Rankine oval, one can easily calculate the incompressible-flow
values of uy/U, u'g/U, and u'g/U. For example, for a straight wing

of this section having unit chord, thickness ratio t/c = 0.1, and
span 2s/W = 0.8 in a tunnel of width W = 12 feet, uA/U = 0.00075.

APPLICATION OF METHOD

In the preceding sections, ratios of the wvelocities at the model
to those at reference points on the wall have been calculated for
certain representative bodies. During a given test, then, the velocities
at the walls must be measured in the model plane ABC, and so forth, and
compared with the reference values obtained without the model installed.
The difference of the two is not immediately wu'y or u's, however,

Included in the measurement are the effects of the struts, if the model
is held in this manner and if the base wall pressures do not include
“the strut effect, and also an amount due to wake blocking. It will be
assumed that the tunnel has been calibrated with the struts installed.
The wake blocking presents a more complicated problem, but its magnitude
is fortunately small compared with the solid blocking for most models.

The methods of separating the wake and solid blocking effects and
obtaining the final corrected dynamic pressure and Mach number M from
the measured wall pressures have been outlined in reference l;. The
procedure given therein for the separation of wake and solid blocking
may be somewhat modified for straight wings and fuselages by the use of
the wall pressures rather than use of the theoretical wake blocking as



NACA TN 2372 . 19

given by Thom (reference 2). The latter has represented the wake of a
body of revolution or a wing by a point or line source, respectively,

at the body with a corresponding point or line sink downstream at
infinity. If the sources are assumed to be in the model plane, their
axial contribution in that plane is zero. This constitutes a good
assumption for a body of revolution and a straight wing. Thus for these
cases the only wake effects at the model plane are due to the sinks at
infinity, which create a uniform disturbance in the flow field. There-
fore, the velocity ratios due to wake blocking are unity for straight
wings and three-dimensional bodies. The absolute magnitude of the wake
blocking effect may be obtained by the fact that the solid blocking
effects at the walls disappear downstream of the model and the remaining
velocity increment approaches the total disturbance due to the point or
line sources and sinks representing the wake. The wall wake increment
at the model plane is then just one-half of the total far downstream
because of the zero contribution of the sources at the model plane.
Therefore, the wall wake increment may be determined and subtracted from
the total velocity increments at B and C, enabling the solid blocking
corrections to be evaluated.

The experimental procedure outlined above is not strictly appli-
cable to the case of swept wings because they extend downstream from
the reference plane ABC, which only passes through the apex of the
wings. Therefore, the velocity ratios due to the wake will no longer
be unity because of the finite contribution made by the wing source
elements to the wall velocities at B and C. However, for wings of small
sweep and of small span compared with the tunnel width combined with
fuselages, for which the previous argument still holds, it may be
expected that the velocity ratios due to wake blocking in the apex
plane ABC are sufficiently close to unity to permit use of this procedure
with sufficient accuracy.

After the strut and wake effects upon the wall velocity have been
eliminated, the velocity ratios given in this report may be applied.
However, the factors for wing and fuselage (body of revolution) are in
general dissimilar, and it is necessary to estimate the relative magni-
tude of the correction due to each. This may be done from the model
solid blocking results of reference 2 at the model for fuselages and
straight wings or by comparing the results of figure 7 with the body-

3 .
of-revolution result of u, Q&@— = 17.0, knowing > ag for both wing

and fuselage; the estimated relative magnitudes at the wall may be
obtained by application of the respective velocity ratios. As mentioned
previously, sweep decreases the velocity increments at all points in the
flow field. Figure 10 shows the variation of the ratio of uy with

sweep to u, for Ag =0 as a function of Ao for various spans.
This figure will facilitate estimation of the relative magnitudes of
the fuselage and wing corrections when 'AO # 00,
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Now that the measured values of u'/U due to solid blocking at
points B and C on the walls have been split up into the separate contri-
butions of the wing and fuselage, u/U at point A in the model for
each is known. However, the increase in velocity is generally of lesser
interest than the corresponding increase of Mach number and dynamic
pressure. For small corrections, the equations given by Thom (refer-
ence 2) and also in reference l, revised to the present notation, are

-ﬁ% =1+ (%)A (1 P22 Mu2> (28)
and
SEMOREEY

The ratio q/qu is now the ratio of the dynamic pressure corrected for
solid blocking to the uncorrected, or calibration dynamic pressure.

Using the above corrections and a calculated value of the wake
blocking for a given model, it is possible to operate at a desired
corrected Mach number at the model by setting a predetermined wall Mach
number at point B or C. This procedure is particularly desirable in
tunnels where rapid determination of the test results is required, such
as at the CWT.

The velocity-ratio method of obtaining blocking corrections has
certain advantages over previously used methods. First of all, being
semiempirical in nature, it promises greater accuracy, particularly
since the velocity ratios are usually less than unity. Hence the cor-
rected Mach numbers and dynamic pressures are less than the measured
ones, whereas by other methods they are higher, being the result of
increases of lower observed values by theoretical correction factors.
Procedures which raise observed Mach numbers to higher corrected values
by means of theoretical formulas are always inaccurate and dangerous at
subsonic speeds closely approaching M = 1. However, correcting down
from a high observed Mach number to a lower corrected value as is done
with the wall-pressure procedure is much safer and more accurate.
Secondly, as Gothert has pointed out in reference 1, the Prandtl-Glauert
rule no longer applies at the body in the supercritical speed range but
is again applicable some distance from the model. 1In fact, Gothert
states that the velocity-ratio method may be applied with good accuracy
up to the speed at which the shock waves approach the tunnel wall,
namely, the choking speed. Most blocking theories use the Prandtl-
Glavert rule and, of course, break down as the critical Mach number of
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the model is exceeded. Furthermore, although the present analysis has
been carried out at zero lift, Gothert has pointed out in reference 1
that the procedure is applicable to a first approximation to cases with
1ift by averaging the pressures at the two walls opposite the lifting
surfaces. This would normally be at points B and E.

The derivations of the preceding sections have been carried out
using line and point sources and doublets. These unit singularities
may be replaced by combinations of sources and sinks properly dis-
tributed to represent the desired shape. The factors qg and p
determine the body shape for straight wings and bodies of revolution
and for swept wings, respectively. Replacement of these factors by
>qg and S, which are chosen to simulate the desired shape, leads
to the actual welocity increments in the incompressible-flow field for
this particular body. However, it is seen that these shape factors are
common multiples in all equations for each case; therefore the velocity
ratios are independent of shape.

It is also shown in reference 1 that a given size of compressible-
flow field corresponds to-a fictitious incompressible one in which
the axial (x) dimension is unchanged and the lateral and vertical

(y and 2z) dimensions are shrunk by an amount y. = yc‘Jl - Mu2 and
Zy = Zg Jl - Muz, where the subscripts ¢ and 1 refer to com-

pressible and incompressible, respectively. ‘Therefore, for straight

wings and bodies of revolution, 5 qg and 3 are functions of MMach
number, but the velocity ratios in the plane of the origin (x = 0)
remain constant. This also applies to swept wings as far as airfoil
shape is concerned but the application of this rule results in a change
of plan form. In the fictitious incompressible plane, the span
decreases while the axial distances remain constant, causing the angle
of sweep to increase. The physical sweep angle A of a given wing at
a given value of My in the compressible plane then corresponds to a
value of sweep for My = O, namely, Ap, which is required by the

present method. Figure 11 shows the variation of .AO/A with M, for

different values of A. Interpolation in figures 5 and 6 will give the
corruct velocity ratio at any Mach number for a given wing.

There are some limitations of this blocking-correction procedure
which must also be considered. It will be noted that in each case the
axial distance between the sources and the origin or between the sources
and sinks approaches zerc. Therefore, it has tacitly been assumed that
the body length or chord must be small compared with the dimensions of
the tunnel. Should such not be the case, a small correction must be
applied to the velocity ratio. The magnitude and nature of this cor-
rection for a circular wind tunnel are given in reference 1. For the
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small models normally encountered in high-subsonic-speed testing, this
correction may usually be neglected. The derivations have also been
carried out for constant-chord wings, while most models have tapered
wings. The effect of taper may be taken into account by assuming a
spanwise variation of g, but this would involve much additional alge-
braic complexity, particularly for swept wings, which would multiply
the amount of work in the series summations. Furthermore, only the
velocity ratios at the centers of the wings have been calculated, while
the mean along the span should be used for any given wing. For straight
wings, the additional calculations could easily be carried out using
equation (19). For swept wings, however, each position along the span
is in a different axial plane and would require an additional set of
equations of greater complexity. The errors involved in neglecting the
effects of taper and of the spanwise variation of velocity ratio tend
to compensate each other.

In conclusion, it should be mentioned that these results may
easily be applied to another type of testing frequently employed at the
Cooperative Wind Tunnel. This is the semispan~reflection-plane method
wherein the model is mounted on the tunnel floor directly without any
strut support system and with the wing extending vertically from the
floor. It is to be noted that the procedure simply doubles ¥he effec-
tive test-section area but does not alter the dimensional ratio
H/W = l/V§, Therefore, the preceding results are directly applicable
to a reoriented test section in which A is the center line of the tunnel
floor on which the model is mounted, B and E are in the floor corners,
and C is then in the center line of the tunnel ceiling.

Southern California Cooperative Wind Tunnel
California Institute of Technology
Pasadena, Calif., May 21, 1948.
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APPENDIX A
CATICULATION OF REMAINDERS

As mentioned previously, the convergence of the series derived in
the text of this paper is, in general, quite slow. Thus for practical
purposes it is necessary to carry the numerical calculations for the
contributions due to individual images to some reasonable values of n
and m, say, n =m=nj. Furthermore, if it can be assumed that ng

is large, certain simplifying assumptions can be applied to the series
equations, enabling a direct integration in both the m- and n-directions

to be performed from mny + % to infinity. The value nj + %, inci-

dentally, comes about from the fact that the individual series summation
for ny extends to the outer boundary of that particular image and

hence, since the point n =m = n; is in the center of the image, the

outer boundary, at which the integration must begin, is at nj + L

2

Two cases are considered, namely, that of the body of revolution
in the center of the tunnel, and the straight, untapered, finite-span
wing. It is readily apparent that the effect of sweep rapidly becomes
negligible as the distance from the primary image becomes large compared
with the dimensions of a swept wing. Since ny 1is assumed large, the

remainder terms for swept wings may be considered to be identical to
those for straight wings. The very rapid convergence of the swept to
the straight case is immediately apparent in the calculations for indi-
vidual images for which m and n are less than n,. A value of seven

was used for ny in all numerical calculations.

In all cases the remainders have been broken into separate parts
in a similar manner. Since ny 1is assumed to be large, it follows
that the remainders are independent of the particular location in the
primary image (i.e., A, B, C, etc.) under consideration. Hence, it is
sufficient to calculate the results for only one quadrant and simply
multiply by four. In the actual calculations, an integration was

carried out from nj + % to infinity in both the n- and mrdifections

and the result miltiplied by four. Then the image strips for m = 0

were integrated from nj + % to infinity in the n-direction and multi-

plied by two. This was repeated for the individual strips for m = 1
through n; in the n-direction and the results for each were multiplied
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by four. The same procedure was carried out for the individual image
strips in the m-direction. The above may be readily seen in the
following analyses. ‘

Body of Revolution

The velocities at A, B, and C due to the solid blocking effect of
a body of revolution in the center of a rectangular wind tunnel are
given by equations (8), (9), and (10), respectively. Using the pro-
cedure outlined in the preceding paragraphs, the results are

et n
3 o | 3/2 1 3/2 1 3/2
g B S5 e 2 [ e -%) :
'8 n=1 m=1{ 2 HS , © n=1 | 2 H® m=1 \I
W2 (m=0)\ " w2 (n=0)
-
o«

ny o
LS f dm . (A1)
1 H
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d ! 1 3/2 . gl 1 3/2 .
an'g_h%;{: 2 B2, (o o1\ 2m§l _ Ly
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ff :mdn + ‘ (a3)

The remainder terms are the double-integral term and the two braced

guantities, {} and { } , and are identical for A, B, and C
Rp R,

under the assumptions used. Performance of the indicated integration
results in '
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2 ny
W 1 S 11
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Therefore, the remainder is a function only of ny and the dimensional

ratio of the tunnel H/W and may readily be calculated for any par-
ticular case.

Untapered, Finite-Span Wing

As mentioned previously, the effect of sweep upon the remainder
as ny becomes large is negligible. Therefore, the simpler equations
for Ap = 0 may be integrated and applied to the swept-wing case as
well. The velocities at A, B, and C due to the solid blocking effect
of a straight, finite-span wing are given by equations (16), (17), and
(18), respectively. Again applying the assumption that ny 1is large,
these equations may be transformed into
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The remainder terms again are the double-integral term and the two

braced quantities, {;} and {j:} ,» and are identical for A, B,
Rn Rp

and C under the assumptions used. Performance of the indicated inte-
gration leads to the result

n s13/2 ) 1/2
[(n1+1%_5)_(n1+1%+§>:|+hnz__l<lzlﬁ L25+[<n1+32£_§>2+n22_2:| _I:(nl+%+§)2+n2%2] }) (48)
2
L R

Since the remainder for the wing case is a function only of Ny, H/W,

and s/W, it may be calculated for any particular case.
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