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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 2310 

GENERALIZATION OF BOUNDARY-LAYER MOMEI'ITUM-DITEGRAL EQUATIONS TO

THREE-DIMENSIONAL FLOWS INCLUDING THOSE OF ROTATING SYSTEM

By Artur Mager 

SUMMARY 

The Navier-Stokes equations of motion and the equation of continu-
ity are transformed so as to apply to an orthogonal curvilinear coordi-
nate system rotating with a uniform angular velocity about an arbitrary 
axis in space. A usual simplification of these equations as cthisistent 
with the accepted boundary-layer theory and an integration of these 
equations through the boundary layer result in boundary-layer momentum-
integral equations for three-dimensional flows that are applicable to 
either rotating or nonrotating fluid boundaries. 

These equations are simplified and an approximate solution in 
closed integral form is obtained for a generalized boundary-layer 
momentum-loss thickness and flow deflection at the wall in the turbu-
lent case. 

A numerical evaluation of this solution carried out for data 
obtained in a curving nonrotating duct shows a fair quantitative agree-
ment with the measured values. 

The fcrm in which the quations are presented is readily adaptable 
to cases of steady, three-dimensional, incompressible boundary-layer 
flow like that over curved ducts or yawed wings and it also may be used 
to describe the boundary-layer flow over various rotating surfaces, thus 
applying to turboinachinery, propellers, and helicopter blades. 

INTRODUCTION 

The development of the boundary layer on the various parts of 
turbomachinery (compressors and turbines), helicopter blades, propel-
lers, and in curved ducts is influenced by centrifugal and Coriolis 
forces in addition to the pressure and. viscous forces. As a result of 
these forces, the flow in the boundary layer not onl has the char-
acteristic velocity deficiency but also has, because of this velocity 
deficiency, direction different from that of the flow outside the
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boundary layer. Thus the behavior of the boundary layer in three-
dimensional flow may be quite unlike the behavior in two-dimensional 
flow. The effect of these additional , forces on the boundary layer has 
been realized for some time and the observed discrepancies in the 
boundary-layer behavior have usually been explained only in a qualita-
tive manner as, for instance, in references 1 to 4. 

The literature concerning the theoretical aspect of the three-
dimensional boundary-layer flow is meager, For the laminar case most 
of the published work has been carried out in connection with the yawed 
wing (references 5 to 7). For the turbulent case, although a number of 
researchers have established the general form of the differential equa-
tions applicable, no actual solutions of these equations have been 
obtained.. Tetervin, for instance, presents boundary-layer momentum-
integral equations in three dimensions for a fluid of variable density 
and viscosity (reference s). Gruschwitz establishes the momentum-
integral equations for boundary-layer flow along an arbitrarily curved 
streamline in reference 9. Burgers gives the differential equations. 
on the development of boundary layers in the case of axially symmetric 
flows having a rotational component (reference 10).' Prandtl, in addi-
tion to presenting a form of three-dimensional momentum-integral equa-
tion's, suggests the general ' procedure that could be followed to obtain 
a solution (reference ii). Experimental data are'similarily lacking. 
In spite of considerable literature search, only the data of Gruschwitz 
(reference' 9) for a curved duct and the data of 'Kuethe, McKee, and 
Curry (reference 12) 1' or a yawed wing were found. 	 - 

As a result of research on this problem at the NACA Lewis labora-
tory, the boundary-layer momentum-integral equations are derived and 
presented herein for a set of orthogonal curvilinear coordinates, which 
may or may not'be rotating about an arbitrary axis in space and can be 
laid out along a streamline of the potential flow. The so generalized 
equations are then transformed by use of an assumed velocity distribu-
tion and friction law for turbulent boundary layer so that an approximate 
solution can be obtained for the boundary-layer momentum thickness and 
the direction of boundary-layer flow. Finally, a numerical solution is 
carried out for the Gruschwitz data in order to make a comparison 
between the estimated and actualmeasured values. 

The equations as given in their generalized form are readily 
adaptable to cases of steady, three-dimensional, incompressible boundary-
layer flow, involving centrifugal and Coriolis forces. The approximate 
solution, however, has been carried out only for the turbulent boundary 
layer, because in most of the aerodynamic configurations, where these 
equations apply, transition from laminar to turbulent flow occurs
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comparatively early in the flow process. A laminar form of the approx-
iniate solution can be obtained by simple substitution of a suitable 
velocity profile and friction law. 

It should be noted that whereas the differential equations describe 
the flow phenomena with only the accepted simplifications, the approxi-
mate solution depends to some extent on the assumed boundary-layer 
velocity profiles and the relation for friction. Both of these assump-
tions were made on the basis of the data of Gruschwitz (reference 9) 
only, because the data of reference 12 were not adaptable to extensive 
computations for the purpose of this analysis. The measurements of 
Gruschwitz, on the other hand., have certain shortcomings as they were 
obtained in a nonrotating channel formed by two circular-arc shaped 
walls. Thus the generality, of the velocity profiles measured by 
Gruschwitz is in question. A revision of the approximate solution can 
therefore be expected when more data become available. In addition, 
any speculation on the occurrence of boundary-layer separation (which 
by definition is a special form of a velocity profile) would be abso-
lutely meaningless; no further mention will therefore be made of this 
phase of the problem.

SYMBOLS	 -. 

The following symbols are used in this report (the dimensions are 
given in right-hand column): 

A	 constant occurring in second approximation for 8 (2_l) 

resultant acceleration vector in fixed (inertial) (it2) 
system 

a0	 resultant acceleration vector in Cartesian coor-	
2 

dinate system	 (it ) 

B	 constant occurring in second approximation 
for 8	 (a) 

position vector of particle	 (1) 

c	 curvature of x-axis (fig. 1),	
(_1) 

d	 constant	 .	 (z)
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i 
(0.01255	 dx 
\(K-J)	 I	 I 

E1(x) e\	 uxi (o) 

(f.Xccdx) 

E2 (x) e	 X1 (0) 

dx) 
E3(x) e 

.	 . .	 rate-of-strain components (t-1) 

F resultant-force vector acting on particle 	 (m1t2) 

components of body forces per unit mass	 (it-2) 

G function describing boundary-layer velocity profile, 

also taken as (a). 

g function describing boundary-layer velocity profile, 

also taken as	 -	 )2 (0) 

H,J,K,L quantities describing relations among various char-
acteristic loss thicimesses in boundary layer 	 (0) 

h1,h2 ,h3 transformation coefficients (a) 

1 length 

parameter determining nature of boundary-layer 	 (a) 
equations 

m mass' 

P static pressure
-1-2 

(in?,	 t	 ) 

•	 • .	 components of stress per unit area in Cartesian	
1 2 

(m1	 t	 ) coordinate system
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resultant velocity vector (it) 

- perpendicular distance of particle from axis of 
rotation	 - (i) 

eu 
R ( e ) Reynolds number based on	 e,	 -f (o) 
r radius of circle (i) 

rs 
S total path length	 j	 dx 

u0 

s arc length (z) 

t	 - time 

U,V,W values of	 u,	 v,	 and w outside boundary 
layer (it) 

UQ VQ WQ velocities in Cartesian coordinate sstem (it) 

u,v,w time averaged velocities in 	 urvi1inear coordinate 
system (it) 

X,Y,Z Cartesian coordinate system (z) 

x,y,z orthogonal curvilinear coordinate system (i) 

Z1(x) function used in transformation (i) 

a. boundary-layer deflection angle measured from 
direction of resultant skin-friction stress to 
direction of flow outside boundary layer (0) 

13 angle between X-axis and tangent to x-axis (o) 

boundary-layer thickness	 - (z) 

b displacement thic1messe	 in three-dimensional 
boundary layer (z) 

€ measure of boundary-layer deflection, 	 tan a (o) 

slope of characteristic ltne	 - '(0)
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generalized boundary-layer momentum-loss thickness,

() 

momentum-loss.thicknesses in three-dimensional 
boundary layer (z) - 

variable of function 	
,	 (zjfX	 ) (z) 

V kinematic viscosity (i2t) 

èomponents of vorticity vector (t) 

p density (mr3) 

apparent stresses existing in turbulent flow	 (mltT2) 

T shear stress at wall (rnit2) 

arbitrary function satisfying / 
equation (39) and boundary 	 ( [(51+9)+l] [(5H+9)1 

- conditions	 \j t 

114+rU)	 -	 I 

u	 components of vector w in Cartesian coordinate 	
1 

system	 (t ) 

U) ,w U)	 components of vector w in curvilinear coordinate 
xyz	 -1 

system	 -	 (t ) 

Subscripts: 

i	 initial value 

x	 x-direction	 - 

z	 z-direction 

1,11	 order of approximations 

For Gruchwitz data-point designations and streamline designa-
tions, see figure 2. 
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DERIVATION OF BOUNDARY-LAYER MOMENTUM-INTEGRAL EQUATIONS 

The equations for steady flow of a fluid having constant density 
are derived in a Cartesian coordinate system X,Y,Z, rotating with 
uniform angular velocity about an arbitrary axis in space. These equa-
tions are then transformed to an orthogonal curvilinear coordinate 
system x,y,z, such that the x-axls can be placed along any convenient 
path in the XY-plane, which is considered as a plane of a wafl. These 
equations are then simplified in a manner consistent with the boundary-
layer theory. If. the path is chosen so as to match a streamline of the 
potential flow, only one velocity will exist outside the boundary 
layer, that along the streamline. Furthermore, the changes in boundary-
layer quantities in a direction other than that along the streamline. 
are expected to be relatively small in comparison to the changes along 
the streamline. Additional simplifications may thus be possible. 
Finally, integration through the boundary layer gives the generalized 
form of momentum-integral equations for three-dimensional flows that 
may or may not involve rotation of the system. 

Equations for steady flow of fluid with constant density in rotat-
Cartesian coQrdinate system. - The Navier-Sokes equations of flow 
a fixed Cartesian coordinate system X,Y,Z (reference 13, p. 576) are 

DU0
=	 +	 +	 (la) 

Dy0 	 pxy	 Pyy	 Py 

	

P5—=pfy+ 
ax + ày +	 (ib) 

DW	 pXZ apfz	 zz 
z+	 +	 ^ p ._2	 (ic) 

and the equation of continuity is 

Uo 	 Vo	 Wo 
^ v_ + •- = 0 

It is now assumed that this Cartesian coordinate system is rotating 
with a uniform angular velocity a and that the observations of the 
motion of the fluid particles are still made_from a position rigidly 
attached to the same system. The velocity 	 and acceleration a0 
are as seen by the observer, that is, they are relative to the X,y,Z 
system. Because of the rotation, however,- the X,Y,Z system is not an 
inertial system (reference 14, p. 53) and_thus the second law of motion 
holds only with respect to acceleration a relative to some other 
system that is nonrotating,

(2)
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m= F 

	

In terms of	 then (reference 14, p 104), 

ma0 +nnX (wx) +2noXq=F 

Here flu) X (w x ) represents the centrifugal force and 
2 X	 is the Coriolis force. 

Thus for a Cartesian coordinate system rotating with a uniform 
DU0 Dy0	 IN0 

angular velocity w, the expressions for	 -,	 -, and.	 must 

be modified by proper components of the Coriolis and centrifugal accel-. 
erations. For stead,y flow, the component accelerations as referred to 
a rotating Caitesian coordinate system are therefore 

DU0	 2 

	

= U0 - + V0 - + W0 - + 2 (wyWo-wVo)-u H	 (3a) 

DV 0	 V0	 V0	 V0	
2 

	

= U0	 ^ V0	 +	 + 2 (WzUo(Dxwo) ..(D H	 (3b) 

DW0

	

= U0	 ^ V0 y ^	 + 2 (wxVo-wyU0 ) -u2R	 (3c) 

The equation of continuity,.which does not involve any accelerations, 
remains the same. 

Transformation to orthogonal curvilinear coordinate system. - 
Transformations similar to.those of Gruschwitz (reference 9) are used 
as indicated in figure 1 with the precaution that the system remain 
right-handed.

X J cos 13dx+ z sin 13

Y=y 

	

z =	 ^ z cos 13 

where

	

Z1 = constant - /	 sin 13 dx 
.u0

(4)
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and

p = p(x) 

Use of these transformations permits an arbitrary curvature of the 
x-axis in only one plane, the XZ-plane. Thus the solution is somewhat 
restricted. In two-dimensional boundary-layer investigations, however, 

it is found that the boundary-layer equations are unaffected if the 
radius of curvature in the XY-plane is large as compared ith the 
boundary-layer thickness (reference 15, p. 120) .. In three-&Linensional 
boundary layer the same limitation will probably apply providing, of 
course, the values of u, w, and	 are properly adjusted to take 
care of this additional curvature. Setting 

c =	 (curvature of x-axis) 

gives

= (l^cz) cos =sin

LI 

= .-(i-i-cz) sin p	 = 0	 = cos p 

The elements of length at (x,y,z) in the direction of the 
increasing coordinates are (reference 15, p. 101): 

h1dx, h2dy, h3dz 

Thus,

(ds) 2 = (h1)2()2+()2(dY)+(h3)(dZ)(dX)+(dY)+() 

But because

dX =	 dx +	 dy + 

and so forth,. 
• 	

. 	 2	 2	 2	 2	 2 
(ds) = (1-I-cz) (dx) + (dy) ^ (dz) 
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and

	

h1 = (1+cz)	 h2= I	 h3 = 1	 (5) 

The expressions for the linear accelerations can be written directly, 
as given in reference 13 (P. 158). (It should be noted that the h 
values herein are reciprocals of those in reference 13.) •The components 
of a gradient now are

1	 1 
•E 

whereas the components of qXw remain 

-	 VwzWwy	 Ww.4Jw	 UU)çVWx 

Thus the accelerations in the rotating x,y,z system are written as 

DU u u v u w u v (	 l	 h2"	 w ( h1 
S	 =+++h	 Vj+hh \--w--/+ 

12 R 

	

2 (u9 -uV) -	 w R 

	

DV	 DW 
And. the expressions for 	 and	 follow from symmetry. The equa-

tion for the divergence now has the form	 - 

div	 = hhh	 (h2h3U) +	 (h3h1v) ^	 (h1h2w = 0 

Whereas the components of the curl	 are 

- 
h2h3 L	 (h3w) -

1 
(h2vJ 

h3h1
[(h1u) - (h3w)] 

= h11i2 L	 (h2v) -	 .
1 

(hiu)J
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In order to bbtain the viscous terms the preceding expressions are used 
in the expansion of 

v[grad (div ) - curl (curl j 

If equations (5) are substituted into these general expres-
sions and. the differentiations are carried out, the equations for flow 
in orthogonal curvilinear coordinate system rotating with an angular 
velocity w are . obtained. The body forces are neglected here. 

U U	 U	 U	 C	 1 2 R 

	

l+zc +V+W 1+zc	 - i^zc +2z 

1 1 P	 1	 2U.	 z	 U d.c	 2u 
- l+czp	 + v L1^	 x2 - (l+cz)	 +	

+ 

c	 Uc2	 W	 do	 2c 
l+cz	 - (l+cz) 2 + (l+cz)3 dx + (l+cz)2	 _j	

(6a) 

V

	

	 1 2 R	 lPw R - + 2 U	 ^ V	 +W	 - l+zc	 ciy	 = - -	 + 

1	 V -	 z	 V d.c	 2v	 2v	 c 

	

L1+cz 2 x2 (l^cz)3 	 +	 +	 + l+cz	 (Sb) 

Uw	 __ 

___	
c U2 

2 R	 lP 

	

l+zc	 - U) R - + 2 (wV- U) = -	 + 

1	 U	 d.c	 z	 Wdc 
l+cz) 2 x2 - (l+cz) 3	 - (l+cz) 3	 + 

Wc2	 c	 2c	 U1 

y2 ^	 - (1^cz)2 
+ l+cz	 - (l+cz)2	

(6c) 

1	 U	 V	 W	 Wc =0	 (6d) l+cz	 +	 ^	 + l+cz 

In the general orthogonal coordinates, the expressions for the rate-of-
strain components are
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h3	 /w\ h2 e

	

h1	 /u\ h3 

	

• h2	 /v\ h1 
e= 

The viscous terms in equations (6a), (6b), and (6c) may be expressed 
- using the rate-of-strain components as 

[ i	 z	 U dc	 2U	 2U +	 c	 U - Uc2
+ V 

L(1+cz) 2 x2 - (l+cz)3 x cIX + 3y2 + ?iz 2	 l+cz	 Z	 (1+cz)2 

W	 do	 2c	 W1 Vrl	 2cexzl 
(1+cz)3 dx 

+ 
(l-i-cz) 2 J =	 L1^cz	 +	 ^	 + +CZ	

(7a) 

1	 z	 Vdc	 2V^2V^ c 

	

L(1+cz)2 
2	 (l+cz)3	 2 1+cz J 

1 exy	 eyz ____ —I 

=	 ^ 
+CZ	 +	 ^ +CZ ezy]	 (7b) 

[ 1	 U	 ac	 z	 62w	 Wc2 

L(1^cz) 2 	 - (i+cz) 3 	 - (l+cz)3	 + 2 + 2 -	 + 
y	 z	 (1+cz)2 

c	 • 2c	 u1	 1- 1	 eyz	 ____	 1 
1+cz	 - (l+cz)2 ] 

=	
ax	 y	 - 1+cz (e_ ezz)j

(7c) 

Equations (6) are directly applicable to the laminar flow. For tur-
bulent flow, because of the velocity fluctuations it is necessary to 
modify the stresses by addition of the so-called Reynold's stresses. 
Thus, making use of the parallel form in equations (7), the Navier-
Stokes equations of motion for turbulent flow nay be written in terms 
of the apparent stresses as
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U U

	

	 U	 c	 1 2R 
^ V - + W

1+cz	 i+cz w R
	 + 2(wW-uV) 

	

l+cz cx	 ciy 

1 1 p 1 r 1	 x	 Tyx	 TZX 2cTzxl 
= 1+cz	 + L'^cz - +	 +	 ^ i+cz	 (8a) 

1	 2R - + 2(wzU-uxW) cy 

1 P 1 [ 1 Txy	 Oy	 Tyz CTyZ1 - -	 + 
L^cz x +	 +	 ^ i+czj	 (8b) 

	

U W	 3W	 63W	 c	 2_2 
1+cz	 +	 -	

U	 R	 ^ 

1 63P 1	 1	 xz 63Tyz	 C	 (Bc) - -	 + 
;• [+	 x + 63y +	 - 1+cz 

Simplification for flow within boundary layer. - Equations (6) and 
(8) are equivalent to the complete Navier-Stokes equations. Within the 
boundary layer, however, certain terms, whose contribution is relatively 
unimportant can be neglected. If the y-axis is taken as normal to the 
wall, the boundary-layer flow then takes place over the xz-plane (or 
the Xz-plane). Aflterms are now made dimensionless by referring the 
lengths to some body length, the velocities to their free-stream 
values, •and so forth, as explained in reference 16 (p. 45) and all. 
quantities of the order of magnitude of B or smaller are neglected. 
Furthermore, because the boundary-layer flow along a definite path 
z = 0. is of interest, additional siinplifications are possible. Setting 
z = 0 restricts the equations, because . the general boundary conditions 
(not on the x-axis) cannot be satisfied. It will subsequently be seen, 
however, that these general boundary conditions are unnecessary in the 
solution of the final equations. These simplifications yield the 
Navier-Stokes equations for flow within the boundary layer in a 
rotating orthogonal curvilinear coordinate system eva1uatd at z = 0, 

I8u\ +cuw - 1 63P	 2	 - aiw +	 (9a) 

	

u+v+w	 - pox

(9b)
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2	 1 P	 2	 - 

	

u	 + v	 + .w	 - u c = - -	 + U R	 + 2wu + v	 (9c) 

for the laminar case. For the turbulent boundary layer, a corresponding 
l.Txr 

set of equations is obtained with the substitution of - 	 'j for 
2	 '2'	 p 

and	 for v( 

	

\y2f	 p y 

Equation.(9b) shows, as pointed out in reference 10, that because 
all the terms on the left-hand side of the eq .uations are of the order of 
magnitude of one, within the boundary layer, P can vary at most by an 
amount of the order of 5. It is reasonable then to neglect this varia-
tion and consider P solely, a function of the flow outside the boundary 
layer. Thus, if x is chosen to coincide with. a streamline of the flow 
outside the boundary layer, V = W = 0, and by integration of eq .ua-
tion (9a) with the effect of viscosity neglected the following relation 
is obtained:

P = constant - pU2 + - 2R2	 (10) 

which is a form of the equation of Bernoulli. 

Furthermore, because outside the boundary layer the flow with 
respect to some nonrotating set of coordinates is irrotational, wiThh 
reference to the rotating coordinates the components of the vorticity 
vector become

-'I 
1_2U)y .	 (11) 

This assumption of irrotationality is not always true and in some 
applications, such as the later stages of an axial compressor, it cannot 
be used. As long as vorticity is distributed according to some definite 
pattern, however, a relation between the components of vorticity and the 
components of rotational velocity may be found and. substituted for 
equations (11). 

Substituting again in the expression for the components of vor-
ticity gives '

y.=	 (l^cz) U -
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And for z = 0, W 0, which is along the streamline, the expression 
for curvature becomes

(0)y lU	
2 c=_\_ff+U_ 

The equation of continuity remains 

u v w
(13) 

Generalized bounday-1ayer momentum-integral equations. - In order 
to obtain the boundary-layer momentum-integral equations, equations (9a) 
and. (9c) are integrated with respect to y through the boundary layer 
to some constant height d such that 

'd.	 t'd	 f'd.	 I'd.	 Pd 

Ju2ay+aJ wdy ^I wdy-U	 I udy-U	 I 
Jo	 Jo	 ZJQ	 ZJ 

jd 

dy -	

jd 

dy - 2	

jd 

dy 

+ jd 

dy Ud - - 
____ 

(l4a) 

and

r'd	 rd	 ("a	 ('d 

uw dy +	 /	 dy + c /	 dy - c	 u2dy 
Jo	 Jo	 Jo	 Jo, 

d. 

= U	 dy +	 u dy - 
T0, z	 (14c) 

These equations apply equally well for the laminar or turbulent boundary 
layer, with the value of T representing the shear stress at the wall 
accordingly adjusted. By suitable use of equations (12) and (13), these 

equations may be transformed to
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f(u-u)u dy+ Jod(Uu):y +
	 (U-u)w dy - 

2U r	 __ 

u.	
(U-u)w dy -
	

(U-u)w dy =
	 (15a) 

and

lUr
d. 

u2dy dy +	 wdy -	 w2dy + 

d 

= U	 dy + 2 jj u dy	 w2dy -
	

u2dy - 
OZ

(15c) 

The following definitions are now introduced: The momentum 
thickness in the x-direction of the flow in the x-direction, 

= 1	 dy	 (16) 
Ui0 

The displacement thickness in the x-direction, 

*	
jd	

dy	 (17) 

The momentum thickness in the z-directionof the flow in the z-direction, 

= jd	
(18) 

The displacement thickness in the z-direction, 

* = jd dy

	 (19)
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The momentum thickness in the z-direction of the flow in the x-direction, 

	

=	 Fuuw dy	 (20)
UJO 

The momentum thickness in the x-direction of the flow in the z-direction, 

Pd

wudy	 (21)
UJO 

All these thicknesses, as in two-dimensional boundary-layer 
theory, have a dimension of length. Furthermore, 

d	 d	 d 

- °xz = f ' w dy -
	

(U-u)w dy 
=	

uw dy =	 (22) 

With the use of definitions (16) to (21) and equation (22), equa-
tions (15a) and (15c) reduce for z = 0, to 

	

x	 ____	 ____ 

	

XZ	 e 
= To,x	

(23a) ^	 (2e	
+	

-	
U	 pU2 

and

	

_e)	 ___ 

	

___ _________	 - To,z 

+	 ^	
(e-e-	 ) +	 (	 -e) -	 (e^e) - - 

pU2 

(23c) 

Reduction of equations to forms obtained by other investigators. - 
If only two-dimensional flow exists, that is if C = 0, w. = 0, and 
w =0, then equation (23c) vanishes , and equation (23a) becomes an 
ordinary Karmn momentum-integral equation 

	

1 U	 + *	
To,x _—+( ex 8x) - 2 
pU 

If u = 0, that is, if the system is nonrotating, equations (23a) 
and (23c) become identical with the equations of Gruschwitz 
(reference 9).

rA
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Setting c = 0 in equations (9a) and (9c) makes these equations 
id.eiibical with the equations of Burgers (reference 10), who carried 
out his derivation for a Cartesian coordinate system. 

Finally, if the system of coordinates is chosen so as to maintain 
the right-hand rule and c is set equal to - , thus establishing the 

x-axis as a circle, then 	 = 1 and because of axial symmetry all 

derivatives with respect to x vanish. The coordinates are now 
assumed to be in a fluid that is motionless at great distance from the 
surface of the rotating immersed disk. Thus, 

U=W=0 

Integration of equations (9a) and (9c) gives after some manipu-
lation,
	

2	 (2fuw d) = - To,x 2r2 

and

(rJw2dy)j2dy= To,z 
r 

which are identical with equations of von K.rin.n for the rotating disk 
(reference 17). 

APPROXIMATE SOLUTION OF MONENTUM-flT2EGRAL EQUATIONS

FOR TUEBULEI'IT BOUTJDARY LAYER 

Transformation and reduction of dependent variables.- In order to 
obtain a solution of- the momentum-integral equations, additional rela-
tIons are needed describing the velocity profiles existing in the 
boundary layer and the friction at the wail.-

With the use of a suggestion by Prandti (reference ii), the 
expressions for u and w that will be used are



NACA TN 2310
	

19 

u=UG() 

w = EUG()g() = cug 

with boundary conditions on G and g 

for y=,	 G=l,	 g=O 

for y=0,	 G=0,	 g=l 

and with £ defined as

C tan a

(2k) 

(25) 

where a is the angle between the direction of the resultant skin-
friction stress and the direction of the flow outside the boundary 
layer. Because of this definition of c, g = 1 at y = 0 because 

urn 

y-0 

or

=
	 (26) 

Mathematically, such use of C implies a linear variation of w 
with C and makes possible the dissociation of the w velocity profile 
from its scale and direction. Because the flow must change direction 
in the boundary layer from that at the wall to that in the free stream, 
there is no reason to assume that such a dissociation is actually pos-
sible. In other words, there is no reason to believe that g should be 
a function of (y/) alone and not of € as well. In accordance with 
reference 11, however, this approximation is certainly admisible for 
small values of C and gives results of qualitative accuracy for 
moderately large C. In addition, in order to check this assumption, 

the value of	 , for several experimental velocity profiles and 
CU 

values of € ranging from 0.216 to 0.670, as obtained.from refer-
ence 9, is plotted against y/5 in figure 3. The results of this plot 
indicate indeed that Gg is independent of C. -	 -
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In parallel to the two-dimensional boundary-layer theory, the 
following definitions are iriade:

dy	

H
f(i-G)G 

•	 f0(1_ Gg dy	 S 

f(l-G)G 

•	 .	 (27) 
•	 JIdGgdy	

EK	 . - 

f(l-G)G.dy 

fdG2g2dy EL. 

f(1G)GdY 

The relations among the various - 

5* 
x 

z 

oz

bhicknesses may then be written 

HO 

•	 -	 •	 (28) 
=CKO	 • 

= c2Le 

The quantities H, J, K, and L are functions of G and g. 
Because G and g -are representative of the velocity profiles in the 
boundary layer, the changes in these velocity profiles must be reflected 
in turn in the values of H, K, J, and L. In other words, the
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external forces acting on the boundary layer and influencing the changes 
in the shape of the velocity profiles also cause a variation in H, K, 
J, and L. Unfortunately, the available data of reference 9, do not 
involve large changes in the shape of the velocity profiles and. the 
quantities H, J, K, and L. This behavior of the velocity profiles 
is verified in figure 3. The data of reference 12 do indicate large 
changes in the shape of the velocity prof ile; however, the data are 
not presented with sufficient detail to permit an accurate evaluation 
of H, J, K, and L. Thus, until more extensive experimental data 
become available, the quantities H, J, K, and L are assumed to be 
constants that can be evaluated either by assuming a suitable form for 
G and g or by computing directly from Gruschwitz data. 

In accordance with ref erenc 9, good assumptions for G and g 
are:

1	 (29) J 
An indication of the degree of fit afforded by these expressions 

can be obtained from figure 4(a), where a calculated profile with 
n = 7 is compared with one of the profiles of Gruschwitz. Other pro-
files of Gruschwitz data give similar results. It should be noted that 
this good agreement should not be interpreted as meaning that as.sunip-
tions (29) will always give a good representation of the velocity pro-
files in the three-dimensional turbulent boundary layer. Figure 4(b) 
showsa comparison similar to that of figure 4(a) with profiles con-
verted to the x,y,z system using data from reference 12. Equations (29) 
do not afford a good fit in figure 4(b), although the equations do 
represent the general behavior of the velocities. This comparison is 
further illustrated in figure 5, where the value of g(y/) as obtained 
by converting the profiles of reference 12 to the x,y,z system at indi-
cated points is compared with (l-y/)2. 

With the use of relations (29), H, K, J, and L are computed
as
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n

n2(lln+7) - 
- (2n+1)(3n^i)(3n+2) 

2n2(2+n) 
K - (2n+l)(3n-i-l) 

6n4 
L	 (3n-i-2)(2n+1)(5n+2)

which for n = 7 give

(30) 

B: = 1.2857 

J = 0.5423
(30a) 

K=2.6727 

L = 1.1285 

Averaging the values alon line III of ciruschwitz data (fig. 2) 
results in

H = 1.37 

J= 0.550
(3ob) 

K = 2.43 

L=0.968 

This relatively good agreement between the two sets of values is 
also indicative of the over-all fit of the assumed expressions for G 
and g to the data of reference .9. 

The additional relation that is needed for, the solution of the 
momentum-integral equation is the expression for surface friction. In 
ref erence 9, Gruschwltz demonstrates that von Kd.rmn's friction law 

1 
Tox	 I	 \ 

0.01255	 (31) 
pU	 x 

appears to be valid in the three-dimensional boundary layer as well. 
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Substituting relations (26), (28), and (31) in equations (23) gives 

0x U	 y	 To +	 (2+11) + jc 	 +	 - 4 -- °c =	 (32a) 
pU 

and.

2x 
LOXC - + Le	 + (K-J) e	 + (K-J)c	 + (Lc2-l_H) 

e U 

0xU	 2w	 To,x -	 2(K-J)c --
	

- (1+Le2) -fl--	 (32c) 

Because of the form of the relation for friction, an advantageous 
transformation of variable is

= eR4 (e)	 (33) 

in order to ttremovett the Reynolds number from the equations. 

With the use of equations (33) and (12), two nonlinear partial 
differential equations for e and. £ applying along z = 0 are 
obtained. from equations (32),. 

+	 +	 + I[ç5115^9)	
^ cC -	 Jc je _0.01255} 

(34a) 

and

(K-J)c	 + ± Le 2 	 ^ (K-J)e	 + 2Lec	 + 

[. (K-J)E	 - (. Lc
2 l-H)ce - (€2_u)	 ® + 0.0l255c] = 0 (34c) 

As shown in the appendix, these equations can be either hyperbolic, 
parabolic, or elliptic, dependlng on the shape of the velocity profiles 
existing in the boundary layer. For u = U( 1/) l/n and g = (l-y/6)2, 
the equations are always elliptic.	 -
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Simplification of equations and approximate solution. - The rela-
tiv.e importance of the various derivatives in equations (34) is now 
determined. First, ® and. C are assumed to be quantities that are 
.smaller than' one, aich can be accomplished simply by referring all 
lengths to a total path length S and a to 45°. As a result of this 
assumption, all derivatives in 0 and -C become of the order of mag-
nitude of 0 or C. Equation (34a) , is then divided by 4/5, so that the 
coefficient of 0/x is 1 and the coefficients of ®/z and C/z 

are JC and	 JO that is, o± the order of magnitude of £ or 0,

respectively. In a similar way equation '(34c) is divided by (K-J) 0 

so that the coefficients of ae/x and C/x become	 c, and 1 

(order of magnitude of one), respectively, and those of 0/z and. 
2 

E/z become	 L -- and. 2Lc (order of magnitude of €), respect-

ively. Then, if c is small as compared with tan 45° and 8 is small 
when compared with S, all terms of the order of magnitude of € 2 , 0€, 
or 02 may be neglected, which 'gives 

____ i ff1 

+ L	 ) u j8 = 0.01569	 (35a) 

and

	

c r4 1 0 9 1 U 0.01255 11	 1 
^ L	 + U	 + (j)	 = (J-K)	 ] (35c) 

These two expressions show that the primary changes in 0 and € in 
equations (34a) and (34c) occur only in the x-direction and thus the 
description of the phenomena only at z = 0 is justified. 

A solution of equations (35) can now be obtained by successive 
approximations because U, 	 and c are assumed to be known func-
tions of x. First, equation (35a) is solved, 

/511^9\	 rx 
•	 (\ 4).	 . 

• 8 =:O ()
	

+ 0.01569 1 ij"	 dx	 (36) 
I	 - U	 /5H+9\Jxi 

The values o± 0(x) are then used in an approximate solution of equa-
tion (35c)	 .	 .
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4:	 9 

5	 'x	 49 
____+	

/	 i+H)	 U ( x) dx =€ (-

	

i\'J UJE1 (x)	 49 
(J-K)(e 1 ) 5u5E1(x) Jxi

(37) 

where

0.01255 f dx 
(K-J) I	 (38) x 

	

E1(x) E.e	 ._J I 

With € 1(x) known, the approximation for (B could in turn, be 
improved by again solving equation (35a). If a grows large along the 
path, however, it is more advantageous to consider the following 
equation:

e [t5H+9\ 1 U J	 18	 (t)yl 
4 )U+cc_TJc--Je=o.o1569 	 (39) 

It is thus hoped that negIection of C/z will not affect the 
accuracy of the solution to a very marked extent. The solution of equa-
tion (39), which may be obtained by the method of Lagrange, is 

flx /5H+9\ 

[	
rx	 1	 E3(x)	 0.01569 E3(x) I u	 (x) 

€ dx)] (5H^9	 + (5H+9	 j	 E3(x)	 dx 

u\ ' /E2 (x)	 u\ 4 /E2(x) jXj

(40) 
where

dx	
:	

(41) 

	

E2 (x)Ee	 : 

fX 

E 3 (x)	 e	 (42)
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and

/	 x 
4rz-JJ . E dx) 

xl
t 

is an arbitrary function satisfying the boundary condition; when x = 
and z = 0, then	 = O. Setting 

at x x gives ? = 0. In addition, for z = 0, ? is of the order 
of magnitude of C. 

Expansion of r in Maclaurin T s series about ? (xi) yields 

2 
= r(0) 

+ 7 t ( o) +	 t() + 

Because there is only one boundary condition, it is possible to determine 
only one of the constants in this expansion; consequently, -4r cannot be 
uniquely established. The fact that X is of the order of magnitude of 
C, however, suggests that the assumptions made for rtt(0), 	 ttt(0), 
and so forth, are successively less important. Thus these derivatives 
may arbitrarily be expressed by a single constant, 

(511+9)	 2 2	 (5H+9 

= eiUi	 çl^AN + A	 + •	
.) = eu	 4 1 e	 (43) 

where A from purely dimensional considerations must have the dimen-
sions of Z-. From expressions (41) and (42), it is suspected that 

A=B( )	 (44) 

where B must be obtained from the experimental measurements. 

It should be noted that because ji(?) cannot be uniquely determined 
other functions of ?. satisfying the single boundary condition could be 
used as welL The function eA is chosen only because it is convenient 
to use and parallels the expressions (41) and (42). This arbitrariness 
of the functional form of r and the value of A is due to the con-
sequences of assuming z = 0, and thus it is probably not advisable to 
carry any further approximation for Ci] , and so forth.
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In solving equations (36) to (44), either set of values for H, K, 
J, and L may be used. Because the averaged values (30b) are probably 
more representative, having been obtained by evaluating experimental 
data at a number of different positions, it is advantageous to use 
these values in computations. 

COMPARISON WITH EXPERIMEIT 

In order to check the validity of the approximate solution, the 
boundary layer along four streamlines of reference 9 was computed and 
compared with the measured values. The designation of the streamlines 
and data points is illustrated in figure 2. Because the data were 
taken along curves I to V of figure 2, the computation along a stream-
line requires first an interpolation among the various data points. As 
a result of this interpolation, the computations could not be carried 
through the full length of each streamline. Values (30b) were used for 
quantities H, K, J, and L. The constant B was obtained by fitting. 
along streamline "B" the solution for ê 11, so that at x = 5, 

measured. In this manner, the value of B was found to be 

38.5. This value was then used in computations gf streamlines "A", 
"C", and ?Iflt?• It is noted that B = 38.5'7R'I 4 (e) 1, although 
justification for such a dependence cannot be made. In all integrations 
Simpson's rule was used. 

The results of the computations are plotted in a nondimensional 
form and compared with interpolated measured values in figures 6 and 7. 
A study of these figures reveals a fair quantitative agreement between 
the measured and estimated values of G and a,. As the values of 
€-- tan 450 (fig. 7) the first approximation for 0 in figure 6 becomes 
progressively worse, which is remedied by the second approximation. The 
poorest agreement is obtained along streamlines "A" and "fl", which 
because they are closest to the walls might be affected by the flow in 
the corners of the duct. Streamline ttDit especially may thus be 
affected inasmuch as Gruschwitz mentions the existence of separation 
on the convex wall. 

The fair quantitative agreement with the measured values is not to 
be interpreted as a conclusive check of the validity of the procedure 
and the assumed values in all cases of three-dimensional boundary-layer 
flow. The suggested procedure simply represents the best that can be 
done in view of the meagerness of the available data. Because the 
Gruschwitz data do not involve the effects of uniform angular velocity 

and because the variations in	 and	 are small, it could 
Udx	 Udz 

be maintained that this check of the procedure has been carried out



28
	

NACA Th 2310 

on a somewhat special case. For that reason, it is desirable that 
additional experiments be carried out in setups that eliminate, the 
present shortcomings. Larger variation of Reynolds number should 
also be used. With additional experiments, a modification of the 
values of H, K, J, L, and B, together perhaps with some 
refinements of the procedure will be in order. It might be well 
to reineniber at such time, that because of the necessary empiricism 
involved (which results from the very limited knowledge of turbulent 
phenomena), long and tedious computations would rarely be worthwhile. 

CONCLUSIONS 

The following conclusions can be drawn from an analysis of the 
three-dimensional momentum-integral equations and a comparison of thp 
numerical, results with the Gruschwitz data for turbulent boundary layer: 

1. Within the boundary layer the static pressure can vary at most 
by an amount of the order of magnitude of the boundary-layer 
thickness . 

2. It is possible to generalize the velocities in the boundary 
layer by use of two characteristic quantities E and C where € is 
the tangent of the angle enclosed by the direction of the resultant 
skin-friction stress and the direction of the flow outside the boundary 
layer.

3. When the generalized boundary-layer momentum-loss thickness ® 
is small as compared with the total path length and € is small as 
compared with tan 45O the primary changes in IE) and £ occur along 
the streamline of the flow outside the boundary layer. 

4. The three-dimensional boundary-layer momentum-integral equations 
can be either hyperbolic, parabolic, or elliptic, depending on the rel-
ative magnitude of the parameter MN, which in turn depends on the 
shape of the velocity profiles existing lii the boundary.layer. The 
power-law profile when used with the correction function g = (1-y)2 
always results in elliptic equations. 

5. The approximate solution of the. three-dimensional momentum-' 
integral equations shows a fair quantitative agreement with the values 
measured 'by Gruschwitz. 

6. Additional experimental data are necessary to establish more 
generally applicable' values for form parameters H, K, J, ad L 
and B, the constant used in the second approximation for . 

Lewis Flight Propulsion Laboratory, 
National Advisory Conmiittee for Aeronautics, 

C1evelan., Ohio, November 1, 1950.
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APPENDIX - ADDITIONAL REMARKS ON TBBEE -DIMENSIONAL BOUNDARY -LAYER 

MOMENTUM-D1TEGRAL EQUATIONS 

In order to obtain the approximate solution of equation (34), it 
was shown by comparing the relative order of magnitude of the coeff i-
cients that some of the terms may be neglected. Care must be taken tth 
such simplifications inasmuch as various implications of the equations 
in question may be obscured by this procedure. For this reason, aside 
from the approximate solution, the character of equations (34) was also 
investigated. in detail. 

• By use of the procedure outlined in reference 18 (p. 38), along 
z = 0 the system of equations (34) is found to be hyperbolic when 
MN > 1, elliptic 'when MN < 1, and parabolic when MN = 1. 

where
e - ____	 XZ 

= (K-J)J =	
T 

Because L, K, and J are functions of G and g, the char-
acter of equation (34) depends on the,shape of the velocity profiles in 
the boundary layer. 

It should be noted that when MN = 0, then L = 0, which is only 
possible if G = 0 or g 0, and in turn u = 0 or w = 0. If the 
trivial case u 0 is neglected, it is established that 'when w= 0, 
c = 0 as well. But for c = 0 and w = 0, equations (34) reduce to a 
special case

8 U "5H+9\ 
_+_5 ) 0.01255
	 (46a) 

and

-	 = - 0.01255	 (46c) 
U	 H 

Here equation (46a) is an ordinary two-dimensional boundary-layer 
momentum-integral, equation for 8 and. equation (46c) is a relation that 
evidently must exist among U, U/z, w, and 8, when £ = 0 and 
w=O.

(45) 

P1
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When the equations are efliptic, no real characteristic direction 
can be found. When only one characteristic direction exists, the equa-
tions are parabolic and in the hyperbolic case two characteristic 
directions through each point of the xz-plane are obtained. For the 
parabolic case then,

d.z = Jc 

and for the hyperbolic case, 

	

dz -	 L+ts[L2J(KJ)L 

	

-	 C	
(K-J) 

	

dz -	 £ L -
K-J) 

and the characteristic lines are asymetric with respect to the x-axis. 
In order to determine whether elliptic, parabolic, or hyperbolic equa-
tions apply,. the magnitude of MN is computed. Substituting from 
expressions (30), NNis obtained in terms of n: 

	

6(3n+l)(3n+2)	 1	 108n+96 

	

= (5n^2)(lln+7)	 -	 55(55n2+57n+14) 

This equation shows NN to be a monotonically increasing function of n. 
For n=0, 

and.

urn MN = 
n —4 

These results indicate that a so-called power-law profile when used. 
with g (1-y/) 2 always results in equations that although 
elliptic are very near to being parabolic. Using values (30b), 

MN = 0.936 

which again indicates an elliptic character of the equations. It should 
be remembered, however, that the assumption for G and g were made 
on the basis of only one set of data; consequently there is no assurance
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that the velocity ditributions existing in the boundary layer will 
always give the same values of MN. In fact, it is generally more 
likely that they will not give the same values of MN. Some indication 
of the variation of MN may already be obtained from figure 8, where 
its value was plotted for each Gruschwitz data point. At points 5, 6, 
and 7, however, small values of w may have prevented an accurate 
determination of L and as a consequence MN = 0 there. The value of 
MN in figure 8, varies within the limits 0.65<MN<l.2, with the bulk 
of the points indicating that MN-0.95. 

On the basis of the preceding discussion, there is some evidence 
of the equations being parabolic, elliptic, and hyperbolic in the tur-
bulent boundary layer. It is interesting to note that generally (as 
in supersonic and subsonic flow, for instance), these hyperbolic and 
elliptic regions have their counterpart in physical phenomena. Thus 
some essential differences might exist in the process of momentum 
transfer between the hyperbolic and elliptic regions. These differ-
ences cannot now be ascertained because first equations similar to (34) 
with z 0' would. have to be obtained, and there is no mention of any 
irregularities in the behavior of the flow in reference 9. When 
additional experiments are made, however, it would seem advisable to 
closely study these two mathematical regions in order to obtain some 
indication of the physical make-up of their differences. 
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I 

z	
X=f'cosPdx+zsiii 

Y=y,Z=Z1+zcos 

= coxatant -	 sin dx 

-	 d. 
C dx 

Figure 1. - Transformation froni Cartesian cooHinates 
X,Y,Z to orthogonal curvilinear coord.inates x,y,z.
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(a) Chaniel and. measur1n plate seen from below. 

(b) Measurin€ plate seen from below, showing 
point and streamline designations. Shaded 	 - 
sections indicate regions of potential-flow 
breakdown. 

Fignre 2. - Experimental set-up of Oruschvitz
(from figs 1 and 5 of reference 9).
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•	 Figure 3. - Plot of Jf against .. for various data from reference 9. 
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Figure 6. - Continued. Comparison of calculated and measured 
generalized momentum thickness. Experimental data from 
reference 9. 
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(c) 'Streamline "C"; S = 37,8 inches. 

Figure 7. - Continued. Comparison of calculated 
and measured boundary-layer deflection at wall. 
Experimental data from reference 9. 
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(d) Streamline "D"; S = 21.25 inches. 

Figure 7. .- Concluded. Comparison of calculated and measured 
boundary-layer deflection at wall. Experimental data from 
reference 9.
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