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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL NOTE 2310

GENERALTZATTON OF BOUNDARY -LAYER MOMENTUM-INTEGRAL EQUATIONS TO
THREE-DIMENSTONAL FLOWS INCLUDING THOSE OF ROTATING SYSTEM

.By Artur Mager .

. SUMMARY

The Navier-Stokes equations of motion and the equation of continu-
ity are transformed so. as to apply to an orthogonal curvilinear coordi-
nate system rotating with a uniform angular velocity: about an arbitrary
axis in space. A usual simplification of these equations as consistent
with the accepted boundary-layer .theory and an integration of these
equations through the boundary layer result in boundary-layer momentum- '
integral equations for three-dimensional flows that are applicable to
either rotating or nonrotating fluid boundaries.
, These equations are simplified and an approximate solution in ’
closed integral form is obtained for a generalized boundary-layer.
momentum-loss thickness and flow deflection at the wall in the . turbu-

lent case.

A numerical evaluation of this solution carried out for data
obtained in a curving nonrotating duct shows a fair gquantitative agree-
ment with the measured values. '

The form in which the equations are presented is readily adaptable
to cases of steady, three-dimensional, incompressible boundary-layer
flow like that over curved ducts or yawed wings and it also may be used.
to describe the boundary-layer flow over various rotating surfaces, thus
applying to turbomachinery, propellers, and helicopter blades. ’

INTRODUCTION

The development of the boundary layer on the various parts of
‘turbomachinery (compressors and turbines), heliccpter blades, propel-
‘lers, and in curvéd ducts is influenced by centrifugal and Coriolis
forces in addition to the pressure and viscous forces.  As a result of
these forces, the flow in the boundary layer not only has the char-
acteristic velocity deficiency but also has, because of this velocity
deficiency, direction different from that of the flow outside the
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boundary layer. Thus the behavior of the boundary layer -in three-
dimensional flow may be quite unlike the behavior in two-dimensional
flow. The effect of these additional forces on the boundary layer has
been realized for some time and the observed discrepancies in the
boundary-layer behavior have usually been explained only in a qualita-
tive manner as, for instance, in references 1 to 4.

The literature concerning the theoretical aspect of the three-
dimensional boundary-layer flow i1s meagér. For the laminar case most
of the published work has been carried out in connection with the yawed
wing (references 5 to 7). For the turbulent case, although a number of
researchers have established the general form of the differential equa-
tions applicable, no actual solutions of these equations have been
obtained.. Tetervin, for instance, presents boundary-layer momentum-
integral equations in three dimensions for a fluid of variable density
and viscosity (reference 8). Gruschwitz establishes.the momentum-
integral equations for boundary-layer flow along an arbitrarily curved
stréeamline in reference 9. Burgers gives the differential equations
on the development of boundary layers in the case of axially symmetric
flows having a rotational component (reference 10). Prandtl, in addi-
tion to presenting a form of three-dimensional momentum-integral equa-
tions, suggests the general procedure that could be followed to obtain
a solution (reference ll) Experimental data are similarily lacking.
In spite of considerable literature search, only the data of Gruschwitz
(reference 9) for a curved duct and the data of ‘Kuethe, McKee, and
Curry (reference 12) for a yawed wing were found. :

As a result of research on this problem at the NACA Lewis labora-
tory, the boundary-layer momentum-integral equatlons are derived and
presented herein for a set of orthogonal curvilinear coordinates, which
may or may not be rotating about an arbitrary axis in space and can be
laid out along a streamline of the potential flow. The so generalized
equations are then transformed by use of an assumed velocity distribu-
tion and friction law for turbulent boundary layer so that an approximate
solution can be obtained for the boundary-layer momentum thickness and
the direction of boundary-layer flow. Finally, a numerical solution is
carried out for the Gruschwitz data in order to make a comparison
between the estimated and actual measured values. -

The equations as given in ‘their generalized form are readily
adaptable to cases of steady, three-dimensional, incompressible boundary-
layer flow, involving centrifugal and Coriolis forces. The approximate
solution, however, has been carried out only for the turbulent boundary
layer, because in most of the aerodynamic c¢onfigurations, where these
equations apply, transition from laminar to turbulent flow occurs
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\
comparatively early in the flow process. A laminar form of the approx-
imate solution can be obtained by simple substitution of a suitable
velocity profile and friction law. ‘

It should be noted that whereas the differential equations describe
the flow phenomena with only the accepted simplifications, the approxi-
mate solution depends to some extent on the assumed boundary-layer
velocity profiles and the relation for friction. Both of these assump-
tions were made -on the basis of the data of Gruschwitz (reference 9)
only, because the data of reference 12 were not adaptable to extensive
computations for the purpose of this analysis. The measurements of
Gruschwitz, on the other hand, have certain shortcomings as they were
obtaineéd in a nonrotating channel formed by two circular-arc shaped
walls. Thus the generality of the velocity profiles measured by
Gruschwitz 1is in question. A revision of the approximate solution can
therefore be expected when more data become available. In addition,
any speculation on the occurrence of boundary-layer separation (which
by definition is a special form of a velocity profile) would be abso-
. lutely meaningless; no further mention will therefore be made of this
phase of the problem.

SYMBOLS : -

The following symbols are used in this report (the dimensions are
given in right-hand column): "

-,

A constant occurring in second approximation for © (Z'l)
a _ resultant acceleration vector in fixed (inertial) (1t~2)
system :
a resultant acceleration vector in Cartesian coor-
o . ' -2
: dinate system (1t7°)
B constant occurring in second approximation
for © : (0)
b position vector of particle ) (1)
c ' curvature of x-axis (fig. l),: %% (1'1)

a ' constant > § . (1)



El(x)
Ez(x)

E3(x)

exxrCxy ¢

fx,fy,fy,

H,J,K,L

hq,hp,h3
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< 0.01255 95 . '
@ .
I | (0)
<% dx> |
x . . (0)
18
z J \_/; € m_g dx
e i (0)
rate-of-strain components . - (v
resultant-force vector acting on particle (mlt'z)
components of body forces per unit mass (Zt'z)

function describing bou.nda.ry-layer velbcity profile,
. 1 .

also taken as (%’_)n - © (o).

function describing bbundaryflayer velocity profile,
yY ‘

also taken as < - €> (0)
qua.ntities describing relations among various char-

acteristic loss thicknesses in boundary layer (0)
transformation coefficients: (0)
length
parameter determining nature of boundary-layer (0)

equations _ .
mass °
static préssure , (m1” t_z) :

components of stress per unit area in Cai‘tesia.n
. -1, -2
coordinate system (m1™7t™%)
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U,V,W

UO’VO’WO'

u,V,w

X,Y,Z
X,0,%

Z, (x)

* o¥

oo Gaste

resultant velocity vector . » ' (1t~1)

1

perpendicular distance of particle from axis of

rotation . (1)
. , : 6,U '
Reynolds number based on 6y, —5— ‘ (0)
raaius of circle . : ' (1)
o s .
total path length ax : : (1)
: 0 _ o
arc length : : ) (1)
time

values of u, Vv, and w outside boundary _
layer (1t-1)

‘velocities in Cartesian coordinate system (Zt-l)

time averaged velocities'in curvilinear coordinate

system _ . (Zt-l)

) Cartesian coordinate system (Z)'
orthogonal curvilinear codrdinate system o (1)
function used in transformation ' | (1)

boundafy-layer deflection angle measured from
direction of resultant skin-friction stress to

direction of flow outside boundary layer -F(O)
angle between X-axis and taﬁgent.to x-axis (o)
boundary-layer thickness S . , , (1)
displacement thicknesseé in three-dimensional ' _

boundary layer . ' (1)
ﬁeasure of boundary-layef deflection, tan o« | (o) -
slope of characteristic line v (0)
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iy sy 50y

w_,W_
x"y’ e

Subscripts:
i
X
zZ

I,IT

z-direction
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generalized boundary-layer momentum-loss thickness,

1/4 - »
o/ *(05) " | ~ (1)
momentum—loss_thicknessés in three-dimensional
boundary layer S o (1)
= X Ay -
variable of function V, (Z_{J[; € dx> (1)
. X3 / v
. L e : -1
kinematic viscosity (1°t7)
COmenents‘of vorticity vector ' (t'l)
density , ' (ml_s)

apparent stresses existing in turbulent fiow (ml‘ltfz)

" shear stress at wall ‘ : (ml'lt—z),

arbltrary function satlsfylng
equation (39) and boundary ( [(5H+9) +l:l [(5H+9)]
.conditions '

angular velocity S - (t'l)

components of vector w'-inkcartesian coordihate
system . _ . (+-1)

components of vector o in curv111near coordinate

system - (t~1)

initial value

x-direction

order of approximations

For Gruschwitz data-point de81gnat10ns and streamline de51gna-

tions, see figure 2.
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DERIVATION OF BOUNDARY-LAYER MQMENTUM-INTEGRAL EQUATIONS

The equations for steady flow of a fluid having constant density
are derived in a Cartesian coordinate system X,Y,Z, rotating with
uniform angular velocity about an arbitrary axis in space. These equa-
tions are then transformed to an orthogonal curvilinear coordinate
system x,y,z, such that the x-axis can be placed along any convenient
path in the XY-plane, which is con51dered as a plane of a wall. These
equations are then simplified in a manner consistent with the boundary-
layer theory. If. the path is chosen so as to match a streamline of the
potential flow, only one velocity will exist outside the boundary
layer, that along the streamline. Furthermore, the changes in boundary-
layer quantities in a direction other than that along the streamline
are expected to be relatively small in comparison to the changes along
the streamline. Additional simplifications may thus be possible. -
Finally, integration through the boundary layer gives the generalized
form of momentum-integral equations for three-dimensional flows that
may or may not involve rotation of the system.

Equations for steady flow of fluid with constant densify in rotat-
ing Cartesian coordinate system. - The Navier-Stokes equations of flow
‘for a fixed Cartesian coordinate system X,Y,Z (reference 13, p. 576) are

DU, op op dp
o ~ 9pxy X 7X
P =Xt 3tttz (12)
DVo - dpxy OPyy OPgy
°oe =Pyt oYt (1v)
W - Op. op e)s)
o X7 Yz 27
P — = pfy + + + 1lc
v - 2T T T T T Tz (1)

and the equation of continuity is

U, oV, W,
X Yoy tsg =0

(2)

It is now assumed that this Cartesian coordinate system is rotating
with a uniform angular velocity w and that the observations of the
motion of the fluid'particles are still made from a position rigidly
attached to the same system. The velocity q, and acceleration aq
are as seen by the observer, that is, theéy are relative to the X,Y,Z
system. Because of the rotation, however, the X,Y,Z system is not an
inertial system (reference 14, p. 53) and thus the second law of motion
holds only with respect to acceleration a relative to some other
system that is nonrotating,
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In terms of a, then (reference 14, p: 104),
mag + mw X (0 X b) + 2mw X g, =F

Here mw X (w X D) represents the centrifugal force and
2mo X q, 1is the Coriolis force.

Thus for a Cartesian coordinate systembrotating with a‘Baiform
. . 0 o) ’ o] '
angular velocity w, the expressions for T Do and DT must
be modified by proper components of the Coriolis and centrifugal accel-
erations. For steady flow, the component accelerations as referred to
a rotating Cartesian coordinate system are therefore

‘DU oU U, U > 3R
DV, bvo BVO BVO : 5 3R
5t = Uo 5% + Vo 5T * Wo 57 * 2(wglo-wygio) R F7 (sb)
DW, M, oW oW ' AR
5= Yo 55 * Vo 3y * Wo 37 + 2leloayUo)wFR 57 . (3e)

The equation of continuity, which does not invdlve any accelerations,
remains the same.

Transformation to orthogonal curvilinear coordinate system. -

Transformations similar to those of Gruschwitz (reference 9) are used
as indicated in figure 1 with the precaution that the system remain

right-handed. <~
X
X = b/ﬁ cos B dx + z sin B
0 ‘ ,
Y=y | ? (4)

7 = Z1 + z cbs B )

X
= constant - b/" sin B dx
' J O

where

B
[}
I
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and
\ BéB(X)

Use of these transformations permits an arbitrary curvature of the
x-axis in only one plane, the XZ-plane. Thus the solution is somewhat
restricted. In two-dimensional boundary-layer investigations, however,
it is found that the boundary-layer equations are unaffected if the
radius of curvature in the XY-plane is large as compared with the
boundary-layer thickness (reference 15, p. 120). In three-dimensional
boundary layer the same limitation will probably apply providing, of i
course, the values of wy, Wys . and w, are properly adjusted to take

care of this additional curvature. Setting -

’ | c = %% (curvature of x-axis)

gives
g§_= (1+cz) cos B g% =0 %é = sin B
Y . Y oY |
&=O g}-’::l gz-=o
Y4 . YA 2z .
3% = -(1+cz) sin B 55 =0 S5z = cos B

The elements of length at (X,y,z) in the direction of the
increasing coordinates are (reference 15, p. 101):

hld.x » hz dy I3 hst’

Thus,

(a8)? = (ny) 2 (ax) o) (a3 2 (ng)  (a2) (@) P(ar) P+ (a2)”

\

But because
| oX oX 3
aX = dx + dy + dz

3% YV T:
. and so forth,.

(a5)? = (1rez)? (ax)? + (ay)” + (a2)°
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and

= (1l+cz) © hy=1 - iz =1 (5)
The expressions for the linear accelerations can be written directly,
as given in reference 13 (p. 158). (It should be noted that the h

values herein are reciprocals of those in reference_lS.)‘-The components
of a gradient now are

_1_6 10 1l
hy Ox “hy dy hz oz
whereas the components of onco remain

Vo-Hey WU, Uay Voo

Thus the accelerations in the rotating x,y,z system'are written as

DU UV U W W, V (Uahl_vah2> W (ahl ahz))‘

DthFhZF h; Oz ' hyh, ) Bby \ Oz Wsx/

2(wyW-ay, V) - ¥— o2y & e

And the expreséions for %% and g% follow from symmetry. The equa-

tion for the dlvergence now has the form

div qg = h1h2h3 [g‘ (hohsU) + 3— (hzhy V) + 55 (hlhzw)] =0

Whereas the components of the curl qo are

t ="hzl_h3[% (hSW) - % (thﬂ
n = fs%l- [% (by0) - % (hSW)]-
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In order to obtain the viscous terms the preceding expressions are used
in the expansion of

v[grad (div q,) - curl (curl E('))j

If equations (5) are substituted into these general expres- -
sions and the differentiations are carried out, the equations for flow
in orthogonal curvilinear coordinate system rotating with an angular
velocity w are.obtained. The body forces are neglected here.

U oU U ouU c 1 2. oR ,
T+zc ox VF”’B‘ l+chW-l+zcwR&+2<m}M_wZV)

_._ 1 1% - aUg~:_+82_U+
- l+c; P ox (1+cz)@ dx2 (l+c-z)3\g}Z dx = 3y2

3% . e U uc? W dc . 2c W
52t Tiez 9z 2t Zax T y
oz €2 0Z  (14cz)% (1+cz) (l+cz)

(6a)

v ov 1 2R 3R

USE VS S - T R § 2o = %

'OI}—‘

(60)

» 1 azv 2 dV de . B3V ¥V e v
(1+cz)@ dx° i (1+cz)® 9 ax dy? ¥ dz2 T Tz &2

U W _, W , MW ¢ .2 2 3R 1P
M&*V?ﬁ”ﬂé’z"m&'[} -wR6—-+2(wa-(qu)—-EBE+

vl; 1 %W U dc pA oW dc

- —_ - —— = =+
l+cz)? 3x%  (1+cz)® X . (ltez)d ox ax

52W BBW Wel + =S oW '_ 2¢c U (6¢)
2 T8 (Wren)? | T 3T (Laeg)? O

1 oU oV oW, We _ . |
Trezox "oy 32 * Trez = O - (8)
In the general oi‘thogonal coordinates, the expressions for the rate-of-
strain components are
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_frw, v % w 5111) . D33 fw) Bed v
by Ox " hyhp Oy T hghy oz ¥z~ hp Oy h_s) T hy 3 (@)
_ogrw, w P2y ahz) e ™My fu) D5 ayw
. _gfr ¥, u 3 v 5113) . P23y (v, B3 (U
22 hz 0z = hzhy Ox ~ hphgz Oy Xy ~ by ox \hy/ " by Oy \Iy

The viscous terms in equations (6a), (6b), and (6c) may be expressed
using the rate-of-strain components as .
1 U z  dde  dU . U e U U

(1+cz)? x4 ) (1+cz)d xax dy* ¥ 322 Tz & (Ltcz)? ¥

W dc 2c W 1 Oegy Oeyy de,y 2ceXZ~J
= = =V
(1+cz)3 8 * (1+cz)? 5%] [;+cz 3 Ty f T T Tez (72)
o1 v _a wae ¥, ¥, e av]_
(1+cz)? %% (l+cz)® Ox ax Jye  dzf  l+ez Sz |
_ v aeyy + 1 Bexy Beyz c.
- oy Trcz ox T 0z T Txcz Czy (7p)
U de z M de, Pw  dw _ _wed

ol 2 W de  _z W dc )
. (l+cz)2 8};2 (l+cz)3 dx (1+cz)3§ dx ayz 3z° (l+cz)2

c  OW_ _2c U | _ vl oeyy, aeyz aE‘Ezz c
T+cz oz (l+cz)2 x|~ Trcz Ox - dy T35z T Tecz (eX-X_ eZZ)

Equations (6) are directly applicable to the laminar flow. For tur-
bulent flow, because of the velocity fluctuations it is necessary to
modify the stresses by addition of the so-called Reynold's stresses.
Thus, meking use of the parallel form in equations (7), the Navier-
Stokes equations of motion for turbulent flow may be written in terms

of the zpparent stresses as

(7¢)

PaYale k]
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_U_ v, _c .1

l+cz 5* 5- W 5- l+cz UW.- 5— * Z(wyﬂqm V)
. 5 1 ; 1 oy aT&x Bsz 2eTyx | (8 )
T+cz p Ox + T+cz 3x T Oy 5zt Thez ' a

oV Vv dv 1
Ug)—{'i'VFy'i‘Wgz‘ l+CZ'a)

5 T U B Tyz c Tyz ’
[_ -Eﬁz + By t 5zt ~ l+cz (Bb).

OR
2R 5y + Z(wZanﬁﬂ)

b

O+
UlH

®
5y "

U oW c
Trez ox T ¥ 5_ + W 5_ T+cz U "R 5_ + z(ka*DYU)

_loP 1| 1 Oy aTyz o0, -
53z T p |T#cz ox t Sy ez T l+cz 0z) | (8c)
Simplification for flow within boundary layer. - Equations (6) and
(8) are equivalent to the complete Navier-Stokes equations. Within the
boundary layer, however, certain terms, whose contribution is relatively
unimportant can be neglected. If the y-axis is taken as normal to the .
wall, the boundary-layer flow then takes place over the xz-plane (or
the XZ-plane). All terms are now made dimensionless by referring the
lengths to some'body length, the velocities to their free-stream
values, and so forth, as explained in reference 16 (p. 45) and all
quantities of the order of magnitude of & or smaller are neglected,
Furthermore, because the boundary-layer flow along a definite path
z =0 1is of interest, additional simplifications are possible. Setting
= 0 restricts the equations, because the general boundary conditions
(not on the x-axis) cannot be satisfied. It will subsequently be seen,
however, that these general boundary conditions are unnecessary in the
solution of the final equations. These simplifications yield the
Navier-Stokes equations for flow within the boundary layer in a
rotating orthogonal curvilinear coordinate system evaluated at z = 0,

1 BP 2 BR 5 u) -
=_— 4+ W Vv 9

(9b)

i
A&

- sz S + 2(w2u - wxw) = -

N
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, . 2
u g% + Vv g% + W g% - vée = - % gg + R g§-+ 2mgu + \’<§;§> (9¢)

for the laminar case. For the turbulent boundary layer, a corres?onding

.
set o equations_is obtained with the substitution of - XY for

oT 2,
(8 121> and i zy for v<§—2>
dy P oy dy

Equation. (9b) shows, as pointed out in reference 10, that because
all the terms on the left-hand side of the equations are of the order of
magnitude of one, within the boundary layer, P can vary at most by an
amount of the order of &. It is reasonable then to neglect this varia-
tion and consider P solely, a function of the flow outside the boundary
layer. Thus, if x is chosen to coincide with a streamline of the flow
outside the boundary layer, V =W = 0, and by integration of equa-
tion (9a) with the effect of viscosity neglected the following relation
is obtained: '

P = constant - % oUZ + % pwPRA (10)

which is a form of the equation of Bernoulli.

Furthermore, because outside the boundary layer the flow with
respect to some nonrotating set of coordinates is irrotational, with
reference to the rotating coordinates the components of the vorticity
vector become : : '

tE = -20 )

n (11)

¥

{ = -2,

This assumption of irrotationality is not always true and in some
applications, such as the later stages of an axial compressor, it cannot
be used. As long as vorticity is distributed according to some definite
pattern, however, a relation between the components of vorticity and the
components of rotatlonal velocity may be found and substltuted for
equations (11).

Substituting again in the expression for the components of vor-
ticity gives

-2y = l+cz [5_ (l+cz) U - 5— ]
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And for z =0, W = 0, which is along the streamline, the expression
for curvature becomes

2y 1y
°.-'<—u ﬁ&), (12)
The equation of continuity remains
g% + g% + g% +we =0 (13)
Generalized boundary-layer momentum-integral equations. - In order

to obtain the boundary-layer momentum-integral equations, equations (9a)
and (9c) are integrated with respect to y through the boundary layer
to some constant height d such that

a>5s

a - a a a a
) 2 oU ) o :
u-dy + &%, w dy + = wdy - U udy - U — dy +
ox o y o y dz 0 v ox o ¥ S oz o va

'd A | a . d
d Yy | 19U ' U, To,x
-4 = - - = C- 2
Sz uw.dy T uw dy - 2 T3z . uw dy + 2wy . w dy = yd 3% 5

0 . 0
(14a)
and :
a | d a - (a
o 3 w2 w2 2
uw dy + dy + ¢ dy - ¢ u“d
" y 32 Y Y y
0 . 0 0] o
a4 - d :
dU ' To,z '
oz o y + 2wy o y P

These equations apply equally well for_the laminar or turbulent boundary
layer, with the value of To representing the shear stress at the wall

accordingly adjusted. By suitable use of equations (12) and (13), these
_equations may be transformed to
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d . ra
g% o (U-u)u ay + g%\]; (U-uw)dy + g% 5 (U-u)w dy -
a Cow [
% g% . (U-w)w dy - _ﬁl . (U-u)w dy = —2=% (15a)
and
a Ad‘ ' d - a
g% uw dy + g% wedy - E.gg B wody + % %% . wPay
&b , ¢ T
5— dy+2wyfudy+—-f U Ouzdy- Op’z
 (15¢)

The following definitions are now introduced: The momentum
thickness in the x-direction of the flow in the x-direction,

oy = -}5] (U-w)u dy B (l'6$.
The displacement thicknes; in the x-direction, | |
8% = % (U-u - )
The momen£um thickness‘in the z-direction of the flow in the z-@irection,

‘ | 92=L2f , | (18) .

. The displacement thickness in the z-dlrectlon,'

f | | (29)

GIH
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The momentum thickness in the z-direction of the flow in the x-direction,
a- |

1 ; :

Oy = = | (U-ww dy (20)
- U Jo

The momentum thickness in the x-direction of the flow in the z-direction,

. 4 :
wu dy . - (21)
o A

:

All these thicknesses, as in two-dimensional boundary-layer
theory, have a dimension of length. _Furthermore,

A d a ' a
* . 1 1 .
8, - Oxg = % way - = (U-u)w dy = = uw dy = G5y (22)
. 0 "Jo : U"Jo

With the use of definitions (16) to (21) and equation (22), equa-
tions (15a) and (15c¢) reduce for z =0, to -

1
Opx = =)

<

;f;z+%g.g<zex4s;> +%ﬁ- 4“%\9}“ = T:U’Z‘  (239)
and ' .
gzz +B(8;a;9xz>+% %Z (ez-’.ex-b; )+% érz (5; '6}62) - -Zi:;y— (644+6,) = -:Ic;éz
- (23c)

Reduction of equations to forms obtained by other investigators. -
If only two-dimensional flow exists, that is if ¢ =0, w =0, and
@ =.0, then equation (23c) vanishes and equation (23a) becomes an
ordinary Kdrmdn momentum-integral equation )

%y 13U To,x

* -
Al S R

If o= 0, that is, if the éystem is nonrotating, equations (23a)
and (23c) become identical with the equations of Gruschwitz -
(reference 9).
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Setting ¢ = O in equations (9a) and (9c) makes these equations
identical with the equations of Burgers (reference 10), who carried
out his derivation for a Cartesian coordinate system.

Finally, if the system of coordinates is chosen so as to maintain

the right-hand rule and c¢ 1is set equal to -%, thus establishing the
dz :

x-axis as a circle, then T - 1 and because of axial symmetry all

derivatives with respect to x vanish. The coordinates are now
assumed to be in a fluid that is motionless at great distance from the
surface of the rotating immersed disk. Thus,

U=W=20 w=0

Integratlon of equations (9a) and (9c) gives after some manipu-

lation,
d

2n — \r uw dy/ = -
A _ , 0

X oxr2

and

To,z
p

d 2. ‘2
> r wdy| - udy = -
40 0

which are identical with equatlons of von Karman for the rotating disk
(reference 17).

APPROXIMATE SOLUTION OF MOMENTUM-INTEGRAL EQUATIONS

FOR TURBULENT BOUNDARY LAYER

Transformation and reduction of dependent variables. - In order to
obtain a solution of. the momentum-integral equations, additional rela-
tions are needed describing the velocity profiles existing in the
boundary layer and the friction at the wall.

With the use of a suggestion by Prandtl (reference 11), the
expressions for u and w that will be used are -
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u=UGZ) '
s}
(24)
- Lo (L) =
W = €UG<5)g<6> = €ug
with boundary conditions on G and g
for y =5, -_ G =1, ' g=20
for y=0, G =0, g=1
and with € defined as
€ =tana (25)
where o 1is the angle between the direction of the resultant skin-
friction stress and the direction of the flow outside the boundary
layer. Because of this definition of €, g=1 at y = 0 because
ow
lim ¥4 - ¢
5=
y—0 Sy
or
To,z = €To,x 7 (25)

Mathematically,* such use of € implies a linear variation of w
with € and makes possible the dissociation of the w velocity profile
from its scale and direction. Because the flow must change direction
in the boundary layer from that at the wall to that in the free stream,
there is no reason to assume that such a dissociation is actually pos-
sible. In other words, there is no reason to believe that g should be
a function of (y/6) alone and not of € as well. In aeccordance with
reference 11, however, this approximation is certainly admigsible for
small values of € and gives results of qualitative accuracy for
moderately large €. In addition, in order to check this assumption,

the value of '% %, for several experimental velocity profiles and

values of € ranging from 0.216 to 0.670, as obtained from refer-
ence 9, is plotted against y/s‘ in figure 3. The results of this plot
indicate indeed that Gg is independent of €. . :
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In parallel to the two-dimensional boundary-layer theory, the
following definitions are made:

' d(lG)d
ﬂ R \
a = H :
f(l—G)Gdy
O .

a ,
f (1-G)Gg dy
0]

~d —
f(l-G)GdY

m
o

4 (27)
d
Gg dy :
0 =
3 =K o
(1-¢)G .ay .
O -
d
c%g? dy
0 =
3 =L
(1-G)G dy
The relations among the various thicknesses may then be written
‘ A
*
5y = HOy
. Oxz = €J64 _
: > . (28)
* o _ ,
) 5, = EKOX
2 .
ez = € Lex J

The quantities H, J, K, and L are functions of G and 2.
Because G and g -are representative of the velocity profiles in the
boundary layer, the changes in these velocity profiles must be reflected
in turn in the values of H, K, J, and L. In other words, the
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external forces acting on the boundary layer and influencing the changes
in the shape of the velocity profiles also cause a variation in " H, K,
J, and L. Unfortunately, the available data of reference 9, do not
involve large changes in the shape of the velocity profiles and the
quantities H, J, K, and L. This behavior of the velocity profiles
is verified in figure 3. The data of reference 12 do indicate large
changes in the shape of the velocity profile; however, the data are

not presented with sufficient detail to permlt an accurate evaluation
of H, J, K, and L. Thus, until more extersive experimental data
become available, the quantities H, J, K, and L are assumed to be
constants that can be evaluated either by assuming a suitable form for
G and g or by computing directly from Gruschwitz data. :

In accordance with reference 9, good assumptions for G and g
are:

-
(8

~ An indication of the degree of fit afforded by these expressions
can be obtained from figure 4(a), where a calculated profile with
n =7 is compared with one of the profiles of Gruschwitz. Other pro-
files of Gruschwitz data give similar results. It should be noted that
this good agreement should not be interpreted as meaning that assump-
tions (29) will always give a good representation of the velocity pro-
files in the three-dimensional turbulent boundary layer. Figure 4(b)
shows 'a comparison similar to that of figure 4(a) with profiles con-
verted to the x,y,z system using data from reference 12. Equations (29)
do not afford a good fit in figure 4(b), although the equations do
represent the general behavior of the velocities. This comparison is
further illustrated in figure 5, where the value of g(y/s) as oObtained
by converting the profiles of reference 12 to the x,y,z system at 1ndi-
cated points is compared with - (1-y/8)2.

[}
[

(29).

g

.

With the use of relations (29), H, K, J, and L are computed
as
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24n

n2(11n+7)

2n2(

= (2o+1) (30+1) (30+2)

2+n) .

= {Znt1

) (3n+1)
Gn4

which for n =7 give
H=

J

K

L =

= (3n+2) (2o+]) (5n+2) _

1.2857 h
0.5423

2.6727

1.1285 } y,

NACA TN 2310

(30)

(30a)

Averaging the values along line III of Gruschwitz data (fig. 2)

results in

’ *H‘=

= 0.550

K =

I =

1.37 )

2.43

0.968 )

(300)

This relatively good agreement between the two sets of values is
also indicative of the over-all fit of the assumed expressions for G
and g to the data of reference 9. :

The additional relation that is needed for the solution of the
momentum-integral equation is the expression for surface friction. In
reference 9, Gruschwitz demonstrates that von Kérmdn's friction law

To,x

= 0,
pU2

01255 <U9 >4

1

(31)

appears to be valld in the three-dimensional boundary layer as well.
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Substituting relations (26), (28), end (31) in equations (23).gives

06 064 . '
&5+ x (2+H) + Je€ 3-—+Je g_ 4?39}{:%}- (32a)
. p
and »
36 A ‘ 36,
2L6 € B— € + Ll EZ—X + (K-J) 64 o€ 5t (K-J)e T + (L€ -1-H) —x gﬁ +
. ” .
2(K-J)e —x %g - (141€?) —(;;y— 0y = -€ T—‘lé-?i »(32c)

Because of the form of the relation for friction, an advantégeous
transformation of variable is oo .

- 0.8%(6)) o o  (33)

u>||—*

in order to "remove" the Reynolds number from the equations.

3 With the use of equations (33) and (12), two nonlinear partial
" differential equations for ©® and € applying along z = 0 are
obtained from equations (32), -

_é_ %g + %'Je % + JGS_ {‘:(SH'FQ 2 + 15T- ce - = Je wy] -0. 01255} Y

(34a)

and

4 B, 4,200 de ‘A, O¢ o
g(K-J)e:&+.5_Le S+ &nNe F+alefs

[ (K-J)e @ BU < Le2-1 H>c® (g&z_ ) ——2&1@ + o.01255€| =0 (34c)

5

As shown in the appendix, these equations can be elther hyperbolic,
_ parabolic, or elliptic, depending on the shape of/the velocity profiles
existing in the boundary layer.. For u = U(y/8)Y/1 and g = (l-y/&)

the equations are always elliptic. .
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Simplification of equations and aepproximate solution. - The rela-
tive importance of the various derivatives in equations (34) is now
determined. First, © and € are assumed to be quantities that are
smaller than-one, which can be accomplished simply by referring all
lengths to a total path length S and o« to 45°. As a result of this
" assumption, all derivatives in © and -€ become of the order of mag-
nitude of © or e. Equation (34a) is then divided by 4/5, so that the
coefficient of J8/dx 1is 1 and the coefficients of 38/dz and Jde/dz

are Je€ and -2-J ® that is, of the order of magnitude of € or O,
respectively. In a similar way equation (34c) is divided by (K-J)©
so that the coefficients of 36/0x and J€/dx become = €0 and 1
(order of magnitude gf one), respectively, and those of 00/dz and

) 4 .
J€/dz become cL -%— end 2Le (order of magnitude of €), respect-

ively. Then, if € is small as compared with tan 45° and © is small
when compared with S, all terms of the order of magnitude of €2, Qc,
or @2 may be neglected, which gives ' ,

% + [@%} % % ® = 0.01569 | . (35a)

and

d [4120. 913U, 0.01255 1 1 o g 20
&4- -5——@-&-'-.53&*- -TK:T@:IC:-(W\[(LFH)C‘FH-U—] (350)

These two expressions show that the primary changes in ® and € in
equations (34a) and (34c) occur only in the x-direction and thus the
description of the phenomena only at z =0 1is justified. '

, A solution of equations (35) can now be obtained by .successive
approximations because U, , and c¢ are assumed tc be known func-
tions of x. First, equation (35a) is solved,

| (5]5[;—9)' - x ($>

” .
i 0.01569 -
=0,\-= . U dx 36
O ®i<U> T (5H+9§' Xy (36)
LA

The values of ©y(x) are then used in an approximate solution of equa-
tion (35c) : .
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o s
i 1 ' 55
( )E (x) [1+H)C*H“_ I)U E (x) ax
(5-K) © )5U5El(x)

]

4
5

&)
€ =€ |z
I i e]:

(37)
where .
. X
0.01255 gx__ .
(K-J) xiGI (38)

E{(x) =.e

With GI(x) known, the approximation for ® could in turn, be
improved by again solving equation (35a). If « grows large along the
path, however, it is more advantageous to consider the following
equation:

: (V]
5— + Je F [55[*9 tljg% + J ce- 2 g %] © = 0.01569 (39)

Tt is thus hoped that neglection of J3€/dz will not affect the
accuracy of the solution to a very marked extent. The solution of equa-
tion (39), which may be obtained by the method of Lagrange, is

()
. ( ) E, () o 01569 E,(x)- * R (x)
O . = |{(z-d € dx dx
II 5H+ S5H+9 Ez(x) .
T )E (x) T)Ez(x) xg
(40)
where
X
% ce dx (41)
Eo(x) = e " |
x .
% J < ea—;y- dx

ES(X) =e i | | | (42)
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e

is an arbitrary function satisfying the boundary condition; when x = X4
and’ z = 0, then O =©;. Setting

X
z-J cdx/'= A
\ Xi

at x=x; gives A = 0. In addition, for z =0, A is of the order
of magnitude of €. : '

and

<+

Expansion of ¥ in Maclaurin's series about A(xj) yields

@
‘_ ¥(A) = ¥(0) + A '(0) +ﬁ\lf”(0) e

Because there is only one boundary condition, it is possible to determine
only one of the constants in this expansion; consequently, ¥ cannot be
uniquely established. The fact that- A is of the order of magnitude of
€, however, suggests that the assumptions made for ''(0), ¥'''(0),
and so forth, are successively less important. Thus these derivatives

" may arbitrarily be expressed by a single constant,

S5H+9 2.2 SH+9 : ‘
v(N) = @iui< T ) <1+A}\ PAR L > - @iui( Z >e“‘ (43)

where A from purely dimensional considerations must have the dimen-
sions of 1-l. From expressions (41) and (42), it is suspected. that

' ¢ 18 Ly |
A"B<Z‘TT>1 . (44)
where B must be obtained from the experimental measurements,

It should be noted that because V(A) cannot be uniquely determined
other functions of A satisfying the -single boundary condition could be
used as well. The function e\ is chosen only because it is convenient
' to use and parallels the expressions (41) and (42). This arbitrariness
of the functional form of ¥ and the value of A is due to the con-
sequences of assuming 2z = 0, and thus it is probably not advisable to
carry any further approximation for €ry, and so forth. '
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In solving equations (36) to (44), either set of values for H, K,
J, and L may be used. Because the averaged values (30b) are probably
more representative, having been obtained by evaluating experimental
data at a number of different positions, it is advantageous to use
these values in computations.

COMPARISON WITH EXPERIMENT

_ In order to check the validity of the approximate solution, the
boundary layer along four streamlines of reference 9 was computed and
compared with the measured values. The designation of the streamlines
and data points is illustrated in figure 2. Because the data were
taken along curves I to V of figure 2, the computation along a stream-
line requires first an interpolation among the various data points. As
a result of this interpolation, the computations could not be carried
through the full length of each streamline. Values (30b) were used for
quantities H, K, J, and L. The constant B was .obtained by fitting
along streamline "B" the solution for ©;y, so that at x = §,

©11~@ measured. In this manner, the value of B was found to be

38.5, This value was then. used in computations f streamlines "A",
"g", and "D". It is notéd that B = 38.5~7RM/%4(64)i, although
Justlflcatlon for such a dependence cannot be made. In all integrations
Simpson's rule was used. ‘

The results of the computations are plotted in a nondimensional
form and compared with interpolated measured values in figures 6 and 7.
A study of these figures reveals a fair quantitative agreement between
the measured and estimated values of ® and «o. As the values of
€ —tan 45° (fig. 7) the first approximation for © in figure 6 becomes
progressively worse, which is remedied by the second approximation. The
poorest agreement is obtained along streamlines "A" and "D", which
because they are closest to the walls might be affected by the flow in
_ the corners of the duct. Streamline "D" especially may thus be
affected inasmuch as Gruschwitz mentions the existence of separation
on the convex wall.

The fair quantitative agreement with the measured values is not to
be interpreted as a conclusive check of the validity of the procedure
and the assumed values in all cases of three-dimensional boundary-layer
flow. The suggested procedure simply represents the best that can be
done in view of the meagerness of the available data. Because the

Gruschwitz data do not involve the effects of uniform angular velocity

10U
and because the variations in U 5— and 75z are small, it could

be malntalned that this check of the procedure has been carrled out
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on a somewhat special case. For that reason, it is desirable that
additional experiments be carried out in setups that eliminate the
present shortcomings. Larger variation of Reynolds number should
also be used. With additional experiments, a modification of the
values of H, X, J, L, and B, together perhaps with some
refinements of the procedure will be in order. It might be well

to remember at such time, that because of the necessary empiricism
involved (which results from the very limited knowledge of turbulent
phenomena), long and tedious computations would rarely be worthwhile.

CONCLUSIONS

The following conclusions can be drawn from an analy51s of the
three-dimensional momentum-integral equations and a comparlson of the
numerical results with the Gruschwitz data for turbulent boundary layer:

1. Within the boundary layer the static pressure can vary at most
by an amount of the order of magnitude of the boundary-layer
thickness 8.

2. It is possible to generalize the velocities in the boundary
layer by use of two characteristic quantities b and € where ¢ is
the tangent of the angle enclosed by the direction of the resultant
skin-friction stress and the direction of the flow outside the boundary
layer. '

3. When the generalized boundary-layer momentum-loss thickness ©
is small as compared with the total path length and € is small as
compared with tan 450, the primary changes in © and € occur along
the streamline of the flow outside the boundary layer.

4, The three-dimensional boundary-layer momentum-integral equations
can be either hyperbolic, parabolic, or elliptic, depending on the rel-
ative magnitude of the parameter MN, which in turn depends on the
shape of the velocity profiles existing in the boundary .layer. The
power-law profile when used with the correction function g = (1-y¢b)2
always results in elllptlc equations.

5. The approximate solution of the. three-dimensional momentum-
integral equations shows a fair quantitative agreement with the values
measured by Gruschwitz,

6. Additional experimental data are necessary to'eetablish more
generally applicable values for form parameters H, K, J, and L.

.and B, the constant used in the second approx1matlon for @.

Lewis Flight Propulsion Laboratory,
Nationel Advisory Committee for Aeronautics,
Cleveland, Ohio, November 1, 1950,
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APPENDIX - ADDITTONAL REMARKS ON THREE-DIMENSIONAL BOUNDARY-LAYER
MOMENTUM-INTEGRAL EQUATIONS

In order to obtain the approximate- solution of equation (34), it
was shown by comparing the relative order of magnitude of the coeffi-
cients that some of the terms may be neglected. Care must be taken with
such simplifications inasmuch as various implications of the equations
in question may be obscured by this procedure. For this reason, aside
from the approximate solution, the character of equations (34) was also
investigated in detail. ' '

. By use of the procedure outlined in reference 18 (p. 38), along
z =.0 the system of equations (34) is found to be hyperbolic when
MN > 1, elliptic when MN < 1, and parabolic when MN = 1.
_ where ) .
L 640

MN = =—22 40
(K-J)J ~ 64, 6,

(45)

Because L, K, and J are functions‘of' G and g, the char-
acter of equation (34) depends on the .shape of the velocity profiles in
the boundary layer. :

It should be noted that when MN = O, then- L = 0, which is only
possible if G=0 or g=0, and in twn u=0 or w= 0. 1If the
trivial case u= 0 is neglected, it is established that when w = O,
¢=0 as well. But for € = 0 and w= 0, equations (34) reduce to a

special case _ ..
4 30 , © dU (5H+9 |
= + = 2277 = o.
ESx U ox% (5 ) 0.01255 _ (468.)
" and
2‘”y 1+H 0.01255 .
- -5 .c' = - -—e—— .(463)

Here equation (46a) is an ordinary two-dimensional boundary-layer
momentum-integral. equation for @ and equation (46c) is a relation that
evidently must exist among U, dU/dz, wy, and @, vhen € =0 and
w= 0. . _ ’ .
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When the equations are elliptic, no real characteristic direction
can be found. When only one characteristic direction exists, the equa-
tions are parabolic and in the hyperbolic case two characteristic
directions through each point of the xXz-plane are obtained For the
parabolic case then,

N\

-and for the hyperbolic case,-

dz

L'+ Al L2-J(K-J)1L

T b e (K-9)
a2 _ _ L= A LE-3(K-J)L
& "S- [65))

and the characteristic lines are asymetric with respect to the x-axis.
In order to determine whether elliptic, parabolic, or hyperbolic equa-
tions apply, the magnitude of "MN 1is computed. Substituting from
expressions (30), MN ~is obtained in terms of n:

6(3n+l) (3n+2) _ o1 108n+96 A
(50+2) (1In+7) ~ 55 55(55n%457n+14)

MN =

This equation shows MN to be a monotonically increasing function of n.
For n =0, ' :

. 6
MY =7
and
1lim MN = g%
n—® v

These results indicate that a so-called power-law profile when used
with g = (1-y/0)2 always results in equations that although
elliptic are very near to being parabolic, Using values (30b),

MN = 0.936

which again indicates an elliptic character of the equations. It should
be remembered, however, that the assumption for G and g were made
on the basis of only one set of data; consequently there is no assurance



NACA TN 2310 31

that the velocity distributions existing in the boundary layer will
always give the same values of MN. In fact, it is generally more
likely that they will not give the same values of MN. Some indication
of the variation of MN may already be obtained from figure 8, where
its value was plotted for each Gruschwitz data point. At points 5, 6,
and 7, however, small values of w may have prevented an accurate
determination of L and as a consequence MN = O there. The value of
MN in figure 8, varies within the limits 0.65<MN<1l.2, with the bulk
of the points indicating that MN ~0.95.

On the basis of the preceding discussion, there is some evidence
of the equations being parabolic, elliptic, and hyperbolic in the tur-.
bulent boundary layer. It is interesting to note that generally (as
in supersonic and subsonic flow, for instance), these hyperbolic and
elliptic regions have their counterpart in physical phenomena. Thus
some essential differences might exist in the process of momentum
transfer between the hyperbolic and elliptic regions. These differ-.
ences cannot now be ascertained because first equations similar to (34)
with 2z f 0~ would have to be obtained, and there is no mention of any
irregularities in the behavior of the flow in reference 9. When
additional experiments are made, however, 1t would seem advisable to
closely study these two mathematical regions in order to obtain some
indication of the physical make-up of their differences.
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X=/xcos Bdx + z sin B
0 .

Y==y,Z.=Zl+zcosB

Zl =.constant -f gin B dx
0

- BrRx) =

Figure 1. - Transformation from Cartesian coordinates
X,Y,Z to orthogonal curvilinear coordinates x,y,z.
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Figure 2. - Experimental set-up of Gruschwitz
(from figs. 1 and 5 of reference 9).
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NACA TN 2310

Generalized momentum thickness, ©/8,

AT =
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, /’
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— — — Calculated, approximation.I
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.2, .4 .6 .8 1.0
Distance along streemline, x/8
(a) Streamline "A"; 8 = 22.8 inches; ©; = 0.292 inch.

Figure 6. - Comparison of calculated and measured general-
" 41zed momentum thickness. Experimental data from refer-
ence 9. ’
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Distance along streamline, x/S
(b) Streemline "B"; S = 34.75 inches; 83 = 0.289 inch.
Figure 6. - Continued. Comparison of calculated and measured

generalized momentum thickness. Experimentel data from
reference 9.
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(c) Streamline "C"; S = 37.8 inches; 8; = 0.286 inch.
Figure 6. - Continued. Comparison of calculated and measured

generalized momentum thickness. Experimental data from -
reference 9.
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Generalized momentum thickness, @)/81

NACA-TN 2310 -
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Figure 6. - Concluded.

Distance along streamllne, x/S
(d) Streamline "D"; S = 21.25 inches; ©4 = 0.244 inch

generalized momentum thickness.
reference 9.

Comparison of calculated and measured

‘Experimental glata from
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Boundary-layer deflection, a, deg
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Distance along streamline, x/S

(a) Streamline "A"; S = 22.8 inches.

Figure 7. - Comparison of calculated and measured boundary-
layer deflection at wall. Experimental data from
reference 9.. .
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Boundary-layer deflection, a, deg

- NACA TN 2310
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Figure 7. - Continued.

Compafison of calculated

and measured boundary-layer deflection at wall.
_ Experlimental data from reference 9..
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Boundary-layer deflection, a,
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Distance along streamline, y/S
(¢) 'Streamline "C"; S = 37.8 inches.

Figure 7. - Continued. Comparison of calculated
and measured boundary-layer deflectlon at wall.
Experimental data from reference 9,
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Bounidary-layer deflectlon, a, deg

NACA TN 2310
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- (d) Streamline "D"; S = 21.25 inches.

Figure 7. - Concluded. Comparlson of calculated and measured
boundary-layer deflection at wall. Experimental data from
reference 9.
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Figure 8. - Values of parameter MN for data of reference 9.
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