NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2451

MATHEMATICAL IMPROVEMENT OF METHOD FOR COMPUTING POISSON INTEGRALS INVOLVED IN DETERMINATION OF VELOCITY DISTRIBUTION ON AIRFOILS

By I. Flügge-Lotz
Stanford University

Washington
October 1951

MATHEMATICAL IMPROVEMENT OF METHOD FOR COMPUTING POISSON

INIEGRALS INVOLVED IN DETERMLNATION OF VELOCITY
DISTRIBUTION ON ATRFOILS
By I. Flügge-Lotz

SUMMARY

The Poisson integral involved in the determination of the change in velocity distribution resulting from a change in airfoil profile in parallel incompressible flow is solved.

First, three well-developed numerical methods of evaluating this integral, all based on the division of the range of integration into small equal intervals, and the difficulties involved in each method, are discussed. Then a new method, based on the use of unequal intervals, is developed, and compared with the other methods by means of several examples. The new method is found to give good results for both the direct and inverse airfoil problems and is easily adaptable to rather complicated problems. It is particularly recommended for all those functions where steep slopes in small portions of the region to be integrated exist.

INITRODUCTION

The ordinary thin airfoil at small angles of attack produces only slight disturbances in the flow of a parallel incompressible fluid. Hence, the influences of camber and thickness upon the velocity distribution may be computed independently and their effects superimposed. The effect of camber may be represented by vortices distributed along the chord line of the airfoil section; the effect of the thickness, by sources and sinks also along the same chord line. The velocities produced by these singularity distributions enable one to compute the pressure distribution on the airfoil rather quickly.

Allen (reference 1) has presented this singularity method in a form which has proved to be very practical for common usage. However, in special cases the unavoidable evaluation of the Poisson integral in
the course of the computations has given rise to numerical difficulties. Such integrals are usually computed by the application of finite differences using intervals of equal length. However, changes in airfoil shape, which result in marked changes in the function to be integrated in only small portions of the range of integration, require that extremely small interval sizes be employed in this range, and, consequently over the entire range of integration. This leads to a considerable amount of computational work; hence, it appears reasonable to discuss the possibility of employing intervals of varying lengths for the evaluation of the Poisson integral.

This investigation was prompted by the difficulties arising from the problem of small changes in the shape of symmetrical airfoils at the angle of zero lift. The examples included in the present report are restricted to this case, but the results obtained are in no way specialized and may be applied to all problems wherein the Poisson integral occurs.

This work was done at Stanford University under the sponsorship and with the financial assistance of the National Advisory Committee for Aeronautics.

The author wishes to express her appreciation to Mr. H. Norman Abramson for his intelligent and skillful help in the computational work and for his assistance in writing the final report. The author also wishes to extend her thanks to Mr. R. E. Dannenberg and the computing staff of the 7 - by 10 -foot wind-tunnel section of the Ames Aeronautical Laboratory, Moffett Field, California, for preparing the extended tables of the functions J_{no} and $\mathrm{J}_{\mathrm{no}}{ }^{*}$.

DISCUSSION OF PROBLEM

The basic reference profile may be given by $y_{t r}=f(x)$, and its velocity distribution may be known from an earlier computation. The problem at hand is that of determining the change in the velocity distribution resulting from a change in the shape of the profile (indicated by the dotted line in the following fig.). The difference of these two shapes is designated as Δy_{t}.

Allen (reference 1, p. 7) gives for the change of velocity the equation

$$
\begin{equation*}
\frac{\Delta v\left(x_{0}\right)}{\nabla_{0}}=-\frac{I}{\pi} \int_{0}^{c} \frac{\frac{d\left(\Delta y_{t}\right)}{d x} d x}{x-x_{0}} \tag{1}
\end{equation*}
$$

where ∇_{O} is the velocity of the basic parallel flow. If, by conformal mapping of the outaide flow region, the center line of the profile is transformed into a circle by the relation

$$
\begin{equation*}
x=\frac{c}{2}(1-\cos \theta) \tag{2}
\end{equation*}
$$

then the profile is transformed into a curve approximating the circle shown below.

The change in velocity due to a change in form will then be given as

$$
\begin{equation*}
\frac{\Delta v}{V_{0}}\left(\theta_{0}\right)=-\frac{I}{2 \pi} \int_{0}^{2 \pi} \frac{d\left(\Delta y_{t}\right)}{d x} \cot \frac{\theta-\theta_{0}}{2} d \theta \tag{3}
\end{equation*}
$$

defining

$$
\left[\frac{d\left(\Delta y_{t}\right)}{d x}\right]_{\pi+\theta}=-\left[\frac{a\left(\Delta y_{t}\right)}{d x}\right]_{\pi-\theta}
$$

This is the form most often used for computation purposes, because the inverse problem (that of computing the change in shape due to a change in velocity distribution) utilizes the analytic form

$$
\begin{equation*}
\left[\frac{\mathrm{d}\left(\Delta y_{t}\right)}{d x}\right]_{x_{0}}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\Delta v}{\bar{v}_{0}} \cot \left(\frac{\theta-\theta_{0}}{2}\right) d \theta \tag{4}
\end{equation*}
$$

defining

$$
\left(\frac{\Delta v}{\bar{v}_{0}}\right)_{\pi+\theta}=\left(\frac{\Delta v}{\bar{v}_{0}}\right)_{\pi-\theta}
$$

which is strikingly similar. The corresponding formula in the original x, y coordinate system is given by

$$
\begin{equation*}
\left[\frac{a\left(\Delta y_{t}\right)}{d x}\right]_{x_{0}}=\frac{1}{\pi} \int_{0}^{c} \frac{\frac{\Delta v}{\nabla_{0}}}{x-x_{0}} \frac{\sqrt{x_{0}\left(c-x_{0}\right)}}{\sqrt{x(c-x)}} d x \tag{5}
\end{equation*}
$$

The evaluation of equation (3) may be accomplished by any one of several different methods; however, all of these methods employ the device of replacing the integral over the range 0 to 2π by a sum of integrals over intervals of equal length $\Delta \theta$. The equally distributed points θ_{n} have corresponding values x_{n} which are not equally distributed (see following fig.).

This arrangement is sometimes favorable, and sometimes not, depending upon the particular form of $\frac{d\left(\Delta y_{t}\right)}{d x}$. (See discussion following equation (43).)

The use of the angular coordinate θ has the advantage that the functions $\frac{d\left(\Delta y_{t}\right)}{d x}$ or $\frac{\Delta r}{V_{0}}$ are periodic functions in θ, and this periodicity facilitates the organization of the numerical computations. The disadvantage arises from the fact that these functions are usually given as functions of x, and, since the analytic form is not usually known, any transformations made will lead to small errors. For example, if $\frac{d\left(\Delta y_{t}\right)}{d x}$ or $\frac{\Delta v}{V_{o}}$ is given at special points which do not correspond to $\theta_{\mathrm{n}}=\mathrm{n} \Delta \theta$, then the computor must obtain the values of these functions for the values θ_{1}, θ_{2}, and so forth by interpolation.

DISCUSSION OF SOME OF THE EXISTING NUMERICAL

SOLUTIONS OF POISSON INTEGRAL

The difficulty encountered in the solution of the Poisson integral arises from the fact that the term $\cot \frac{\left(\theta-\theta_{0}\right)}{2}$ or $\frac{1}{x-x_{0}}$ (equations (1) and (3), e.g.) approaches infinity when θ approaches θ_{0} or when x approaches x_{0}. The difficulty is of much less consequence when the function $\frac{d\left(\Delta y_{t}\right)}{d x}$ or $\frac{\Delta v}{\bar{V}_{0}}$ is given analytically than when a numerical computation is undertaken. As a consequence, any simple integration, performed by replacing the integral with a summation over smaller intervals, always requires that the interval in which θ_{0} or x_{0} is located be given special consideration (see following fig.).

A majority of the solutions currently in use have been developed to such an extent that, for example, $\frac{\Delta v}{V}\left(\theta_{0}\right)$ is given by a sum of products of single values of $\left(\frac{d\left(\Delta y_{t}\right)}{d x}\right)_{n}$ and known factors A_{n}; that is,

$$
\begin{align*}
\frac{\Delta v}{\bar{V}_{0}}\left(\theta_{0}\right) & =-\frac{I}{2 \pi} \int_{0}^{2 \pi} \frac{d\left(\Delta y_{t}\right)}{d x} \cot \left(\frac{\theta-\theta_{0}}{2}\right) d \theta \\
& =-\frac{1}{2 \pi} \int_{-\theta_{0}}^{2 \pi-\theta_{0}} \frac{d\left(\Delta y_{t}\right)}{d x} \cot \frac{\theta^{*}}{2} d \theta^{*} \\
& =-\frac{1}{2 \pi} \sum_{n} \int_{\theta_{n}^{*}}^{\theta_{n+1}^{*}} \frac{d\left(\Delta y_{t}\right)}{d x} \cot \frac{\theta^{*}}{2} d \theta^{*} \tag{6}
\end{align*}
$$

which leads to (see reference 2, e.g.)

$$
\begin{equation*}
\frac{\Delta \mathrm{v}}{\overline{\mathrm{~V}}_{\mathrm{o}}}\left(\theta_{0}\right)=\sum \mathrm{n} A_{n 0}\left[\frac{\mathrm{~d}\left(\Delta y_{\mathrm{t}}\right)}{\mathrm{dx}}\right]_{\mathrm{n}} \tag{7}
\end{equation*}
$$

The coefficients $A_{n o}$ depend upon the particular method of numerical integration which is employed. If, for example, $\frac{d\left(\Delta y_{t}\right)}{d x}$ is replaced by a step-curve, that is, assumed constant in every interval (see fig. below), one set of values of $A_{\text {no }}$ would be obtained.

Greater accuracy would be obtained by the assumption that $\frac{d\left(\Delta y_{t}\right)}{d x}$ is replaced by straight-line segments (see fig. below), in which case a second set of values of $A_{n o}$ would be obtained.

A further refinement would be that of assuming $\frac{d\left(\Delta y_{t}\right)}{d x}$ to be composed of segments of parabolas, and so forth. Since the accuracy of the resulting values of $\frac{\Delta v}{\bar{V}_{0}}$ depends upon both the character of the approximate curve and the size of interval taken, it is apparent that the same degree of accuracy might be achieved from many different combinations of interval sizes and approximations to the function $\frac{d\left(\Delta y_{t}\right)}{d x}$.

Naiman (reference 2) has used Simpson's rule for computing the Poisson integral, which corresponds to the replacement of the product $\left[\frac{d\left(\Delta y_{t}\right)}{d x} \cot \frac{\theta^{*}}{2}\right]$ by segments of parabolas. The "critical interval" (i.e., where $\cot \frac{\theta^{*}}{2} \rightarrow \infty$) was carefulily treated by using differences of higher order $\left(\begin{array}{c}2 \\ \text { including the fifth derivative of }\end{array} \frac{d\left(\Delta y_{t}\right)}{d x}\right)$. Naiman divided the period of 2π in 20 or 40 intervals and calculated the corresponding sets of values of $A_{n o}$. Other workers at the NACA have extended the calculation of these values of $A_{\text {no }}$ to 80 and 160 intervals (unpublished information). ${ }^{1}$

Obviously, the time required for computing $\frac{\Delta v}{V_{0}}$ increases with the number of intervals taken because of the increased number of multiplications to be performed. In addition, greater preparations for the computing proceao are necessarily involyed, particularly since the values of $\frac{d\left(\Delta y_{t}\right)}{d x}$ needed must usually be obtained by interpolation. This interpolation has to be done rather carefully as it is often not sufficient simply to take the values of the plotted curve of $\frac{d\left(\Delta y_{t}\right)}{d x}$. This curve should be checked by difference tables if the values $\left[\frac{d\left(\Delta y_{t}\right)}{d x}\right]_{n}$ are to represent a smooth curve.

For those functions of Δy_{t} which may be well-represented by a Fourier series, there exists a simple method of evaluating the Poisson integral which has apparently been overlooked until the present time. This method has the advantage of leading to a computation which does not involve the derivative of Δy_{t}.

[^0]Equation (6) may be written in a different form (reference l, equation (43)) as follows:

$$
\begin{equation*}
\frac{\Delta v}{V_{0}}=\frac{I}{\pi} \int_{0}^{\pi} \frac{d\left(\Delta y_{t}\right)}{d x} \frac{\sin \theta}{\cos \theta-\cos \theta_{0}} d \theta \tag{8}
\end{equation*}
$$

and this may be rewritten as

$$
\begin{equation*}
\frac{\Delta v}{V_{0}}=\frac{1}{\pi} \frac{2}{c} \int_{0}^{\pi} \frac{d\left(\Delta y_{t}\right)}{d \theta} \frac{d \theta}{\cos \theta-\cos \theta_{0}} \tag{9}
\end{equation*}
$$

Equation (9) is strikingly similar to an integral ocurring in the theory of the lift distribution of a finite wing in incompressible flow. There, the induced angle α_{i} is given by

$$
\begin{equation*}
\alpha_{1}=\frac{1}{2 \pi} \int_{0}^{\pi} \frac{d \gamma}{d \theta^{\prime}} \frac{d \theta^{\prime}}{\cos \theta^{\prime}-\cos \theta} \tag{10}
\end{equation*}
$$

where γ is the local dimensionless circulation.
Multhopp (reference 4) has given a solution for equation (10). He divides the range of integration into ($m_{1}+1$) intervals (see fig. below)

with

$$
\left.\begin{array}{c}
\theta_{n}=\frac{n}{m_{1}+1} \pi \\
\gamma_{n}=\gamma\left(\theta_{n}\right) \tag{11}
\end{array}\right\}
$$

and computes α_{i} at the points θ_{n}. He assumes that γ may be expanded in the form

$$
\gamma=\sum C_{\mu} \sin \mu \theta
$$

or

$$
\begin{equation*}
\gamma=\frac{2}{m+1} \sum_{n=1}^{m_{1}} \gamma_{n} \sum_{\mu=1}^{m_{l}} \sin \mu \theta_{n} \sin \mu \theta \tag{12}
\end{equation*}
$$

He then obtains the expression

$$
\begin{equation*}
\alpha_{i v}=b_{\nu \nu} \gamma_{v}-\sum_{I}^{m_{I}} b_{\nu_{n}} \gamma_{n} \tag{13}
\end{equation*}
$$

The prime on the summation symbol indicates that $n=v$ is to be omitted from the sumnation because that special term has already been considered in the first term of the right-hand side (i.e., $\mathrm{b}_{\nu \gamma} \gamma_{\nu}$). Reference 4 presents tables for the coefficients $b_{\nu \nu}$ and $b_{\nu n}$ for $m_{1}=7,15$, and 31. Applied to the problem at hand, $m_{1}=31$ would appear to be rather small; therefore a table for $m_{1}=63$ has been computed and is included in the present report (appendix A). As a comparison: For $m_{1}=63, \Delta \theta=2.8125^{\circ}$; for Naiman's method with 160 points, $\Delta \theta=2.25^{\circ}$.

Utilizing this method of integration which was developed by means of Fourier series, an expression may be obtained for the velocity distribution as follows:

$$
\begin{equation*}
\frac{\Delta v}{\bar{V}_{0}}\left(\theta_{0}\right)=\frac{4}{c}\left(\mathrm{~b}_{v v} \Delta \mathrm{y} v-\sum_{1}^{\mathrm{m}_{1}} \mathrm{~b}_{v_{n}} \Delta \mathrm{y}_{\mathrm{n}}\right) \tag{14}
\end{equation*}
$$

The great advantage of this method is that of simplicity: (I) The actual computational procedure is very simple and (2) the derivative $\frac{d\left(\Delta y_{t}\right)}{d x}$ is avoided. The simplicity of computation is reflected in the fact that the time required for computing $\frac{\Delta v}{V_{0}}$ at one value of θ_{0} is approximately half that required by the method of Naiman when the intervals have approximately the same size. It should be noted,
however, that the accuracy of the method of Naiman will be greater than that of Multhopp in those cases where the differentiation of Δy_{t} by Fourier expansion (equation (12)) does not give good results.

A third method of evaluating the Poisson integral became known during the course of the present investigation. In a paper by Timman (reference 5), the integral is studied in the form

$$
\begin{equation*}
\tau(\phi)=-\frac{1}{2 \pi} \int_{0}^{2 \pi} \bar{\sigma}(\psi) \cot \frac{\phi-\psi}{2} d \psi \tag{15}
\end{equation*}
$$

Timman assumes that $\bar{\sigma}(\psi)$ is not given analytically, but only at equidistant points. An interpolation polynomial (reference 6) for $\bar{\sigma}(\psi)$ is employed, and these polynomials replace the function $\bar{\sigma}(\psi)$ in a single interval by a function of third order. The polynomial function thus introduced has a continuous first derivative, ${ }^{2}$ and it is evident that this continuity is essential for the attainment of good results.

Tirman has divided the period 2π into 36 intervals of equal length and established a computing scheme. The function $\bar{\sigma}(\psi)$ is separated into its symmetrical and unsymmetrical parts so that

$$
\begin{equation*}
\bar{\sigma}(\psi)=s+d \tag{16}
\end{equation*}
$$

Then

$$
\begin{equation*}
\tau\left(\Psi_{\imath}\right)=\sum_{k=0}^{18} \alpha_{k \imath l^{8}}-\sum_{k=0}^{18} \beta_{k \imath} d_{k} \tag{17}
\end{equation*}
$$

where the factors $\alpha_{k l}$ and $\beta_{k \ell}$ are given in tabular form. In the present particular case $\frac{d\left(\Delta y_{t}\right)}{d x}$ is antisymmetrical (equation (3)) and $\frac{\Delta v}{V_{0}}$ is symmetrical (equation (4)). Thus the separation indicated by equation (16) does not require any additional work.

Timman's method should give good results provided that a sufficient number of intervals are taken - the division of 36 intervals over a period of 2π (i.e., 18 intervals over the chord of the profile) appears to be insufficient for an accurate representation of the function which occurs, $\frac{d\left(\Delta y_{t}\right)}{d x}$ or $\frac{\Delta v}{\bar{v}_{\mathrm{o}}}$.

[^1]The time required for computing one point by the method of Timman is approximately the same as for Naiman's method with the same interval size.

Other methods of evaluating the Poisson integral have been suggested. They will not be discussed here as it is the intention of this section to consider only the most practical of the known methods. The three methods already discussed have their own particular advantages and have been especially developed for rapid and simple computation; however, all three of these methods, when $\frac{d\left(\Delta y_{t}\right)}{d x}$ or $\frac{\Delta v}{V_{0}}$, change rapidly in magnitude, become cumbersome, and require that very small intervals be taken over the entire range of integration because the scheme of equal interval size is utilized.

EVALUATION OF POISSON INTEGRAL BY A METHOD
EMPLOYING UNEQUAL INIERVALS
Development of Method

As the change in airfoil shape, or the change in velocity distribution, is given originally as a function of x it appears logical to retain the coordinate x in selecting the size of the different intervals. Hence, the Poisson integral may be studied in the form

$$
\begin{equation*}
\tau\left(x_{0}\right)=-\frac{1}{\pi} \int_{0}^{c} \sigma(x) \frac{d x}{x-x_{0}} \tag{18}
\end{equation*}
$$

which corresponds to equation (1). Conforming with its physical meaning $\sigma(x)=\frac{d\left(\Delta y_{t}\right)}{d x}$ is assumed to be a function which is finite in every point of its range of definition. 3

Define

$$
\begin{equation*}
\Delta x_{n}=x_{n+1}-x_{n} \tag{19a}
\end{equation*}
$$

with

$$
\mathrm{n}=0,1,2,3, \ldots
$$

$3_{\text {This }}$ restriction will be dropped later; see discussion beginning with the first paragraph after equation (32).
and

$$
\begin{equation*}
x_{m}<x_{0}<x_{m+1} \tag{19b}
\end{equation*}
$$

For convenience, there is chosen (see following fig.)

$$
\begin{equation*}
x_{0}=\frac{x_{m}+x_{m+1}}{2} \tag{19c}
\end{equation*}
$$

The function $\sigma(x)$ is approximated by straight-line segments (see third sketch in preceding section). Then, for $x_{n}<x<x_{n+1}$,

$$
\begin{align*}
\sigma(x) & =\sigma\left(x_{n}\right)+\frac{\sigma\left(x_{n+1}\right)-\sigma\left(x_{n}\right)}{\Delta x_{n}}\left(x-x_{n}\right) \\
& =\sigma_{n}+\frac{\sigma_{n+1}-\sigma_{n}}{\Delta x_{n}}\left(x-x_{n}\right) \tag{20}
\end{align*}
$$

from which there is obtained

$$
\begin{align*}
\tau\left(x_{0}\right) & =-\frac{1}{\pi} \int_{0}^{c} \sigma(x) \frac{d x}{x-x_{0}}=-\frac{1}{\pi} \sum_{x_{n}}^{x_{n+1}} \frac{\sigma_{n}+\frac{\sigma_{n+1}-\sigma_{n}}{\Delta x_{n}}\left(x-x_{n}\right)}{x-x_{0}} d x \\
& =-\frac{1}{\pi}\left[\int_{x_{n}}^{x_{n+1}} \frac{\sigma_{n}+\frac{\sigma_{n+1}-\sigma_{n}}{\Delta x_{n}}\left(x-x_{0}+x_{0}-x_{n}\right)}{x-x_{0}} d x\right] \\
& =-\frac{1}{\pi}\left\{\sum\left(\frac{\sigma_{n+1}-\sigma_{n}}{\Delta x_{n}}\right) \Delta x_{n}+\right. \\
& \left.\sum\left[\sigma_{n}+\frac{\sigma_{n+1}-\sigma_{n}}{\Delta x_{n}}\left(x_{0}-x_{n}\right)\right]\left(\int_{x_{n}}^{x_{n+1}} \frac{d x}{x-x_{0}}\right)\right] \tag{21}
\end{align*}
$$

Also,

$$
\begin{equation*}
\int_{x_{n}}^{x_{n+1}} \frac{d x}{x-x_{0}}=j_{n o} \tag{22}
\end{equation*}
$$

by definition. The function $j_{n o}$, in the different regions of x, is given by different expressions as follows:

$$
j_{n o}=\left\{\begin{array}{ll}
\log _{e} \frac{x_{n+1}-x_{0}}{x_{n}-x_{0}} & \text { for } \tag{23}\\
x_{n+1}>x_{n}>x_{0} \\
\log _{e} \frac{x_{n+1}-x_{0}}{x_{0}-x_{n}} & \text { for } \\
x_{n+1}>x_{0}>x_{n}
\end{array}\right\}
$$

Introducing $j_{n o}$ into equation (21), there results

$$
\begin{align*}
\tau\left(x_{0}\right) & =-\frac{1}{\pi}\left\{\sum\left(\sigma_{n+1}-\sigma_{n}\right)+\sum\left[\sigma_{n}+\frac{\sigma_{n+1}-\sigma_{n}}{\Delta x_{n}}\left(x_{0}-x_{n}\right)\right] j_{n o}\right\} \\
& =-\frac{1}{\pi}\left[\sum \sigma_{n} j_{n o}+\sum\left(\sigma_{n+1}-\sigma_{n}\right)\left(1+\frac{x_{0}-x_{n}}{\Delta x_{n}} j_{n o}\right)\right] \tag{24}
\end{align*}
$$

Or, defining

$$
\begin{equation*}
I+\frac{x_{0}-x_{n}}{\Delta x_{n}} j_{n o}=j_{n o}^{*} \tag{25}
\end{equation*}
$$

there results, finally,

$$
\begin{equation*}
\tau\left(x_{0}\right)=-\frac{1}{\pi}\left[\sum \sigma_{n} j_{n o}+\sum\left(\sigma_{n+1}-\sigma_{n}\right) j_{n o}^{*}\right] \tag{26}
\end{equation*}
$$

Since $x_{n+1}=x_{n}+\Delta x_{n}$, the functions $j_{n o}$ and $j_{n o}{ }^{*}$ may be written as

$$
\left.\begin{array}{rl}
j_{n o}^{*} & =1+\frac{x_{0}-x_{n}}{\Delta x_{n}} j_{n o} \\
j_{n o} & =\log _{e}\left(1+\frac{\Delta x_{n}}{x_{n}-x_{0}}\right) \text { for } x_{n}>x_{0} \\
& =\log _{e}\left(-1+\frac{\Delta x_{n}}{x_{0}-x_{n}}\right) \text { for } x_{n}+\Delta x_{n}>x_{0}>x_{n} \tag{27a}\\
& =\log _{e}\left(1+\frac{\Delta x_{n}}{x_{n}-x_{0}}\right) \text { for } x_{0}>x_{n}+\Delta x_{n}
\end{array}\right\}
$$

and this form shows that $j_{n o}$ and $j_{n o}^{*}$ are functions of $\frac{x_{n}-x_{0}}{\Delta x_{n}}$ only.

For $\frac{x_{n}-x_{0}}{\Delta x_{n}} \rightarrow \pm \infty$ $\left.j_{\mathrm{no}} \rightarrow 0 \quad j_{\mathrm{no}}{ }^{*} \rightarrow 0\right]$ For $x_{0}-x_{n}=\frac{1}{2} \Delta x_{n}$

$$
\begin{equation*}
j_{n o}=0 \tag{27b}
\end{equation*}
$$

For very large $\frac{x_{n}-x_{0}}{\Delta x_{n}}=\xi$,

$$
\left.\begin{array}{l}
j_{n o} \rightarrow \frac{1}{\xi}-\frac{1}{2 \xi^{2}}+\cdots \cdot \\
j_{n o}^{*} \rightarrow \frac{1}{2 \xi}-\frac{1}{3 \xi^{2}}+\cdots \cdot
\end{array}\right\}
$$

For very large negative $\frac{x_{n}-x_{0}}{\Delta \dot{x}_{n}}$ with $\left|\frac{x_{n}-x_{0}}{\Delta x_{n}}\right|=\xi^{*}$,

$$
\begin{align*}
& j_{n o} \rightarrow-\frac{1}{\xi^{*}}-\frac{1}{2 \xi^{* 2}}+\ldots \tag{27d}\\
& j_{n o}^{*} \rightarrow-\frac{1}{2 \xi^{*}}-\frac{1}{3 \xi^{* 2}}+\ldots
\end{align*}
$$

These functions are given in figure 1 and in table I.
It is seen that high absolute values, of $j_{n o}$ and $j_{n o}{ }^{*}$ occur near those values of $\frac{x_{n}-x_{0}}{\Delta x_{n}}$ which characterize the critical interval. ${ }^{4}$

Figure 1 gives an idea of the characteristic qualities of $j_{n o}$ and $J_{n o}{ }^{*}$ as functions of $\frac{x_{n}-x_{0}}{\Delta x_{n}}$; however, the representation is not sufficient for picking out values for a computation. Table I gives the values of $J_{n o}$ and $j_{n o}^{*}$ for $-49.5<\frac{x_{n}-x_{0}}{\Delta x}<49.5$. This table might

be used for rough computation and for getting acquainted with the method. In general, it is advisable to use those tables which are given in appendix B.

It will prove of benefit to investigate the exactness of that portion of the integral which contains the singularity: Recalling that the function $\sigma(x)$ was replaced by a straight line in every interval (equation (20)), there is obtained:

$$
\begin{equation*}
-\frac{1}{\pi} \int_{x_{0}-\frac{\Delta x}{2}}^{x_{0}+\frac{\Delta x}{2}} \frac{\sigma(x)}{x-x_{0}} d x=-\frac{1}{\pi}\left(\sigma_{m+1}-\sigma_{m}\right) \tag{28}
\end{equation*}
$$

if $x_{m}<x_{0}<x_{m+1}$. Now, let an expansion of the function $\sigma(x)$ in the critical interval around x_{0} be assumed as follows:

$$
\begin{align*}
\sigma(x)= & \sigma\left(x_{0}\right)+\sigma^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{\sigma^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+ \\
& \frac{\sigma^{\prime \prime \prime}\left(x_{0}\right)}{3!}\left(x-x_{0}\right)^{3}+\frac{\sigma^{i v}\left(x_{0}\right)}{4!}\left(x-x_{0}\right)^{4}+\ldots \tag{29}
\end{align*}
$$

Then,

$$
\begin{align*}
-\frac{1}{\pi} \int_{x_{0}-\frac{\Delta x}{2}}^{x_{0}+\frac{\Delta x}{2}} \frac{\sigma(x)}{x-x_{0}} d x= & -\frac{1}{\pi}\left[\sigma^{:}\left(x_{0}\right) \Delta x+\frac{\sigma^{\prime \prime \prime}\left(x_{0}\right)}{3!} \frac{2}{3}\left(\frac{\Delta x}{2}\right)^{3}+\ldots\right] \\
= & -\frac{1}{\pi}\left[\frac{13}{12}\left(\sigma_{m+1}-\sigma_{m}\right)-\frac{1}{36}\left(\sigma_{m+2}-\sigma_{m-1}\right)\right] \\
= & -\frac{1}{\pi}\left\{\frac{19}{18}\left(\sigma_{m+1}-\sigma_{m}\right)-\right. \\
& \left.\frac{1}{36}\left[\left(\sigma_{m+2}-\sigma_{m+1}\right)+\left(\sigma_{m}-\sigma_{m-1}\right)\right]\right\} \tag{30}
\end{align*}
$$

Comparison of formulas (30) and (28) shows that the error in the critical interval is approximately given by

$$
\begin{equation*}
-\frac{1}{\pi}\left\{\frac{1}{18}\left(\sigma_{m+1}-\sigma_{m}\right)-\frac{1}{36}\left[\left(\sigma_{m+2}-\sigma_{m+1}\right)+\left(\sigma_{m}-\sigma_{m-1}\right)\right]\right\} \tag{31}
\end{equation*}
$$

The error of evaluating the whole integral by finite differences may be estimated by using two different interval distributions and comparing the results for a given x_{0}.

However, in addition to that error of the result produced by replacing the Poisson integral by a sum there exists another error. This aum cannot be computed exactly, but has a certain error depending on the accuracy of the given data for $\sigma_{n}(x)$ and the tabulated values of $j_{n o}$ and $j_{n o}{ }^{*}$. As the function $\sigma(x)=\frac{d\left(\Delta y_{t}\right)}{d x}$ usually has an error of $\epsilon_{I}=1 \times 10^{-3}$ it has proved amply satisfactory to give $j_{n o}$ and $j_{n o}{ }^{*}$ to four decimal places, the error being less than $\epsilon_{2}=5 \times 10^{-5}$. The error of

$$
\tau\left(x_{0}\right)=-\frac{1}{\pi}\left[\sum \sigma_{n} j_{n o}+\sum\left(\sigma_{n+1}-\sigma_{n}\right) j_{n o}^{*}\right]
$$

is smaller than its upper limit given by

$$
\begin{equation*}
\frac{1}{\pi}\left[\epsilon_{1}\left(\sum\left|j_{n 0}\right|+2 \sum\left|j_{n o}^{*}\right|\right)+\epsilon_{2}\left(\sum\left|\sigma_{n}\right|+\sum\left|\sigma_{n+1}-\sigma_{n}\right|\right)\right] \tag{32}
\end{equation*}
$$

This formula shows that the influence of ϵ_{1} is stronger than the influence of ϵ_{2} as long as $. \sum\left|\sigma_{n}\right|+\sum\left|\sigma_{n+1}-\sigma_{n}\right| \quad$ is smaller than 1 - as it is in our later examples - and the sums \sum, $j_{n o} \mid$ and $\sum\left|j_{n o}^{*}\right|$ are always larger than 1 . An increase of subdivisions makes the sums in the upper limit of the error (32) grow, thus requiring a higher accuracy, especially in σ_{n} and perhaps also in the values of $j_{n o}$ and $j_{n o}{ }^{*}$.

In establishing the solution of equation (18) it was assumed that $\sigma(x)$ is finite throughout its range of definition. If it is desired to compute the change in shape due to a proposed change of velocity distribution, this restriction must be eliminated, as will be recognized immediately.

Equation (5) may be written in the form

$$
\begin{equation*}
\frac{d\left(\Delta y_{t}\right)}{d x}=\frac{I}{\pi} \sqrt{x_{0}\left(c-x_{0}\right)} \int_{0}^{c} \frac{\Delta v / v_{0}}{\sqrt{x(c-x)}} \frac{d x}{x-x_{0}} \tag{1}
\end{equation*}
$$

Omitting the factor $\sqrt{x_{0}\left(c-x_{0}\right)}$, which does not affect the integration process, the integral may be reduced to the form of equation (18) by defining

$$
\begin{equation*}
\frac{\Delta v / V_{0}}{\sqrt{x(c-x)}}=\sigma_{1}(x) \tag{33}
\end{equation*}
$$

However, $\sigma_{1}(x)$ will be infinite at $x=0$ and $x=c$ if $\left(\frac{\Delta v}{V_{0}}\right)_{0} \neq 0$ and $\left(\frac{\Delta v}{\vec{V}_{0}}\right)_{c} \neq 0$; therefore, a special consideration of the neighborhood of $x=0$ and $x=c$ is required. This is done by splitting the integral into the following three parts:

$$
\begin{align*}
\int_{0}^{c} \sigma_{1}(x) \frac{d x}{x-x_{0}}= & \int_{0}^{\epsilon_{1}} \sigma_{1}(x) \frac{d x}{x-x_{0}}+\int_{\epsilon_{1}}^{c-\epsilon_{2}} \sigma_{\sigma_{1}}(x) \frac{d x}{x-x_{0}}+ \\
& \int_{c-\epsilon_{2}}^{c} \sigma_{1}(x) \frac{d x}{x-x_{0}} \tag{34}
\end{align*}
$$

with ϵ_{1} and ϵ_{2} being small compared with c. The integral

$$
\int_{\epsilon_{1}}^{c-\epsilon_{2}} \sigma_{1}(x) \frac{d x}{x-x_{0}}
$$

may be treated as was explained formerly for

$$
\int_{0}^{c} \sigma(x) \frac{d x}{x-x_{0}}
$$

(see equation (18)) because $\sigma_{1}(x)$ is finite for $\epsilon_{1}<x<c-\epsilon_{2}$. For the first and third integrals, however, a new integration formula must be developed. By introducing

$$
\mu=c-x \text { and } \sigma_{I}(x)=\sigma_{1}[\mu(x)]=\sigma_{1}^{*}(\mu)
$$

there is obtained

$$
\begin{equation*}
\int_{c-\epsilon_{2}}^{c} \sigma_{1}(x) \frac{d x}{x-x_{0}}=-\int_{0}^{\epsilon_{2}} \sigma_{1}^{*}(\mu) \frac{d \mu}{\mu-\mu_{0}} \tag{35}
\end{equation*}
$$

Hence, the method used for the first integral will also apply to the third. In most cases $\left(\frac{\Delta v}{V_{0}}\right)_{c}$ will be zero and there will be no need for a special evaluation in the neighborhood of $x=c$.

The' integral

$$
\begin{equation*}
\int_{0}^{\epsilon_{1}} \sigma_{1}(x) \frac{d x}{x-x_{0}}=\int_{0}^{\epsilon_{1}} \frac{\Delta v / V_{0}}{\sqrt{x(c-x)}} \frac{d x}{x-x_{0}} \tag{36}
\end{equation*}
$$

will have an important influence on the result of equation (34) only if x_{0} is near to ϵ_{I}. First the general formula will be given and then a simplification will be discussed for $x_{0} \gg \epsilon_{1}$.

The integral (36) will be solved assuming that

$$
\begin{equation*}
\frac{\Delta v}{V_{0}}=a_{0}+a_{1}\left(\frac{x}{c}\right)+a_{2}\left(\frac{x}{c}\right)^{2} \text { for } 0<x<\epsilon_{1} \tag{37}
\end{equation*}
$$

Only the final formula of this procedure is given here; the details of the solution will be found in appendix C.

$$
\begin{align*}
F_{1}\left(x_{0}\right)= & \int_{0}^{\epsilon} \frac{\Delta v / v_{0}}{\sqrt{x(c-x)}} \frac{d x}{x-x_{0}}=\frac{1}{c}\left\{M _ { 0 } \frac { 1 } { \sqrt { \frac { x _ { 0 } } { c } } } \left[a_{0}+a_{1}^{*}\left(\frac{x_{0}}{c}\right)+\right.\right. \tag{38}\\
& \left.\left.a_{2}^{*}\left(\frac{x_{0}}{c}\right)^{2}\right]+2 \sqrt{\frac{G}{c}}\left[a_{1}^{*}+a_{2}^{*}\left(\frac{x_{0}}{c}\right)\right]+\frac{2}{3} a_{2}^{*} \sqrt{\frac{\epsilon 1}{c}} 3\right\}
\end{align*}
$$

with M_{o} given in figure 2, and

$$
\begin{gathered}
a_{0}=\left(\frac{\Delta v}{V_{0}}\right)_{0} \\
a_{1}^{*}=a_{1}+\frac{1}{2} a_{0}
\end{gathered}
$$

with

$$
\left.\begin{array}{c}
\left.a_{1}=\frac{c}{2 \epsilon_{1}}\left[-3\left(\frac{\Delta v}{V_{0}}\right)_{0}+4\left(\frac{\Delta v}{\bar{V}_{0}}\right)_{\epsilon_{1}}-\left(\frac{\Delta v}{\bar{V}_{0}}\right)_{2 \epsilon_{1}}\right]\right\} \tag{39}\\
a_{2}^{*}=a_{2}+\frac{1}{2} a_{1}+\frac{3}{8} a_{0}
\end{array}\right\}
$$

with

$$
\left.a_{2}=\frac{c^{2}}{2 \epsilon_{1}^{2}}\left[\left(\frac{\Delta v}{\bar{V}_{0}}\right)_{0}-2\left(\frac{\Delta v}{\bar{v}_{0}}\right)_{\epsilon_{1}}+\left(\frac{\Delta v}{\bar{V}_{0}}\right)_{2 \epsilon_{I}}\right]\right]
$$

The coefficients a_{0}, a_{1}, and a_{2} may be determined first, as they do not depend upon the particular value of x_{0}, and then $F_{1}\left(x_{0}\right)$ may be computed. The term depending on a_{1} and, a_{2} will exert an influence only for small values of x_{0} / c. After a brief training the computor should be able to decide rather accurately when the formula

$$
\begin{equation*}
F_{1}\left(x_{0}\right)=\frac{1}{c} M_{0} \frac{a_{0}}{\sqrt{\frac{x_{0}}{c}}} \rightarrow \frac{a_{0}}{x_{0}}\left(-2 \sqrt{\frac{\epsilon_{1}}{c}}\right) \tag{40}
\end{equation*}
$$

is sufficient and when the more exact expression (equation (38)) is required (also see fig. 2).

Organization of Computational Procedure for Unequal Intervals;
Transition from One Size of Interval to Another
A thorough understanding of the method is best achieved by following through a rather simple example; in addition various short cuts to the method will be demonstrated.

Assume a function $\sigma(x)$ of the type shown in the following figure.

It appears reasonable to take rather small intervals for small values of x because of the form of the curve $\sigma(x)$; therefore, the following arrangement of interval sizes is arbitrarily selected:

$$
\begin{gathered}
\overline{\Delta x}=0.002 \text { for } 0<x<0.030 \\
\overline{\overline{\Delta x}}=0.006 \text { for } 0.030<x<0.096
\end{gathered}
$$

Compute $\tau(0.009)$ with the help of equation (26). Note that the critical interval extends from 0.008 to 0.010 . Table II (a) gives the values of $x / c, \sigma_{n}, \sigma_{n+1}-\sigma_{n}, j_{n o}$, and $j_{n o}{ }^{*}$ for the range with $\overline{\Delta x}=0.002$. At $\mathrm{x}=0.030$ the interval changes to $\overline{\overline{\Delta x}}=0.006$ and the same functions are given for the range with this size of interval in table II(b). Naturally the range above the broken line in table II(b) is not utilized in the computation since this portion has been considered in table II(a).

Note that $\frac{x_{n}-x_{0}}{\Delta x}$ progresses in table II (b) in the same manner as in table $I I(a)$; this is due to the special choice of $\overline{\overline{\Delta x}}$. If $\overline{\overline{\Delta x}}=0.006$ were used starting with $\mathrm{x}=0$ the critical interval for $x_{0}=0.009$ would extend from 0.006 to 0.012 . Hence, for $\overline{\overline{\Delta x}}=0.006$, jno $=0$ and $j_{n o}{ }^{*}=I$ is to be found at $x / c=0.006$.

For rapid computation it is best to have $j_{n o}$ and $j_{n o}{ }^{*}$ as functions of $\frac{x_{n}-x_{0}}{\Delta x}$ on a paper strip and to place this strip adjacent to the columns headed by σ_{n} and $\sigma_{n+1}-\sigma_{n}$. If $\frac{x_{n}-x_{0}}{\Delta x}$ progresses as indicated in table I, the correct location of $j_{n o}=0$ and $j_{n o}{ }^{*}=1$ at the beginning of the critical interval fix̃es the placement of the strip.

In the example just treated, the transition from one size of interval to another is very easy because x_{0} lies at the midpoint of an interval of the size 0.006 as well as of the size 0.002 , if starting with $\mathrm{x}=0$.

If $\overline{\overline{\Delta x}}$ had been chosen 0.004 , such a desirable arrangement would not have resulted because $x_{0}=0.009$ would not be located at the midpoint of an interval of this size (starting with such intervals at $\mathrm{x}=0$).

As a second example compute the value of τ at $x_{0}=0.015$. Again, $\frac{x_{n}-x_{0}}{\overline{\Delta x}}$ and $\frac{x_{n}-x_{0}}{\overline{\overline{\Delta x}}}$ will progress as in table I. The values $j_{n o}=0$ and $j_{n o}^{*}=1$ will be placed opposite $x / c=0.014$ for the region with $\overline{\Delta x}=0.002$ and opposite $x / c=0.012$ for the region with $\overline{\overline{\Delta x}}=0.006$. As long as $\overline{\overline{\Delta x}}=3 \overline{\Delta x}, \overline{\overline{\Delta x}}=3 \overline{\overline{\Delta x}}$, and so forth and If x_{0} is chosen so as to be at the midpoint of the largest size of interval, the computation may be accomplished by shifting the strip with $j_{n o}$ and $j_{n o}{ }^{*}$ corresponding to table I.

But suppose that the interval sizes are so arranged and it is desired to compute a point where x_{0} does not lie at the midpoint of the largest aize of interval; for example, $x_{0}=0.013$. The value $x_{0}=0.013$ lies at the midpoint of en interval with $\overline{\Delta x}=0.002$; hence,
for the range $0<x<0.030$, $j_{\text {no }}$ and $j_{n o}{ }^{*}$ may be taken directly from table I. However, at $x / c=0.030$, intervals of the size $\overline{\overline{\Delta x}}=0.006$ commence and there is obtained

$$
\frac{x_{n}-x_{0}}{\overline{\overline{\Delta x}}}=\frac{0.030-0.013}{0.006}=2.833
$$

The value of $\frac{x_{n}-x_{0}}{\Delta x}$ progresses by 1 , that is, $2.833 ; 3.833$, 4.833, Thus the functions $j_{n o}$ and $j_{n o}{ }^{*}$ are needed for values of $\frac{x_{n}-x_{0}}{\Delta x}$ which are not given in table I. One might think of taking them out of an enlarged diagram (see fig. l); however, it is much more convenient to take them out of an extended table, which is conveniently arranged for "advancing by l." Such tables are given in appendix B.

The example presented by the figure at the beginning of this section suggested starting at $x=0$ with the smallest intervals. However, other examples may suggest another distribution of intervals. The smallest size of intervals may lie at any parit of $0<x<c$. There are no restrictions in the arrangement of intervals. (See, e.g., discussion following equation (43).)

Accuracy of Method, Examined by Means of

an Analytical Example

The accuracy of the result depends directly upon the size of the interval taken and the reliability of the data comprising the function $\sigma(x)$. Because the function $\sigma(x)$ will be replaced by a broken line, a glance at the curve will quickly suggest an arrangement of intervals. In addition, the error in the critical interval may be used as a first test of the choice of intervals.

As a test of the quality of this new method, involving unequal intervals, a function $\sigma(x)=\frac{d\left(\Delta y_{t}\right)}{d x}$ has been treated which allows the analytical computation of $\tau(x)=\frac{\Delta v}{V_{0}}$.

The function $\sigma(x)$ is given analytically as

$$
\begin{gathered}
0 \leqq x \leqq 2 \Delta \quad \frac{d\left(\Delta y_{t}\right)}{d x}=B x(2 \Delta-x) \\
2 \Delta \leqq x \leqq c_{1} \quad \frac{d\left(\Delta y_{t}\right)}{d x}=-D\left(c_{1}-x\right)(x-2 \Delta) \\
c_{1} \leqq x \leqq c \quad \frac{d\left(\Delta y_{t}\right)}{d x}=0
\end{gathered}
$$

The following arbitrary values have been selected:
$\begin{aligned} & c_{1}=0.35 \\ & c=1.0 \\ & D=\text { Some multiple of } B \text { so that } \int_{0}^{c_{1}} \frac{d\left(\Delta y_{t}\right)}{d x} d x=0\end{aligned}$
The functions Δy_{t} and $\frac{d\left(\Delta y_{t}\right)}{d x}$ are given in figures $3(a)$ and $3(b)$, respectively.

The analytical computation of $\frac{\Delta v}{\vec{V}_{0}}$ for figure $3(\mathrm{~b})$ is given in figures $4(a)$ and $4(b)$. The arrangement of the unequal division for the numerical computation of $\frac{\Delta v}{\bar{V}_{0}}$ is indicated in figure $4(a) .5$
${ }^{5}$ It was desirable to obtain the value of $\frac{\Delta v}{\bar{V}_{0}}$ at $x_{0}=0$; hence, the first interval has been placed so that $-0.001<x_{0}<0.001$ and the function $\frac{d\left(\Delta y_{t}\right)}{d x}=0$ for $-0.001<x<0$. Since the function $\frac{d\left(\Delta y_{t}\right)}{d x}=g$ is replaced in every interval by a straight line, the error might be expected to be large. However, $g=0$ at $x_{0}=0$ will aid in .preventing the exror from being too large.

A more exact solution would be obtained by putting

$$
\begin{gathered}
g=0 \quad-\frac{\Delta x}{2}<x<0 \\
g=\frac{g_{1}}{\frac{\Delta x}{2}} x \quad 0<x<\frac{\Delta x}{2} \\
-\frac{1}{\pi} \int_{0}^{\Delta x / 2}\left(\frac{g_{1}}{\frac{\Delta x}{2}} x\right) \frac{d x}{x-x_{0}}=-\frac{1}{\pi} g_{1} \times 1
\end{gathered}
$$

For the interval $-\frac{\Delta x}{2}<x<\frac{\Delta x}{2}$ equation (26) would yleld

$$
-\frac{1}{\pi} \int_{-\Delta x / 2}^{\Delta x / 2} g \frac{d x}{x-x_{0}}=-\frac{1}{\pi}\left[\left(g_{1}-0\right) j_{n 0}^{*}+0 \times j_{n 0}\right]=-\frac{1}{\pi} g_{1}
$$

and no error is introduced. For $x_{0} \neq 0$ there is a very small error which may be avoided by respecting the change of aize of the interval near $\mathrm{x}=0$.

Also given in figure $4(a)$ are points of the $\frac{\Delta v}{V_{0}}$ curve determined by the method of unequal intervals. Figure 4(b) presents the same information plotted to a larger scale.

For comparative purposes the same problem has been treated by the three methods of computation discussed earlier, namely, those of Naiman, Multhopp, and Timman. Figures 5(a) and 5(b) show the results obtained by the method of Naiman; obviously, the 40 -point solution does not use a sufficiently accurate representation of the $\frac{d\left(\Delta y_{t}\right)}{d x}$ curve, while the 80 - and 160 -point solutions are quite good, with the exception of the maximum and minimum points of the $\frac{\Delta v}{V_{0}}$ curve. In order to obtain a value at approximately $\frac{x}{c}=0.036$ a solution involving 320 points would be required. In this respect the method of unequal intervals is more adaptable to special conditions without involving much new work than is the method of Naiman.

The results obtained by Multhopp's method are given in figures 6(a) and 6(b). The 3l-point solution (in Multhopp's somewhat odd manner of designation) corresponds to $\Delta \theta=5.625^{\circ}$; the 63 -point solution, to $\Delta \theta=2.8125^{\circ}$. The computation is very simple and the results of the method with 63 points are comparable with that of Naiman with 80 points, with the exception of those near the region $0<1 \mathrm{x}<0.01$ (this is shown most clearly in fig. 6(b)). The very steep peak of $\frac{d\left(\Delta y_{t}\right)}{d x}$ at $x / c=0.02$ requires rather high harmonics for the representation of Δy_{t}; consequently, good accuracy in the region near the origin may not be expected. This is substantiated by the fact that for the 63-point method the highest effective harmonic would have three waves in the region $0<x<0.04$; obviously a sufficient degree of accuracy in the differentiation process cannot be obtained.

As mentioned earlier, Timman's method might be expected to give good results if the size of interval is properly chosen. Inasmuch as only a table for $\Delta \theta=\frac{360}{36}=10^{\circ}$ was available, the result of the computation for $\frac{\Delta v}{V_{0}}$ cannot be expected to be good, as is evidenced by observing figure 7. The result obtained is comparable with that of Multhopp's 15-point and Naiman's 40-point solutions.

An excellent method of examining the accuracy of these methods still further is simply that of solving the inverse problem. From the curves of $\frac{\Delta v}{V_{0}}$ just discussed, values for $\frac{d\left(\Delta y_{t}\right)}{d x}$ have been computed
and are presented in figure 8. The method of unequal intervals gives good results, indicating that the arrangement of intervals chosen was as good for the inverse problem as for the direct problem. It is apparent that Naiman's method requires even smaller divisions than 160 points in order to avoid inaccuracies near the point $x / c=0.04$.

The reader may wonder that the inverse problem is not given by Multhopp's method. It must be recalled that Multhopp's method of solving the direct problem does not involve the differentiation of Δy_{t}; that is, it is particularly fit for this problem and presents, on the other hand, no analogy for the inverse problem:

$$
\frac{\mathrm{d}\left(\Delta \mathrm{y}_{\mathrm{t}}\right)}{\mathrm{dx}}=\frac{I}{2 \pi} \int_{0}^{2 \pi} \frac{\Delta \mathrm{v}}{\bar{V}_{\mathrm{O}}} \cot \frac{\theta-\theta_{\mathrm{O}}}{2} \mathrm{~d} \theta=-\frac{I}{\pi} \int_{0}^{\pi} \frac{\Delta \mathrm{v}}{\overline{\mathrm{~V}}_{\mathrm{O}}} \frac{\sin \theta_{\mathrm{O}}}{\cos \theta-\cos \theta_{\mathrm{O}}} \mathrm{~d} \theta
$$

Because more extended tables for Timman's method are not available, and the results obtained from the 36 -point method for which tables exist are very poor, no further examples of the application of this method will be given.

COMPARISONS OF MEIHODS OF NATMAN AND MULTHOPP WITH METHOD EMPLOYING
UNEQUAL INTEERVALS BASED ON ACTUAL EXAMPLES OF CHANGES IN
ATRFOIL SHAPE

The method of unequal intervals has shown good qualities when applied to a problem where the function $\sigma(x)$ is known analytically. However, as mentioned earlier, this function is not usually known in analytic form. This section, therefore, will compare the three principle methods, those of Naiman, Multhopp, and unequal intervals, on the basis of actual design problems, solving the direct problem for $\frac{\Delta v}{\bar{V}_{\mathrm{O}}}$ and using these results to solve the inverse problem (excluding Multhopp for the inverse problem).

Figure $9(a)$ shows the Δy_{t} relations for examples I and II and figure $9(b)$, the $\frac{d\left(\Delta y_{t}\right)}{d x}$ relations. Note that the slope of $\left[\frac{d\left(\Delta y_{t}\right)}{d x}\right]$ for example II is more than twice that of example I near $x / c=0$.

The direct problem for example I by Naiman's method is given in figure 10. The 160 -point solution does not show any appreciable deviation from the 80 -point solutions at the region of $\left(\frac{\Delta v}{V_{o}}\right)_{\max }$; however, near the origin, at $\left(\frac{\Delta v}{\bar{V}_{0}}\right)_{\min }$, the influence of the smaller-sized intervals ($80: \Delta \theta=4.5^{\circ} ; 160: \Delta \theta=2.25^{\circ}$) is quite pronounced.

The solution by Multhopp's method is given in figure 11; ${ }^{6} 31$ points around the half circle are not sufficient for a solution comparable with Naiman's 80 -point solution, and even a solution based on 63 points does not offer much improvement. The results are poor, as might be expected, in the region very near the origin (see preceding section).

Figure 12 presents the results obtained by the method of unequal intervals, compared with results obtained by Naiman's 80- and 160-point solutions. The method of unequal intervals gives results corresponding to those established by Naiman's 160 -point solution. The subdivision used is shown in the figure.

As before, the inverse problem was solved, and is given in figure 13. In each case the computed curve of $\frac{\Delta v}{V}$ was the one used in obtaining the values for the $\frac{d\left(\Delta y_{t}\right)}{d x}$ curve. Both methods give good results, thus proving that the chosen number of divisions was sufficient in Naiman's method and in the method employing unequal intervals.

The value of $\frac{d\left(\Delta y_{t}\right)}{d x}$ computed at $x / c=0.171$ is of some interest. This point was computed by the method of mequal intervals in two different ways: First, the arrangement of intervals shown in figure 13 was utilized to compute the lower point. Then a new arrangement of intervals ($\Delta \mathrm{x}=0.018$ for $0<\mathrm{x}<0.36$) was set up and the same point computed. The idea was to determine the inaccuracies that would result. One might predict that, since the point $x / c=0.171$ lies at a considerable distance from the region of rapid changes in $\frac{\Delta v}{V_{0}}$, errors of only small magnitude would be introduced; this is fairly well substantiated by the results shown in the figure because the error thus introduced is approximately that of the deviation of Naiman's 160-point solution.
${ }^{\text {Recall that this method does not involve the differentiation }}$ of Δy_{t}.

Now, turning our attention to example II, which, it will be recalled, has a slope of $\frac{d\left(\Delta y_{t}\right)}{d x}$ of approximately twice that of example I, the results given in figures 14 to 17 are obtained.

For the direct problem Naiman's method of 160 points and the method employing unequal intervals give results which are in good agreement. For the inverse problem (fig. 17) it is apparent that the method using unequal intervals is superior (see the deviation at $\left[\frac{d\left(\Delta y_{t}\right)}{d x}\right]_{\max }$ given by the method of Naiman $)$.' Multhopp's method gives a rather good result (fig. 15), which may be attained when the Fourier representation of the Δy curve is adequate.

The two examples thus far presented are favorable for Naimen's method because the steep slopes of $\sigma(x)$ occur near $x=0$ where the points Naiman uses are close together. However, going to still steeper slopes near $x=0$ would require a rapidly increasing number of points. The new method offers another possibility here. Assume that in that critical region $x_{k}<x<x_{k+1}$ (x_{k} may be 0) $\sigma(x)$ may be represented by $\sigma(x)=\sum a_{n} x^{n}$. Then the integral

$$
\int_{0}^{c} \frac{\sigma(x)}{x-x_{0}} d x
$$

may be split into three integrals

$$
\begin{align*}
\int_{0}^{c} \frac{\sigma(x)}{x-x_{0}} d x= & \int_{0}^{x_{k}} \frac{\sigma(x)}{x-x_{0}} d x+\int_{x_{k}}^{x_{k+1}} \frac{\sigma(x)}{x-x_{0}} d x+ \\
& \int_{x_{k+1}}^{c} \frac{\sigma(x)}{x-x_{0}} d x \tag{41}
\end{align*}
$$

The first and third of these integrals may be solved in the usual manner using the functions $j_{n o}$ and $j_{n o}{ }^{*}$. The second integral will be solved analytically.

This simple form, due to the use of the coordinate x in the Poisson integral, allows a rapid integration, because the integral

$$
k_{n, o}=\int_{x_{k}}^{x_{k+1}} \frac{x^{n}}{x-x_{o}} d x
$$

can be solved by recurrence as follows:

$$
\begin{equation*}
k_{n, 0}=\frac{x_{k+1}^{n}-x_{k}^{n}}{n}+x_{0} k_{n-1,0} \text { for } n \geqq 1 \tag{42}
\end{equation*}
$$

with

$$
\begin{equation*}
k_{0,0}=j_{n o}\left(\frac{x_{k}-x_{0}}{x_{k+1}-x_{k}}\right) \tag{43}
\end{equation*}
$$

Thus even very steep slopes cause no difficulties.
As already mentioned, examples I and II correspond well to the qualities demended by Naiman's method insofar as the rather steep slopes occur in those portions where the points θ_{n} are close together. If those steep slopes should occur in other portions of the chord, however, a very great number of points in the Naiman method would be needed in order to represent $\sigma(x)$ adequately, and to get reliable reaults. In such a case the method using unequal intervals shows its advantage by allowing a free subdivision of the chord.

A third example will serve to illustrate this. Figure 18 shows a function $\sigma(x)=\frac{d\left(\Delta y_{t}\right)}{d x}$. The essential values of the function lie in a part of the chord where even Naiman's method with 160 points is not sufficient to represent the function accurately. This is forcibly shown by the two curves of $\frac{\Delta v}{V_{0}}$. If the function $\sigma(x)$ is modified (dotted line) so as to eliminate the high peak, then the $\frac{\Delta v}{\bar{V}_{0}}$ curve by unequal intervals can be made to agree with the original $\frac{\Delta v}{V_{0}}$ by Naiman's 160-point solution, thus definitely proving that, in this example, Naiman's method with 160 points is insufficient.

Table III indicates the computation for the point $X_{0}=0.065$ by unequal intervals.

The new method of evaluating the Poisson integral developed herein is to be recomended for all those functions $\sigma(x)$, where steep slopes in small portions of the region to be integrated exist. In these portions a very small size of interval may be chosen without requiring that this same size of interval be used throughout the region of integration. In this manner, the work required for computation may be maintained at a reasonable level even for the most complicated problems.

The analytical treatment of special parts of the integral is possible (evaluating the remainder by the new method; see preceding section). In those problems where a transition to very small intervals in part of the integration range would require the determination of a great many values of σ_{n}, this idea might be used to advantage.

It should be noted that the smoothness of the function $\sigma(x)$ and its accurate representation by single points is essential for good results. If, for example, single points σ_{n} are simply taken from a curve for x_{n} very close to one another it may be compulsory to check these values by a table of differences.

Stanford University
Stanford, Calif., December 6, 1950

APPENDIX B

$$
\text { VALUES OF } j_{n o} \text { AND } j_{n o}{ }^{*} \text { AS FUNCTIONS OF } \frac{x_{n}-x_{0}}{\Delta x}
$$

The values of the functions $j_{n o}$ and $j_{n o}{ }^{*}$ are presented as indicated in the following table. The values are tabulated in a form selected to minimize the necessity for interpolation except for the region containing the singularities of the functions $j_{n o}$ and $j_{n o}{ }^{*}$. For ease in computation, tables $\mathrm{B}-\mathrm{I}$ to $\mathrm{B}-\mathrm{VIII}$, inclusive, are arranged so that the vertical increment of $\frac{x_{n}-x_{0}}{\Delta x}$ is unity. Table $B-I X$ gives additional values for the region containing the singularities of the functions $j_{n o}$ and J_{no} *

TABLR NO.	RANGE OF $\frac{x_{n}-x_{0}}{\Delta x}$	ITCREMERNI OF $\frac{x_{n}-x_{0}}{\Delta x}$
B-I	-189 to -90	1.0
B-II	-89.5 to -40.0	.5
B-III	-39.9 to -20.0	.1
B-IV	-19.99 to 0	.01
B-V	0 to 19.99	.01
B-VI	20.0 to 39.9	.1
B-VII	40.0 to 89.5	.5
B-VIII	90 to 189	1.0
B-IX	-1.000 to 0.000	0.001

$$
-189<_{a} \frac{x_{n}-x_{0}}{\Delta x}<-90
$$

$\frac{x_{n}-x_{0}}{x_{1}}$	-189.0		$\rightarrow 2$.		-169.0		-139.0		-16x. 0		-131.0		-109.0		-17x.0		-10x.0		-2x.0	
	Jno	$\mathrm{J}_{\text {po }}{ }^{\text {* }}$	5 no	Jno^{*}	I_{DO}	tho*	tho	jno*	J_{D}	$\mathrm{J}_{\text {H0 }}{ }^{\text {* }}$	Ino	jno^{*}	Jno	Jno*	Ino	$3_{00}{ }^{*}$	J_{nO}	Jno^{*}	Jno	Jno^{*}
9	-0.0073	-0.0027	-0.0056	-0.0028	-0.0059	-0.0030	-0.0063	-0.0032	-0.0067	-0.003	-0.0072	-0.0036	-0.0078	-0.0039	-0.0084	-0.00kp	-0.009e	-0.0046	-0.0102	-0.0051
8	-. 00053	-.0027	-.0056	-.0028	-. 0060	-. 0030	$-.0063$	$\rightarrow 0032$	-. 0068	-.0034	$-.0073$	-.0036	$-.0078$	-.0039	-.0083	-. 0043	-.0093	-. $00 \pm+7$	-.0109	-.0091
7	-. 009 s	-. 0007	-. 0097	-.0028	-. 0060	-. 0030	-. 0064	-. 0033	-. 0068	-.co3 4	-. 0073	-. 0037	-. 0079	-,0040	-. 00088	$-.0043$	$\rightarrow .0094$	$-.0047$	-. 0104	-. 0002
6	-. 00054	-.0027	-. 0057	-.0029	-. 0060	-. 0030	-.0064	-. 0032	-.0069	-.cogt	-.0074	-. 0037	-. 0000	-. 0040	-. 00087	-0043	-0099	-. 0004	-. 0105	-. 0093
5	-.005 4	-. 0027	-. 0057	-.0029	-.0061	-. 0030	-. 0065	-0039	-. 0069	-. 0035	-. 00074	-. 0037	-. 0000	-. 0040	-. 0007	$-.0044$	-.0096	-. 0004	-. 0106	-. 0033
4	-.005	-. 0027	-. 00058	-. 0009	-0061	-. 0031	-. 0065	-.0033	-,0070	-.0035	- 007	-. 0037	-.0081	-0042	-. 00088	-.0044	-.0097	-. 0046	-. 0107	-. 0053
3	-.0055	-.0027	-.0058	-. 0029	-0066e	- 00031	-.0066	-.0033	-0070	-. 0035	-0075	-. 0038	-. 0008	-0041	-. 00009	-.0045	-.0098	-. 00419	-. 0108	-. 0094
1	-. 005	-.0008	-. 00059	-. 00029	-., -006	-. 0.0031	-.0066	-0033	-.007	-.0035	- $-\infty$	-. 00038	-.0088 -.0093	-. 00041	-.0090 ,- 0090	-. 0045	$\bigcirc 00099$	-00049	-. 0109	-. 0005
0	-. 0056	-. 0008	-. 0059	-. 0030	-. 0063	-,0031	-. 0067	-. 0039	-,0072	-. 0036	$\bigcirc 007$	-.0039	-.0064	-.00k9	-. 0090	-. 0046	-,0101	-, 00050	-.0128	-.005

$$
\begin{aligned}
\text { TABLE B-II.- VALITES OH } & j_{n 0} \text { AND } \jmath_{n 0}{ }^{*} \text { USED IN BVALUATITGG EQUATIION (26) } \\
& -89.5 \leqq \frac{x_{n}-x_{0}}{\Delta x}<-40.0
\end{aligned}
$$

$\mathrm{C}_{n}+\mathrm{F}_{0}$	-8ix. 5		-0x. 0		-72.5		-7x.0		-6x. 5		-6ix. 0		-2x. 5		-5x.0		- tz .5		- hX .0	
\square^{4}	J_{10}	tmo^{*}	$J_{\text {D }}$	$\mathrm{J}_{120}{ }^{\text {* }}$	J20	$1_{120}{ }^{*}$	$\mathrm{J}_{\text {Ho }}$	$\mathrm{J}_{\text {no }}{ }^{\text {\# }}$	$J_{\text {mo }}$	180	$\mathrm{J}_{\text {no }}$	$\mathrm{J}_{10}{ }^{\text {* }}$	J_{10}	$\mathrm{d}_{12}{ }^{\text {* }}$	Jno	$1{ }^{10}$	30	$\mathrm{j}_{10}{ }^{*}$	$\mathrm{J}_{\text {LIO }}$	$3_{120}{ }^{\text {\# }}$
	-0.0178	-0.0056	-0.0113	0.00	0.0127	-0.0064	-0.0127	-0.0064	-0.0145	-0.0073	0.0146	0.00	-0,0169	-0.0085	-0.0171	-0,0095	0.0804	-0.0102	-0.0806	
8	-.0114	-, 0057	-.0114	-. 0059	-. 0188	-.006 4	-.0129	-,0064	-.0147	-. 0074	-. 0148	-.0074	-.0172	-. 0086	-.0274	-.0087	-. 00008	-. 0104	-.02011	-.0105
7	-. 01115	-. 0058	-. 0116	-. 0008	-. 0130	-.0065	-. 0137	-.0065	-.0149	$\rightarrow 0075$	-. 0150	-. 0073	-.0175	-. 00088	-. 0177	-. 00098	-. 0813	-. 0107	-. 0215	-. 0108
6	-. 0176	-. 0058	-. 0117	-. 0079	-. 0132	-. 0066	-. 0132	-. 0067	-. 0152	-0076	-. 0153	-. 0076	-. 0179	-. 0090	-. 0180	-,0090	-.0e17	-. 0109	-.0820	-.010
5	-. 0118	-. 0059	-. 0118	-.0059	-. 0133	-.0067	-.0134	-. 0067	-.0154	-. 007	-.0253	-. 0078	-. 0182	-. 0009	-.018k	-. 0093	-. 0888	-. 0119	-.0225	-. 0178
4	$\rightarrow 0119$	-. 00089	-. 0120	-. 0006	-. 0133	-. 0067	-. 0136	-.0068	-. 0156	-. 0078	-.0157	-. -17	-.0183	-. 0093	-. 0187	-.0097	-.0827	-. 0114	-. 0230	-. 0116
3	-.0180	-. 00060	-.0121	-. 00661	-. 0137	-. 0068	$=0138$	$\rightarrow .0069$	-. 0159	-. 0079	-.0160	-. 0080	-. 0189	-. 0094	-. 0150	-. 0095	-.0e33	-. 0117	-. 0235	-. 0118
2 1	-.0182	-.0061	-.0123	-. 0061	-.0139	-.0070	-. 0140	-. 0070	-.0161 -0.064	-. 00081	-0163	-. 0	-0190	-.0096 -.0099	-.0194	-. 0097	-.0838	-. 0180	-.0041	-. 0181
0	-.0185	-,006e	-.0126	-.0068	-.0141	-.0071	-.014	-.0071 -.0072	-.0164 -.0167	-.0082	-. 0165	-.0063	-.0196 -.0200	-.0099 -.0101	-. 0196	-. 0100	$\underline{-.0244}$	--0182	-.0047	. 01824

$-39.9 \leqq \frac{x_{n}-x_{0}}{\Delta x} \leqq-\uparrow 0.0$

	9		8		7		6		5		4		3							
dx	${ }^{10}$	$\mathrm{S}_{10}{ }^{*}$	${ }^{1} 0$	Sno*	30	4 ${ }^{*}$	1 no	$\mathrm{J}_{\text {DO }}{ }^{*}$	4	40*	no	$\mathrm{J}_{10}{ }^{*}$	${ }_{120}$	$4_{10}{ }^{*}$	4	$\mathrm{I}_{10}{ }^{*}$	420	$1_{100}{ }^{*}$	Ho	$\mathrm{J}_{10}{ }^{*}$
-39.1	-0.0294	$\bigcirc .0187$	-0.0234	-0.0188	. 02	-0.0188	-0.0096	-0.0128	-0.0856	-0.0139	-0.0857	-0.0139	-0.0258	-0.0130	-0.0238	-0.0130	-0.0259	-0.0130	-0.0260	
-38.	-. 0250	-.0131	-.0261	-. 0131	-.0862	-. 01	-,0262	-. 0132	-. 0263	-.0132	-.0264	-. 0133	-.0265	-. 0193	-0.026	-0.0130	-0.0239	-0.0130	-0.0260	-0.0131
-37	-.0067	-.0134	-. 0868	-. 0135	-. 0269	-. 0135	-. 0270	-. 0135	-. 0270	-. 0136	-.027	-. 0137	-.0272	-. 0137	-.0273	-. 0137	-. 0273	-. 0137	-.02T4	-. 0138
-36	-.0873	-. 0138	-. 0876	-. 0138	-. 0276	-. 0139	-. 027	-. 0139	-. 0278	-. 0139	-. 027	-.0140	-.0279	-. 0140	-.0280	-.0141	-. 0281	-.0141	-.0282	-. 0141
-35.	-. 0883	-. 0174	-. 0283	-. 0142	-.0284	-.0142	-. 0285	-. 0143	-.0286	-. 0143	-.0287	$\rightarrow .0144$	-. 0207	-. 0145	-. 0288	-. 0145	-. 0289	-.0145	-0e90	-. 0146
-34.	-. 0291	-. 0146	-. 0292	-. 0146	-.0892	-. 0147	-. 0893	-. 0147	-0897	-. 0148	-.0897	-. 0148	-.0296	-. 0149	-.0097	-. 0149	-. 0298	-. 0150	-. 0299	-. 0150
-33.	-.0299	-. 0150	-. 0300	-. 0197	-. 0301	-. 0151	-. 0302	-. 0152	-. 0303	-. 0153	-.0304	-. 015	-. 0305	-.0154	-. 0306	-. 0154	-. 0307	-.0154	-. 0308	-. 0155
-32.	-. 0909	$\rightarrow 0196$	-. 0310	-. 0156	-.0311	-. 0176	-. 0312	-. 0157	-. 03313	-. 0157	-. 03314	-.018	-. 0315	-. 0158	-.0325	-. 0158	-. 0336	-.0159	-. 0317	-. 0160
-31.	-. 0319	-. 0160	-. 0320	-. 0161	-. 0321	-. 0161	-. 0339	-. 0169	-.0323	-. 0168	-.0324	-. 0163	-. 0325	-. 0163	-. 0326	-. 0164	-. 0337	-.0164	-.0328	-. 0163
-90.	-0329	-.016y	-. 0330	-. 0166	-. 0333	-. 0166	-. 0333	-. 0167	-. 0333	-. 0167	-.0334	-. 0168	-. 0336	-. 0169	-. 0337	-. 0169	-. 0338	-. 0170	-. 0339	-.017
-29.	-. 03440	-. 017	-. 0341	-. 0172	-.0342	-. 0178	-.0344	-. 0173	-.0345	-. 0173	-. 0346	-. 017	-. 0347	-.0175	-.0348	-. 0175	-. 0350	-. 0176	-. 0351	$-.0176$
-e9.	-. 0352	-. 0177	-. 0333	-.0178	-. 0353	-. 0178	-. 0356	-. 0179	-. 0357	-. 0180	-.0358	-. 0180	-. 0360	-. 0181	-.0361	-. 0188	-. 0362	-. 0182	-. 0364	-0183
-27.	-. 0336	-.0184	-. 0366	-.0184	-. 0368	-. 0185	-. 0369	-. 0186	-. 0370	-. 0186	-. 0372	-. 0187	-. 0373	-. 0188	-. 0373	-. 0188	-. 0376	-. 0189	-. 0377	-.0190
-26.	-. 0378	-. 0191	-. 0380	-. 0191	-. 0388	-. 0192	-. 0383	-. 0193	-. 0385	-. 0193	-. 0386	-.0194	-. 0388	-. 0195	-. 0339	-. 0196	-. 0391	-. 0196	-.0392	-. 0197
-25.	-. 0394	-. 0198	-. 0395	-. 0199	-. 0397	-.0200	-. 0398	-. 0200	-. 0400	-. 0201	-. 0408	-. 0202	-. 0403	-. 08003	-. 0105	-.0304	-. 0407	-. 0205	-. 0408	-. 0206
-24.	-. 0140	-. 08006	-. 0418	-. 0207	-0413	-. 0208	-0415	-. 0309	-. 0417	-. 0210	-. 0418	-. 0211	-. 0420	-. 0271	-. Oh28	-. 0272	-. 0424	-.0213	-. 0426	-.0214
-23.	-. 0487	-. 0215	-. 04829	-. 0216	-. 0431	-.0817	-. 0433	-. 0218	-. 0439	-. 02119	-. 0437	-. 0219	-. 0439	-.0023	-.0441	-. 0232	$-.0443$	-. 0223	-0, $0+4$	-.0823
-2.	-. 0447	-.0029	- 0449	-.0226	-. 0451	-. 02827	-. 0453	-. 02838	-. 0455	-. 0282	-. $04+57$	-. 0230	-. 0459	-. 0231	$-.0461$	-. 0233	-. 0463	-. 0233	-.0465	-. 0235
-1	-.0467	-. 02336	-. 0470	-. 0237	-. 0472	-. 0838	-. 0474	-.0239	-. 0476	-.0240	-. 0479	-.0241	$-.0481$	-.0242	-. 0483	-. 0234	$-.0486$	-.0244	-. 0468	-.0046
-0.x	-. 0490	-. 0247	-.0493	-. 0248	-. 0495	-.0850	-. $04+98$	-. 0251	-. 0500	-.0e59	-. 0503	-. 0259	-. 0505	-.025	-. 0308	-.0296	-. 0510	-.0257	-. 0513	-.0259

x^{x}	9		98		9		${ }^{6}$		3		94		98		＊		9		¢	
	50	\＄0＇	So	${ }^{3} 0^{*}$	L5	b0＊	330	30°	So	500＊	50	50°	do	＋000	3e	${ }^{\circ}$	50	50°	Lo	$1{ }^{\circ}$
－19，	0.085	－0，	－0．073	－0， 0×0	0，006	－0，		$0 \times$				－0．007		0．0680		－0．060		－0．0060		
	$\stackrel{0}{20050}$	－	－0ion	Fomb	2 F 20	こocos	こotem	こ－csso	－0， 0			－－	－0mi	－	－070		－0\％			）
－20：	$=0.0000$	－0，	－	－$=03$		－	二心atio	－	－	0			－8046	－0．038	－	－	Foct	－	2－0x	，
－2：	－ocm	－0，	－0\％om	20．026	－02000		－0100	Fobit	－ictit	$\bigcirc 0$	－$=0.4$	－0．20	－i．0．053	－0．02m	－	－	－2006	こoib	－	5
$\mathbb{E R O}_{20}$	\cdots	－0．040	－		－	－		－ 3	－	Fioke	－	二ata		－	－	こotut	F－09060	－$=0+3$	－	4， 4
－	－1290		－1090	－080	－10		200	二．ata	－ive	－$=0 \times 5$	Stat	Como	－109	二atio	－	－0，	－ixist	－$=0.000$	$\underset{\substack{1126}}{\substack{10}}$	为
－	－123	－06030	－${ }^{23}$	－	－341	－$-\infty$	－2390	－	－234	－$=005$	－ 2×3	－	， 3	－	Sis	こasm	－ixa	－	．12	
$\underline{0}$	－mb	－	－$=120$	－0，	－ 3	Fortic	－180	2014	－190	－	－$=10$		＊		\％mo			－		
\rightarrow ．			－-1864	20， 2105		2109	－$=1$	－200	－290	－130		－mm				－ $2 \times$				
－	969			－3e3															（ ${ }^{4}$	

TABİ B－IV．－CONTINUED
（b）$-19 . \mathrm{Xx} \leq \frac{x_{n}-x_{0}}{\Delta x} \leqq-0 . X x$ where $89 \geqq E x \geqq 80$

TABITS B－IV．－CONITFUED
（c）$-19 . X X \leqq \frac{x_{n}-x_{0}}{\Delta x} \leqq-0 . X X \quad$ where $79 \geqq X X \geqq 70$

	79		76		π		76		万		T		3		\％		π		To	
	do	400\％	bee	to 0^{*}	${ }^{2} 0$	2m0＊	400	480＂	40	$3_{50}{ }^{*}$	\％	40°	400	＋50＊	4	100	＋00	＋60	－	4no
－9， 7	－0．0	－0．0	－0，		－0，			－			－0．	－0，0．089	－0，020	0.0089						$0 \cdot 0069$
${ }_{-21}^{212}$	－ 20	－	$=$	こ－0\％6	－	－${ }_{\text {－}}^{\text {cose }}$		\cdots	$=0$		－036	\cdots	2039		－	－$-\infty$				
	－0．064	－0310	2	－0930	－		$2{ }_{2} 0.065$	20830	20.0656			$=$			065				206	
	－．0000	－	2.0	－0，034		－	20000	－039	－$=0 \times 0$			－		－ 2036	－ 200	－ 230	二．	－938		
－ 32.	－0．0xis	\cdots	2008	－03019			20.0	－0，09	200em			－0624	－otis				$=0$		20	
－	－0070		－0007	2ota	－ 2000		－ $0 \times 0 \times 9$	$=0$	－	2042	二－osit	－0，	－	－0，	Stis	－0， 0.48	－	－0， 0 ¢ 6		
O	$=1$		－109	$=$	－1090	$=0.030$	－	二－om	－100		－	－0，	－			－030	－		－	
	2	～0	－196	－0006	\cdots		\cdots	二0706	－19		二129	20708	－-700	－．	－187		－． 3.280	－	$\underline{-120}$	
	21		－19500	－ 200090	－	\cdots	21	$=$	－ 215	二－oseot	－ 1190	20005	21009	－00060	－$=1818$	趗	－152	2	－	
I：			－ 2.89	\rightarrow	7.	－1icm	－290	二2086	－ 2964	－ise	－2970	－1209	－1920		－ 283	\％	－		St	
－	－ 3.46		23		$2{ }^{2}$	$7{ }^{181800}$	2	$2{ }^{2} \mathbf{2}$	こ， 2100	\cdots	－5k	2.168	$=3$		2陑	446	二	－1940	$2{ }^{3}$	
																				－

TABIE B－IV．－CONIINUED
（d）$-19.0 \pm \leqq \frac{x_{n}-x_{0}}{\Delta x} \leqq-0 . X Y$ where $69 \geqq X X \geqq 60$

$$
\text { (e) }-19 . X X \leqq \frac{x_{n}-x_{0}}{\Delta x} \leqq-0 . X X \text { where } 59 \geqq X X \geqq 50
$$

践			∞		7		56		9		4		9		5		51		0	
	to	5m＊	to	kr	20	tos＊	to	Sost	201	10°	to	500＊	30	100	10	5－00＊	tos	${ }^{100}$	60	10＊
	20， 2		－020				0．0885													
－	二ax		－2	F－mis	－0，		－	速	こoin	Z	こose	－0000	二0，	－amo	Fox	こ－com	二axi	20，	Oox	
23		2033		－ 20	－	こait			迷	－ax			－	二atis			－sm			
	－0， 2×0	－20		20，${ }_{2}$	20	－	Fict	－	taso	边		200	－0x	二0，${ }_{20}$	－-20	20x	，			
$\left\lvert\, \begin{aligned} & -2, i t i \\ & -20 \\ & 30 \end{aligned}\right.$	－0，	－206	20xas	こase	－iose	－20，060	－		200	\％${ }^{60}$	－	＊	こ－mom	20	－					
-0.	2	\cdots	－		－	${ }^{\text {cosm }}$	2	\cdots	－150		－120	2056	－100	＊${ }^{4}$	2102		230	， 2×2	－120	
${ }^{-7}$		－	－ $2 \times$	－2\％	Fint	こoat	－164．	－0\％	－1，	Fom	\％	20		－$=2 \times 5$	－124		－ 2180	－ 2×2	${ }_{\text {ckin }}$	
3	2	\％	2， 28	－iod	－ 29	\cdots	－280	，	20	－	－120	こ2006	－129\％	200		－100		－2		
－		＋097		，128	Fim	－2380		\cdots	\％	－ce		－2790	－ 3×0	R	300		303			
－2，	－924														908	－6， 6	（030			

TABIPR B－IV．－COKIITNUED

$$
\text { (f) }-19 . X X \leqq \frac{x_{n}-x_{0}}{\Delta x} \leqq-0 . X X \text { where }, 49 \geqq X X \geqq 40
$$

$$
\text { (e) }-19 . X X \leqq \frac{x_{n}-x_{0}}{\Delta x} \leqq-0 . X X \text { where } 59 \geqq X X \geqq 50
$$

践			∞		7		56		9		4		9		5		51		0	
	to	5m＊	to	kr	20	tos＊	to	Sost	201	10°	to	500＊	30	100	10	5－00＊	tos	${ }^{100}$	60	10＊
	20， 2		－020				0．0885													
－	二ax		－2	F－mis	－0，		－	速	こoin	Z	こose	－0000	二0，	－amo	Fox	こ－com	二axi	20，	Oox	
23		2033		－ 20	－	こait			迷	－ax			－	二atis			－sm			
	－0， 2×0	－20		20，${ }_{2}$	20	－	Fict	－	taso	边		200	－0x	二0，${ }_{20}$	－-20	20x	，			
$\left\lvert\, \begin{aligned} & -2, i t i \\ & -20 \\ & 30 \end{aligned}\right.$	－0，	－206	20xas	こase	－iose	－20，060	－		200	\％${ }^{60}$	－	＊	こ－mom	20	－					
-0.	2	\cdots	－		－	${ }^{\text {cosm }}$	2	\cdots	－150		－120	2056	－100	＊${ }^{4}$	2102		230	， 2×2	－120	
${ }^{-7}$		－	－ $2 \times$	－2\％	Fint	こoat	－164．	－0\％	－1，	Fom	\％	20		－$=2 \times 5$	－124		－ 2180	－ 2×2	${ }_{\text {ckin }}$	
3	2	\％	2， 28	－iod	－ 29	\cdots	－280	，	20	－	－120	こ2006	－129\％	200		－100		－2		
－		＋097		，128	Fim	－2380		\cdots	\％	－ce		－2790	－ 3×0	R	300		303			
－2，	－924														908	－6， 6	（030			

TABIPR B－IV．－COKIITNUED

$$
\text { (f) }-19 . X X \leqq \frac{x_{n}-x_{0}}{\Delta x} \leqq-0 . X X \text { where }, 49 \geqq X X \geqq 40
$$

TABLE B－IV．－OONIINURD
（i）$-19 . \mathrm{XX} \leqq \frac{x_{n}-x_{0}}{\Delta x} \leqq-0 . X X$ where $19 \geqq X X \geqq 10$

	${ }^{29}$		28		${ }^{27}$		${ }^{16}$		13		${ }^{1}$		${ }^{23}$		18		$\underline{11}$		10	
	40	40°	to	150 ${ }^{\circ}$	Soo	35°	100	30°	100	400	40	＋60	50	bo＊	${ }^{\infty}$	${ }^{5}{ }^{*}$			2	100
	0.02	0.0000	－0．038	－	0．036		0，038	，		0.0							0.02	\％om		
$\begin{gathered} -2 b i \\ -2 i b i \\ -2 i d i \end{gathered}$	$\stackrel{\sim}{-0}$	－0，	－．0629	－．0．	－0，060	－083	－0， 0^{6}	－9，${ }^{2}$		2－0，	－ 20020		－．		$=2000$	－．030	－0．0x	二心im		
－23：	${ }_{-}-1$	－：\％		－20					－	－0it	－2	－0．0	－m		－iose			－0，		
	－	－202	－．002t	Fiotio	F－0720	\％	－-270	－－230		Fotil	＝$=0$	F：020	－．070	，		－0	7－073	二：af	ama	
－120：	－0096	－0，	Fiosil	－2076	－	二⿰亻ctax	＝ome	－	ごand	－-6.4	20esh	－， O		\％		－-2×1		$2{ }^{\text {OH7 }}$		485
－		－	－in	－20x6	（100	2080		－	－isior	－	－1090	－．0x5	：1020	－isp			－10	二ax	－120	
$\begin{aligned} & -8 . \\ & -8.0 \end{aligned}$	－1．120	－0，	Finiso	－0，	， 20		－1．20	－0，		－0，0\％				－0，				二orm	－ 2128	
3	－127ta	－：9020	－ 214	－2m	，		－2x		－itit	－．imb	－i，	－i，	，	－． 2123	－in	${ }^{-0}$	－ivit	－		
－	－2720	$\underline{-1205}$	2.236	－ 2000	－7，	－	－3700	－180	－x ${ }^{\text {mim }}$	－-2001	－ 26	－ 20.36	二小欠R	，	$=2$	－2， 2.206		－ 7×2		
20：	－i．at	二：ins	2．ata		－am				2：0620		Fixco		－titi			－ 20		\sim		
$\left\|-\frac{1}{-2 \pi I I}\right\|$	2，	2．8p）	2．20	2，		－2080	1．6820	1．000	8．086		20931			（2，020	1．920	${ }_{\text {L }}^{2}$				

TABLE B－IV．－COFCLLDEED
（j）$-19 . \overline{X X} \leqq \frac{x_{n}-x_{0}}{\Delta x} \leqq-0 . X X$ where $09 \geqq X X \geqq 00$

$\frac{x-x}{x-x_{0}}$	∞		∞		9		06		\cdots		0		${ }^{0}$		∞		01		∞	
	to	tso	to	So	400	30°	30	500	400	4＊	to	to ${ }^{\circ}$	too	40°	40	${ }^{5}{ }^{*}$	40	40°	40	40°
	0.082	－0．e．	0．23	0	\％	－	20	${ }_{\sim}^{0.0}$	－0．03	0．0．ax	0	－0as		－0，	边	－0．0x	0	${ }_{0}^{0.0}$	O．064	0．0．83
$\begin{aligned} & -10 \\ & -120 \\ & -120 \end{aligned}$	\bigcirc	－0，	－0x	$=0$	－0， 0	－	－0，04		－0，		－ica	－	0×0	－2006	2060		－0x	－0，		
$\left[\begin{array}{ll} -30 \\ -2 x \end{array}\right.$	－0，	－294	－oso	－2id	－0001	－937	－0，	－2t	－－m	\％		－004	－		－	－0．0	－	－$=0.4$		
－31：	－0，	－20．0	－		－	二ate	－0，	二，＜0	－．2026	－iom	－	－0，040	\％	－ata		こodid		$=0.8$	－0．080	W
－20．	－	二ata	－	－0．981	－ 20	こ045	－	－0，	－	－0，	－	－$=0$ cos	－	二－ast	－	－$=0 \times 3$	－	－i．0en		－${ }^{36}$
星：	－ 2126	－20\％	－-1367	二．06\％		－660	－1．150	－0．0\％	Til1	二exty	． 1388	－209	\％136	二2ax	沓	－20		－0．09		
－7．	$\underline{-12}$	－ce	－ite3	－0，	－		－$=12003$	－iocter			二，	－0，	m，	－		－．07e9	－itite	2093	200	
I：	－	－ 3	－sim	－2xp	－	．2nc	－	－into	－2096	－-24	－	－3149		－110	60		－2ece	2130	203	
T：	－	Sex		－ 3 ＋ 3	－ 680	．	－\％ax	－200	\％		こ8989	－210\％		－-3.10		－3143，	－			－ 3 ．096
－0．in	2，	－1．20ex	e．te3	1．20a		边	2．7nt	1．1200	\％	2．1．	3．12xa		3						－	－－

(a) $0 . X X \leqq \frac{x_{n-x_{0}}}{\Delta x} \leqq 19 . X X$ where $\quad 00 \leqq x X \leqq 09$

TABLR B-V. - CONIINUED
(b) $0 . X X \leqq \frac{x_{n}-x_{0}}{\Delta x} \leqq 19 . X X$ where $10 \leqq X X \leqq 19$

(c) $0 . X X \leqq \frac{x_{n-x_{0}}}{\Delta x} \leqq 19 . X X$ where $20 \leqq X X \leqq 29$

	∞		${ }^{1}$		\%		0		2		\triangle				T		8			
	mos	${ }_{20} 0^{\circ}$	+ ${ }^{0}$	${ }^{\infty} \times$	+m	toc	40	${ }^{8}{ }^{\circ}$	${ }^{\text {mom }}$	500	to	sm_{0}	${ }^{\text {mo}}$	0°	40	${ }^{\circ}$	do	3.*	\$0	
	$2{ }^{20}$.at	1.813	0.63 c	P8	0.69	6\%	0.9	\%	0.628	2.694	. 88	.59		${ }^{2}$ 2. 2188	- 0 2ma	2.488		1.468	$0: 80$
2.	-371	:1720	-372	:172	: 8 m	:174	${ }_{\text {\% }}$:1288	? 3 . 851	:1275	2893	:126	:36\%	:120	${ }^{2} 8.580$:127		:1208	:806	:1.72
?	2020	${ }^{200}$, 120		2	\%120	:12094	-	: 1001	, 3	:1099	, 10	:2004	${ }^{2120}$, 20	${ }^{12100}$: 123	298	204
${ }^{6}$ \%	-129	:0, ${ }^{2}$:1273	:0029	:12	${ }^{20}$	${ }^{12} 12$:00\%	, itick	:\%	, ins	-0, 0	,ikm	:023	(12*s	:208	${ }^{124} 2$:\%20	2isf	:\%em
\%:	-13m	:0820	:	:033	:11296	:20	, 118	0032	:	:030	:129	:030	:1123	:020	:1104	:230	:12m	${ }_{\text {coser }}$:1193	S
20:	1029	:	:1093	:006	:10x	:006	:102	:009	:1028	:0x	:02x	-0, 0	:092	:\%	:	-0, 0		-271	:027	: $\times 1$
起:	-0,	:	:087	:00sed	:0rof	:020	:07x	:ore	:02\%	:0,	:085	:007	:04t	-	ions	.ose	:080	:0388	${ }_{0}^{208}$:038
憵:	-20	:	:040	:096	:020	:0,	:06\%	:0373	:060	:0312	:0053	:030	.act	-aip	:0\%	.03n	:	:331	\%	:3is
${ }^{135}$:085	:	:008	:02\%	:080	:00c	:208	:889	:0039	:mox	:039	-80	-29	:029	:08\%	:080	:020	${ }_{\sim}^{\infty}$	${ }^{0}$	-
	0	-m	:083	:0065	:03\%	:	:037	:0,	:00\%	:	\%23	:ost	:033	cex	0	\%	:038	${ }_{\substack{\infty \\ \infty}}$	los^{205}	${ }_{\sim}^{\infty}$

TABLIS B-V. - CONITNURD
(d) $0 . X X \leqq \frac{x_{1 I}-x_{0}}{\Delta x} \leqq 19 . X X$ where $30 \leqq X X \leqq 39$

（e） $0 . \overline{X X} \leqq \frac{x_{n}-x_{0}}{\Delta x} \leqq 19 . X X$ where $40 \leqq X X \leqq 49$

	3_{∞}	40°	${ }_{+\infty}$	${ }^{\text {ba }}$	${ }^{0}$	smo^{+}	tos	460	bo	40^{*}	too	${ }^{3} 0^{\circ}$	to	400^{*}	tho	4no＊	300	tos＂	too	${ }^{101}$
$0 . \mathrm{x}$	2e8	0．4290	1.8	． 4 \％	20180	0．423	2.20	． 4.9	\％ 8	0．7eter	． 1.170	0．470	，	0．4807	\％${ }^{6}$	\％		． 2		20820
．	，						： 27								\％	穊				9
?:												：099	家	\％		\％				\％
鬲:				：000		：009		2il	－1404	27	：1240	\％ 88	2		析			\％	${ }^{33}$	（089
d:			．1204	：0x		：029	20		200		\％1919	：07\％	．		．	${ }^{4}$	［139		退	
$\left\lvert\, \begin{aligned} & 120 \\ & 120 \end{aligned}\right.$							20026				24		．203	\％	：0x	d	：0\％	$0{ }^{2}$	\％	${ }^{10}$
$\frac{1212}{1212}$			：0r7			\pm	：07	：002		：ose			：072	－asi		ama	Th	：0， 0_{6}	Tr	：030
$\left\lvert\, \begin{array}{ll} 123 \\ 123: 2 \end{array}\right.$			：cm	：030		：0］	．060			：031			．080			30	：20	通		$3{ }^{3}$
$\left.\right\|_{125} ^{1256}$			\％				：oses 2	8		：ax	：cse			：	：089	\％	踊	\％	\pm	as
128，	：020	\％om	：ax	－m	．0880	：cme	．028	：ce	：023	：00ts	：080	：ome	，	：	：${ }^{\text {cosed }}$	Scet	cosa	Sex	20	1

TABLE B－V．－CONIINUED
（f） $0 . \overline{X X} \leqq \frac{x_{n}-x_{0}}{\Delta x} \leqq 19 .[x$ where $50 \leqq X X \leqq 59$

	so		91		\pm		\geqslant		\％		＂		6		π		8		9	
	200	40°	to	500	to	${ }^{50} 0^{*}$	to	700＊	4	500	5o	40°	to	${ }^{\text {400＊}}$	$1{ }^{1}$	toc＊	50	100	400	45°
0．7I	1．096	0.480	1.005	0.464	20.26	0.40	1．080	0.	1．0480	0.48 ha	10961	0．4300	40at	0.2063	2003	0.428	2.000	0．6288	0．992	． 405
8	－196	盛	－3m	．	－313	． T ，	－	－im	$\begin{gathered} \substack { x \rightarrow 0 \\ \begin{subarray}{c}{x{ x \rightarrow 0 \\ \begin{subarray} { c } { x } } \\ {0} \\ \hline \end{gathered}$		，	：125			K85		－	－	－395	， 3
3：	\％	－	sm	：000	．	9980	219	．		浱	－199\％	：0x	，	：88	itig	．087	． 3	\％	3,4	：20\％
${ }^{5}$	：12012	${ }^{\circ} \mathrm{c}$	，imo	：8085	．	：080	，	：06\％	－	：oms	：	：006\％	， 14.9	．060	cisk	－06m	， 2102	：00co	，	：00co
7：	－	－0，	：1200	：	2mp	：0012	．1009	－801	：107	：aty	．1206	：com	－	．00d	：104	－0，	：1280	：007	，	（006
200：	：200	：044	：10x	，0，4	：09\％	：04t	：080	：040	d	－246	：096	：0469	2mom	：04t	：00ce	：043	：0x	：043	：cxa	：044
䢒	－070	：00co	－07\％	：035	：0024	：037	：\％m	：039	：0972	：092	：\％orin	：037	ant	：976	：07\％	2093	：7028	：038	2073	0.097
25：	－0，	，	－0， 0	：035	Ocm	：	：064	：039	2	：029	：083	：0，	Oam	20x	：osm	：08	－0xa	：	Omim	：028
，	：08	cosp	：03	：09	：082	：\times	：08\％	acm	－2080	：a	：000	：cep	：080	，	：086	：	506		0.085	：
${ }_{12}^{12.0 x}$	：038	：	：036	： 0×6	：020	：men	：086	：0mb	：088	：0xt	：03s	：	：0x	：cest	：0	：085	： 2	：\times	：29	：086\％

（g）$\quad 0 . X X \leqq \frac{x_{n}-x_{0}}{\Delta x} \leqq 19 . \mathrm{XX}$ where $60 \leqq X X \leqq 9$

																			${ }^{6}$	
	${ }^{\infty}$	${ }^{3} 0^{\circ}$	${ }_{5}$	${ }^{\circ}$	${ }^{\infty}$		50	\％	${ }_{50}$	${ }^{30}$	${ }_{50}$		${ }^{4}$	${ }^{400}$	${ }^{1}$		${ }^{2}$	${ }^{20}$	${ }^{5}$	

TABIE B－T．－CONTINUED
（h） $0 . X X \leqq \frac{x_{n}-x_{0}}{\Delta x} \leqq 19 . X X$ where $70 \leqq X X \leqq 79$

	No		1						Th		T		T			7				
品	40	\＄ 0^{*}	40	400	to	mo＊	40	400	40	500＊	3 mo	100	bo	ha＊	30	40°	40	smo^{*}	to	500
0．7．	289	0.39	\％	0， 0.42	0	$0 \cdot 3770$	0，	0．3T？	0.80	0.39	0.8	0． 0.6	52888	${ }^{0.3} \mathbf{3} 515$	0．tis	\％	－	．35	，	520
\％：	－	（2x	：80，		2xic	．	，	2ish	3112	in	：	：24n	300	2inct	：300		： 3	20，	：483	．
4	${ }^{2}$	：08）	20	－09\％	䢒	：0x\％	：13if	． 080	，	：10x	2，	：080	，	：－ms	233	\％	2306	：1080	？ 36	：10x
？	－	：020	2099	：\％0）	－1800	：20\％	． 3	：280	293	：8076	1239	：095	2190	：009	：ist	：063	，	：067	2372	：06\％
\％	：12088	：05\％	200	－074		：827	：10t	208	21209	：093	：20at	．024	2002	：0\％	2000	0	2107	： 0	2109	：009
\％：	－089	：ata	－	－	：	：axic	：\％8）	O40	．0\％m	：480	：0\％9	－	：	：20	：oma	：atin	．${ }^{2}$	：	：	：007
哭：	：020	： 9		：0036	：037	：97	：073	：031	200	：007	：ars	． 3.3	，		：073	00	：073	：09］	：073	ORT
13：	：02	：9\％		－		：20	：007	：0，	－000	：030	：00x	${ }_{\text {cosem }}$	－	：030	：103	20at	\％	：30	：mim	：09\％
18：	：08980	：ax	－8，	－	，	：ax	：osat		：oss	：mom	：00	－axi		：	－asp	： 2×0	209	：09\％	－0	：ack
	：200	：	－0，	：	：020	：－x	：089	－ax	：20	：	:cate	－	： 212	：80	：007	．	：899	：	：019	－mil

（1） $0 . X X<\frac{x_{n}-x_{0}}{\Delta x} \leqq 19 . X X$ where $80 \leqq X X<89$

	${ }_{0}$		1		c8		${ }^{9}$		${ }^{8}$		∞		83		0		88		${ }^{1}$	
	180	${ }^{20} 0^{*}$	400	${ }_{80} 0^{\text {a }}$	$3{ }^{0}$	＋8＊＊	20	120＊	4	sba°	4^{∞}	2ma＊	450	480＊	180	10＊	\％	200		
0．․․	0.80109	0.3813	0.80010	0.3467	0.775	0.36	－ 7 T06	0.3438	0.781	0.342								200	＋0	${ }_{\text {box }}$
2.	－ 3 St	． 24.4	－ 3 39 ${ }^{4}$	． 21.39	${ }^{2} 3739$	． 2140	： 3×150	－8090		－	${ }_{\text {，} 4 \times 38}$	cisiob	， 430	－	． 48	－0．1599	$0 \cdot 7$	0．5580		0.329 174 174
4：	2386	． 2083	． 238	． 21200		－2129		． 21515	． 234	－ 70	－408	14080	2s\％	：1306	${ }^{\text {Reg }}$	－1200	2980	． 21216	．970	，intic
${ }_{6} 5$.	2 ysp	：0760	． 1.1598	－ 0	． 2.188	－ 0 St	－136	－010	．1589	．0270	：207	．0909	－ 1817	． 0.906	． 12×8	．090	13 A	O200	： 280	． 0.000
7.	Tis	． 0851	． 3120	． 689	${ }^{2} \mathbf{2} 53$	： $0 \times \infty$	． 1806	－089	－2390	．0658	－ 3139	．0085	－	．0065	．139	：－84	． 317	． 066	． 139	${ }_{0}^{0804}$
9.	：0976	． 0 ¢	． 1073	：029	． 2074	207	． 2008	． 0 Th		－0x6	2007	－08	2	： 5	． 112086	．0807	． 12095	－	． 129	：0039
20．	．	－0，46	．	．0436	．ost	：046	： $0^{\text {mom }}$	\％o4t	．08m	－0476	－	：047	．0865	．ath	．088	：075	：090	－0tp	－0066	：0x
12.	：or	：0372	：03		：000	．050		：0301	． 080	． 0.48	－0810	：040	－ 0870	－039	：000\％	－0989	：0889	：093	－0008	：043
in：	\cdots	：0343	－0	： 039		0	．0050	－034	0	－035	．069	：034	：009	－0．974	：008	－0369	．0068	－9096	． 0.74	－ 0^{6}
156．	．0014	：00	\bigcirc	－ 39	－	－230	． 06013	Om	－0682	．0329	． 0×8	－0，093	．088	． 0.020	．0681	－ 9	－060	－030	：0est	\％os
${ }_{27} 12$.	． 03	0×0	：0346	：097		－	．0376	． 08080	． 027	． 038		．ass	：0276	－men	－	：	：0976	，${ }^{\text {axom }}$	． 0680	． 3 Sex
29.18	：0478	－	．078	． 0	：0718	：cos				$: \infty$	：007	．oxt	． 020	．0876	－ 0		：094		－020	
											Phel	．ces		．004	． 049	：	：049	0	：0， 0	\％

TABLT B－T．－CONCIJDED
（j） $0 . X X \leqq \frac{x_{n}-x_{0}}{\Delta x}<19 . X X$ where $90 \leqq X X \leqq 99$

$\frac{x+5 x}{8 x}$	90		${ }^{\text {a }}$		${ }^{s}$		93		${ }^{\text {¢ }}$		93		¢		${ }^{7}$		98		9	
	to	${ }^{4} 0^{\circ}$	200	400＊	400	30°	＋o	300＊	＋o	bo＊	200	400	＋0	bso＊	too	${ }^{10} 0^{\circ}$	to	40＊＊	400	40°
1.	－${ }^{1+2}$	20	0．${ }^{2}$	0．seg	．705	0.3	0.73 m	93010	0.724	0.3189	0．729	0． 1 He		0．3148						
\％	180	， 120	－	3if	＋	：120	－ 27	1818	．${ }^{2}$	．133	S20	：1207	203	$\stackrel{.1}{1280}$	． 21020	：1393	＋	， 2×8		${ }^{\text {a }}$
：	293	． 2×0	，	－030	2， 2.850	－ 20	209	， 2083	：124	． 2083	．	：200	20	．	－ 124	． 2×00	206	，	2066	129
\％：	2in	．osk	：120	：0， 0	cinct	：0850	䞨䞨	：0\％	，ist	：088	．134	：00	2132	：0825	． 2.2	：03\％	${ }^{2}$	：082	， 3	：
\％：	：1084	：هx	：10\％	：0x	－1086	－205	：12060	．osp	：1260	．080	． 1129	：020	． 2108	：020	${ }^{2}$	：079	． 20.81		4in	2028
20：	．020	0.038	0	：at	． 8.8	－	：	：	：	：04	：088	：${ }_{\text {and }}$	：	${ }^{\circ}$	：088	$\xrightarrow{2+13_{3} 0}$	－8080	armo	\％	\％as
12：	：280	0.059	：026	：90	－0，	？	：020	：03m	：04	：\％9\％	：0，	：0397	：000	：03\％	－ 0×0	：0396	：ask	：035	\％oat	：036
2：	：080	：0320	${ }^{0}$	0	： 0.85	，	：000	：393	：0ctic	：032	－086	${ }_{5}$	：\times	：800	－ast	－	：08925	：020	：000	${ }^{\text {a }}$
，	：023	：cm	：093	：＜$\times 9$	：0374	：act	：097	cex	－0，	：	：008	ama	：00m	：	${ }^{\circ 060}$	：omm	：007	：20	\％os	：mex
19.	：0216	：0，	． 23	and	：120	：	：0175	：	：029	：mit	：30	－mis	：8012	：8098	－	：	：072	． 0×5		：000

$$
20.0 \leqq \frac{x_{m}-I_{0}}{\Delta x} \leqq 39.9
$$

	0		1		2		3		- 4		5		6		7		8		9	
$\frac{x_{1}-x_{0}}{\Delta x}$	J_{no}	JnO^{*}	20	$\mathrm{j}_{120}{ }^{*}$	$\mathrm{I}_{\text {no }}$	$\mathrm{J}_{100}{ }^{*}$	do	$\mathrm{j}_{20}{ }^{*}$	$\mathrm{j}_{\text {no }}$	$\mathrm{J}_{\text {no }}{ }^{*}$	1 mo	${ }^{1} 80 *$	$J_{\text {no }}$	$\mathrm{J}_{\mathrm{nO}}{ }^{*}$	${ }^{2} 0$	$\mathrm{J}_{\text {no }}{ }^{*}$	j_{n}	$\mathrm{d}_{\mathrm{no}}{ }^{*}$	J_{no}	$\mathrm{j}_{\text {DRO }}{ }^{*}$
20.1	0.0488	0.0248	0,0486	0.0041	0.0483	0.0241	0.0481	0.0239	0.0478	0.037	0.0476	0.0236	0.0474	0.0236	0.0472	0.0034	0.0470	0.0232	0.0467	0.0231
21.	. 0465	. 0231	. 0463	.0230	. 0461	. 08089	. 0459	. 02027	. 0457	. 0826	. 0455	. 0236	. 0453	.0824	. 0451	. 02024	. 0448	. 02023	. 0446	. $0^{\text {ceaza }}$
82.	. 044 4 4	.0221	. 0443	. 0232	. 04412	. 0219	. 0439	. 018	. 0437	. 0.17	. 0435	. 0216	. 0433	. 0215	. 0431	. 0214	. $0+129$. 0213	. 0427	. 0018
23.	. 0426	.0011	. 0424	. 0810	. 0142	. 0210	. 04480	. 0909	. 0418	. 0208	. 0417	. 0207	. 0415	. 0806	. 0413	. 0 cos	. 0412	- CPO_{4}	. 0410	. 0204
24.	. 0408	-0803	. 0407	. 0202	. 0103	. 0201	. 0403	. 0200	. 0402	. 0199	. 0400	. 0199	. 0398	.0198	. 0397	.0197	. 0395	. 0196	. 0394	. 0195
85.	. 0398	. 0199	. 0391	.0094	. 0389	. 0193	. 0368	.019e	. 0988	. 0192	. 0303	. 0191	. 0383	. 0190	. 0380	. 0190	. 0380	. 0189	. 0379	.0188
26.	. 0977	. 0187	. 0376	.0087	. 0375	. 0186	. 0373	. 018	.0372	.0185	. 0370	. 0184	. 0369	. 0184	. 0968	. 0183	. 0366	. 0182	. 0365	.0188
${ }^{1}$. 0364	. 0181	. 0362	.0180	. 0361	. 0179	. 0360	. 0179	.09\%8	. 0178	. 0357	. 0178	. 0356	. 0177	.0955	. 0176	. 0353	. 0176	. 0352	. 017
86.	. 0351	. 0173	. 0350	.0174	. 0348	. 0173	. 0347	.0173	. 0946	. 0172	. 0345	. 0172	. 0944	. 0171	. 09542	. 0171	. 0341	. 0170	. 0340	. 0169
99.	. 0339	. 0188	. 0338	. 0168	. 0337	. 0167	. 0336	. 0167	.0934	. 0166	. 0333	. 0166	. 0332	. 0165	. 0331	. 0169	. 0330	. 0104	. 0329	. 0164
30.	:Op2B	-0163	-0397	-0189	:0326	. 0169	-0995	-0161	.030 4	. 0161	.0923	-0160	- 0 ge2	- 1160	-0321	-0290	-03090	-9159	. 0919	. 0159
31.	. 017	. 0198	. 0316	. 0157	. 0315	. 0157	. 0315	. 0156	. 0314	. 0156	. 0313	. 0158	. 0318	. 0155	. 0311	. 0197	. 0310	.0154	. 0909	. 0153
39.	. 0308	. 0153	. 0307	. 0159	. 0306	. 0152	. 0309	. 0151	. 0304	.0151	. 0903	. 0151	. 0302	. 0150	. 0301	.0030	.0300	. 0150	. 0899	. 0149
33.	. 0299	. 0149	.0egr	. 0178	. 0097	. 0148	. 0296	. 0147	.0025	. 0147	. 020	. 0146	. 0293	. 0146	.082	. 0145	. 092	. 0145	. 029	. 0145
34.	. 0290	. 0144	. 0869	. 014	. 0088	. 0143	. 0287	. 0143	. 0007	.0143	. 0296	. 0148	. 0283	. 0112	. 0204	, 0142	. 0883	. 0141	.0883	.0141
35.	. 0202	. 0141	. 0881	. 0140	. 0280	. 0139	. 0279	. 0139	. 0279	. 0138	-¢278	. 0138	. 0807	. 0138	. $¢ 76$. 0138	. 016	. 0137	. 027	. 0137
36.	. 0274	. 0136	.0073	.0136	. 073	. 0136	.0872	. 0135	. 077	. 0139	. 0270	.013 ${ }^{4}$. 0278	. 0134	. 0269	. 0134	.0268	. 0133	. 026	. 0133
37.	.0267	,0133	. 0 266	. 0138	. 0268	. 0132	.0065	. 0139	. 0264	. 0131	.0263	. 0131	. 0×68	. 0130	.œ68	. 0130	. 0661	. 0130	. 0660	. 0130
38.	. 0268	. 0139	.02939	. 0189	. 00.8	. 0129	. 0 ¢08	.0088	.0897	. 0138	. 0056	. 0127	-0ap6	. 0127	. 0255	-0127	. $0^{\circ} 5^{4}$. 0187	. 0 est ${ }^{4}$.0126
39.1	. 023	. 0126	. 025	. 0196	. 0252	. 0126	. 0251	.08s	. 0251	. 0125	. 0250	. 0185	.@49	.0124	.@49	. 0134	.0248	. 0124	.œ48	. 0123

$$
40.0 \leqq \frac{x_{n}-x_{0}}{\Delta x} \leqq 89.5
$$

$\frac{r_{0}-L_{0}}{}$	$4 \times .0$		14.5		51.0		51.5		6 r .0		6 C .5		7.0		$7 \times .5$		8 c .0		$8 \times .9$	
I	Jon	$\mathrm{J}_{10}{ }^{\text {* }}$	$J_{\text {LO }}$	$120 *$	J^{10}	$180{ }^{*}$	$J_{n 0}$	$\mathrm{J}_{10}{ }^{\text {\% }}$	$1_{\text {Bo }}$	$\mathrm{J}_{\text {Do }}{ }^{*}$	J_{∞}	$410{ }^{*}$	1 ± 0	40^{*}	1 no	$\mathrm{s}_{10}{ }^{*}$	20	$\mathrm{J}_{10}{ }^{*}$	${ }^{2} \mathrm{no}$	$\mathrm{J}_{10}{ }^{*}$
0	0.0247	0.0193	0.0244	0.0182	0.0198	0.0099	0.0196	0.0097	0.0163	0.0008	0.0164	0.0083	0.0142	0.0071	0.0247	0.0001	0.0184	0.0068	0.0123	0.0067
1	. 0241	. 0180	. 0238	.0118	.0194	. 00097	.0.09e	. 0096	. 0163	. 00081	. 0161	.0081	.02140	. 0069	. 0139	. 0059	. 01818	. 00681	. 0183	. 00611
2	.0235	. 0117	.0233	. 0116	. 0190	. 0095	.0189	. 00097	. 0160	. 0080	. 0159	. 0079	, .0138	. 0008	. 0137	. 00689	. 0181	. 0067	. 0180	. 0060
3	.0230	. 0114	.0827	. 0113	. 0193	. 00093	.0182	.0098	. 0157	. 0079	. 0256	. 0076	. 0136	. 0006	. 0135	. 00098	. 0120	. 0059	. 0119	. 0059
4	-amer	. 0119	-0080	. 0110	. 01818	. 00091	. 0188	.0090	.0155	.0077	.015	. 0077	. 0134	.0066	. 02333	. 00065	.018	. 00098	. 01218	. 0059
5	.0250	. 010109	.0017	. 0108	.0080	.0090 .0089	. 0179	.0089	.0153	.0076	.0159	.0073	. 0132	. 00666	.0132	.0065	.01776	.0058	.0116	. 00058
7	.0ell	. 0105	.ceab	.0103	.0214	. 00087	. 0172	. 0086	. 0148	. 0074	. 0147	. 00073	. 0129	. 0006	. 028	.0064	.0324	.0057	.0174	. 00056
a	.0806	. 0103	. 0204	. 0101	. 017	.0083	. 0169	.0089	. 0146	. 0073	.0045	.0072	. 0337	. 0063	. 0187	. 0063	. 0113	.0096	. 0178	. 0056
9	. 0 ero	. 0101	. 0800	. 0100	. 0158	.008	. 0167	.0003	.0044	.0072	. 0143	.0072	. 0126	. 0063	. 0185	. 0062	. 0112	. 0053	.017	. 0053

$$
90 \leqq \frac{x_{n}-x_{0}}{\Delta \pi}<189
$$

	95.0		10×0		131.0		$10 x .0$		$13 \times .0$		Inr. 0		151.0		$16 \mathrm{Cr}_{0} 0$		$17 \times .0$		189.0	
	$1{ }^{1}$	$\mathrm{I}_{\text {no }}{ }^{*}$	$1{ }^{1}$	$1_{20}{ }^{*}$	$\mathrm{J}_{\text {DO }}$	$5_{\text {D0 }}{ }^{*}$	$1{ }^{10}$	$\mathrm{J}_{\text {¹0 }}{ }^{\text {* }}$	${ }^{\text {no }}$	$\mathrm{J}_{50}{ }^{*}$	J_{120}	$120{ }^{*}$	1 no	$5^{50}{ }^{*}$	${ }^{2} \times$	$\pm_{00}{ }^{*}$	100	$\mathrm{J}_{80}{ }^{*}$	180	$1{ }^{10}$
0	0.0111	0.005	0.0100	0.0050	0.0097	0.0045	0.0083	0,0042	0.0077	0.0098	0.0072	0.0036	0.0067	0.0033	0.0063	0.0091	0.0059	0.0029	0.0056	0.0088
1	.0109	. 00054	. 0099	.0090	. 00090	. 004	.0003	. 0041	. 00076	. 0078	. 0071	.0035	. 00066	. 0033	. 0066	. 0032	. 0008	.0009	. 0005	. 0008
8	. 0108	. 0034	. 0098	. 0049	. 0009	. 00 + 5	.0002	.0041	. 0076	. 0098	. 0070	. 0035	. 0066	. 0033	. 0068	. 0031	- 0080	. 0009	. 0055	. 0027
3	. 0107	.0054	.0097	.0049	. 0088	. 0004	.0002	.0041	. 0073	. 0038	. 000	. 0035	. 0066	. 0033	. 0061	.0031	. 0058	. 0009	. 0055	. 0007
4	. 0205	.0053	.0096	. 0048	. 00088	.0044	. 00061	. 00410	. 0074	. 0097	. 0069	-0035	. 0065	. 0032	. 0061	. 0031	. 0057	. 0009	. 0054	. 0027
5	. 0109	. 0033	. 0093	. 0048	.0087	.0043	. 0080	. 0040	. 0074	.0097	. 0069	. 0034	. 0065	. 0032	. 00667	. 0030	. 0057	. 00098	. 0054	.0027
6	. 0104	.003e	.0094	.0047	. 0086	.0049	. 0079	.0040	.007	. 0097	. 00688	. 0094	.006	. 0038	. 0060	. 0080	. 0057	. 00028	.0034	. 0027
7	. 0103	.0078	. 0093	. 00 k 7	. 0085	.0049	. 0079	.0039	. 0073	. 0036	. 00068	. 00094	.0064	. 0032	. 0060	. 0030	. 0056	. 0028	. 0033	. 0027
8	.010	. 0091	. 00093	. 0046	.0085	, 000	. 0078	. 0089	.007a	. 0096	. 00688	. 00034	. 0063	. 0038	. 0060	. 0030	. 0056	. 0028	. 0053	. 0027
9	. 0101	. 0051	. 0098	.0046	.0084	.0049	.0078	. 0039	. 0072	. 0036	. 0067	.0034	. 0063	. 0031	.0059	. 0030	. 0056	.0028	. 0033	.0086

$$
\text { (a) }-0.999 \leq \frac{x_{n}-x_{0}}{\Delta x}<-0.750
$$

$\frac{1}{\frac{x_{n}-x_{0}}{\Delta I}}$	9		8		7		6		5		4		3		e		1.		0	
	$J_{\text {no }}$	${ }_{3}{ }^{\text {a }}$	h_{c}	${ }^{50}{ }^{*}$	1mo	$\mathrm{J}_{\text {20 }}{ }^{\text {a }}$	3_{50}	$3_{50}{ }^{*}$	$J_{\text {no }}$	${ }^{\text {Jmo＊＊}}$	130	${ }^{5} \mathrm{so}{ }^{*}$	${ }_{50}$	300＊	${ }^{5}$	${ }^{150}{ }^{*}$	130	$\mathrm{J}_{50}{ }^{\text {c }}$	${ }^{50}$	${ }^{10}{ }^{*}$
－999	－6．9060	－3．808	－6．228	－5．800	－80060	－ 4.898	－5．31	4．4994	－5．293	－4．866	－5．110	－	4．9488		4	－3． 8127				－3．3420
－．96	$\xrightarrow{-1.4088}$	－3．443		－3．3780	－ 7.389	－3．274		3．1732				－3．0539		2．4		－		－． 400		（ex
－9，96	coi．	cein	coick	－3．304	cosk	－			－i． 3136		－-.8878	－	－3．2901	R1．		－	$\xrightarrow{-3.5074}$	－	${ }_{81}{ }^{61}$	－
－9\％9	$\xrightarrow[\substack{-3.1583 \\-.9236}]{ }$	－2．023	－3．187	－1．9939	－3．1096	－1．1．739	或．0768	${ }^{-1.2083}$	${ }_{\text {a }}^{-3.0080}$	－	－3．030	2．8856		2.0461		${ }^{-1.8449}$	lerer	－2．eeat		－1．792
－．93	－2．733	－1．657	8．7167	－1． 5 ＋480		， 509		110	－2．6662	－1．47e9	－	－1．470	2．637	2.437		，	－． 6029	－2．420		． 1056
$\stackrel{\square}{-91}$	－	－1．2391	－	－2．383	－	－2．${ }^{-1.2609}$	－	L2．399	R．5323	${ }_{\text {－}}^{1.1 .289}$	－． 4980	－i．3809	－2．4339	－ 2.8	R． 31939	－1．132		－1．26	－	－1．24020
$\rightarrow 2$	－2．305	－1．0seo	－2．8895	－2．07e8	－2．27		R． 2697	－1．030	8． 2441	－1．039	－2．8423	．c272	2．2	21	． 19	1－1	R．8094	－． 888		
	－R．1062	二8944	－2．1790	こ．8939		－914．	－0．1536	－．		－ 2170		－．9063	－0．0019	－．0st		$=8.893$		－ 6 Tr		－6806
－889	－1．9630	2		－-786		－． P 27	－2．930	\cdots	－1．049	二100\％	－	－．-6396	－2．02T	－769		$=.6738$		－． 683	－1．994	－7639
$\stackrel{3}{85}$	－	－ 0.94	－	－．6949	－	－	－2．8660	－6．6260	－1．072		－1．8409	－2993		－it ${ }^{288}$	－	二？	－2．exe36	二「568		
${ }^{8} 8$	－1．208	－ $\mathrm{-} .4650$	－1．209	－． 477	${ }^{-1.743}$	－．4593	－1．7336	－．412	－2．698	－4330	－1．8．83		－1．8007	－．4126	－1．672	－ 408	－1．6657	－4006	1．6m	
28	${ }_{-1.596}^{1.2080}$	－．3060		－372	2．5845	－． 2.2998		－36067	－	－． 3 S739	－1．64492	－3463	－	－ 3 －2397	${ }^{-1.59599}$	${ }_{2}$		－ 384	5164	－3169
${ }_{-80} 80$		－ 236		－2693		二．234	退	－ 214	边	－	－1．krte	－2066	－1．4696	－		－1800		－-1205		－ 1745
－80	$\left.\right\|_{1} ^{-1.43601}$	－1．1087		2.0861	${ }^{-1.4366}$	－． 12949	－1．46915	2	－1．41278	－		－$=136$	－1．40931	－． 2893	－1．3398	2	${ }_{\text {－}}^{-1.3936}$	－． 215	－． 32	
		－1，006		－．0346		－．0296	－1．3900	－		－0．66	－1．2891	－0107	－1．2839	－．0048	－1．2T4	． 02091	${ }_{\text {－}}^{1.2725}$	－000		．0128
77	－	：01861	－	－048	边	． 03081	－	． 03981	－1．18983	．0413	${ }^{-1.23}$	． 0127		． 03728		． 1138		． 120610		
－	－1，142	：1993	边	${ }^{13966}$	边	：1398	－1．2309	：1540	－1．295	． 1503	：1280		． 474	． 18	2．1093	12698	－2， 2040	：1709	－2．0986	${ }^{2} 7850$

$\frac{x_{n}-x_{0}}{\Delta x}$	9		，		7		6		5		4		3							
	d_{30}	500＊	480	40＊＊	${ }^{10}$	$\mathrm{J}_{\text {bo }}{ }^{*}$	tho	$3^{20}{ }^{*}$	3 no	580＊	3n0	${ }^{510}{ }^{*}$	3no	400＊	$\mathrm{J}_{\text {no }}$	Jnco^{*}	3no	5xo＊	no	1m0＊
2，${ }^{\text {cx }}$	－1．08	0.18	－1．0000	0	－2．0827	0.122	－1．074	0．1963	－ 2.0721	0.2013		0.2068	${ }^{1.0616}$			0.2168	1．0318	0.2011		60
－	－1．96	． 27245	－		-1.0396 -9795 -7.956	． 2838	－974	． 2826				． 3008		． 23596	－．9844	． 91308		． 26.15	3	
－rom	－．-83	． 3483	－． 2386		－．8969	． 3334	－． 8.847	－3615	－．9196	－$\cdot .3638$	－． 81464	． 3 ． 34008	－．9100	． 3 39212	－90031	． 37396		． 3 Sc90		${ }^{43}$
\bigcirc	－-8	． 4121	－． 8378	． 4	－8393	． 1194		． 41235	－．8236	： k 276	－．8189	． 4317	－8142	． 435		： 4396	$\sim \cdot 0048$	－	Or	\％
	$\stackrel{-}{-7}$	． 41421	－．746	． 49		． 49999	－				－ 7 R2	． 7172	－728	－4727		． 4.4780			， $73{ }^{3}$	${ }^{4}$
	－-2			－		． 9367		． 94		． 3 40		－${ }^{4}$		． 371		530				－ 36
		： 660	－-6.63	． 6694		． 69730	-6	： 6176		． 6149	－． 5928	． 6183	二－$=6$	：${ }_{6017}$	－．	： 680	${ }^{34}$	：3920	$-.6191$	：5976
${ }^{2} 6$		． 6831	－． 5.537	． 6781	－ 5.58	． 67418	－ 7×71		－7937	Smer	－ 50.74	－6930	－ 5 －593	：6949	－	－6590		． 6930	－5392	：6647
${ }^{2} 6$	－	． 699	二48019	－7mp	－． i ¢769	－703		－7009	－2494	729	－-76	－ 75	－． P ＋600	－780	－．4553	－Tal	－$=4.4515$	－ 7241		
	\bigcirc	－ 739	二． 3 ． 3972	－7625	－． 3 －3937	－7763	－． 4.305	：7993		${ }_{7}^{7} 780$		． 7739	－-.3180	． 77880	－-.4138	． 7706	680	：7924	－．4035	：767
	－．．3598	： 78	－337	：7006	－．310	：7896	－．347	－${ }^{\text {P264 }}$		，	－398	：0889	－ 3 －3911	：8046	3310	：8074	－ 3 －2699	： 81801	－3328	：8123
	－．278	． 84	－-23137	：8449	－－31636	． 847	－． 3066	． 8897	－．3063	．88929	－．2954	： 8 ati	－．2933	：887\％	－．2003		－2859	．8867	－2818	．8393
－39	－	． 86	－．8331	： 8 87\％	－．22986	．88964	二－1845	． 89793			－2169	． 890	－．-1278	． 80083	－． 2008	．98097	－ 16047	．8873	－． 2007	． 81836
			－1383	－9181	－1263	．9004	－1．143		－1	－9030	－． 1	－973	－1	Se9s	－．1089	． 93314		－		．9363
		． 9650		．94087	$=$	：9648	－1041	．967	－． 0.0600	． 9697	－．006	：972	－	．973	－．0681	． 9734	－． 0.0440		20400	
	－0360	． 9217	3e0	． 9837	－．0200	． 9998	－2040	． 989	－0200	． 989	－0	． 9919	$\rightarrow 0180$	．9940	． .008	． 9960	－．0040	． 9980		1．0000

(c) $-0.499 \leqq \frac{x_{n}-x_{0}}{\Delta x} \leqq-0.250$

	9		8		7		6		5		4		3		2		1		0	
	${ }^{2} \times$	$\mathrm{d}_{\text {ro }}{ }^{*}$	${ }^{10}$	${ }^{150}{ }^{*}$	${ }^{1} \mathrm{no}$	$1{ }^{20}{ }^{*}$	120 ,	$\mathrm{d}_{80}{ }^{*}$	120	$\mathrm{J}_{\text {no }}{ }^{*}$	${ }^{\text {mo }}$	$\mathrm{t}_{10}{ }^{*}$	20	$180 *$	180	$5_{\text {40\% }}{ }^{*}$	${ }^{1}$	${ }^{4}{ }^{*}$	${ }^{120}$	$1{ }_{10}{ }^{*}$
\rightarrow -	O, 0 0,40	1.0080	0.0080	1.0040	0.0120	1.0060	0,0160	1.0079	0.0800	1,0099	0.0040	1.019	0.0280	1.0138	0,0380	1.0157	0,0860	2.027	0.0400	1.0196
- 46	- 040	1.0015	. 0480	1.0034	. 0830	1.0083	. 0560	1.0072	. 0601	1.009	. 0640	1.0310	. 0680	1.0939	.0720	1.0377	. 0760	1.0366	. 0800	1.0384
	.0942	$1.0{ }^{1} \mathrm{OS}$. 0881	$1.0{ }^{1}+2$. 0950	1.0439	. 0960	$1.0{ }^{\circ} 7$. 1001	1.0476	. 1041	1.0493	.1081	1.0511	. 1181	1.0599	$\underline{1161}$	1.0547	. 1808	1.096
$\rightarrow 46$. 7123	1.0899	. 1889	1.0600	-139	2.0617	. 1368	1.0635	.1408	1.0682	.1443	1.0669	- 2488	1.0686	. 1593	1.0704	2563	1.0721	.1603	1.0798
	. 1643	1.073	. 1.684	2.0711	. 1724	1.0788	. 1769	1.0805	-1805	1.0891	.1845	1.0838	. 1886	1.0854	. 1906	1.0071	21966	1.080	.2007	1.0903
	.8047	1.0919	-8087	1.0935	. 2128	1.0981	- 2169	1.0967	-2909	1.0989	. 3250	1.0999	. 290	1.1014	.2390	1.1090	. 9371	1.1046	. 2411	1.1061
	. 2458	1.1077	. 0493	2,1092	. 2537	1.1107	. 274	1.3182	. 2615	1.1138	. 265	1.1150	. 2696	1.9168	2737	2.1188	.277	3.2197	-2819	1,1818
	-	1.1037	=2000	1: 1097	\%	1.1956	- 3090	7-1979	-3003	1.1093	-306	1.1090	. 3105	1.1313	- 3146	1.1928	- 9187	2.1292	. 3 gret	$1.13{ }^{\text {罗 }}$
$\xrightarrow{-} \mathbf{4 1}$. 326	1.1370	. 3310	3.1383	-3351	1.1397	-33906	1.1417	-3433	1.1485	-34	1.1439	- 3716	1.1458	. 3577	1.1466	- 3598	1.1479	- 3699	1.149e
39	- 409	2.163	- 413	1.1647	- 480	1.1699	- 46009	1.15\%	$\stackrel{-564}{ }$	1.64	- 4305	1.1696	. 49.9	1.1584	. 39786	1.1597	. 4013	1.1609	. 4097	1.1628
38	. 451	2,1736	. 45	1.1768	.4600	1.1790	. 46428	1.179	. 4684	1.1809	.4796	1.1815	.4769	1.18e6	: 483	1.1836	.4989	1.1549	. 4096	1. 1.1860
37	. 4938	2187	. 4990	1.1883	. 5093	1.1894	. 5066	1.1905	. 5108	1.1906	. 21.51	1.19a6	. 5194	1.1937	. 5237	1.1948	, 2e9	1.1959	. 239	1.1969
36	. 5965	1.1980	- 5408	1.1990	. 5451	1.800	. 5497	1.8012	. 5757	1.app	-9381	1.2031	. 5604	1.2041	. 5667	1.2091	. 9710	1.2061	. 5754	1.2071
35	. 5797	12081	. 59412	1.8091	. 5884	1.91010	.9927	1.8110	. 5971	1.8190	. 6025	1.2189	. 6059	1.2139	. 6103	1.9148	. 6146	1.2137	. 6191	1.2167
34	. 683	1.2176	. 6×78	1.8185	. 6929	1.2194	. 6367	1.2208	. 6411	1.2019	. 645	1.28911	. 6800	1.9299	. 6344	1.2996	-6909	1.20247	-6673	1.8pp
33	. 6678	1.80	. 678	1.89	. 6767	1.80891	. 68	1.3888	. 6957	1.2297	-6900	1.2305	. 6946	1.8313	. 6997	1.23919	. 7036	1.2359	-7060	1.2337
- 32	-7187	12934	- 773	1.835	- 7218	1.2360	. 7263	1.8366	. 7309	1.8375	-7354	1.2383	- 7400	1.2390	. 7446	1.2398	-7498	1.2409	- 739	1.0489
-. 31	- 7584	1.8419		1.2486	. 7676	1.2433	- Tria	1.2440		1.2447	- 937	1.8445	-1863	2.2461		2.0.67	-7934	1.2474	.8001	1.2480
- -30 -89	.8048	1.2497 1.848	. 8095	1.8493	.8120	1.2500 1.8509	. 8189	1.2506	. 82836	1.8519	. 2883	1.2518	. 8830	1.89894	. 878	1.2330		1.2536	. 8473	1, e549
-.89 -.88	.8001	1.8348	. 0868	1.8553 1.2607	. 8616	1.2559 1.2612	. 8664	1.2565 1.3617	. 8719	1.8570 1.860^{4}	.8761	1.2576	. 88096	1.2587	. 8857	1.2986	. 8905	1.2991	-8974	1.259
	.9494	1.9649	954	1.2653	. 9898	1.2658	. 9664	1.9669	.9694	1.2666	-9847	1.2670	. 9795	1.2674	-96	1.20678	.9999	1.2680	. 94946	1.864
-20	. 9997	2.2689	1. 0046	1.2693	1.0099	1.2696	1.0150	1.7700	1.0801	1.8709	1.0053	1.2907	2.0304	1.270	1.0596	1.273	1.0408	1.2716	1.0460	1.2T20
-.835	1.0512	1.2723	1.0564	1.2726	1.0616	1.2738	1.0669	2-2732	1.0721	1.2734	1.077^{4}	1.8737	1.0027	1.2739	1.0680	$1.87^{4 \times 2}$	1.0933	1.2744	1.0986	1.9147

(d) $-0.249 \leqq \frac{I_{n}-I_{0}}{\Delta x}<0.000$

$\frac{x_{n-1}}{\frac{x_{0}}{\Delta x}}$	9		8		7		6		5		4		3		2		1		0	
	ym_{0}	$\mathrm{J}_{\text {20* }}{ }^{\text {a }}$	${ }^{\text {mbo }}$	Jno^{*}	J^{3}	${ }_{200}{ }^{*}$	${ }^{\text {mo }}$	$\mathrm{J}_{\text {Do }}{ }^{*}$	${ }_{300}$	$\mathrm{J}_{10}{ }^{*}$	${ }^{\text {no }}$	गno*	no	${ }_{\text {200 }}{ }^{*}$	2n0	${ }^{200}{ }^{*}$	${ }^{\text {mo }}$	$\mathrm{J}_{\text {Do }}{ }^{*}$	Joo	$\mathrm{J}_{50}{ }^{*}$
-.84I	1.1040	2.8749	1.1093	1.2751	1.1147	1.2703	1.1800	2.2735	1.1854	1.2757	1.2309	1.2799	1.1363	1.8761	1.1417	1.2763	${ }^{1.1472}$	1.8765	1.1587	1.2786
-. 29	1.1588	1.2768	1.1637	1.27\%		1.073	2.1747	1.878	1.1803	1,274		1.279	1.19814	${ }^{1.8776}$	1.1970	1.377	1.2097	1.2778		1.8779
--81	1.2745	1.2789	1.2174	1.2783	1.2063	1.2780	1.8189	1.2788	1.25851	2.2784	1.3010	1.2894	1.3069	1.8794	1.249	${ }_{1}$	1.31998	1.2783	1.3249	1.27*
- -8	23920	1.2788	1.3379	1.2781	1.3432	1.2780	1.349e	1.279	1.3593	1.27^{8}	1.3615	1.277	1.3676	$1.27{ }^{76}$	1.3738	1.277		1.2774	1.3	1.273
- 19	2.3966	1.2771	2.3999	1.270	1. 1.691	1.2798	+1.413	$\frac{1.9765}{2}$	1.4178	1.2785	2. 2120	2.9765	1.7306	1.2761	1.437	1.979		1.2777	+1.4500	1.279
-.17	1.5231	1.2726	1.5300 1.4	1.293	1.3368	1.2120	1.4437	1.8717	1.5806	1.2734	1.59	1.270	1.5045	1.2.297	1.575	1.2703	1. 7.706	1.2	${ }_{2}^{2} .5896$	1.2696
-. 16	1.592	1.269	1.5999	1.2688	1.6070	1.2c8	2.6142	1.2680	2.6215	1.8673	1.6ee8	1.2671	1.6361	1.2667	1. 0434	1.266e	1.6509	1.2658	1.6592	1.2653
- 31	1.6557	1.2048	1.6332	1.264	1.80	1.8639	1.6883	1.2634	1.6999	1.6689	1.7036	1.2683	1.7139	1.	1.7390	1,2613	1.7268	1.2607	1. 7346	1,2609
$\underset{-13}{ }$	1.236	1.2535	1.8320	1.2988	1.8404	1.2001	1.8489	1.2515	1.0975	1.2080	1.8660	1.2500	1.806	1.2498	$1.86{ }^{4}$	1.2486	1.809i	1.2479	1.9010	1.2477
- 19	1.9098	1.2404	1.9188	1.9456	1.987	1.8448	1.936	1.2440	1.9499	1.2432	1.9591	1.2424	1.9043	1.2416	1.973	1.8408	1.9030	1.2399	1.99e4	1.2397
\bigcirc	2.0019 2.1030	1.2380	2.0175	1.2374	2.0272	1.8385	2.0309 2.1323	1.2356	2.0407	${ }^{1.2} 2347$	2.0505	2.2398	2.0663	2.2328	2.0705	1. 2319	2,0806 2.1862	1.2309 1.2209	2, 2 O008	
09	8.2084	1.2186	2.2196	1.2173	2.2310	1.2164	2.2425	1.2153	2.2541	12141	2.8657	1.2130	2.275	1.2118	2.8895	1.8106	2.3015	1.2094	R. 3136	1-20as
${ }^{\circ}$	2.3259	1.2070	2.3363	1.2038	2.3508	1.2045	2.36	1.2033	2.3763	1.200	2.3892	1.2007	2.4029	1.1994	2. 4155	1.1981	2.4289	1.1967	2. 4423	1.1954
07	2.4560	2.1940	2.4693	1.1997	2.4888	1.1923	2.4980	1.1888	2.3183	1.2884	2.5868	2.1870	2.5415	1.1935	2. 5364	1.1884	2.575	1.1886	25867	$\underline{12831}$
-.,	2. 6002	1.1796 1.1594	2. 2.7976	1.1780 1.1617	2.6337 2.8060	1.1769	2.649 8.88	1. 1.1749	2.66\%	2.1733	2. 2.86	1.1717	- 2.6995	1.1701	2.7166 2.9031	${ }_{1}^{1.17694}$	2.739 2.936	1.16	2.7316	${ }_{2}^{2} .1 .1672$
-04	2.9657	1.1453	2.9073	1.143k	3.0095	1.1414	3.0320	1.1395	3.0530	2.1375	3.0786	1.1350	3.1096	1.1334	3.1972	2. 2313	3.1523	1.1299	3.178	1.1271
-09	(3.2044	1.1950	3.2314 3.5473	1.1298 1.0993	3.259	1.1206	3.2876	l 1.1184	3.3	1.1761	3.3469	1.1	3.3777	1.1125	3.4098	${ }_{1}^{2} 100931$	3.4423	1.1067	3.	1.1043
	3.9442	1.0749	3.998e	1.0720	4.0574	1.0690	4.2190	1.0659	4.1846	1.0628	4.8546	1.0596	3.3897	1.0563	4.4108	1.0329	4.4998	1.0495	4.99	2.0460
Oor	4.7025	1.0423	4.0203	1.0306	4.9548	1.0347	5.1100	1.0307	5.2933	1.026	5.717	1.0001	5.8062	1.0074	6.2126	1.019	6.9068	1.0069		1,0000

APPENDIX C

DETAALS OF SOLUTION OF INTEGRAL (36)

$$
\begin{equation*}
F_{I}=\int_{0}^{\epsilon_{I}} \frac{\frac{\Delta V}{V_{O}}}{\sqrt{x(c-x)}} \frac{d x}{x-x_{0}}=\frac{1}{c} \int_{0}^{\epsilon_{I}} \frac{\Delta v}{V_{0}} \frac{I}{\sqrt{\frac{x}{c}}} \frac{I}{\sqrt{1-\frac{x}{c}}} \frac{d\left(\frac{x}{c}\right)}{\frac{x}{c}-\frac{x_{0}}{c}} \tag{Cl}
\end{equation*}
$$

Introduce $\xi=\frac{x}{c}$ and find

$$
\begin{equation*}
F_{1}=\frac{1}{c} \int_{0}^{\xi_{1} / c} \frac{\Delta v}{\nabla_{0}} \frac{1}{\sqrt{\xi}}\left(1+\frac{1}{2} \xi+\frac{3}{8} \xi^{2}+\cdots \cdot\right) \frac{d \xi}{\xi-\xi_{0}} \tag{c2}
\end{equation*}
$$

With the expansion (see equation (37))

$$
\begin{align*}
\frac{\Delta v}{\bar{V}_{0}}\left(1+\frac{1}{2} \xi+\frac{3}{8} \xi^{2}+\cdots\right) & =a_{0}+\left(a_{1}+\frac{1}{2} a_{0}\right) \xi+\left(a_{2}+\frac{1}{2} a_{1}+\frac{3}{8} a_{0}\right) \xi^{2} \\
& =a_{0}+a_{1}^{*} \xi+a_{2}^{*} \xi^{2}+\cdots \tag{c3}
\end{align*}
$$

Hence,

$$
\begin{align*}
F_{1}= & \frac{1}{c} \int_{0}^{\epsilon_{1} / c} \frac{a_{0}+a_{1}^{*} \xi+a_{2}^{*} \xi 2}{\sqrt{\xi}\left(\xi-\xi_{0}\right)} d \xi \\
= & \frac{1}{c}\left[a_{0} \int_{0}^{\epsilon} / c \frac{d \xi}{\sqrt{\xi}\left(\xi-\xi_{0}\right)}+\right. \\
& a_{1}^{*} \int_{0}^{\epsilon_{1} / c} \frac{\xi d \xi}{\sqrt{\xi}\left(\xi-\xi_{0}\right)}+ \\
& \left.a_{2}^{*} \int_{0}^{\epsilon_{1} / c} \frac{\xi^{2} d \xi}{\sqrt{\xi}\left(\xi-\xi_{0}\right)}\right] \tag{C4}
\end{align*}
$$

As the occurring integrals are all of the same type, define

$$
\begin{equation*}
I_{\mathrm{n}}=\int_{0}^{\epsilon_{1} / c} \frac{\xi^{\mathrm{n}} d \xi}{\sqrt{\xi}\left(\xi-\xi_{0}\right)} \tag{C5}
\end{equation*}
$$

These integrals I_{n} are easily solved by recurrence.

$$
\begin{equation*}
I_{n}=\xi_{0} L_{n-1}+\frac{\left(\frac{\epsilon_{1}}{c}\right)^{n-\frac{1}{2}}}{n-\frac{1}{2}} \tag{c6}
\end{equation*}
$$

with

$$
\begin{equation*}
L_{0}=\frac{1}{\sqrt{\xi_{0}}} \log _{e} \frac{1-\sqrt{\frac{\epsilon_{1}}{x_{0}}}}{1+\sqrt{\frac{\epsilon_{1}}{x_{0}}}} \text { for } x_{0}>\epsilon_{1} \tag{C7}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{0}=\frac{1}{\sqrt{\xi_{0}}} \log _{e} \frac{1-\sqrt{\frac{x_{0}}{\epsilon_{1}}}}{1+\sqrt{\frac{x_{0}}{\epsilon_{1}}}} \text { for } x_{0}<\epsilon_{1} \tag{c8}
\end{equation*}
$$

The function

$$
M_{0}=\log _{e} \frac{1-\sqrt{\frac{\epsilon_{1}}{x_{0}}}}{1+\sqrt{\frac{\epsilon_{1}}{x_{0}}}} \text { and } \quad \log _{e} \frac{1-\sqrt{\frac{x_{0}}{\epsilon_{1}}}}{1+\sqrt{\frac{x_{0}}{\epsilon_{I}}}}
$$

is given in figure 2 in order to provide a more rapid computation in the event that $\frac{x_{0}}{\epsilon_{I}}$ or $\frac{\epsilon_{I}}{x_{0}}$ is not very small.

If $\frac{\epsilon_{1}}{x_{0}} \ll 1$,

$$
\begin{equation*}
M_{0}=-2\left(\sqrt{\frac{\epsilon_{1}}{x_{0}}}+\frac{1}{3}{\sqrt{\frac{\epsilon_{1}}{x_{0}}}}^{3}+\frac{1}{5} \sqrt{\frac{\frac{\epsilon}{1}^{x_{0}}}{}} 5\right. \tag{cg}
\end{equation*}
$$

The integrals L_{0}, L_{1}, and L_{2} are needed; these are given by

$$
\begin{align*}
I_{0} & =\frac{I}{\sqrt{\xi_{0}}} M_{0} \\
I_{1} & =\sqrt{\xi_{0}} M_{0}+2 \sqrt{\frac{\epsilon_{I}}{c}} \\
I_{2} & =\xi_{0} I_{1}+\frac{2}{3} \sqrt{\frac{\epsilon_{I}}{c}} 3 \tag{Cleo}\\
& =\xi_{0}^{3 / 2} M_{0}+2 \xi_{0} \sqrt{\frac{\epsilon_{I}}{c}}+\frac{2}{3}{\sqrt{\frac{\epsilon_{I}}{c}}}^{3}
\end{align*}
$$

If $\frac{\epsilon_{1}}{x_{0}} \ll 1$,

$$
\left.\begin{array}{l}
L_{0}=-\frac{2}{\sqrt{\xi_{0}}}\left(\sqrt{\frac{\epsilon_{1}}{x_{0}}}+\frac{1}{3} \sqrt{{\frac{\epsilon_{1}}{x_{0}}}^{3}}+\frac{1}{5} \sqrt{\frac{\epsilon_{1}}{x_{0}}}+\cdots\right) \\
L_{1}=-2 \sqrt{\xi_{0}}\left(\frac{1}{3}{\sqrt{\frac{\epsilon_{1}}{x_{0}}}}^{3}+\frac{1}{5}{\sqrt{\frac{\epsilon}{1}^{x_{0}}}}^{5}+\cdots\right) \\
L_{2}=-2{\sqrt{\xi_{0}}}^{3}\left(\frac{1}{5}{\sqrt{\frac{\epsilon_{1}}{x_{0}}}}^{5}\right.
\end{array}\right)
$$

With these expressions the integral F_{I} is as follows:

$$
\begin{align*}
F_{1}= & \frac{1}{c}\left(a_{0} I_{0}+a_{1}{ }^{*} I_{1}+a_{2}^{*} I_{2}\right) \\
= & \frac{1}{c}\left[\frac{a_{0}}{\sqrt{\xi_{0}}} M_{0}+a_{1}^{*}\left(\sqrt{\xi_{0}} M_{0}+2 \sqrt{\frac{\epsilon_{1}}{c}}\right)+a_{2}^{*}\left(\sqrt{\xi_{0}} M_{0}^{3}+\right.\right. \\
& \left.\left.2 \xi_{0} \sqrt{\frac{\epsilon_{1}}{c}}+\frac{2}{3} \sqrt{\frac{\epsilon_{1}}{c}}\right)\right] \\
= & \frac{1}{c}\left[M_{0}\left(\frac{a_{0}}{\sqrt{\xi_{0}}}+a_{1}^{*} \sqrt{\xi_{0}}+a_{2}^{*}{\sqrt{\xi_{0}}}^{3}\right)+\right. \\
& \left.2 \sqrt{\frac{\epsilon_{1}}{c}}\left(a_{1}^{*}+\xi_{0} a_{2}^{*}\right)+\frac{2}{3} a_{2}^{*} \sqrt{\frac{\epsilon_{1}}{c}}\right] \tag{Cleo}
\end{align*}
$$

The coefficients a_{0}, a_{1}, and a_{2} of the expansion of $\frac{\Delta v}{\bar{V}_{0}}$ are given by

$$
\begin{align*}
& a_{0}=\left(\frac{\Delta v}{V_{0}}\right)_{x=0} \\
& \left.a_{1}=\frac{c}{2 \epsilon_{1}}\left[-3\left(\frac{\Delta v}{V_{0}}\right)_{x=0}+4\left(\frac{\Delta v}{\bar{V}_{o}}\right)_{x=\epsilon_{1}}-\left(\frac{\Delta v}{\vec{V}_{0}}\right)_{x=2 \epsilon_{1}}\right]\right\} \tag{Clue}\\
& \left.a_{2}=\frac{c^{2}}{2 \epsilon_{1}^{2}}\left[\left(\frac{\Delta v}{V_{0}}\right)_{x=0}-2\left(\frac{\Delta v}{V_{0}}\right)_{x=\epsilon_{1}}+\left(\frac{\Delta v}{V_{0}}\right)_{x=2 \epsilon_{1}}\right]\right]
\end{align*}
$$

1. Allen, H. Julian: "General Theory of Airfoil Sections Having Arbitrary Shape or Pressure Distribution. NACA Rep. 833, 1945.
2. Naiman, Irven: Numerical Evaluation of the ϵ-Integral Occurring in the Theodorsen Arbitrary Airfoil Potential Theory. NACA ARR I4D27a, 1944.
3. Naiman, Irven: Numerical Evaluation by Harmonic Analysis of the $\epsilon-$ Function of the Theodorsen Arbitrary-Airfoil Potential Theory. NACA ARR L5H18, 1945.
4. Multhopp, H.: Die Berechnung der Auftriebsverteilung von Tragflügeln. Luftfahrtforschung, Bd. 15, Nr. 4, April 6, 1938, pp. 153-169.
5. Timman, R.: The Numerical Evaluation of the Poisson Integral. Rapport F.32, Nationaal Luchtvaartlaboratorium, June 16, 1948. (English)
6. Schoenberg, I. J.: Contributions to the Problem of Approximation of Equidistant Data by Analytic Functions. Part A.- On the Problem of Smoothing or Graduation. A First Class of Analytic Approximation Formulae. Quart. Appl. Math., vol. IV, no. 1, April 1946, pp. 45-99; Part B. - On the Problem of Osculatory Interpolation. A Second Class of Analytic Approximation Formulae. Quart. Appl. Math., vol. IV, no. 2, July 1946, pp. 112-141.

TABLE I. - VALUES OF $j_{n O}$ AND $J_{n O}^{*}$ FOR $-49.5<\frac{x_{n}-x_{0}}{\Delta x}<49.5$

$\frac{x_{n}-x_{0}}{\Delta x}$	$j_{\text {no }}$	$\mathrm{j}_{\mathrm{no}}{ }^{*}$	$\frac{x_{n}-x_{0}}{\Delta x}$	$\mathrm{j}_{\text {no }}$	$\mathrm{J}_{\mathrm{no}}{ }^{*}$
-49.5	-0.0204	-0.0102	0.5	1.0986	0.4507
-48.5	-. 0208	-. 0104	1.5	. 5108	. 2338
-47.5	-. 0213	-. 0107	2.5	. 3365	. 1588
-46.5	-. 0217	-. 0109	3.5	. 2513	. 1204
-45.5	-. 0222	-. 0172	4.5	2007	. 0970
-44. 5	-. 0227	-. 0174	5.5	. 1671	. 0812
-43.5	-. 0233	-. 0117	6.5	. 1431	. 0698
-42. 5	-. 0238	-. 0120	7.5	. 1252	. 0613
-41.5	-. 0244	-. 0122	8.5	. 1712	. 0546
-40.5	-. 0250	-. 0125	9.5	. 1001	. 0492
-39.5	-. 0256	-. 0129	10.5	. 0910	. 0448
-38.5	-. 0263	-. 0132	11.5	. 0834	. 04711
-37.5	-. 0270	-. 0136	12.5	. 0770	. 0380
-36.5	-. 0278	-. 0139	13.5	. 0715	. 0353
-35.5	-. 0286	-. 0143	14.5	. 0667	. 0330
-34.5	-. 0294	-. 0148	15.5	. 0625	. 0309
-33.5	-. 0303	-. 0153	16.5	. 0588	. 0291
-32.5	-. 0313	-. 0157	17.5	. 0556	. 0275
-31.5	-. 0323	-. 0162	18.5	. 0526	. 0261
-30.5	-. 0333	-. 0167	19.5	.0500.	. 0248
-29.5	-. 0345	-. 0173	20.5	$.0476^{\circ}$. 0236
-28.5	-. 0357	-. 0180	21.5	. 0455	. 0226
-27.5	-. 0370	-. 0186	22.5	. 0435	. 0216
-26.5	-. 0385	-. 0193	23.5	. 0417	. 0207
-25.5	-. 0400	-. 0201	24.5	. 04400	. 0199
-24.5	-. 0437	-. 0210	25.5	. 0385	. 0191
-23.5	-. 0435	-. 0219	26.5	. 0370	. 0184
-22.5	-. 0455	-. 0229	27.5	. 0357	. 0178
-21.5	-. 0476	-. 0240	28.5	. 0345	. 0172
-20.5	-. 0500	-. 0252	29.5	. 0333	. 0166
-19.5	-. 0526	-. 0266	30.5	. 0323	. 0160
-18.5	-. 0556	-. 0280	31.5	. 0313	. 0155
-17.5	-. 0588	-. 0297	32.5	. 0303	. 0151
-16.5	-. 0625	-. 0316	33.5	. 0294	. 0146
-15.5	-. 0667	-. 0337	34.5	. 0286	. 0142
-14.5	-. 0715	-. 0362	35.5	. 0278	. 0138
-13.5	-. 0770	-. 0390	36.5	. 0270	. 0134
-12.5	-. 0834	-. 0423	37.5	. 0263	. 0131
-11.5	-. 0910	-. 0462	38.5	. 0256	. 0127
-10.5	-. 1001	-. 0509	39.5	. 0250	. 0125
-9.5	-. 1112	-. 0567	40.5	. 0244	. 0122
-8.5	-. 1252	-. 0639	41.5	. 0238	. 0118
-7.5	-. 1431	-. 0733	42.5	. 0233	. 01116
-6.5	-. 1671	-. 0859	43.5	. 0227	. 0113
-5.5	-. 2007	-. 1037	44.5	. 0222	. 0171
-4.5	-. 2513	-. 1309	45.5	. 0217	. 0108
-3.5	-. 3365	-. 1777	46.5	. 0213	. 0106
-2. 5	-. 5108	-. 2771	47.5	. 0208	. 0103
-1. 5	-1.0986	-. 6479	48.5	. 0204	. 0101
-. 5	0	1.0	49.5	. 0200	. 0100

TIABIE II. - COMPUTATION BY UNEQUAL INTEFVAIS, TTRANSITIION FROM
ONE INTEEKYAL SIKR TO ATYOTHER
(a) $\overline{\Delta x}=0.002$.

$\frac{x}{c}$	σ_{n}	$\sigma_{n+1}-\sigma_{n}$	$\frac{x_{n}-x_{0}}{\Delta x}$	j_{no}	Jno ${ }^{*}$
0	${ }_{0}$	$\sigma_{1}-\sigma_{0}$	-4.5	-0.2513	-0.1309
. 002	σ_{1}	$\sigma_{2}-\sigma_{1}$	-3.5	-. 3365	-. 1777
. 004	${ }_{\sim}$	$\sigma_{3}-\sigma_{2}$	-2.5	-. 5108	-. 2771
. 006	σ	$\sigma_{4}-\sigma_{3}$	-1.5	-1.0986	-. 6479
. 008	O_{4}	$\sigma_{5}-\sigma_{4}$	-. 5		1.0
. 010	σ_{5}	06- 0_{5}	. 5	1.0986	. 4507
. 012	$\sigma 6$	$\sigma_{7}-\sigma_{6}$	1.5	. 5108	. 2338
. 014	.		2.5	. 3365	. 1588
. 016	-		3.5	. 2513	. 1204
. 018	-	-	4.5	. 2007	. 0970
. 020			5.5	. 1671	. 0812
. 022			6.5	. 1431	. 0698
. 024	.		7.5	. 1252	. 0613
. 026	\cdot		8.5	. 1712	. 0546
. 028	σ_{14}	$\sigma_{15}-\sigma_{14}$	9.5	. 1001	. 0492
. 030	σ_{15}		10.5		

(b) $\overline{\overline{X X}}=0.006$.

[Example, fig. 18]

$\frac{\mathrm{x}}{\mathrm{c}}$	o_{n}	$\sigma_{n+1}-\sigma_{n}$	$\frac{x_{n}-x_{0}}{\overline{\Delta x}_{n}}$	$\frac{x_{n}-x_{0}}{\overline{\overline{\Delta x}}_{n}}$	$\frac{x_{n}-x_{0}}{\overline{\overline{\overline{U x}}}_{n}}$	J_{no}	$\mathrm{J}_{\mathrm{no}}{ }^{*}$
0.060	0	0.005	-1.5			-1.099	-0.648
. 0633	. 005	. 010	-. 5				1.0
. 0667	. 015	. 021	. 5			1.099	. 451
. 070	. 036	. 0565		1.0		. 693	. 307
. 075	. 0925	. 1075		2.0		. 406	. 189
. 080	. 2000	-. 1000		3.0		. 288	. 137
. 085	. 1000	-. 0.04		4.0		. 223	. 107
. 090	. 006	-. 0087			2.5	. 336	. 159
. 100	-. 0027	. 0011			3.5	. 251	. 120
. 110	-. 0016	. 0016			4.5	. 201	. 097
. 120	0	0			5.5	. 167	. 081
			$\overline{\Delta x}=0.0033$	$\overline{\overline{\Delta x}}=0.005$	行 $=0.010$		

Figure 1.- Characteristic qualities of $j_{n o}$ and $j_{n o}{ }^{*}$ as functions

$$
\text { of } \frac{x_{n}-x_{0}}{\Delta x} \text {. }
$$

Figure 2.- Function M_{0} for computation when x_{0} / ϵ_{I} or ϵ_{I} / x_{0} is
not small.

(a) Function Δy_{t}.

Figure 3.- Analytical exaumle for testing accuracy of method.

(b) Function $\frac{a\left(\Delta y_{t}\right)}{d x}$.

(a) Plot for $0<x<0.25$.

Figure 4.- Analytical computation of $\frac{\Delta v}{V_{0}}$ for figure $3(b)$ and comparison with results by computation with unequal intervals.

(b) Part of figure 4(a) plotted to larger scale.

Figure 4.- Concluded.

(a) Comparison with analytical results.

Figure 5.- Results obtained by Naiman's method. 40-, 80-, and 160-point solutions.

(b) Figure 5(a) plotted to a larger scale.

Figure 5.- Concluded.

(a) Comparison with analytical results and results of Naiman's method. Figure 6.- Results obtained by Multhopp's method. 31- and 63-point solutions.

Figure 7.- Comparison of methods of Naiman, Multhopp, and Timman with analytical solution as basis.

(a) Functions $\Delta y_{t}(x)$.

Figure 9.- Examples I and II.

(b) $\frac{d\left(\Delta y_{t}\right)}{d x}$ as function of x / c.

Figure 9.- Concluded.

Figure 10.- Direct problem for example I by Naiman's method.

Figure 11.- Direct problem for example I by Multhopp's method.

Figure 12.- Results obtained for example I by method of unequal intervals compared with results obtained by Naiman's 80 - and. 160 -point solutions.

Figure 13.- Solution of Inverse problem. Results obtained for example I by method of unequal intervals compered with results obtained by Naiman's 80- and 160-point solutions.

Figure 14.- Direct problem for example II by Naiman's method.

Figure 15.- Direct problem for example II by Multhopp's method.

Figure 16. - Results obtained for example II by method of unequal intervals compared with results obtained by Naiman's 80 - and 160 -point solutions.

Figure l7.- Solution of inverse problem. Results obtained for example II
by method of unequal intervals compared with results obtained by Naiman's 80- and 160-point solutions.

Figure 18. - Results obtained for example III by method of unequal intervals compared with results obtained by Naiman's 80 - and 160-point -solutions.

[^0]: $I_{\text {Naiman }}$ has also suggested a second method for computing the Poisson integral (see reference 3). In this second method he uses Fourier polynomials to represent the function $\frac{d\left(\Delta y_{t}\right)}{d x}$. The computing procedure is very simple; however, the results depend largely on the degree of approximation of $\frac{d\left(\Delta y_{t}\right)}{d x}$ by such a polynomial. Thus, for large families of functions results are good; however, cases are known to the author where results were not satisfactory because regions with steep gradients may not be represented well enough by a Fourier polynomial of moderate order.

[^1]: $2_{\text {The polynomials used in the classical interpolation formulas are }}$ less smooth (see reference 5, pp. 7 and 10, figs. 1 and 2).

