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TECHNICAL NOTE 2451

MTBZMATICAL IMPROVEMENT OF MEWHOD FOR COMPUTING POISSON

INTEGRALS INVOL~ IN DETERMINATION OF VELCEITY

DISTRIBUTION ON AIRFOILS

By I. Fl~ge-Lotz

SUMMARY

The Poisson integral involved in the
in velocity distribution resulting from a
parallel incompressible flow is solved.

determinantion of the change
change in airfoil profile h

First, three well-developed numerical methods of evaluating this
integral, all based on the division of the range of inte~at ion tito.
small equal intervals, and the difficulties involved in each method,
are discussed. Then a new method, based on the use of unequal titervals,
is developed, and compared with the other methods by means of several
examples. The new method is found to give good results for both the
direct and tiverse airfoil problms and @ easily adaptable to rather
complicated problems. It is particularly recommended for all ‘those
functions where steep slopes in still portions of the region.to be
integrated exist.

INTRODUCTION

The ordinary thin airfoil at small singlesof attack produces only
slight disturbances in the flow of a parallel incompressible fluid.
Hence, the influences of camber and thickness upon the velocity distri-
bution may be camputed tidependently and theti effects supertiposed.
The effeet of camber may be represented by vortices distributed-along
the chord line of the airfoil section; the effect of the thickness, by
sources and sinks also along the same chord ltie. The velocities pro-
duced by these sinsularity distributions enable one to compute the
pressure distribution on the airfoil rather quickly.

Allen (reference 1) has presented this singularityy method in a
form which has proved to be very practical for common usage. However,
in special cases the unavoidable evaluation of the Poisson integral h

—_ -——.. .-. —.. -.— --.————— ——=—— _ — ....— —. _—. _ . .. .



2 NACA TN 2451

the course of the computations has given rise to numerical difficulties.
Such inte-b are usually ccxnputedby the application of finite differ-
ences using intervals of e-quallentih. However, changes in airfoil
shape, which result ip marked changeEIin the function to be integrated
h OdY mall portions of the range of ~tepation~ req~e that efiremelY
small interval sizes be employed h this range, and, consequently over
the enttie range of integration. This leads to a considerable smount
of computational work; hence, it appears reasonable to discuEs the
possibility of employing interval-sof varying lengths for the evaluation
of the Poisson inte~l.

This investigationwas prompted by the difficulties arising from
the problem of small changes in the shape of symmetrical airfo~ at
the angle of zero lift. The examples ticluded in the present report
are restricted to this case, but the results obtained are in no way
specialized and may be applied to all problems wherein the Poisson
fcltegraloccurs.

This work was done at Stanford University under the sponsorship
aud with the financial assistaace of the National Advisory Committee
for Aeronatiics.

The author wishes to express her appreciation to Mr. H. Norman
Abramson for his intelligent and skillful help in the computational
work and for his assistance in writing the final report. The author
also wishes to extend her thanks to Mr. R. E. Daunenberg and the
computing staff of the 7- by 10-foot wind-tunnel section of the Ames
Aeronautical Laboratory, Moffett Field, California, for preparing the
extended tables of the functions jno and jno*.

DISCUSSION OF PROBLEM

The basic reference proffle may W given by ytr = f(x)~ and its

velocity distribution may be known from an earlier computation. The
problem at hand is that of determintig the change in the velocity dis-
tribtiion resulttig from a change h the shape of the profile (indicated
by the dotted line in the following fig.). The difference of these two
shapes is designated as &t.

-——— —–—. .———-
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Allen (reference 1, p. 7) gives for the change of velocity the equation

where Vn iE the velocity of the basic parallel

(1)

flow. If, by
confo~ mapping of the outside flow re-@on, the center l~e-of the
profile is transformed into a circle by the relation

.2 (1- Cos e)x=~

then the profile is tramfonned into a curve
shown below.

approximatefig

(2)

the circle

.. --————.-—————— —. .—— .-
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The change in velocity due to a change in fom will then be given as

(3)

defintig

This is the form most often used for computation pm’poses.because the
inverse problem (that of computing the change in shape due to a change
in velocity distribution) tiilizes the analytic form

[W]%=abv’f=’)’e (4) n

deftiimg

which is strilclqly similar. The
x,y coordinate system iE given by

().+Z
o fi-e

&corresponding fomnula in the ori 1

(5)
W(C - x)

accomplished by any one of
these methods employ the

The evaluation of equdion (3) may be
several different methods; howevery all of
device of replacing the titegral over the range O to 2fiby a sum of
titegrah over intervals of equal length
pOtits en have correspondtig values ~

distributed (see following”fig.).

Ae. The equally distributed
which are not equally

.

.,

.
——— — ——— .—. .—— . ...— ——
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This arrangement is eometties favorable,

w

and somethes not, depending

upon the particular form of . (See discussion following
ax

equation (43). )

The ube of the angular coordinate 19 Ws the advantage that the

flmctionsw or & are periodic functions in 19,and thti
dx o

periodicity facilitates the organization of the numerical computations.
The disadvantage arises from the fact thAt these functions are usually
given as functionq of x, and, since the analytic form is not usually
known, any transformatiofi made

if

to

for

dx “o

en = IIAe,then the computor

the values ‘% ’929and SO

DISCUSSION OF SOME

will lead to small errors. For example,

special points which do not correspond

must obtati the values of these functions

forth by interpolarion.

OF THE EXISTING NUMERICAL

SOLUTIONS OF POISSON INTEGRAL

The difficulty encountered in the solution of the Poisson titegral

arises from the fact that the term cot W or & (e~~.
2 x-xo --

tions (1) and (3), e.g.) approaches infinity When e approaches @o or

Xo. The difficulty is of much less consequence when

~<ct~= or “
ax

~ is given analytically than when a numerical
o

computation is undertaken. As a consequence, any simple integration,.. performed by replacing the integral with a smmation over smaller intervals,
always requires that the interval in which 80 or X. is located be given

special consideration (see following fig.)..

—— —.. —. ... —— —..
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A majority of the solutions currently h use have been developed

to such an extent that, for example, #(eo) ~ given by a sum of

()

d(&t) 0
products of stigle values of

ax
and known factors ~; that is,

n\

/ ()pfid(~t) cot e- ‘O deAl e
()

1
70 0=-%0 ax 2

1

f

2fi-eo~ ~t
() **.

=-—
2X -e ax

cot ~ de
o

1 Z[ ‘“+’*‘(&t) cot $ .8*=-—
2YC n 8* ax

n

which leads to (see reference 2, e.g.)

(6)

(7)

6.

—— .—— —.
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The coefficients &o depend upon the particular method of

J__l
d~t ~

numerical integration which is employed. If, for example,
ax

replaced by a step-curve, that is, assumed constant in every interval
(see fig. below), one set of values of ~. would be obtained.

t

d(&t)

dx

~
—

Greater accuracy wbuld be obtained by the assumption that w
dx

replaced by straight-line segments (see fig. below), in which case
second set of values of ~. would be obtained.

t

q’%)

dx

x/c —

is

a

the accuracy of the

character of the approxi-

Y%LA further refinanent would be that of assuming ~ to be composed

of segnents of parabolas, and so forth. Since

‘~ depends upon both theresulting values of
V.

mate curve and the size of interval taken, it is apparent that the same
degree of accuracy might be achieved from manY different combinations

W@
of interval sizes and approximations to the function ~ .

— -—— . . . . ..— --. .-— -— —.— .. ..-— —---- -—— -.-.--— .——. -
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Naiman (reference2) has Wed Stipsonis rule for computing the
Poisson integg?al,which corresponds to the replacement of the product

([ 1w co.!$by segments of parabolas. The ‘critical interval”
dx *

i.e., where cot ~
)

+ ~ waa carefully treated by using differences
,2 d(Av.\\

(of higher order includtig the fifih derivative of \ ‘z’ ]. I?aiman

divided the peri$d of 21-tin 20 or 40 intervals and
corresponding sets of values of ~o. Other workers

extended the calculation of these values of ~. to

(unpublished information).1

Obviously, the time required for cmputing #
o

dx)
calculated the
at the NACA have

80 and 160 intervals

increhes with the

number of intervals taken because of the increased number of multipli-
cations to be performed. In addition, greater Preparations for the
ccmputtig proce== are necessarily involyed, particularly since the

values of d(%) needed must us~lly be obtained by interpolation.
ax

This titerpolationhas to be done rather carefully as it is often not
sufficient simply to take the values of the plotted curv= of

d(Ayt)
This curve should be checked by difference tables if the

T“. Y

1-+(d &t
values

dxn
are to represent a smooth curve.

,.

For those functions of Ayt which may be well-represented by a

Fourier series, there exists a simple method of evaluating the Poisson
integral which has apparently been overlooked until the present the.
This method has the advantage of leading to a computation which does
not involve the derivative of Ayt.

lNaiman has also suggested a second method for computing the
Poisson integral (see reference 3). In this second method he uses

Fourier polynomials to represent the function W.O ~e”cOQUttig
dx

procedure is very simple; however

Q

the results depend “l&gely on the
A.Yt

degree of approximation of ~ by such a polynomial. Thus, for

large families of functions results are good; however, cases are known
to the author where results were not satisfactory because regions with
steep gradients may not be represented we~ eno@ bY a Fomi=
polynomial of moderate order.

,,

.

_ ..—. .—. .— _——— -. —
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Equation (6)
equation (43)) as

may be written in
follows:

.

Av _—— p ‘(’%)
V. 7(JO dx

and this may be tewritten as

.

.

9

a different form (reference 1, “

Sin’e
d6’

Cos e - Cos 90

de
Cos e - Cos e.

(8)

\
(9)

Equation (9) is strikingly similar to an integral ocurri.ngin the
theory of the lift distribution of a finite wing in ticompressible flow.
There, the induced angle ai is.given by

[

n d7 de*
ai=~’ (lo)

2Yt (j ~ cos et - cos e

where 7 is the local dimensionless circulation.

Multhopp (reference 4) has given a solution for equation (10). He
divides the range of integration into

(
ml+l

)
hrtervals (see fig.

below)

with

1’en= n fi. -
5+1

7n = ~(en)

J.,, -.. ,_ .,
.,

.-.

(U)

-. .———.—. -— - —-—. —.. --- _ -. ———— ——— — - ———.-



10 NAcA TN 2451

and computes CLi at the points 13n. He assumes that y may be

expanded h the form
-

7 .~cv sillPe

or

m
2

7 =—
Am+ln=l

He then obtains the expression

aiv

The prime on the summation
omitted fkom the summation

(I-2)

(13)= bVv7v - * bvnyn I

symbol indicates that “n = v is to be
because that special term has already been

considered in the first term of the right-hand side (i.e., ~V7~ ).

Reference 4 presents tables for the coefficients ~ and bvn for

ml = 7, Is, and 31. Applied to the problemat hand, ml = 31 would

appea to be rather small; therefore a table for ml = 63 has been

computed and is included ~ the present report (appendixA). As a
ccnnparison: For ml = 63, Ae = 2.8M50; for Naiman’s method with

160 p0int8, Ae = 2.25°.

Utilizing this method of titegration which was developed by means
of Fourier series, an expression may be obtained for the velocity
didribution as follows:

(14)

The great advantage of this method is that of shplicity: (1) The

actual computational procedure is very simple and (2) the derivative

d(%)
— is avoided.

ax
The shplicity of computation is reflected h the

fact that the the required for ccnnputing F at one v~ue of e.
o

is approximately half that required by the method of Naiman when the
iutervals have approxtitely the same stie. It should be noted,

M

,

-.. ——. . ..—
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however, that the accuracy of the method of Naiman will be greater than
that of Multhopp h those cases where the differentiation of Ayt by
Fourier expansion (equation (12)) does not give good results.

A third method of evaluating the Poisson integral became known
during the course of the present investigation. b a paper by Timnan
(reference 5), the integral is studied in the form

(15)

Thman assumes that d(~) is not given analytically, but only at
equidistant points. ~ interpoktion polynomi~ (referen~e 6) for 6(w)

# is employed, and these polynomials replace the function a(~) ti a
single titerval by a function of third order. The polynomial fumction

thus introduced has a continuous ftist derivative,2 and it is evident
that this continuity is essential for the attainment of good results.

TimmanW divided the period 2Yr into 36 intervah of equal
length and established a computing scheme. The function 6(V) is

separated into its

Then

where the factors

present particular

AJ ~ s~etricd
V.

equation (16) does

syxmnetricaland unsymmetrical parts so that

~(~)=s+d (16)

(17)

%7 ‘d % are given in tabular form. In the

Cme d(%) is antisymmetric+ (equation (3)) and

(equatio~(k)). Thus the separation indicated by

not require any additional work.

Tinmsa’s method sho~d give good results provided that a sufficient
number of interv- are taken - the division of 36 intervals over a
period of 2Yt(i.e., 18 intervals over the chord of the profile) appears
to be insufficient for sn accurate representation of the function which

occurs, W or ‘v
dx VT “

%?he polynomials used in the classical interpolation formukm are
less smooth (see reference ~, pp. 7 and10, figs.1 and 2).

.. —.- ...— — ___ ,_ ._ —.— —— —. —— . .—



12 NACA TN 24!51

The the required for computing one petit by the method of Thman
is approximately the same as-for Naiman’s method with the same interval
size.

Other methods of evaluating the Poisson integral have been
suggested. They will not be discussed here as it is the intention of
this section to consider only the most pract-icalof the known methods.
The three methods already discussed have their own particular
advantages and have been especially developed for rapid and sImple

Mor&computation; however, all three of these methods, when ~
V. ‘

change rapidly h magnitude, become cumbersome, and require that very
small htervab be taken over the entire range of
the scheme of equal interval size is utilfzed.

EVALUATION OF POISSON INTEGRAL BY A

EMPLOYING UNEQUAL INTERVAIS

Development of Method

inte~ation because

METHOD

As the change in airfoil shape, or the change h velocity distri-
bution, is
retain the
intervaL3.

given originally as a function of x it appears logical to
coordinate x in selecting the size of the different
Hence, the Poisson integral may be studied in the form

[

c
~

T(xo) = - ~ u(x) :X
o x o

which corresponds to equation (1). Confordng with

‘(@t )meaning u(x) = is assumed to be a function
dx

every point of its range of definition.3

Define

4= %+1-%

with

n=o, l, P,3, . . .

(18)

its physical

which is finite in

(lga)

,

.

his restriction will.be dropped later; see discussion beginning
with the first paragraph after equation (32).

_—. —— .-
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and

,
For

%<xo<x~+l (lgb)
..

convenience, there is chosen (see following fig.)

~ + Xm+l

‘o = 2

0 I I , 1

%/ 4%+1
t
c

Xo

(lgc)

function u(x) is approximated by straight-line segments (see third
sketch in preceding section). Then, for ~ < x <~+lj

u(x) = +@ + a(xn+l)- ‘(%)(x-%)
%

= an + “n+~an(x- XJ
u

from which there is obtained

(20)

\___———. —... —— .._ ——
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sc

()
ax

TXO=. A tY(x)—
‘0 ‘-%

Also,

1=.—
l-r

[/

%+1z %

. . . . . —.—-— .

/

‘n+l
1=-—
Y’cx

%

NACA TN 2451
——

%+*(X-%)
ax

x - X.

%+1 - ‘n
an +

(
x- Xo+xo-xn

% )1ax

1{( )x ‘n+l - an=-—
x AXn

X[an +

x - X. 1
&+ - .,

-1

r%+1 ~
— . jno
X-x.

L/s

by definition. The function jno, in the different

given by tifferent expressions as follows:

rlo%
‘n+l - ‘o

%1 - ‘0

I
k = l-o* ‘::1- ~-%

log ‘o - %+1
ex

9-%

.

regions of

for X. > %+1 > ~

J

(21)

(22)

x, is

.

.
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Introducing jno into equation (21), there results

T(xo) = . +

[
x( ) X[%+1 - % + an+ ‘n’l - ‘n

11
Axn ~o-~) ‘no

[

J
1 z ‘I&o + ‘x( )( Xo-xn=-—
l-c %+l-unl+~ Sno

~
(24) .n

Or, defining

1 +.‘o-%
AXn & = ilno* (25)

there results, finally,

Stice Xn+l = ~ +%, the functions jno and jno* maybe

written as

j *=l+xO-%’jnono
6

1

(27a)

andthisformshows that jno md jno* - 5-+”are functions of —
AXn

only.

—. . .._— ___ .. . . . _____ .. . . .__ ._. ._ ~ ..— _ .-—-— .—.—. ——___
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For %1 -xO +*.
Ax~ Jno ~ O

For X. - ~=$~ jno =0 ,jno*=l

J.

% .~- X.
For very large

AXn
Y

jno’ + &

% - X.
For very large negative .

A%

1+
-—0 . .

3E2”

% - X.
with

%

These functions

It is seen

near

.

= E*,

(2i%). . .

are given in figure 1 and in table 1.

that -highabsolute values,of jno and jno* occur
x - X.

those values of n
%

Figure 1 gives an idea of

and

sufficient

values of

4
which characterize the critical interval.

the characteristic q~ities of jno

% - X.
as functions of ; however, the representation is not

A./

for picking out values for a computation. Table I gives the

J
%

-d jno: for -49.5<no ;Xo< 49.5. ‘IT@ table might

4 %+%1 (If’xo= z equation (19c)) the critical interval is

given by -0.5<xn - ‘< 0.5.
A%

\

.

—— —..—— —-— .— —
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be used
method.

24x \

for rough computation and for getting acquatited with the
In general, it is advisableto use those tables which are

given in appendix B:

It will prove of benefit to investigate the exactness of that
portion of the integral which contains the stigularityi Recalltig
that the function u(x) was replaced by a straight line in every
interval (equation (20)), there is obtained:

[

Ax
‘o+ 72-

1 u(x) ~ = 1-—,
x

.—
x-x. IT

(%+1- %)

J Ax
‘o- -2-

if ~< Xo< Xm+l. Now, let

the critical interval aromd

a(x),=

Then,

u

an expansion of the function

~ be assumed aa follows:

17

(28)

u(x) in

\

Ax
Xo+—

2
1-—
Yt

Xo-&
2

Cka(x- ..)2 +C@) + Crt(Xo)(x - Xo) + **
.

CM(X. X)3+5YQ+X-X)4+
3: 0 4: o“”” (29)

.

u(x)
X-x. rCIX=-* ( )&+a’ X. ~“’(xo) UX3+ -

()
-—

3! 32”””
L

= - +a’m+,-Q -*(%2- .,-J
{1 lQa=-—

It ( )18 ‘+1 - am -

.

* [
(%+2 )( 1})‘Um+l+‘m-um-l - (30)

Comparison of formulas (30) and (28) shows that the error in the ‘
critical interval is approximately given by .

,“

- ——— -———- -–—–——-—— — ——— —.—...—.—. —- .—.
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The error of evalmting the whole integal by finite differences may
be esthated by using two different interval distributions aud comparing
the results for a given ~.

However, in addition to that error of the result produced by
replacing the Poisson integral by a sum there exists another error.
This sum cannot be computed exactly, but has a certain error depending
on the accuracy of the given data for an(x) and the tabulated values

*
As the function u(x) =

qAYt)
‘f jno and jno . usually

ax

error of c1 = 1 x 10-3 it has proved amply satisfactory to

has an

EA= Sno—

ad jno* to fou decimal places, the error betig less than

G2 = 5 x 10-5. The error of

is smaller thsm its upper limit given by

mis formula shows that the tifluence of =1 ~ stronger than the

influence of 62 as long as ‘~l”.l + ~lan+, - “nl~~yr
thanl- as it is h our later examples - and the sums jno

ad ~ljn~l are always larger than 1. An increase of subdivisions

makes the sw in the upper limit of the error (32) grow, thus requirl.ng
a higher accuracy, especially in an and perhaps also in the values

x
‘f ilno and jno .

,
In establishtig the solution of equation (18) it was assumed

that u(x) is finite throughout its range of “clefhit ion. If it is
desired to compute the change in shape due to a proposed change of
velocity distribtiion, this restriction must be eklminated, as will
be reco~ized immediately.

.
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Equation (5) may be written in the form

(5’)

tiitting the factor
Vxok - ‘O)J

which does not affect the integration

process, the titegral maybe reduced to the form of equation (18) by -
deftiing

* . .l(.) (33)
xc-x”

However, al(x) will be tifinite at x = O and x = c if
()
$X +0

and
()
& #O; therefore, a special consideration of the nei~b~rhood
Oc

of x.O and X=C is required.” This is done by splitting the
integral tito the.followtig three parts:

.

with el and ~2 being small compared with c. The integral

(34)

may be treated as was explialnedformerly for

J
c
U(X)*

o 0

\

. .—— - —.——. —— — -———————— _—— ——— —— --— .—. ———



(see equation (18)) because al(x) is ftiite for El < x < c - e2.

For the ftist and third integals, however, a new integration formfi
must be developed. 13y

v c-=

there is obtained

rc

Hence, the method used

third. In most cases

introducing

[1X and Cl(X) = al U(X) = al*(W)

(35)

for the ftist titegdwill albo apply to the

[\
AT will he zero and there will be no need.7
[’ojc

for a special evaluation in the neighborhood of x = c.

will have an importtit tifluence on the result of equation
if X. is near to El. First the general fommla will be

then a simplificationwill be discussed for ~ >> Cl.

The titegral (36) willbe solved assuming that

- = a. + al(~j + a2&~ for O <x <61
Av
V.

(36)

(34) Ody
given and

(37)

.

.

*

Only the ffnal formula of this procedure is given here; the
details of the solution will be found in appendix C.

P

—-——z ———
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with

with

.
21

M. given h figure 2, and

()

Av
ao=~

00

*
.1 1=.+—a.12 1

with

(39) ‘

they

a2=$p)o - 2E)C,+E)2,JJ “

The coefficients ac)Y al, and a, may be determined first, as

do not depend upon the particular value of Xo, and then Fl X.

()

may be computed. The term depending on al and, a, will exert &

influericeonly for small values of xo/c. After a brief trafitigthe
computor should be able to decide rather accurately when the formula

“(40)

is sufficient and when the more exact expression (equation (38)) is
required (also see fig. 2).

——.. —.— ——..
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Organization of Computational
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Procedure for Unequal Intervab;
.

Transition from One Size of Interval to Another

A thorough understanding of the method is best achieved by
following through a rather shple example; h addition various short
cuts to the method will be demonstrated.

Assume a
figure.

function a(x) of the type shown in the following

CJ(x)N
o \

1

It
of

appears reasonable to take
x because

arrangement of
.

of the form of
interval sizes

razher sm@l intervah for small values
the curve u(x); therefore, the following
is arbitrarily selected:

E= 0.002 for O<X<O.030

~= 0.006 for 0.030 <x <0.096

Compute T(O.009) with the help of eqwtion (26). Note t~t the
cri~ical &erv~ extends from 0.008 to 0.010. Tab$ II(a) gives
the values of X/C, an, fJn+l- an, jno, ~d jno for the range

with ~ = 0.002. At X = 0.030 the interval changes to ~ = 0.006
and the same functions are given for the range with this size of
interval titable II(b). Naturally the range above the broken line
in table II(b) is no% utilized in the computation stice this portion
has been considered in table II(a).
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x - Xo’

Note that ‘N - pro~esses in table II(b) in the same manner

as in table II(a); this is due to the special choice of ~. If—
G= 0.006 were used starting with x = O the critical i@erval for
x0 = 0.009 would extend from 0.006 to 0.012. Hence, for ~ = 0.006,

jno = O ad jno* = 1 is to be found at x/c = 0.006.

For rapid computation it is best to have jno *
and jno as

%functions of &xo on a paper strip and to place this strip adjacent

to the columns headedby an and crn+l- cm. If ‘n - ‘0
Ax

progresses -

as indicated h table I, the correct location of jno . 0 and jno* . 1

at the beginning of the critical interval fries the placement of the
strip.

In the example just treated, the transition from one size of
interval to another is very easy because X. lies at the midpofitOf
an interval of the size 0.006 as well as of the size 0.002, if starttig
with X = O.

If ~ had been chosen 0.004, such a desirable arrangement would
not have resulted because ‘x. = 0.009 would not

point of an interval of this size (startingwith
at x = O).

As a second example compute the value of T

z. - x. X_ - x.

be located at the mid.

such intervals

at X. = O.01~.

Again, “ “ and U “ will progress as in table I. The values
E =

Ax”
3no = O and jno* = 1 will be placed opposite x/c = 0.014 for the

region with ~ = 0.002 md opposite x/c = 0.012 for the region
=

with ~= 0.006. AS long as ~= ~, ~= z, and SO forth and
if X. is chosen so as to be at the midpoint of the largest size of
interval, the computation maybe accomplishedby shif’tingthe strip
with jno ad jno* corresponding to table I.

But suppose that the interval sizes are so arranged and it is
desired to compute a petit’where X. does not lie at the midpotit of

the largest size of interval; for example, X. = 0.013. The value

‘o = 0.013 lies at the midpoint of= interval with ~= 0.002; hence,

. . ..—. ———______ _ _,__ -- ._ ————- --- .- —————. ... . . . ..—_—..—_ .. _ .



for the range O < x< 0.030, jno and jno* maY be taken tiectlY

from table I. However, at x/c = 0.030, intervals of the size.
~ = 0.006 commence and there is obta&ed

% - X. = 0.030 - 0.013

E 0.006
= 2.833

The value of % - ‘0 progresses by 1, that is, 2.833; 3.833,
Ax

4.833, . . . . ~w-the ~ctions jno ~d jno* are needed for

%values of - ‘0 which are not given in table I. One might think
Ax

taking them out of an enlarged diagram (see
much more convenient to take them out of an
conveniently arranged for “advancing by 1.1’
appendix B.

The example presented by the figure at

fig. 1); however, it is
extended table, which is
Such tables are given iu

the beginning of this

of

section suggested starting at x = O with the smallest intervals.
However, other examples may suggest another distribution of intervals.
The smallest size of intervals may lie at any paft of O <x < c.
There are no restrictions in the arrangement of intervals. (See, e.g.,
discussion followtig equation (43).)

Accuracy of Method, Examined by Means of

an Analytical Example

The accuracy of the result depends directly upon the size of the
interval taken and the reliability of the data comprising the func-
tion a(x). Because the function u(x) will be replaced by a broken line,
a glance at the curve wfil quickly $u.ggestan arrangement of intervals.
In addition, the error in the critical interval may be used as a first
test of the choice of intervals..

As a test of the quality of this new method, tivolvtig unequal

‘(%)
intervals, a function a(x) = ~ haa been treated which allows

the analytical Computation of T(x) = ~ .
v~

.,

__— —_ —
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.

.’

The function u(x) b given analytically as

C1-5X5C ‘(%) _ ()

ax

The followtig arbitrary values have been selected:

c1 = 0.35

c = 1.0

D = Somemultiple of B so that
J

“mti=o

o dx
.

‘(f%)The functions Ayt and ~ are given in figures 3(a) and 3(b),

respectively.

—-.. .—- -— —— ..—



26 NACATN 2@l ‘

AT‘J?he~dfiicd computation of ~ for fi~e 3(b) ~ given ~
o

figures 4(a) and b(b). The arrangement of the unequal division for the
.

numerical computation of $~ is tidicated h figure k(a).5
o

5 It was desirable to obtain the value of ‘v at X. = O; hence,
E

the first interval has been placed so that -0.061< ~ <0.001 and the

‘(@t) . ~d(Ayt) () for
function — = -0.ool<x< o. Stice the function —

dx dx
is replaced in every interval by a straight line, the error might be
expected to be large. However, g=O at X. =Owillaidin

preventing the error from letig too large.

.

A more exact solution would be obtained by putting

Ax
g=o -~<x<o

E31
E!=— x O<X<*

~
2

1 /()42 g~ ax.— —x —=-: glxl

‘0 Ax X.x.
-z

For the interval -$<x<~ equation (26) would yield

[

Ax/2
1 ax

g~=-

[
) 1lgl-O Jno*+OXjno-—

3r_ Ax/2 0 n (

andno error is Introduced. l%r X. # O there is a very small error

which may be avoided by respecting the change of size of the interval
near x = o.

\.
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Also given in figure 4(a) are points of the ~$? curve deterndned by

the method of unequal intervals. Figure 4(b) presents the same
information plotted to a larger scale.

For comparative purpo~s the same problem has been treated by the
three methods of computation discussed earlier, namely, those of Naiman,
Multhopp, and Timman. Figures 5(a) and 5(b) show the results obtained
by the method of Naiman; obviously, the 40-point solution does not use

a sufficiently accurate representation of the w curve, while the
ax

80- and 160-point solutions are quite good, with the exception of the

maximm and minimum points of the $ c_eO In order to obtain a

value at approxhately ~ = 0.036 a solution involving 320 potits would

be required. In this respect the method of unequal intervals is more
adaptable to special conditions without involving much new work than is
the method of Naiman.

The results obtained by Multhopp~s method are given in figures 6(a)
and 6(b). The 31-point solution (in Multhoppis somewhat odd manner of
designation) corresponds to AO = 5.625°; the 63-point solution, to
A9 = 2 ● 81250. The computation is very simple and the results of the
method with 63 points are comparable with that of Naiman with 80 points,
with the exception of those near the region O< ’x< 0.01 (thisis

WQshown most clearly in fig. 6(b)).- The very steep peak of ---

at x/c = 0.02 requires rather high harmonics for the repres%tation
of &t; consequently, good acc~acy ~ the region near the ori@ maY
not be expected. ~is is substantiated by the fact,that for the 63-petit
method the highest effective harmonic would have three waves in the
region O < x< 0.04; obviously a sufficient degree of accuracy in the
differentiation process cannot be obtained.

As mentioned earlier, Timmanrs method might be expected to give
good results if the size of titerval is properly chosen. Inasmuch as

only a table for Ae =
36o
T?

10° was available, the result of the

computation for ‘~ cannot be expected to be good, as is evidenced by
Vo

observing figure 7. The result obtained is comparable with that of
Multhopp~s 15-point and Naiman’s 40-point solutions.

An excellent method of examining the accuracy of these methods
still further is simply that of solvhg the ~v~se problem. From the

curves of w~ just discussed, values for ~ have been computed

--- .-. ———-. —.. .— __ ———- —.. —.— -—- --.— - ..—. .—— ——. — .— . ..-—
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andarepresented in figure 8. The method of unequal intervals gives
good results, ind.icating that the arrangement of intervals chosen was
as good for the inverse problem as for the direct problem. It iS

apparent that Naiman’s method requires even smaller divisions than
160 points h order to avoid ticcuracies near the point x/c = 0.04.

The reader may wonder that the inverse problem is not given by
Multhopp~s method. It must be recalled that Multhoppls method of
solvhg the direct problem does not tivolve the differentiation of Ayt;

that is, it is particularly fit for this problem and presents, on the
other hand, no analogy for the inverse problem:

Jd(fV$ 1 2’b~cote-code=-~ J*AV sin e.
=—

ax
d6’

2X o v; 2 m ov~cose-coseo

Because more extended tables for Thmants method
and the results obtained from the 36-point method for
are very poor, no further
will be given.

examples of the application

COMPARISONS OF METHODS

UNEQUAL INTERVALS

OF NAIMAN AND MULTHOPP WITH

BASED ONACTU&G EXAMPLES OF

are not available]
which tables exis~
of this method

METHOD EMPLOYING

CHANGES IN

AIRFOIL SHAPE

intervals has shown
the function u(x)

good qualities when
is known analytically.

The method of unequal
applied to a problem where
However, aa mentioned ealier, th~ ~ction ~ not ~ua~Y ~o~ fi
analytic form. This section, therefore, will compare the three
principle methods, those of Naiman, Multhopp, and unequal intervalf3,
on the basis of actual desi~ problem} solvtig the d~ect Problem

for $2 and ustig these results to solve the inverse problem (excluding
o

Multhopp for the

Figure 9(a)

figure 9(b), the

inverse problem).

shows the &+ relations

a(%)
ax

relations. Note

for examples I

that the slope

for example II is more than twice that of example I near

and II and

r ‘1(%)
of —

ax

x/c = o.
“

.

—.——.-— . .
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The direct
figure 10. The
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problem for example I by Naimants method is given in
160-Petit solution does not show any appreciable

()deviation from the 80-point solutions at the region of $~ ;

()

o-
however, near the origin, at ‘~ , the influence of the smaller-sized

O m~

intervab (80:Ae . 4.5°; 160:Ae = 2.25°) is q~te prono~cedc

6The solution by Multhopp~s method Is given in figure ll; 31 points
around the half circle are not sufficient for a solution comparable with
Naiman~s 80-petit solution, and even a solution based on 63 points does
not offer much tiprovement. The results are poor, aE might be expected,
in the region very near the origin (see precetig section).

Figure 12 presents the results obtained by the method of unequal
intervab, compared with results obtaimedby Naiman?s 80- and 160-point
solutions. The method of unequal intervals gives results corresponitlng
to those established by Naiman~s 160-petit solution. The subdivision
used is

As

ure 13.

shown in the figure.

before, the tiverse problem was solved, and is given in fig-

In each case the computed curve of ~ _ the one wed ~

obtatitig the values for the W c~ve ‘&hmetho~g~~egood.
dx,

results, thus provtig that the chosen number of divisions was sufficient
in Nahan’s method and in the method employing unequal titervals.

The value of w“ computed at x/c = 0.17’1 is of some interest.
h

This point was comptied by the method of unequal intervals in two
different ways: First, the arrangement of intervals shown in figure 13
was utilized to compute the lower point. Then a new arrangement of
intervals (Ax = 0.018 for O< x< 0.36) was set up and the same point
computed. The idea was to determtie the inaccuracies that would result.
One might predict that, since the point x/c . 0.171 lies at a con:
siderable distance from the region of rapid changes in ~ errors of

V. ‘
only small ma~itude would be introduced; this is fairly well sub-
stantiated by the results shown in the figure because the error thus
introduced is approximately that of the deviation of Naimants 160-point
solution.

% ecall that thismethod does not involve the differentiation
of Ayt.

—. .—-— .—
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Now, turntig our attention to example II, which, it will be

recalled, has a slope of w ofapproximately twice thatof
dx

example I, the results given in figures 14 to 17 are obtatied.

For the direct problem Naiman$s method of 16o points and the
method emplo~g unequal intervals give results which are in good
agreement. For the inverse problem (fig. 17) it is apparent that the

method ustig unequal intervals is superior

[-]
(

see the deviation at

d Ayt

dxw
)

given by the method of Naiman . Multhopp’s method gives

a rather good result (fig. 15), which may be attained when the Fourier
representation of the Ay curve is adequate.

The two examples thus far presented are favorable for Naiman’s
method because the steep slopes of u(x) occur near x = O wh~re the ~’
points Naiman uses are close tog&her. However, going to still steeper
slopes near x = O would require a rapidly increastig number of points.
The new method offers another POSSibility here. Assume that in that .

(critical region xk < x < xk+l xk maybe O) u(x) may be represented

xby u(x) = ~xn. Then the inted

may be split

s

c

o

1c u(x) ~
Ox-xo

into three titegrals

/

‘k u(x) ~a(x) & . —
X-x. o ‘-xo

J
c

u(x)

‘k+l x - ‘0

ax

The first and third of these titegrals may be solved in
manner using the functions jno and jno*. The second

be solved analytically.

“ (41)

the usual. .
integral will

“

.

.
.— —
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This simple form, due to the use of the coordinate x in the
Poisson integral, allows a rapid integration, because the integral

J‘k+l ~

%,0= —x-
‘k

‘o

csn be solved by recurrence as follows:

~,. = ‘k+l”;‘k” + @n-ljo

with

k J
()

%-xo
0,0 = “o x

k+l - ‘k

dx

for n~l

31

(42)

(43)

Thus even very steep elopes cause no difficulties.

As already mentioned, examples I and II correspond well to the
qualities demanded by Naimants method insofar as the rather steep
slopes occur in those portions where the points 13n are close together.

If those steep slopes should occur h other portions of the chord, how-
ever, a very great number of points in the Naiman method would be needed
in order to represent a(x) adequately, and to get reliable results.
In such a case the method using unequal intervals shows its advantage
by allowing a free subdivision of the chord.

A third example will serve to illustrate this. Figure 18 shows a

%function u(x) = ~ . The essential values of the function lie in

a part of the chord where even Naimants method with 160 points is not
sufficient to represent the function accurately. This is forcibly

Av
shown by the two curves of

~

(dotted line) so as to eltiinate

unequal intervals can be

16&point solution, thus
Naiman~s method with 16o

Table III 3ndicates
by unequal intervals.

made to

If the function a(x) is modified

the high peak, then the $~ curve by

At pyNa-lsagree with the original ~—
Vo

definitely proving that, in this example,
potits is insufficient.

the computation for the petit X. . 0.065

-- ——..—.—— .—— .-—— .—— . .——— .- . . ..——— — -— -.—
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CONCLUDINGDISCUSSION

The new method of evaluating the Poisson integal developed herein
is to be recommended for all those functions u(x), where steep slopes
in small portions of the region to be integrated exist. Iu these
portions a very small size of interval may be chosen without requiring
that this same size of interval be used throughout the region of
integration. In this manner, the work required for computation may be
maintained at a reasonable level even for the most complicated problems.

The analytical treatment of special parts of the titegral is
possible (evaluatingthe remainder by the new method; see preceding
section). h those problems where a transition to very small intervab
in part of the titegrat,ionrange would require the determination of a
great many values of an, this idea might be used to advantage.

It should be noted that the smoothness of the function U(X) and
its accurate representation by single points is essential for good
results. If, for eqle, Sfigle pOiU_k Un me simplY t*n from a

curve for ~ very close to one another it may be comptiory to check

these values by a table of differences.

.

.

Stanford University
Stanford, Calif., December 6, 1950

.
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:%%
,W7
.0se7
,Oaa
.oeo4
,Oles
.Olm
.O111
.0008
Jon
.03m
.025+
,W45
.Wsa
.Wm
.WE5
,Wen
.Wla
.W1.o
.0W6
.IxD3a

66

0.0874
.mee
.1977
.4s47

l,m
U.W91
U.W99
1.WW
.4se9
J3m?
.lml
.0866
.Owa
.04-w
.Cmw
.-
.Oml
.016s
.0191
.Olw
.Oow
.0074

:%
.W40
.msd
.00Z3
.Wta
.W17
.Oolz
Jxm?
.WOB

se

O.olho
.0491
.0978
,1-
.W9s

1.1.170
O,efrm
0.13-W
l:JM:

.1900

.l16s
,0774
,Ww
.0W4
,Oew
,Oml
.01.93
.0147
.o119
,m8

:’%
.OWJJ
.01M6
.005.7
.00s
.we4
.00L9
Jwlx
.Ww
.Woa

60

O.m
.Owa
.C6M
.WO.9
.17B6
.sss6

lJW’M
9.m65
9.leal
l.olm
.m9e
.I.W7
.MT4
.0704
.049E
.096n
.087S
.061E
.016!3
,Olw
.OUo
.Ww

:E
.0W4
.Owl
.C-w5
.Oom
.0019
.031s
.0008
.CU06

49

o:%

.0357

.WLL9

.0919

.Mlo

.391Y3

.9e6B
B.3S91
8.9667
.9Z49
.s699
.161X?
,09w
.0600

RS
.Om
.0197
,Olw
.01.w
.01.w
.Omzl
.Ow
.Owd
.W46
.0636
.CQm
.Ooel
.oo16
,0W4
.WiM

,46

0.W69
.Olec
.oeel
.m4
.0580
.0970
.1617
.5366
.8641

7.7900
7.7919
.E61.5
.9078
.lwl
A-Ma
.064!3
.we7
,OSM
.0424
.0183
,0140
,0117
.W95
.0077
.Ooee
.06W
.Ww
.OWJ
.oQ&e
.Mn6
.eolo
.Woe

O::!O

.Olns
,06?.5
.0s57
,Mm
.004s
.1444
.W+4
.01L9

7.wed
7.S56B
.o146
.#908
.1467
.08m
.W76
.0404
.0e9?
.0803
.Olw
.Olw
,01.in
,ww
.CJW1
,0M7

:%%

:%%
.Oml
.Ww

0.90’W
.W6CI
.O11o
.0166
.0C48
.0ss6
.C6S6
.Um.3
.1s87
.8769
.7760

7.0ET4
7.0?S
.7ml
.ew7
.14CW
.0937
.M61
.0S37
.08$4
.Om
.0167
.Olsl
.Olm
.W86
.CM4
.Woa
.Owa
.0W6
aml
.Oole
.W64

O.Wl6
.Ww
.W3e
.ole4
.0179
.oe40
.0s44
.ao17
.0764
.M4e
.e077
.78W

6.77Q3
0.7W4
.7496
.e87B

:=
.mss
.0$74
.o&74
.Oem
.Olm
.Olm
.0099
.Oom
.W61
.0W7
.Om
.0024
.W14
.Wcd

O:g:

.W63
,W94
.016s
.o16e
.Oesn
.Osna
.U910
.0786
.1s17
.8U5
.7m.6

6.61.s-9
6.6SSS
.7s,1s
.86U
.H6a

:%

:%2
.Oml
,0M4
.Olm
.W95
.007s
.Ooed
.Oeu
.Oma
.Cou
.Oow

O:mg

.0060
,W74
.0108
.0169
.0187
.om4
.os5e
.Wae
.0774
.1X.3
.emm
.7W7

6.4941
6.6447
.76S9
.mel
.lw4
.0778
,mls
.=
.Oml
.0196
.0149
.OIJ.6
.0-
.0063
.OMQ
.00ss
.Wle
.0006

0.W06
.03e3
.W40
.W99
.W48
.Olw
.0144
.0101
.0M7
.0sS4
.W67
.0773
.lmb
.$668
.7175

6.60&3
6.meB
.614e
.766B
.lem
,07-73
.C8w
.0m4
,0ES7
.0191
.0144
.Olw
.Owa
.0W9
.W40
.Was
.0003

v44 4s 40 69 m M

, ., ,.
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.

.
VALUESOF Jno AND

35

APPENDIXB

jnO* AS FUNCTIONS OF ~

The values of the functions jno and jno* are presented as indi-
cated in the following table. The values are tabulated in a form selected
to minimize the necessity for interpolation except for the region contai&
ing the singularities of the functions jno and jm*. Tor ease in
computation, tdles B-I=~x~VIII, ticlusivej are arranged so that the

vertical increment of - is unity. Table B-IX gives additional values
UA

for the region containing the singularities of the fuctio~ jno ~d

jno*.

TABLE No. RAMGEmy ~my

WI –189 to–go 1.0
B-II -89.5 to -40.0 .5
B-III –39.9 to+o.o .1
B-Iv -19.99 to o .01
B-P Oto 19.99 .01
&w 20.0 to 39.9 .1
E-VII 40.0 to 89.5 ●5
&VIII 90 to 189 1.0 -

B-n -1.000 to 0.000 0.001

-. .———— –— — —.



-89.5 ip:-40.o

, #



,

I

t

—

TABLE B-III.- VALUES OF Jno MD Jno* USED IN EVALUATRW

-39.92 y 5 +.0

=

x

=b
-39.1 .@
-33. -.0261

-.CG+7

z: -.

g %J

+: -. 0s9
-31. -.0319

+. .0-

-m. -.03M
-m. -. 03X
-v. -.0367
-!26.

X %-J

43.
-m. -.CJ47
-QL -0467
-m.x -.&m

b“ Am Jm’ .k b’

+.ole’r -o.@ -0.COA9 4.W 4.Ols

-.OQ1 -.mtl -.o1.31 -.m6a -.0).s
-.ol% --- -.03.?3 -.CQ69 -.0).3!
-.QUJ3 -.036 -.ol@ -.CI?* -.Qly

-.olka -.0283 -. Olu -, 02& -. Olk

-.01h6 -. O&2 -.0146 -be -.Olb;

- 01% . OKQ p 01% -, Om . Olyl

-.0136 -.030 -.0136 -, Om -. Oly

-.0163 -.o&J -.0161 -,om -.0161

%: a% ;:: :r~ :g

:;g :~ ::g -.Oq -.:2

-.0191. -.03?0 -.0193. -.O* :01;

-.0193 -.0 m -.u~ -.097 -. 02m
d d-. m -. M -.0207 p 13 -.@J?

-.mly -.0499 -.cra16 -.c+y. -.cE17

- @2> -0449 -.E26 -. IMs -. W27

:3, :~j -j?JJ -.. ~~

=-m

I
Jm’ L L*

-o.@@ -5.@57 ~.Qm
-.0).32 -.wa -.o13:
-.0136 -.0271 -.01 ,

i
al :%7 +1

:g~ :% :$;

-.ollfa -.032k -. 01.+

:;J ;;% %$

-.o~ _:o;* ‘“0

2

-.Olal
-.0193 -.0 - O1$A
-.(021 -. -. m
-.m.lo -. CJ+18 -.mll
-.W9 -.043’7 -.mlg

-.=3 -.CW ---
-.CQ40 -.M79 -.cekl

-.0252 -. GW3 -.0%

493

4. C125!
-.(txl

-.om

z%
-.9
-.037
-. Ow
-.03;
-.033f
-.03k
-.03

:$

-. Mao
-.c43g
-. *W

-.CM1
-.0535

3

4.013[

-.013:
-.013:
-.OIM
-, Olq
-.014
-.01 4
-.01%
-. Oti?

-.mf5
-.01

2-.0 1
. Olm
-. 01s

-. ~3
-. a?u
-. az?l

-.WU
-.ozba
-.CQ5>

EQUATIOR (26)

2

kolh’

~.w -9.0L?4
-.a65 -.olx
-.. -.:;

-.11
-, C&% -.014,
~. ;0;4:

.09
-. WY -.om
-.0326 -. 01.fa

~;$ ~f&5

“lX-.0361 -.0

Cif

-.03 -.Olm
-. 0 -.0196
-. -.crd

1
-.bka -,aar+
-.0441 -.IZ2Z3
-.* -.WZ
-.. +2& I

L kc.” J-m

-3.0259-’3.0130 -&m
-.0265 -.01311 -.cai

:. -.:;;: ~.

:% ::;~ ;g

-.0307 -.01% -.0

X& y; 2:3

-.0335
-..:g +UJ -@&

-.0376 -.oI.@ -.03TI
-.oB1 -.0196 -.OW
-.dm7 -#w -.QW
-.Qh24 -.w .&26
-.@43 -.CU23 .CW+

. . . . ~~

-.c5m -.m77 -:c513

4’0’

-o. oul
-.o13b

-.013a
-,0141
-.0146
-.Olz
. Om
-.Ol&l
-.016y
> Oljl

2
-01
-.0 3
-Colw
-.W
-,am 2
-.cG!14

-.=3
-.C%?
-.m z
. C@g

7

Lo
-a



TABLE E-IT.- VALOES 07 & Am &*

(a) -19.XZ s ~+ s -on

usm IN E’ViUUkTIXGMwmoN (26)

Tmii B-Iv. - coNlm?oED

(b)-19.XXS ~S 4.XX where * 2 XX 280

w
0)

, .



TAB’IEB-IV.– ~

TABLE B-IV.- COiTTI-

(d) -19.Ix = ‘~ ~ A3.XX Where 69 z XX z 150

I

!2

.



TABm B-m.- Ccmcm’mo

I

,
.



TABm B-m.- Ccmcm’mo

I

,
.



[

-la

$-t-1.
-m.
-m.
-U.

4.

$
3
2:
-h

092 XX 200

c ,



{

I

TABLE &V.– VAImG3 QF ho Am

TABLE B-v. - OomXmED

<%Q=O<(b) O.X .= = ~p.= where 10

I 1 I u 1

&-



TAmE &v. - CcmmmED

I /.\. — <‘- ~ lg.n where 2oZxxZ29
‘T

i-%-

m I n6

TAmE B-v. - comm’oED

1

c-kT-



[

n

k

1.

~

Y.

6.

Z
:
Il..

!s.

it

15.

16.

1.
d.
19=

TABLE B-v.

(e) O.XX 2~519xx

- Comm

where A.05X X549

, I , , , I ,

TAmE B-v.– cOmm

+0 149



TPBIiE I&V. - Ooru’mom -P
cm

I & I 65 I e‘@ l@ f

I

, I I I I

m B-v. - coNTlmJED

* * G-
---AL-I



i

I

(i) O.xxs

—

(J) O.xxs

%?

TABLEB-v.-

93 I
99 159

1



o

Jm*

—

,Lceb

.’=3

:E
.0-%
.OM

.Ow

.Olal

:~g

. W@

.o153

.o149
,o144
.o141
.0136

.o133

.Ow

.0U?6

TABm Mm.- WmJ’Es cm’j~~ m &J* USED m mm!mm WJATm (26) .

1

&_
.ce41
.ce30

.Ce.?o

.mlo

.CuX?

.Q13A

;%

.o174

.aa

.ol&

.Olm

:x

. cab

$113W6

. Ow

.mm
—
T
b %0’
.@@ O.OA1

.0461 .Cm9

.OM1 . cc?19

.C&2 .W!lo

.0k5 .aml

.@9 .0193

:W? ::%

.qm .ol’f3

.0337 .m67
,Cy26 .o162

:2 ;;#

.C2

8

::;3

. .Ow
.Wz9

:0252 . 0L?6

3

1

4 5

1

6

g
).ckp

. ‘@

.ck31

.cA13

.0357

.O*

.q6a

.W5
,Cgti
,C531

m=

:%

:%

:%

.CQ >
i.02 9

1
Jm’

l.w~
,CrA
.Ccw

.’=?

.W-l

.01$0

.afh

. 0LT6

.0111

.C@

.W9

. Olp

.a o
tlmlo15

. ~w

.a34

.03.30

:W
.0124

8

1

9

.-

. .



!cABm B=m.- VAmE3 w & m &O* mm m _T~ I!?ammm (26)

40.0S ~ 589.5
&

J&o I k~ I S.O I 5=.5 fko la &o

&Ol$aD’l&Ol$r#l$ml&’Y’l& I$m’ JnO

II
h h’

‘.M23 0.W61.
.0u22 .OM1
.Ou?o .0%3
.0U9 .-

:%

:$ ;%

.mu .alz1
O.cdrf
.Mkl
.’=35
.0230
.-
.a2xJ

:%’
.azQ3
.&n?

1.0244
.=34
.@33
:~

.~7

.=3

.W

.CmY1

.Cr2a

o.ol&

;%

.’W5
,01%

.Qm

.o14!3

.mh3

.CQM

1.olQ4
.M=3
.Cnul
.0120

;%J
.0u3
. One

:%
.Cr61
SW%
.Cm9

%!

VilLum C1FJno AMD&o*mE.Dm WUaWTNG DWATIONTABm EQIII.- (26)

i

I.&.o I 17X.O M?Im.o I 131.o ls!x.o

* b“ G---
~
.(JM?
.Iml
.O%l
.Crxl
.@51
.03s4
:%1—

b’

T
.@l o.
J& ..%3

J’@
.W J@
.@ .W7
.Wo .Om
.Ccgo
.m30 :3
.Cu30 S@

.Ww .W

I.ctgaO.cql
.Cw .WJ.
.ag8 .Oqo
J@
.-7 :%
m-l -@9
.W .00$9
.w6 .00s9

:% :%

:%
.m3
.@33

.@

:Ze
,cqR

:%
I I -

I

I



(26)

I

.



I

I

I

TAB123E-ix.– CONI!INUED

(b) -0.749~ ‘~ ~ -0.XKI

9 8 I 7 I 6 I 9 I 4 I 3 I 2 I 1 I 0

I 1 I

-=-h- * b’
—
M??&
.9739

$3

.M T

.Z3Y
:%=
.5976
. 63IE

. 681’I

.’@$

.W71

‘f!ii

7

:%

.W

.9134

.*3

.9*

.9*

.m

.’

I



TABLE Km.- cONrImED

9 a 7

Jm &#lkl$m*l Jro I$ro*

I=ilh

&*lklb*l Jm l&l*

3 Iell o

JlbYIlrm”

1 , 1 #

WI
m

I

I

.



I

I

I

TABIE E-n.- ccmmJDED

(d) -0.2hg S ~+ S 0.003

9 I 8 I 7 I 6 s I 4 I 3

$m’l&ol Jnn

I I 1 I I I 1 1- 1 I I 1

L? 11101

$m*lJrml

I I ! I I J
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DETAILS OF SOLUTION OF INTEGRAL (36)

With the expansion (see equation (37))

= a.

Hence,

1=—

[

a.c

*

al

52*

(c’)

(C3)

(C4)

.

.

,
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As the occurring integrals are

s

‘l/c
~=

o

55

all of the same type, define

These integrals ~ are easily solved by recurrence.

with

and

J.E1“- $
Lo=& lo& 1 for x. < ~1

F o 1+

r

X.
q

The function

is given in figure 2 in order to provide a more

the event that ‘o or 1~ is not very small..
T
1 0

.

.

(C5)

(C7)

(c8)

rapid computation in

.-— —. —--- .—- ——~ —- ——. .— .——.-,— —— ...
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. .

(C9)

(Clo)

——



8 NACA TN 2451

Withtheseexpressionsthe integralF1 is as follows:

=

.,

(~aoLo + al*L1 + a *L
c 22 )

+ 2$$)+ a~(,3&+

57

J
.

The coefficients aoj al) and .2 Avof the expansion of — are ‘given
Vo

by

()Ava. =

:~)x=o+4R)x=,,-E)x=2J
al=+

;

(cl’)

[

‘2 ‘~ (%).=O-2(%).=61+($3X=2EJJ
.

—-— -—— .– —.__—_ -—-——— —.—— ____ . . .
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x
TAHLEI.- -%?VALUESOF jno AND jno* FOR -49.5< ‘N <49.5

%-%3
&o 3*

%l-%m
& no Ax ho &o*

-49.5 -0.0204 -0.0102 0.5
-48.5

1.09% 0.4507
-.0208 -.0104 1.5

-47.5
.5108 .2338

-.0213 -.0107 2.5
-46.5

.3365 .15etl
-.0217 -.0109

-45.5
.2513 .1204

-.0222 -.OI.12 ::;
-44.5

.2007 .Ogo
-.0227 -.012.4 5.5 .16TL .O&?

-43.5 -.0233 -.0117 6.5
-42.5

.1431 .0698
-.0238 -.0120

-41.5
7.5 .3252 .0613

-.0244 -.0122 8.5
-40.5

.l.lw .O*
-.0250 -.0125 9=5 .1001 .0492

-39.5 -.0256 -.0129 10.5 .0910 .0448
-38.5 -.0263 -.0132 11.5 .0834 .0411
-37.5 -.0270 -.0136 1.2.5 .Ono .03&?a
-36.5 -.0278 -.0139 13.5 .0715 .0353
-35.5 -.0286 -.0143 14.5 .0667 .0330
-34.5 -.02g4 -.0148 15.5 .0625 .0309
-33.5 -.0303 -.0153 16.5 .0588 .0291
-32.5 -.0313 -.0157 17.5 .0556 .o~
-31.5 -.0323 -.0162 18.5 .0526 .0261
-30.5 -.0333 -.0167 19.5 .@oQ’. .0248
-29.5 -.0345 -.0173 20.5 .ok76 .0236
-28.5 -.0357 -.0180 a. 5 .0455 .0226
-27.5 -.0370 -.0186 22.5 .0435 .M6
-26.5 -.0385 -.0193 23.5 ;o&l:

-.0400
.0207

-25.5 -.0201 24.5 .0199
-24.5 -.0437 -.0210 25.5 .0385 ●0191
-23.5 -.0435 -.0219 26.5 .0370 .0184
-22.5 -.0455 -.0229 27.5 .0357

-.0476
.0178

-21.5 -.0240 28.5 .0345 .0172
-20.5 -.@oo -.0252. 29.5 ●0333 .0166
-19.5 -.0526 -.0266 30.5 .0323 .0160
-18.5 -.0556 -.0280 31.5 .031.3 ●0155
-17.5 -.058$ -.02W 32.5 .0303 .0151
-16.5 -*o@ -.0316 33.5 .02g4 .0146
-15.5 -.0667 -.0337 34.5 .0285 .0142
-14.5 -.0715 -.0362 35.5 .0278 .0138
-13.5 -.o~o -.0390 36.5 .0270 .0134
-12.5 -.0834 -:0423 37.5 .0263 .01.31
-U.5 -.0910 -.0462 38.5 .0256 .0127
-10.5 -.1001 -.0509 39.5 .0250 ‘ .0125
-9.5 -.13J2 -.0567 40.5
-8.5

.0244 .0122
-.3252 -.0639 41.5 .0238

-7.5
.ou8

-.1431
-6.5

-.0733 .0233 .0U6
-.161cL -.0859 g:; .0227

-5.5
.0113

-.2w7
-4.5

-.1037
-.2513

.0111
-.1309 g:; :E7

-3.5 -.3365
.01_08

-.lm .021.3
-2.5

.0106
-.51o8 ,..2771 ::; .0208

-1.5
.0103

-1.0985 -.6479 48.5 .0204 .0101
-.5 0 1.0 49.5 .0200 .0100

————— ——...—. ——-- -——-——-— --------- -——- —. ._ ______ .___________
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TAHLE 11.- coMKm!rImBY UmgJAL Im!EKvm,TRANSITION FROM

OH EINTER’VALKCZETOAI?OT!HER

(a)E = 0.002.

x
< % %+1 - ‘n

%-%.
k ?ua ho’

o Uo “al- Uo -4.5 -0.2513 -0.1309
.002 Kl - al -3.5 -.3365 -.1-/7’7
.004

: 5
- U2 -2.5 -.51o8 -.2773.

.cm)6 - a3 -1.5 -1.0986 -.6479

.008 ~ q-a -. 0 1.0

.010 U5 U6- U5 .; 1.0!385 .4507

.012 U6 CY7- (J6 1.5 ;;:; .2338

.014 . . 2.5 .1588

.016 . . .2513 .1204

.018 . . ::; .2c07 .og70

.020 5.5 .1671 .Om
6.5 .1431 .0698

:%% . . 7.5 .1252 .0613
.026 . 8.5 .I.132 .0546
.028 a14 “ u14U15- 9.5 .1001 .049
.030 015 1o.5

(b)~“ = 0.006.

x u~
T ‘%+1 - ‘%

%-XC?
Ax ho Jno*

o ao. ‘3- Uo -1.5 -1.0986 -0.6479
.0Q6 a3 Cf6- C3 -. 0 1.0
.01.2 U6 ‘9- U6 .; 1.0986 .4507
.018 U9 u~ - ‘9 1.5 .5108 .2338
.024 a= U15- au 2.5 .3365 .1588

---- -- ---- -- ---- ---- - ---- ---- ---- ---- ---- ----
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