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UNSTEADY LAMINAR BOUNDARY-IAYER FLOW

By Franklin K, Moore

SUMMARY

The laminsr compressible boundary layer over an insulated flat
plate moving with & tlme-dependent veloclty has been analyzed in detall.
A group of parameters arise which, if large, provide that the classical
"starting from rest" solution applies, and, if small, that the motion
i1s quesi-gteady. These parsmeters relate to the tims requlred for
temporal changes to diffuse through the boundary layer. Deviations
from the quasl-steady velocity and temperature profiles have been
computed.,

Unsteady laminar flows wlth pressure gradlent and, probably,
unsteady turbulent boundary layers are governed by simllar paremeters,
which may be estimated In order to provlide-a criterlon as to whether
quasi-steadiness may be assumed for & glven problem. The case of a
Pluctuaeting veloclty fleld passing over a flat plate 1s dlscussed from
thls point of view.

INTRODUCTION

The unsteady laminar boundary-layer flow over varlous bodles
gtarting from rest has heen analyzed by several Investigators, the
firest of whom was Blaslus (see paragraph 65, reference 1). These
treatments have been concermed with such matters as the onset of
geparation on an alrfoll end the transient effects of impulsive sbtart;
they employ an expansion of some suitable quentity in powers of the
time elaspsed since the start of motlon. Thus, only the earliest phase
of motion is considered.

Unsteady boundary-layer flow for longer times elapsed slnce
starting and for higher speeds require consideration. ZFor example,
the flight speed of the usual rocket misslle varies continuously over
the entire trajectory, and thus the Important boundary-layer effects
of skin friction and heat transfer must, in princlple, be regarded as
unsteady for the entire flight. Recently, Kaye (reference 2) has
dlscussed the problem of unsteady heat-transfer effects assocciated
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with missile flight, and hes taclitly assumed that at hlgh speeds the
boundary layer responds with no time lag to changes I1n stream

veloclty; that is, that the boundery layer at any lnstant is that which
would be associated with gteady motlion at the stream condltions pre-
valling at the seme instant. Such a boundary layer is hereinafter
called quasi-gteady. —

Another type of problem of-unsteady boundary-layer flow for high
gpeed and long elapsed time concerns the response of a boundary layer
to time-dependent velocity or pressure fluctuations in an otherwlse
steady outer potentlal flow.

In the present report of research conducted at the NACA Lewls
laboratory, the case of campressible laminar flow over a eeml-infinite
flat plate in rectllinear accelerated flight through still air is
treated in detail; the flight speed 1s conslidered to vary with time in
& continuous but otherwlse arbitrary memner. The solution to this
problem, which 1ls intended as an idealization of missile fllight, will
be interpreted to provide Insight into & more general class of
unsteady boundary-layer flows, both laminar and turbulent.

The notation used in this report is descrlbed in appendix A.

ANAT.YSTS OF FLOW OVER FLAT PLATE IN UNSTEADY FLIGHT
Equetions of Motlon

The motlion to be considered ls that of a semi-iInfinite flat plate
moving Iin a straight path, normal to 1lts leading edge and in 1ts own
plane. Aside from the disturbance due to the motion of the plate, the
medium (air) is at rest. The spesd of flight may very with time. A
rectangular coordinate system (fig. 1(a)) is chosen to be at rest in
the fluld, such that the plate moves with a velocity U(t) in the
negative x-direction, and y 1s measured normal to the plate. The
origin of coordinates is taken to be the leadlng-edge locatlon at
t = 0.

The Prandtl boundary-layer assumptions are presumed to be valld
for this flow and, in particular, the pressure ls taken to be constant
throughout the fluild, The Prandtl number and speclfic heats are
assumed to be constant. Thus, the approprlate equations of
motion of a compressible fluld are:

3
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These equations may be written In & new coordinate system
(f1g. (b)) fixed with reference to the plate, wilth the origin at
the leading edge. Temporarlly denoting by primes the new coordinates
end the corresponding veloclty components, the appropriate trans-

formations are:

vie v; u's u+U;

5
x'E x+f Udt; y'lsz y; t's ¢
0

Equations (1) becoms:

—r t 1 au o t
) %Eu-,-+u' S}‘i,ﬂr'%;, =P Tt (ug;,)

[ 30 , 96 o] 1 3 f 2 G
PISET ¥ % T * 7 Ey’J=ETyT(“3F)+'C%(§F) ()

%i’—, + 5% (put) +5?7 (ov')

p6 = constant

Herelnafter, the primes will not be used, and x, y, t, u, and v
are understood to be measured relative to the coordinaste system filxed

in the plate (fig. 1(b)).

The temperature-viscoslty relationship discussed by Chapman and
Rubesin in reference 3 is employed; thet is, 1t 1s assumed that the
verlatlon of viscosity with temperature may be approximated by the

relstion
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where C 1 a constant obtained by matching equation (3) to the
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(3)

Sutherland formula at (for exemple) the well. This matching yields,

according to reference 3,

99,-(9‘, + 216° R)

¢ =N\5 \7, TEECR (4) &
AV}
The equations of motion are simplified by the use of a transformation
of coordinates, similar to that employed in reference 4, and of a
stream function, as follows:
d )
Y = (p/o) dy; X8 x; Te t
0
Pe J¥ ¥ (5)
us —p— ES-’. = BT ?
ve (a3 e N Pefw mw .
FTP\ETR| YT XY TS
0 y
Relations (3) and (5) transform the equations (2) of motion to yleld:
Vyp + ¥y¥xy -V x¥yy = TH(T) +VWyyy (6a)
1 v 2
Op + Vybx - ¥xby = g Voyy + & (¥yy) (6b)
The appropriate boundsry conditions on ¥ are
Vy(X,%} = ¥y(0,Y) = U(T) (7a)
¥y(%,0) =0 (7b)
V(X,0) =0 (7¢)

The boundary conditions on 6(X,Y) must be chosen with regard to the

particular problem under conslderatlon.
partial and ordinary differentlation, respectively.)

(Subscripts and primes denote
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Solutions for V, in the Case of Comstant Acceleration

If the velocity is given by the relation TU(T) = AT, time T
being measured from rest, the equations (68) may be written in similerity
form, defining

¥ = AJD aT3/2 g(2,0)
where

Z = YAJVT; ¢®X/AT?

These definitions emable equations (6a) and (7) to be wriltten as
follows: ' '

gz‘%'zgzz'zcgz;+gigz;_gCgZZ=l+gZZZ @)
SZ(Z:O) = SZ(“’:;) = 1; SZ(O:C) = 8(0.1;) =0 (9)

Equation (8) is obtained by considering Vv = -E?- C to be a constant,
(- -]

SubJject to the limlitatlons imposed by this assumption, which 1s dis-
cussed In appendlx B, this anslysls may be considered spplicable %o
compresslble flow.

Case {>>1, - If ¢ = X/AT®>>1, the function g(Z,{) may be
expanded in reciprocal powers of { as follows:

g = go(2) +%gl(Z) +Zl§g2(2) e e

g&'(™®) =1 g'®)=g'l®=...=0
g'(0) = 0; g'(0) =g'(0) = . . =0
g,(0) = 0; g,(0) =g,(0) =. . .=0

When, in equation (8) s Buccesslve reciprocal powers of { are equated,
this definition and set of boundary conditions yleld a sequence of
differential equations, the first of which is

&' -%Zgo" =1+ ggt'?
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and the solutlons

2 zfz2
g, = - % 72 4 (:t)-l/ZZe_Z /4 + (Z2 + 2) (ﬁ)-l/iJh o ° as
0

g1=gz=g3=...=0

This approach provides a solution equivalent to that for the initial
motion of a flat plate with constant acceleratlon presented in
paragraph 66, reference 1.

This analysis clearly pertains to the very earliest stages of
motion since the function g(Zz,{) 1s expanded, in effect, in powers
of time elapsed since the start of motion. In this commection, it may
be noted that the lnertia terms In the momentum equation drop out as a
congequence of assuming {>>1.

The boundary condlition. gZ(Z,O) = 1 has npot been applied., Thus,

no conslderation 1s glven to the growth of the boundary layer 1n the
X-direction, and the effect of the leadlng edge is ignored. The
quantity ¢{ 1is equivalent to the yatio_of the digtance (X) aft of
the leading edge to the distance %.ATZ that the plate has

traveled. (See fig. 1l(a).) If { >>1, it is therefore proper %o
consider that the offect of the leading edge has not yet been felt at
the station X.

Case §<<1. - If, howsver, the distance traveled is much larger
than distance aft of the leading edge, that is, i1f {<< 1, then
account must be taken of the growbth with X of the boundary layer.
The eppropriate expansion of g(2,{) for small wvalues of { is
therefore _

o)) (e

subject to the boundary conditlons

g (%)

I
1
L]
I
(@}

2; &'(®) = gx'(®)

1a)
o
—
o
~
|

=0; g '(0) = g,'(0)
go(0) = 03 g(0) =g,(0) =» . . =0

Substitution of this expansion of g(Z,{) into equation (8) ylelde a
sequence of differential equatlons the_first of whilch is

2229
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8080” +gorn =0

This differential equation and the corresponding set of boundary condi-
tions are preclsely those whlch apply in the case of steady flow over
a semi-infinite flat plate. (See reference 5.) In the steady case,

the argument of gy 1s % '\-/l-_g ’g o In the present analysis, ‘the
X

argument lg

Therefore, at any instant when {<<1, the boundary-layer flow for
constant acceleration is nearly that which would obtaln in steady flow
at a veloclity equal to the Insgtantaneous veloclty of the accelerated
plate; as {~>0, the equivalence becomss precise. The correction terms
arlsing when { 1is emall but not zero wlll be consldered in s subse-
quent section,

Parameters for Unsteady Flat-Plate Flow

Before the flow over a flat plate with an arbltrary velocity-time
reolatlion 1s considered, it is desirable to determine the governing
paramsters. From) the important physical quantitles X, v, T, U’(T),
U (T), . o . yl (T), . . . the following dimensionless quantities
mey be constructed (In addition to Reynolds number and Mach number):

. X2yl o xag(@)
Uz’ US’.'., Un+l,noa

Quantitlies (10) and Reynolds number are therefore the quantitles expected
to govern the unsteady incompressible bBoundary layer on a flat plate with
arbitrary (but differen’biable) ungteady flight speed. These quantities,
In the same form, also govern the corresponding compressible flow, as
willl bs shown In the next section.

(10)

If U = AT, &s in the previous section, then the quantities (10)

specialize to the single perameter ¢§ = —% 'This quantity § has
AT

been noted to be equivalent to the ratlo of the dlstance aft of the
leading edge to the dlstance traveled by the plate.

A more direct physlcal meaning masy be atteched to the quan~-
titles (10), and hence to the special case §, as follows:
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If some physical quantity were suddenly to change at the boundary
of a fluld region of thickness © I1n which conditlions were initially
uniform, this change would diffuse, with time, throughout the reglon;
uniformity would ultimately be established agein. The time for
this diffuslve process to reach some prescribed degree of completion
will, of course, depend on the distance 8 +through which it must act
and on the coefficlent of diffusion V of the fluld (kinematlc
viscoslty for dynamical changes). In particular, one-dimensional
diffusion theory indlcates that the time required is proportional +o

52 /v.

Temporal changes at the edge of a boundary layer will be evened
out, or diffused, through the layer by this mechanism, Accordingly,
the time Sz/b wlll be taken as characteristlc of the time required to
diffuse throughout the layer a unit proportional change occurring at
the outer edge. If the boundary layer is substantially the quasi-steady
flow over a flat plate, 52 is approximately proportional to DX/U, and
the "aiffusion time" is proportional to X/U.

Owing to the unsteadlness of the flow, changes in U appear at
‘the edge of the boundary layer. The time required for a unilt propor-
tlonal change in stream velocity to take place cannct be glven dby a
single quantity, but, rather, will be characterized by the following
got of times:

U o \1/2 v \1/3

'-[-J'-T; Ull ; U"‘ ; L] L] L3
Accordingly, the ratio of "diffusion time" X/U +to the time required
for a unit proportional change to be lmposed is characterlzed by the
following group of quantities:

These quantitles are equivalent to the quantities (10), which may
thus be consldered a measure of the promptness with which the boundary
layer responds to impressed changes. Clearly, then, if the guan-
tities (10) are very small, quasl-steady flow is to be expected. If
the veloclty is increasing, the boundary layer becomes progressively
thinner and hence responds more and more quickly to changes at its
outer edge. This effect clearly tends to establish gquasi-gteady flow.

6222
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Solutlon for Imsulsted Plate and
Arbltrary Veloclty-Time Relation

Solutions of the compressible-flow equations (6) and (7) will be
sought for the case of a flat Insulated plate traveling with a speed
which may very with time in a differentiaeble though otherwlse arbitrary
Way.

If consideration is restricted to a stage of motion where the
diffuslion time is already rather small, the stream function may be
defined as

v = U/\’% (o, osb1s805 « o - ) (11)
where QB ;‘ YX %, and §{, is a functlon of X,T, the definition of
which will be deduced in the course of the analysis. 'Similerly,

& =1+ R @) »(0,4,8,,¢ ) (12)
o z Y% 250281580 ¢ 0

(The "recovery factor" is -r(O,CO,Cl, e e e)e)

Substitution of definitions (11) and (12) into equations (6) and
(7) yields

Xu* XUt
Tang + Tfan = -8 =5 + 22 —5 +x2 £, & fo -
oog (o12) T2 ( § nX)

ZXfOOZ:)annX‘“*%E crc.n;,ﬂ,+z;3F.UU_Zlc:fw

(13)
rgg + Br frg + = Pr(fgg)® = 4-_'Pr(2 E1[;—2'1- +%%"I‘c +
v Z *gabar + 7 %o Z 7y box - F X5 Z f;n;nX)
n=0 n=0 n=0
(14)

fol,8n) = 2; £5(0,85) =£(0,{,) =0 (15)
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Since the case of-an insulated plate is to be treated, (%g) = 0; the
W

function r +thus satlsfies the boundary conditlons
rg(0,8y) = 0; rl,6,) =0 (16}

Equetions (13) and (14) may be considered correct only if the
quantity vV may be agsumed constent. For constant wall temperature
or for incompressible flow, equatlon (4) indicates that C, and
hence V, would be constant. However, under the comditlon of no heat
transfer, the wall temperature, and hence V, must depend to scme
degree on both X ‘and T. The circumstances under which this
dependence may be neglected are discussed In eppendix B.

Equations (13) and (14) may be made self-consistent (that is,
containing only functions of O and the various {,) by defining

XU? c xegtt . ot

bof =z L=z s 8e2=g 5 (17)

These definitions correspond to the quantities (10) previously derived
by dimensionel reasoning. If the quantities (17) are considered small,
the functions £ and r may be expanded as follows:
£(0,8,) & F(0) + §ofo(a) + {1f1(0) + « o « +§0%Fo0@) + « « o +
€obifo10) + . « (18)
r©@,8,) = R(O) + Lorg®) + £1r1(9) + « o o +80%r000) + 4 . .+
Lob1x0r @) + o o« (19)
Substitution of equations (17), (18), and (19) into equations (13)
through (16) and collecting terms mnltiplied by the various powers and
products of the §, yields, in part,

Ft'' + FF'' = O (20a)

£o''t + FEQ'T - 2F'Egt + 3F'IEy = -4(2 - F!) + 20F*! (20b)

£111t 4 FEy 'Y - AF'Ey Y 4 SFUIE) = 480" (200)

6222
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F'(@) =2; F'(0) =F(0) =0 (21a)
Fpt(e) = £,7(0) = £,(0) =0 (21pb)
R'' + Pr FR! + %‘-Pr(F”)z =0 (228)

I‘o” + Pr FI‘Ol ~ ZPr F'I‘o = Pr (-F”fo” + 8R + 20R! - SR'fo) (ZZb)

ri'' + Pr Fry' - 4Pr F'ry = Pr (wF"fl" + drg - SR'fl) (22¢)

R'(0) = R(®) = 0 ' (238)

r,'(0) = ry(®) = 0 | (25v)

Equations (20a), (2la), (22a), and (23a)} are the equations
appropriate to steady flow. Accordingly, edquastions (18) and (19) indi-
cate that for small values of the ;n the laminar compresslble boundary

leyer on an Iinsulated flat plate 1s nearly quasl-steady, with respect
to both veloclty and temperature profiles, provided that f, and r,

and thelr derivatives are of unlt order of magnitude.

Magnitudes of ;n' - The system of equatlons Just derived wlll bs
valid only under circumstences in which the §{, are small, and (to be
conservative) can be arranged in a decreasing sequence. The first, and

b4
usually dominant member of thils group, is ;O = A In practlical

2'

U
sltuations, the requirement of small ;O will commonly be met. For
example, at a distance of 10 feet aft of the leading edge of a body

having an instantaneocus acceleration of 100 feet per second per second
(about three times the acceleration due to gravity), the quantity {g

will be less than 10 percent for & veloclty greater than 100 feet per
second and less than 1 percent for veloclties greater than 316 feet per
gecond. For the case of constant acceleration at 100 feet per second
per second, §g Wlll be less than 1 percent after the first

3.16 seconds of flight,

For constant acceleration, {n 1s the only nonzero  {,. For
flight at a velocity U proportional to T%,

by = Bl g2y ¢, - mlllacd) o8
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and so forth. For this case, the ;n taken in order clearly form &
decreasing sequence if {g itself i1s small and m is not too small.

Since the successive {, 1lavolve increasing powers of veloclty In the

denominator, it will be true that the §{, wlll generally form a
diminishing sequence for moderate or high speeds, provided that U(T)
is a differentiable function. The higher the speed, the more sharply
U(T) may vary wlthout violating thils requirement.

Solution of momentum equations. - The solution of equation (20a)
subject to boundary conditions (2la) 1s available In reference 5. The
following features of the function F(O) are important:

F11(0) = 1,328 (24)

Iim
g

Equations (20b) and (20¢) subject to boundary conditions (21b) have been
solved by direct numerical integration., The method used is described in
appendlx C., Values of fO(O), fl(O), and thelr derlvaetlves are presented

in table I. The functions F'(0), £,*(0), and £,'(0) are plotted in
figurs 2. : . _

[F(g) - 20] = -1.721 (25)

The well shear stresé T = (u g%) may be obtelned 1in the
W
followlng dimensionless form:
T t Tt
W 1 [v U b Gitj
=—,,/— F11(0) + = £5'*(0) + F12(0) + . .

-

or, according to equation (24) and the results presented in table I,

T v Xyt xeyt
%p::UZ = (0.664)A/U—i [1 + (2.555) -U-§ - (1.414) 3 + e e ](ze)

The leading term of the right side is the quasi-steady solution. As
would be expected, positlive accélerstlon provides a skin frictlion hlgher
than the quasi-steady value.

Displacement thickness. - The displacement thlckness 8* may be
deflned as follows:

2229



6222

NACA TN 2471 13

or, by use of equations (5) and (11),

B HJE;J‘ I:zp-;i - f'(o):‘ 4o =A/%r l:z 59- - f'(d):l a0
0 0

or, when equation (12) 1s introduced,

(-]
3% = %‘-’ [2 - £1(0) + (9-1) Mm2 {I ao
. _

‘When equetions (17) and (19) are used, the following equation results:

8% =7 T4 9w (20 - F) -I:Efo(w) P BT @) :| -

T 02 _;
(-] -] -}
(7-1) M 2 Rao + T rgao + 20N rac 4. ..
2 3
U U
0 0 0

When equation (25) and the information In tables I and ITI are applied
for air having a Prandtl number of 0.72, this expression becomes

B% = (1.721) A /EU‘_’{L + (0.645) (7-1) M_% - (0.592) ;Ig_é E+ (2.938) (y-1) MOEJ-

2 11
(0.694) ng [1 - (2.702) (7-1) M,,Z] i }

(27)

the leading term of which is the quasgl-steady result. Positive
acceleration results in a boundary layer which is thinner than the
quasl-steady boundary layer.

Svlution of energy equations. - The solution of equation (22a) is
avallable (for example, in reference 3). The remaining equations (22b)
and (22c), subject to boundary conditions (23b), have been solved for
Pr = 0.72 by direct numericel Integration. The method used is descrlbed
in appendix C. As a check on numerical procedure, equation (22a) has
been solved by the seme method. Values of R(O), ry(9), r1(0), and
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their firvet derivatives are presented in table II. The result
R(0) = 0.848 agrees closely with the value 0.845 given in
reference 3. The functions R(0), rg(0), snd ry(0) are plotted in

flgure 3. The recovery factor for Pr = 0.72 ls

(0) = RO} + XL 2(0) + ng;' £ (0) 4 . v

or, from table II,

t 1t
r(0) -_-..(0.848)[1 - (2.852) EU-E + (3.2686) b + oo e :I (28)
U U3
the leading term of which is the quasl-steady solution (see refersnce 3).
Positive acceleration results in s surface temperature lower than the
quasgli-steady value.

UNSTEADY FIOW IN PRESSURE GRADIENT

The foregoing anelysis has shown that the boundary layer on a flat
plate traveling wlth & spsed which varies with time becomes quasl-

steady for vanlshing values of the parameters XU'/UZ, XZU"/Us, and
so forth. When these quantitles are small but not zero, proportional
correctlion terms arilse.

When the behavior of & boundary layer in unsteady flow with
pressure gradient ls to be investigated, .1t would appear expedient
firet to inqulre whether the boundery layer may be considered quasi-
steady. If this is not done, needless effort may be expended on an
eggentlally simple problem. In order to establish & criterion for
quasi-steady flow in & pressure gradlent, knowledge 1s required of the
glgnificant paremeters arising in the unsteady equatlons of motlon.

Integrated Momentum Equation

The incompressible laminar boundary-layer equatlons for unsteady
flow,

Ug + Uy + iy = Uy + Wg + Vugy (29)

ug + vy = 0 (30)

6222
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may be integrated to yleld
du
S (mox) + & (UPowx) + TUy 8% =V (6?)w (31)

wvhere X ani y are measured along and normal to the wall,
respectively (fig. 1(c)), and where

o}

8
S*Ej‘ ( -%) dy; %= %(1-%)@ (32)
0

0
where © 1a considered s measure of the thickness of the boundary

layer, as 1ln the Pohlhausen analysls (see paragraph 60, reference 1).
The veloclty profile is written

Zenlxn); ned (33)

The differential equation (29) may be evaluated at y = 0 to yleld
Uy + Wy = -W(ugy)y
whence, by use of definition (33),

5%u, ®2Uy

~bnq (x,0) = —5= + 55

or
Byq (£,0) = T = =(A +§) (34)
where
5%,
= =5 ("Pohlhausen A", see paragraph 60,
reference 1)
820,
¢ =57

Equation (34) indicestes that the functional form of h may be written

2= n@,n) (35)

d
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whence,

8% = BEX([); O** = BEM*() (36)

Substituting equations (35) and (36) into equation (31) ylelds

1 ame\ 3 (82 5%, 8%y, é) dE*
(E B* + d—rr) E‘E-—(—G +-( 7 + Zu ~ ¢ ir *

TE* + gﬁ %x. (v%E**) = 1y (T',0) (37)

Fguation (37) showe that, irrespective of the time variation of
U "and O, the boundary layer will be quasi-gteady 1f the following
quantitles are each sufflclently small:

%y 3 (?f) o4 Uy

k) ] 2
VU E\P o2 w2y

As has been mentioned previously, the quentity 82/9 mey be regerded
as a measure of the time required to diffuse a change through the
boundary layer. Changes iIn tlme of elther U or © may give rise

to effects to be diffused., Thus, the first and last of the

quantities (38) may be regarded as the ratios of diffusion times to
the times for unit changes of stream velocity to occur at a given
value of x because of acceleration and rate of increase of accelera-
tlon, respectively. The second member of the group ls proportional to

2 :
§6-%-g% and thus relates diffusion time to time for the occurrence

of & unit change in .

(38)

Relative to & mass of fluld passing through the boundary lsyer,
temporal changes may occur by reason of variation of U or % with =x.
Measured iIn thils way, the time for a unit change in velocity to occur
1s 1/Uz. Forming the usual ratio with diffusion time yields

2 . _ .
2, Ux, which is the "Pohlhausen A". If this perameter venlshes, the
boundary layer is that appropriate to the case of zero pressure gradient.
It is interesting to note the analogy with unsteady motion: "Quasi-
flat-plate” flow wlll occur even if U, does not vanish, provided that

2
Qy'Ux 1s esmall enough; the requirement 1ls that changes In U diffuse

2229
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to the wall much more rapidly than they occur in the stream. Accordingly,
the third member of the group (38) 1s analogous to the fourth but -
depends on both Eulerien and Iagranglan time varlations of U,

It may further be noted that the quantity [' (equation (34)) is
related to the diffusion through the boundery layer of changes Iln shear
stress due to stream veloolty variation: Roughly, the shear ls propor-
tional to U/8, and because of velocity variation alone, 1ts total time
derivative is Uy/S + UUg/8. The ratio of diffusion time 82/Y +to the

time for unlt proportional change of shear to occur 1s thus

52 S(U.b UUx) ) 82y, 87U,

PTO\5 B vg t o =T

5%y

For the case of zero pressure gradlent, the parameters L and

VU
d (&2 XU
ST\T both reduce to the previously discussed quantlty == and the
84U - U
parameter Ztt reduces to = z Therefore, 1t is to be expected
VU U
5%, 3 (82
that -7 and ST\ V" wlll usually be of the same order and, for
54U
moderate or high speeds, will be much larger than elther ;t or
v
v2y

The foregoing'discussion pertalns directly only to Incompressible
flow although similer conslderatlons might be expected to epply i1n
compressible flow.

For small, but nonzero, values of x'U'/U2 and xZU"/US,
proportional correctlon terms of the same order of magnltude arise in
formulas (26) to, (28) for shear stress, displacement thickness, and
recovery factor in flow with zero pressure gradient. Since XU'/U
and xZU”/U3 are special cases of the guantities (38), it is
expected that for ceses involving pressure gradient, the magnitudes
of the quantities (38) indicate quentltatively the order of magnitude
of departure from the quasi-steady condltion.

In & specific problem, the quantlities (38) may be estimated as
follows: Since a criterion for quasl-steadlness ls desired, the
boundary-layer thickness & may be estimated on the basls of quasl-
steady flow. If the resulting values of quantities (38) are of such a
magnitude as to indicate nearly quasi-steady flow, the assumption made
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in estimating © is proper. In many cases, thls estimate of 8, and
perticularly of o5/dt, which appears in the secaond member of the

group (38), can be mede only by finding the complete quasi-steady ' <

solution, a gamble justified In view of the great difficulty in finding
a complete unsteady solution free of such assumptlions.

Osclllating Stream Velocity

As en example to which the foregoing dilscussion applles, the
gtream veloclty over a flat plate 1s represented as

. X
U =Ty +uy ein 2x k:(ﬁz - £) (39)

which denotes a flow whereln & sinusoldal veloclty disturbance of
amplitude wuy and frequency Xk 1is carried downstream with the mean
veloclty Usy; the maxlimum magnitudes of the quantitles (38) are, from
equation (39),
2y. w U+8 ’
t o) Rex = —%

X “1
vU zZﬂResUlﬁi, 65..-1,-

54Ui3 64Utt 5x\2 uy
5 ~ ~ 2%t Reg ool B
v VU |pax 1/ 01

2

The quantity gE'(QF) cannot be estimated properly in advance.

Tentatively, 1t may be assumed that it 1s of the same order as
BZUﬁ/UU, and then, if 1t 18 concluded that the magnitudes of the
remaining quantities indicate quasil-steadiness, the quasi-steady
solution may be found and then analyzed to provide, as & check, a

. (a?)
more preclse estlmate of SE\T/"
5k 11 5k\2 U1
Thus, 1f Reg ﬁ ﬁ-z << 1l and (Rea IT;[) T << 1, the flow in
question may be regarded as quasi-steady. If, as & rough approximation,
the formule Ffor boundary-layer thickness for steady unlform laminar

flow over a flat plate i1s used, and if it is assumed that k = 10 cycles
per second, U; = 100 feet per second, and ui/Ul = 0.1, then for

approximately the first foot downstream of the leading edge,
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end

B\ 71 <
(Rea Ul) 7 S 0.001

UNSTEADY TURBULENT BOUNDARY IAYER

The physicel Interpretatlon of the governing paresmeters in laminsr
flow would seem to have sufflclent genersllty to permlt extenslion to the
cage of the turbulent boundary layer. The most Important quantitiles
yould be

5%y Ty 8%, (40)
P ° vg ° V5 °

where V 18 to be interpreted as an average diffusion coefficient.
The coefficlent of diffusion by turbulent mixing may be writtem Iu?,
where 1 1s a "mixing length” and u' is related to the intensity of
turbulent fluctuations. If the assumption ls made that 1o d and
u'oc U, then the paramsters (40) mey be written
Ux 9U4 B¢
TR T

U
In reference 8 1t was shown that the parameter _ﬁx_ may not be

consldered to govern the response of a turbulent boundsry layer to an
adverse pressure gradient., The evidence ls Inconcluslive for favorable
pressure gradlent, Thus, the assumption made as to the form of the
turbulent diffusion coefficient 1s of questionable value and only
gualitative significance should bs attached to the unsteady flow
parameters SUt/UZ and S.b/U + In the absence of pressure gradilent,

8 may be taken to be (very roughly) proportional to x; thus

8U;, Uy ©

t
e E T

Therefore, 1t would seem that for zero pressure gradient, 1f
XU.
—I-I% is emsll enough, & boundary layer wlll tend to be quasi-steady
vhether it is laminar or turbulent.

Actually, for zero pressure gradient, the quantlty ::IZT.,..,/U2 may be

obtalned without assuming a specific form for the coefficlent of
turbulent diffuslon. The boundary-layer thickness 8 may be thought
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of ag the result of labteral diffusion of vorticlty from a polnt source
(the leading edge of the plate) moving with a velocity TU. (Compare
paragraph 17, reference 1.) If thls process occurs without the com-
pllicating effects of pressure gradlent, one~dimensional dilffuslon theory

would lndlcate that 82 = v%, where Vv 1s either a laminar (molecular)

or turbulent diffusion coefficient, and x/U 1s the time elapsed since the

source oft vorticity passed the station =x. Thus, the "diffusion time"

82/ U appearing in the quantities (39) would be given roughly by x/U,
82U, : |

vuU

and the quantity reduces directly to xUy/U%.

Of course, the parameter xU.b/UZ ylelds & rather unsatlsfactory

criterlon for quasl-steadiness In the turbulent case because no indlca-
tlon hes been glven of the magnitude of departure from quesi-steadlness
ggsoclated wlth small nonzero values of this parsmeter,

CONCLUSIONS

The laminar compressible boundary-layer flow over.s flat plate
moving with a time-dependent veloclty has been anslyzed in detall.
In the course of this analysls, a group of parameters arise, the
megnitudes of which determline the nature of the flow unasteadlness. If
the perameters are very large, the classical "starting-from-rest” solu-
“tlon applles; if very small, the flow may be regarded as nearly quasl-
steady; that ls, at any I istant the motion 1ls nearly that which would
be obtalned in steady flow at the conditlons prevaelling at that lnstant.
The deviatlons of velocity and temperature profiles (for an insulated
plate) from the quasi-steady state have been computed. Relative to
quasi~steady flow, constant acceleration resulte in a thinner boundary
layer with greater skin frilction and lower wall temperature.

These parameters governing unsteady flat-plate flow may be shown
to be speclial cases of a group of quantitles whlch compare the time
required to diffuse & unlt proportional change In some stream quantity
to the wall end the time for a unit proportionmal change In that quantity
to appear in the outer flow. For moderate or hlgh speeds and rather
large accelerations, the flrst member of thls group ls commonly very
small. The generallzed unsteady flow parameters egppear expllicitly in
the integrated momentum equation for boundary-layer flow with an
unsteady pressure gradient.

In various problems of unsteady boundary~layer motion, for example,
in the presence of osgeclllations in stream veloclty or pressure, these
paraneters provide an advance crlterion as to whether the flow need bs
congldered essentially unsteady or whether the motion may be consldered
quasi-sgteady.
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In the absence of a pressure gradlent, the unsteady turbulent
boundary layer is expected to be governed by the same unsteady flow
parameter ag governs the corresponding laminsr boundary layer.

Lowls Flight Propulsion Isaboratory,
National Advisory Commlttee for Aeronautics,
Cleveland, Ohio, May 25, 1951.

21
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APPENDIX A - NOTATION

The following notation 1s used in thies report-

2229

A acceleration

c constant appearing in tempereture-viscosity relaetion

cp speclflc heat at constant pressure

F related to stream function for flat plate in steady flow
f,g functions (identified by numerical subscript) related to

stream function for unsteady flat plate flow

H*, BE** dimensionless forms of &* and &**

h dimensionless velocity profile

M Mech number

Pr Prandtl number

R function related to temperature profile for steady flat-pléte :
flow

r functions (ldentified by numerical subscript) related to temper-
ature profile for unsteady flat-plate flow

T, t time

U stream veloclity in x-direction

u veloclity in X, x-direction

v veloeity in Y, y-direction

X x coordinate along wall . -

I, ¥ coordinete normal to wall

Z dimensioniess coordinate (YA\/EE)

dimensionless parameter (A + £)
T ratio of speciflc heats

(s} _ boundary-layer thickness
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5*, g** displacement and momentum thicknesses
¢ dimensionless coordinate (x/ATZ)
1 dimensionless coordinate (y/8}
] temperature
82U,
A Pohlhausen parameter D ‘
1 coefficient of viscosity
v constant (C ﬁ‘)
Peo 2
Ug
¢ dimensionless parameter ( vU‘)
p density
g dimensionless coordinate (JZI - g)
X
¥ stream function
Subscripts:
W evaluation at wall (y = 0)
o evaluation in stream (y-> )

Subscript notation for partiael differentiation is used when
convenient. Primes are used to denote ordinary differentiation.

23
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APPENDIX B
ASSUMPTION OF CONSTANT v
Equations (20} and (22) are derived for constant V. Deriva~-
tives of ¥V with respect to time appear in the following terms of

the differential equation (6) when definitions (11) and (12) are
introduced:

B1)

-~
e - 2 - 1
or_xml, Myl (2___)_1_ E' ¢ tur
b 2 dt 2 v ©/z %o Gnn
0

The quantity vq/V = Cp/C may be obtained from equation (4).

Since the flat plate is consldered to be insulated and since this
discussion 18 concerned only with orders of megnitude, 6, may be

taken equal to the stream stagnation temperature Q,(l + Iéi M,?).
When it is noted that y for air is about 7/5,

1.2 _ 216° R
vp  Cr 1y Mo Lt gt - ==
V=T =50 0
¢ P U ralmBl\aednt 2R
5 B
Thus, Vp mey be neglected in expressions (Bl) if
0
o lMc,z 14+ 1 Mmz 216 R
U I 5 % << 1 (B2)
Ut ¢f ¥
1+ M2 1+£M°,2+.21_5'L§
5 5 )
®
u Cop . U Cr
If My =0, l'ﬁr—é—|=05 and if Mg = o, l.[?-a- =1, If 6Oe
C
is about 430° R, %_CEI = 0.07 for Me= 1, and 0.25 when Mg= 2.
The errors in determination of fo and Ty due to neglect of VT
are of order é%.%z . Therefore, for reasonsble values of 6e and

for subsonic Msch numbers, the dependence of p on T may properly
be neglected. Of course, for high speeds when DT might be important,
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the correction to the quasi-steady solution tends to be of slight
importance since the magnitude of the correction is governed by such

quantities as XU'/UZ, which tends to be small for large velocities.

Derivatives of p with respect to X appear in various terms
of equations (6) when definitions (11) and (12} are introduced.

The quantity vx appears in all cases in the factor 1 + X %%
end may be neglected if X %Yz =X %X <<1. Equation (4) combined with

equations (12) and (19} yields, for small 6o .

’ Uc
X &{_ = -l .—2 &'— ro(o) + . . L]
c 27U'c Ul

If 1ro(0) is taken to be of unit order, it may be shown that
neglectling DX also involves an error in fO and To of

order k%% %31.
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APPENDIX C
INTEGRATTONS
Integration of Momentum FEduations

The ordinary differential equation (20b) of third order for
fo(o) and the boundary conditions (21b) constitute a two-point

boundary~value problem, whlich may be solved numerically as follows:
The scale of o is divided into intervals of 0.1. If the value of
fo(o) &nd its derivatives is known at-five successive points, a

fifth~degree polyromial may be mastched to the five known and a sixth
unknown value of fo"'(c). This polynomial may be integrated to

yield £4''(0), £5'(0), and fy(0o) at the sixth point in terms of
the six values of fp'''(o). The condition that fo(o) and its

derivatives must satisfy the differential equation (20b) at the sixth
point serves to determine at thet point-the value of f5'''(c), and

hence the values of f,(c), fo'(c), and fo"(c). Thus, given the

solution for five consecutive points, the solution may be extended to
the next point. :

The foregolng numerical procedure may be used for single~point
boundary-value problems, provided f(c) is completely known for the
first five intervals. In this case, the first-five wvalues are found
by expanding fy(c) and F(o) in a Taylor's series about o = O.

The difficulty presented by the fact that boundary conditions are
given at two points (c = O,GJ is overcome by splitting the origlnsl
two-point problem into two single-point problems, as follows: The
solution f£5(c) 1is written _

£o(0) & cep(L) (o) + £5(2) (o) (c1)

where C 1is a constant. The quantity fo(l) (o) 1s taken to be
the solution of the single-point boundasry-velue problem

O e R A AT sz, (1) w0
(c2)
fo(l)" (0) = 13 fo(l)' (0) = fo(l) (0) =0
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and fo(z) (o), the solution of

fo(z)nr + FfO(Z)H _ ZF'fo(z)' + 3F“fo(2) - - 4(2 - F') + 20F'!
tt 1 (CS)
fo(z) (0) = 1’0(2) (0} = fo(z) (0) = 0

Definitions (Cl) to (€3} provide that

fo(o) = Cfo(l) (o} + fo(z) (o) will satisfy differential equation (20b)
and will yield, at o= O,

fo''(0)} = 3 £5'(0) = £o(0) = 0

If, after fo(l) and fo(z) have been determined, C is taken equal

1im fo(z)'(c)
I . (1)

s (o)

satisfied, and the solution for fy(o) may be written

to » ‘the boundary condition f£4'(x) = 0 will be

(2)' (s
S Py o ot EARNCRESSNS

0 )

The number of intervals for which it is necessary to compute fo(l)
and fO 2) is primarily determined by the accuracy desired for the
constant (.

The solution of equation (20c) is also obtained by the foregoing
method.

Integration of Energy Equations

Equations (22a] to (22c) are solved by the same method as is
used for the momentum equations, except that a secondsdegree‘(rather
than fifth—degree) polynomlal is matched to three successive values of
r"(c). This simplification is considered warranted by the fect that
the energy equations are of lower order than the momentum equetions.
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TABLE I - FUNCTIONS ASSOCIATED WITH VELOCITY PROFILE

t 1 1 1
g fo fo fo ! fl fl fl'

0 0 0 5.394120| © 0 -1.878370
.2 057747 .529447 1.953432| ~-.036758| -.359945 | ~1.653824
4| .194689 802508 .829535 | -.138740 | ~.642866 | -1.147047
.8 565840 | .881837 .013897 | -.286337| -.813374| -.557151
.8 .538543 .827366| -.512697| -.456399| ~.869151| -,018114

1.0 .691664 .693876] -.783065| -.627640 | -.828805 .396729

1.2 .814136 .528061| =-.845153| ~.783550| -.721068 .653481

1.4 .9503266| .365638f ~.760117| =~.913840| -.577909 . 7153609

1.6 .962232| .229349| ~-.594847 | -1.014405| -.428269 . 724592

1.8 .995747 .128992/ -.409600 | -1.086252 | -.293752 .610518

2.0 ! 1.Q14474| .063862| -.247975| -1.133778 | -.186499 481844

2.2 | 1.023130 .026808]| ~-.130397 | -1.162855| -.109292 .513684

2.4 | 1.026420 .008672{ -.057777| -1.179289 | -.059187 .193292

2.6 1.027286| .001372| -.019894| -1.187871| -.029603 .108468

2.8 | 1.01r0088| -.000727| -.003696 | -1.192011} -.013669 .055563

3.0 | 1.018913| ~.000829 .001437 | -1.193852 | -.005818 .026086

3.2 1.018786 | ~.000433 .002081 | ~1.194603 | ~.002261 .011299

3.4} 1.018711| -.000377 .001358 | -1.194883 | -.000770 . 004460

5.6 1.018660| -.000175 .000668 | -1.195151| -.000210 .001640

5.8 1.018637| ~.000082 .000276 -1.195168| O .000600

4.0 1.018622| -.000043 .000088 | -1.195160| .00O00S0 .000250

4.2 | 1.018617f ~.000034| .000014| -1.185130| .000120 .0001860

4.4

1.018612| -.000031| -.000012| -1,195100 .000140 .000140
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TABLE IT - FUNCTIONS ASSOCIATED WITH TEMPERATURE PROFILE

o R R! rO ro‘ Ty rl'
0 0.848000| O -2.418820( O 2.769860 0

.2 .835307| -.126789| -2.382630 374156 | 2.678376 -.846230

4 797491 -.250398| -2.267210 .779209 | 2.455221 ] ~1.335023

.8 . 735902 -.36271L7| ~2.073428 | 1.147468 | 2.160495| -1.573702

.8 .653919] -~.452272] ~-1.814377| 1.423885 | 1.837448 | -1.634264
1.0 .557308| -.507224| ~1.512653 | 1.569377 | 1.513939 | -1.587060
1.2 .453863| ~.519942| -1.196740 ) 1.567789 | 1,207085 | -1.472302
1.4 .352151| -.490678 -.894813 | 1.431645 .928167 | -1.309995
1.6 .259817| -.428239 -.830473 | 1.200147 .685411 | -1.113120
1.8 . 182087 ~.347426 -,417568 .926319 .484180 -.887970
2.0 121126 ~-.262489 -.259398 . 660089 326110 -. 684630
2.2 .076520| -.185622 -.150731 435205 . 208880 -.492490
2.4 .045900) ~.123264 -.081592 . 265658 .126810 - 334450
2.6 .026133| ~.077049 -.040868 .149928 .072500 -,214940
2.8 .014108}| -.045402 -.018722 077734 .038410 -.131330
3.0 .007206] -.025243 -.007696 036708 .019510 -.061160
3.2 003468 -.013248 -.002728 Q15507 010000 -.034920
3.4 .001555] -.0065865 -.000742 .005627 . 004880 -.017880
3.6 .000831| -.003073 -.000088 .001555 002340 -,008470
3.8 .000209 | -.001358 .000053 .000132 .001200 -.003640
4.0 .000027| -.000567 + 000032 | -.000242 000720 ~-.001320

(=) [~ -] ) (-]
S Rdo = 1.10974 J\ rodd = - 2,99236 j rldc = 3,22928
0 0 0

2229



2229

NACA TN 2471

31

J
Pogltlon of plate
S at time t = 0
= b o
—

(a) Coordinates Fixed in fluid at rest.

U(%)

(b) Coordinates fixed in plate.

U(x,t)

Wall

(¢) Curvilinear coordinates; y = O on wall.

Figure 1. - Coordinate systems used in analysis.
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Figure 2. - Functlons associated with veloclty proflle.

6222



33

NACA TN 2471
3
AN
N
ry
l e
T R N\
O \\\'\
Ei 0 //,,—T::E:==EEEi o}
. S /
s 4
~
/
-
//40
=2 ////
A
s ey ‘QZN;QA;7 '
1 1 I
0 1 2 3

Figure 3. - Functlions associated with temperature profile.
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