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By Chung-Hua Wu and Eleanor L. Costilow

SUMMARY

Analysis of the supersonic flow in two &o-dtiensional high-
solidity cascades and in a partly supersonic symmetrical nozzle shows
that there is, in general, significant deviation of the mean streamline
shape from that of the mean blade line and that the effect of blade
thickness smd blade curvature on the specific mass flow along the mean
streamline is to increase the specific mass flow along the mean stream-
line about 9 percent above that givenby a one-dtiensional estimate.
In order to determine these effects more accurately for turbomachines

. of ar%itrary hub and casing shapes to be used for the three-dimensional
through-flow calculation, a method is developed for the determination of
the supersonic flow along stream surfaces of revolution in turbomachines.

. In this method, the shapes of the stream surfaces sre arbitrary, and the
method also takes into account the distance between adjacent strean
surfaces, which varies along the flow path. Thus, the method can be
applied to turbomachines with arbitrary hub and casing shapes.

Tn addition to their use for direct probl-j these equations can
be used to design blade elements in supersonic flow along an arbitrary
strean filament of ,revolutionin turbomachines.

INTRODUCTION

Recent investigations of the applicability of supersonic flow in
compressors have shown the desirability of using such flow to increase
the pressure ratio per stage (references 1 and 2). For axial-flow
compressors having blades with short radial length, the over-all
performance analysis is often based on a one-dimensional approximation,
in which only average values tithe channel are considered (for example,
references 3 and 4). For radially long blades =d variable root or tip.
radii, methods are proposed for analyzing the flow by a three-
dimensional “through-flow” calculation, which considers the axial.and
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radial variations of the flow but only a mean value in the circumferen-
tial direction (references 5 end 6). The flow on the relative mean
stream surface, which divides circ@erentially the mass flow passing
through the channel between two blades into two equal-parts, is taken
to represent the mean flow through the blading. It is suggested in
reference 5 that the shape of this mean stream surface end the correction
factor b for a finite nuniberof thick blades be obtained from the
analysis of a nudber of two-dimensional flows along general surfaces of
revolution starting at different inlet radii. A method was therefore

developed at the NACA Lewis laboratory to determine the flow variation on
these flow surfaces in a supersonic turbomachine. When the flow surfaces
may be approximated by cylindrical surfaces, the flow equations reduce-to
the usual plane flow where the hodograph characteristics are applicable
for the flow analysis if the entrance shock is weak.

Ih order to illustrate the effects of blade thickness and blade
curvature and to determine, in general, the correlation between the
shapes of the mean streamline Wd the mesm blade line, flow on the mean
streamlines was determined for two supersonic cascades ~d a P~tlY
supersonic hyperbolic nozzle.

This method, in addition to its use for flow analysis of a given
blading, canbe used to design blade elements along stream filaments of
revolution having arbitrary thiclmess variation along the flow path.

SYMBOLS

The following symbols were used in this report:

A

a

b

c

CP

h

I

J,K,L
M,N

area normal to velocity

local speed of sound

correction factor for finite number of thick blades

line tangent to characteristic curve

specific heat at constant pressure

static enthalpy

h+~-&%2

coefficients of partial derivatives of ~

N
N
u-l
o
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0
m
N
N

. 2,($J

M

m

P

R

r

s

T

t

w.
. X,y

.

T
a

$

orthogonal coordinates on mean surface of revolution

local Mach nmiber

mass flow between suction surface of blade and streamline,

J

t
pw d~

o

blade pitch or spacing

gas constant

radial distance from axis of machine (fig. 1)

entropy

static temperature

blade thickness h the y-direction

resultant relative velocity

rectangular coordinates for
chosen

relative

ratio of

slope of

Mach angle, sin-~~

along line joining

flow angle, tin-l

specific heats
,

characteristics on

. 1

cylindrical flow with y-axis.
leading edges of blade

mean surface of revolution

distance measured from suction to pressure surface normal
resultant velocity

mass density

slope of mean surface of revolution in meridional plane,
w

ta-l #
z

normal thickness of stresm filament of revolution

stream function

to
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u) angular velocity of blade

Subscripts:

i inlet condition

2,cp meridional and circumferential components

m on mean streamline

r,z components in r- and z-directions,respectively

s initial supersonic stat-e

t at throat of nozzle

X,y components along x- and y-directions, respectively

1,2 first and second fsmily of characteristics,respectively

METHOD

On a general surface of revolution defined by the orthogonal
coordinates 2 and Cp (figs. l(a) to l(c)), the supersonic flow of a
fluid along a stream filsment of revolution of varying normal.thickness
‘r= T(l) is described by the–following forms of the flow equations. By
analyzing the flow going in and out of the element shown in figure l(d),
the continuity equation for steady flow maybe expressed by

When equation (1) is expanded and the relation

(1)

dlnp=~-
a2 d (;)

is used, equation (1) becomes -,..

.

—

i

(2)
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. For adiabatic flow, the entropy along a streamline remains constant for
a nonviscous fluid; that is

Ds as lQa8
—=wz~+r~~=()
Dt

which allows the last term to be dropped from equation (2). For a
perfect gas,

h = CPT

a2=(T-l)h

When this substitution is made for a2 sad the expression is multiplied
1

and

.L

by by-l, the equation of continuity (2) becomes:

.

%(%r~)+%(.w&*)=
.

0 (3)

E~ressed h the coordinates 2 and q, the equation of steady motion of
a nonviscous fluid as given by equation (14a) in reference 5 in the
circumferential direction, is

From eqwtion (3), a stresm function ~ is defined by:

(5b)

Substituting equations (5) into equation (4) results in the follow-
ing relation:

d
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()1 S,2W2%+(’-WG3- ‘.3a32ww J
a2

-+[(.%+$)-.+$*+%]%-
—
~.

E’ the symbols J, K, L, M, and N are used
of the partial derivatives in equation (6),

u

to represent the coefficients
it-may be rewritten as

(7)

The characteristicsof equation (7) are then
.

J(r~~-2K(r~)+L=0 (8)

For equation (8), two real characteristicsexist for supersonic
flow, the slopes along which are

When the polar coordinates

() ()~=sin-l- 1 = sin-l-~ x
ii

to the flow angle and the

sin-1

K K&
,.

)dq a--—
ml J J (9a)

.g+s
)

Q
d22J J (9b)

‘Ptransformation that j3= tan-l — andWI

@&i?4s used, the relation of A
+

u

Mach angle is
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.

h =

A2 =

By the use of equations (7)

7

tan (p + y) (lOa)

tan (p - p) (lob)

and (9), the rate of change of
$-derivatives along the characteristicswith respect to 2 is obtained
(see reference 5 for procedure): Along cl,

and along C2

(ha)

(m)

For ease in computation, it is more convenient to express equa-
. tions (11) in terms of the ma~itude of the resultant velocity W and

the flow angle
tions (11) and

p as follows: Substituting equations (5) in equa-
differentiating yields the following expression along cl:

.
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w~=Wcosp

‘v =Wsinp

and

dh ( 1?
%-F+~=dl

and with the use of equations (10), equations (11) become

AZ sinu Cosp 1
r( cosp - sinpJ+3

A.sinucosa ●

(L2-tl)
.

along c1 and cz, respectively.

F~om two points a and b (fig.
tangents to the.characteristic curves

2) where the flow is known, the u
at these points are determined

from equations (9a) and (9b), respectively, snd intersect at a point c.
By writing equation (12a) (equation along cl) at a and equation (12b)

(equati,onalong C2) at b in finite difference form and solving simul-
taneously, the new flow values at c are detemtinedj thus, &Long c1

at a,

~w-wa
c Pc - Pa 02r sin aa

-tS,?lWaZc-Za
~Zc-Za - tS.112Pa +... (13)a2

and along C2 at b,

~wc-~ PC - pb u2r sin ~

~Zc-Zb+tmpbtc-7b- t~2 Pb 9 +.. . (14)

The unknowns in both equations (13) and (14) are
determined by the intersection of the tangents to
from points a snd b so that 2C - 2a and 2C
equation.

a“

Wc and ~cj Al iS v

the characteristics . “~
- lb sre known in the

*
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For a characteristic curve that intersects the passage boundary,
such as is shown at d or e in figure 2, the situation is a little
different. In a direct problem with a given blade configuration, the
angle j3 at the intersecting boundary point is knowm. In the inverse
or blade-design yroblem, either ~ at the intersecting boundary yoint
is known from a desirable turning specified at that point or the magni-
tude of the resultant velocity W at the intersecting boundary point is
known from a specified velocity distribution on the blade. In all cases,
either equation (13) or (14) written for the characteristic from
d or e determines the unknown W or ~ at the intersecting boundary
point, whereas, as shown previously, two simultaneous equations along
intersecting characteristics are required inside the passage. In
general, titer W and p sre determined at a new point, omtherfluid
properties at that point sre calculated and the characteristic directions
constructed to repeat the process progressively downstream. (For irrota-
tional inlet flow with uniform I and s and when the rotationality
introduced by the entrance shocks is neglected, I and s sre uniform
throughout for adiabatic flow, and the derivatives involved in equa-
tions (12) become zero. Otherwise, the derivatives are to be evaluated
by using the values at the inlet on different streamlines, the constancy
along the streamline before and s&ter shock, and the changes across the
shock.)

Thus a method is available either to analyze the blade-to-blade
flow variation along a.given arbitrary stream filsment of revolution in
a supersonic turbomachine, or to design the blade element on a given
arbitrary stresm filament of revolution for a specified turning distri-
bution or a specified velocity distribution around the blade. The con-
figuration of the stresm filaments (fig. l(a)) is taken from a
through-flow calculation (references 5 and 6). For a direct problem,
successive calculations between the through-flow calculation and the
present calculation sre necesssry until the solutioriconverges. The
through-flow calculation gives the configuration of stream filaments of”
revolution, and the calculation on these stresm filsments of revolution

—

gives the shape of the mean stresm surface and the factor b used in
reference 5, which accounts for the effect of blade thickness and
curvature. In an inverse problem, the calctiation is shortened if the ..-
estimated values of the factor b used in the through-flow calculation
for a desirable blade-thickness distribution results in a blade dimension
which has a thickness distribution close enough to the desirable one.

.

In order to give a general idea of the order of magnitude of this
factor b for the effect of the blade thickness and curvature on the
mean flow and the closeness of the shape of the mean stream surface to
the blade mean surface, an analysis is made for the simpler case of
cylindricsll.flow utilizing available data for two two-dimensional
high-solidity cascade recently.investigatedby Liccini at the NACA
Langley laboratory (unpublished data) and for a partly supersonic nozzle
investigated byhons (reference 7).

-.
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ANALYSIS OF FLOW IN TWO SIIPERSONICCASCADES AND

ONE PARTLY SUPERSONIC NOZZLE

The shapes of the two high-solidity 90° turning-angle cascades me
shown in figure 3. Each cascade has an inlet Mach number of 1.78 and
a 10° wedge angle at the leading edge. {T&blade is so designed that—
the leading-edge shock is cancell.edtiter thg first reflection.) The
shape of the partly supersonic nozzle is shown in figure 4. (Because
the nozzle is symmetrical, only half of it is shown.)

In the case of the symmetrical nozzle, the-center line is the mean
streamline. For the two 90° cascades, the mean streamline (the one
which divides the mass flow in the channel into two equal parts) has to
be established from the data given on the characteristic net of the
blade design. The mass flow m at any point in the channel is deter- ‘
mined by integrating across the channel the local specific mass flow

f

t
given by the characteristic net; thus, m = PWak. Thevalues of\

the local specific mass flow can be obtained ;y using the table given in
reference 8 or shni.lartables. The shape of the mean streamline is to
be compared with that of the mean blade line, which is obtainedby m’
t&king the mean of the blade coordinates in the pitch direction. —

The value of the specific mass flow W or Wx is then obtained “

along the mean streamline dowmstresm of its intersection with the
leading-edge shock. The discontinuity in the flow curves at the point
where the mean streamline intersects the “reflection” is smoothed out
in order to emphasize the general trend, These values me to be com-
pared with the correspondingvariation in the channel width (or area)
perpendicular tr- W or Wx in order to determine if there is any corre-
lation between the variations in specific mass flow on the mean stream-
line and the corresponding area.

.-

-.

In the case of.the nozzle, the flow vsriation on the mean stream-
line is obtained from.the Mach number given in reference 7. The vsri-
at~on in specific mass flow is compared with the

The results obtained in the two 90° turning
figures 3 ~a 5 to 9. The results obtained with
are shown in figures ~-10, and 11.

channel-area ratio. .—
-.

passages sre given in
the symmetrical nozzle

In figures 3(a) and 3(b), the mean streamline is compared with the
mean channel line. In figure 3(a), where the cascade is of the higher

,

solidity and has thinner blades, the shape of the mean streamline-
closely a~oximated that of the mean csmber line; however, in the #
second cascade (fig. 3(b)), which has a lower–solidity and thicker
blades, the mean streamline deviates more from the mean blade line.
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The specific mass flow on the mean streamline based on the resultsnt*
velocity as shown in figure 5 indicates clearly that the effect of blade
thickness and curvature on the through flow is to increasej in both ‘
cases investigated, the specific mass flow along the mean streamline a
chordwise average of 9 percent over that given by the area reduction
(due to blade thickness) based ona one-dimensional calculation. If a
comparison of specific mass flow in the axial.direction with vsriation
of channel width in the y-direction is made (fig. 6), as is done in

N reference 9 for subsonic flow, corresponding trends =e obtained, and

% the increase in specific mass flow again averages about 9 percent
o chordwise over the area ratio. This increase is more than two times the

increase obtained in reference 9.

The variations of axial and tangential velocity components on the
mean streamline are shown in figures 7 and 8, respectively. The vari-
ations of the velocity across the channel in the two cascades at the
stations indicated on figure 3 sre shown in figure 9.

The result obtained in the nozzle problem is shown in figures 10
and 11. The results shown in figure 10 correspond to the nozzle shown
in figure 15 of reference 7, which includes a small portion of super-
sonic flow in the divergent portion of the nozzle; whereas figure l.1

* corresponds to figure 16 of reference 7, with supersonic flow extending
throughout the divergent portion and the Mach number increasing
beyond 2. For the subsonic flow in the convergent portion, the local

.
specific mass flow and srea are normalized by the values at the throatj
for the flow in the divergent portion (partly supersonic, fig. 8, and
purely supersonic, fig. 9), the local specific mass flow snd area are
normalized with respect to the conditions where the flow is initially
supersonic. The comparison between the specific mass flow and srea
ratio is sh.d.larto the previous result. The increase in the specific
mass flow on the mean streamline is entirely due to the srea reduction
(no turning) and is about 8 percent higher than a one-dimensional
correction.

k

1

The results obtained in these analyses give some idea regsrding the
closeness between the shape of the blade mean line and mean streamline
and of the order of magnitude of the blade thickness and curvature
effect for through-flow calculations. For an approximate through-flow
solution of a simila& blading, these results may be directly applied.
For different types of blading, similar analyses canbe made for the
two-dimensional.flow on cylindrical surfaces or surfaces of revolution,
which are formed by fluid psrticles initially lying on circular arcs at
a number of radii upstream of the machine by using the general relations
derived herein. The mean streamline obtained at the different radii can
be joined together to form the mean stream surface. The ratio of

(PW~)m ‘0 (Pwx)i obtained in these calculations csn be taken as the

thickness correction factor b in the relations between stream function
and velocities (equation (11.1)of reference 5).

.
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More knowledge of this kind for a number ofitypical bladings will
be very useful i~ the design of these blading~. From this knowledge and

.

a certain blade-thickness distribution, which is desired from the blade
...

strength and other considerations, a gmd estimate of the factor b can
be made and used in the through-flow calculation. From this solution,
the blade section on a number of surfaces of revolution csnbe designed
by the method given in the report, —

Amalysis of
passages of high
shows that there
streamline shape

SUMMARY OF RESULTS $
E

the supersonic flow in twotwo-dimensional 90° turning
solidity and in a partly supersonic symmetrical nozzle

--

is, in general, significant deviation of the mean
--

from that of the mean blad@ line and-that the effect of
blade thickness and blade curvature on the specific mass flow along the
mean streamline is to increase the specific mass flow alo~ the mean
streamline.about 9 percent above that given by a one-dimensional
estimate. In order to determine these effects more accurat&ly for
turbornachinesof arbitrary hub and casing sh=~es to be used for the
three-dimensional through-flow calculations, a method is developed for
the–determination of the supersonic flow along strew surfaces of’revo-

--—

lution in turbomachines. In this method the shapes of the stresm &-

surfaces are arbitrary, and the method also takes into account the
distance between adjacent--stresmsurfaces, which distance varies along
the flow path. Thus, the method canbe ayplied to turbomachines with

.

arbitrsry hub and casing shapes. ., --

In addition tu their use for direct problems, these equations can
be used to design blade elements in supersonic flow along an arbitrary
stream filament of revolution in turbomachines.

Lewis Flight Propulsion Laboratory

1.

2.

3.

National Advisory Committee for Aeronautics
Cleveland, Ohio, July 13, 1951 “-
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