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SUMM!QY ‘

A strain+nergy theory similar to one developed earlier at PIBAL
(Polytechnic Institute of Brooklyn Aeronautical Laboratories) was
established for the calculation of the buckling load in pure bending
of reinforced monocoque cylinders which have a symmetric cutout on the
compression side and buckle according to general-instabi~ty patterns.
The difference between the present and the earlier theories is the use
of the axial wave length as an adMtional parameter whose value was
determined from a minimum condition. The theory was applied to four
cylinders wklch were tested earlier at PIBAL. Fair agreement was found .
between theory and the results of the experiments.

INTRODUCTION

Reinforced monocoque cylinders are subject to failure 3Y a
simultaneous buckling of frames, stringers, and sheet covering. This
type of failtie is known as general instability. The problem of the
general instability of reinforced circular cylinders subjected to pure
bending has been investigated in some detail by various authors (refe~
ences 1 to 13). These papers have dealt with complete cylinders,
cylinders having symmetric cutouts on the compression side, and
cylinders having side cutouts.

Reference 12 presents a-strai~nergy theory and the results of
calculations for the buckling load of cylinders having a short
symmetric cutout on the compression side. In the theory it w% assumed
that the general-instsbiliw bulge had the same wave length as the
cutout.

In this paper the gener~–instability buckling load of cylinders
having long symmetric cutouts on the compression side is calculatedly

.
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strafn+nergy methods. The axial wave length of the bulge is used as a
parameter whose magnitude is found from the requirement that the lnzck-
ling load be a minimum. Thus it is possible to detemlne whether the
axial wave length is the same as the length of the cutout.

Test results showed that for some cylinders the bulge appeared to
be antisymnetric with respect to the verticsJ plane of symmetq of the
cylinder perpendicular to the axis. Therefore the calculations were
carried out for the two different assumptions of deflected shape at
buckling, one longitudinally symmetiic, the other antisymmetric.

In both assumptions for the shape of the bulge, the displacements
at buckling were represented by the fimt seven terms of a Fourier
series in the circumferential direction and by a few terms of a
trigonometric series in the axial direction. In the case of longitu-
dinal symmetry, the trigonometric series in x consisted of sine power
terms and contained a parameter which had to be determined from the
mininmm buckling load condition. For longitudinal antisymmetry the
series was a Fourier sine series in x which also contained a parameter.
Boundary conditions were used to detetine fw of the seven coeffi- .
cients of the Fourier series in q for the circumferential variation
of the shape while one remained undetermined as in all buckling problems.
The remaining two coefficients - well as the circumferential wave
length were calculated from the minimum buckling-load requirement.

The strain energies considered were those due to bending of the
rings in their own plane, radial and tangential bending as well as
torsion of the stringers, and shear in the sheet. The extensional
strain ener~ of the sheet was accounted for by adding an effective
width of sheet to the rings and stringers. The external work was
calculated on the assumption of a linear force distribution ~ the
stringers, which is in better agreement with test results (reference 9)
then a linear stress or strain distribution.

The buckling load w= calculated from the requirement that the
strain ener~ corresponding to the transition from the uribuckledinto
the buckled shape be equal to the work done by the applied loads. The
minimum value of the buckling 10ad was found by assuming the circw
ferential wave length equal to some integral nuuiberof stringer fields,
the axial wave length equal to some integral number of ring fields, and
a numericel value for the parameter in the axial variation of the shape.
The values of the two undete-ed Fourier coefficients were calculated
so as to make the buckling load a minimum, and with these two coeffi–
cients fixed the value of the axial.parameter was calculated in a
similar manner. The process was repeated until the three parameters
reached steady values and the bucu load became a minimum. This
value of the buckling load was compared with values obtained from other
assumptions of sxial and circumferentialwave lenglihsand the lowest
load was taken as the absolute minimnm buckling load of the cylinder.
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Fourier coefficients ,

cross-sectional area of str~er plus effective width
of sheet

Fourier coefficients

parameter

geometric coefficient in torsional rigidity GC
●

width of panel measured along circumference

parameter .

you%ts modulus

tangent modulus

reduced nmdu.lus

shear modulus

shear nmdulus of sheet covering at zero compressive
load

effective shear mdulus

width of stringer

index indicating position along circumference

moment of inertia of ring section and its effective
width of sheet for bending in its own plane

Istir mmnent of inertia of stringer section and its effective
width of sheet for bending in the ratial direction
(about a tangential axis)
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moment of inertia of stringer section and its effective
tidth of sheet for bending in the tangential direction
(about a radial axis)

index indicating position along axial dir6ction

length of bulge in tial direction

distance between adjacent rings

number of rings involved in bulge

nuuiberof ring fields involved in bulge

applied bending moment; function of n, a, and b,
appearing in strain energy of beqiing in rings

applied bending moment at buckling

parameter def~ length of bulge in circumferential
direction

polynomial functions of a and b

force in one of the stringers at edge of cutout at
buclding

force in ith stiinger

function of x and c or e appearing in shear strain
ener~

radius of cylinder

function of n, cp,a, and b appearing in shear
strain ener~

nuniberof stringers involved in one=half of bulge

total nuriberof stringers in cylinder

thickness of sheet covering

strain energy

strain energy stored in rings because of bending of
rings in their own plane
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‘strr

%

Ush

2W

wn

‘r

Wt

w

x

2a

%’%’%

Qrt

strain energy stored in stringers because of bending
about a tangential axis

strain energg stored in stringers because of bending
about a radial axis

., ,,

stia~ energy stored in stringers becau&e of torsion

strain ener~ stored in sheet covering because of shear “

effectitiewidth of sheet

rotation of tangent to ring .
. .

radial displacement of a ~oint on a ring or a stringer

tangential.displacement of a point on a ring or a
stringer

work done by external forces

coordinate measuring distance along

cutout angle

‘ coefficients used ~ calculation of
panel due to rotatio~ and
corners

shear strain

distance of neutral axis from
cylinder

normal strain in a stringer

buckiing strain of a panel of

axis of cylinder

shear strain in a
displacements of its

horizontal diemeter of

sheet covering

angular coordinate measuring circumferential distance
from edge of cutout

function of n, q, a, and b appearing in expression
for wn

function of n, q, a, ~a b appearing In expression
for wr

function of n, q, a, and b appearing in expression
for wt “
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THE ImEnKmDsm

The shape of the bulge at buckldng is detemined m!xbly by the
ratial deflecticms. It was obse~ed in erperimants cm’ducted on
cylinders designed to fail by general instabili~ that, whilb most of
the cylinders failed in a longitudinally symmetric bulge, there were
sonm specimens which failed in what apyeared to be a longitudinally
antisymmetric bil-gepattezm (reference 14). For that reason, these
two types of deflected shape were considered. Typical deflection
patterns of stringers and a ring are shown in figure 1.

SYMMECRIC DEFLEmoIi PA!H!ERN

The expression CHOS= to represmrb the radial deflections that
are symmetiic longitudinally is:

.

‘r= [Sm’(fib)+c ‘h6(mL’)]or (1)

where

(Or= ~+alcosq+qcos~+ a3cos3ntp+

bpnnp+lpnaq+lynw)

provided

(la)

i

Also,

‘r = o

‘for q)> n/n end/or x < 0, x > L. The notation and sign convention
are shown in figure 2.

The defommtions of the rings were assumed to be inextensional.
.

The contitim for inextension.aldeformations is:0

—-

.
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Therefore the tangential defomuaticms are given by:

Wt = [sinp(?cz~) + c sin6(m~jlq (3)

where

@t = -(l/n)[a@ + al sin np + (a@) sin * + (aS/s) sin 3nrp-

bl cos nq - (b2~) cos ~ - (b3/3) cos 3nq1 (3a)

.

provided

Also,

Wt=o

when q > n/n and/or x < 0, x > L. The arbitrary function of x
which would normally appesr in equation (3) as a result of the inte-
gration of equatim (2) is zero if the displacemmts are symmetric
about a vertical diameter.

If it is required that there be a smooth transition between the
bulge and the undistorted part of the cylinder at v = z/n, then:

(1) The tangential displacements must

w~=o

when q = x/n for all values of x
o

vanish:

(4a)

(2) The radial displacements nust vanish:

w= o
r

when Q = fi/n for all values of x

(3) There must be no sudden chsnge

&rrp =

when q = ti/n for all values of x

(4b)

in the direction of the tangent:

o (4C)

-.-— —. —..... —-. .— -.. —— —-. .—— —.—. — .-. —._. . .
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(4) There must be

when q = fi/n for all
transition be+weed the
atx= O and/or x =

NACA m1963

no sudden change in the curvature: ,

.

a’2wr/a&.0 (4d)

values of x. Also, in order to have a smooth
lnlge and the undistorted part of the cylinder

(5) The tangential displacements must

Wt=o

when x = O or L for all values of

(6) The radial Misplacements must

‘r = o

when x = O or L for alJ values of

vanish:

vanish:

T

(4e)

(4f)

(7) There mast be no sudden change in the direction of the tangent:

awr/ax = o (4$) , “

when x =0.or L fordltiuesof q. Conditions (5), (6), and (7)
are automatically satisfied by the expressions in the assumed deflected

.

shape for all values cf the parameter c. The r~ng four conditions
establish four relationships between the Fourier coefficients and make
it possible to determine any four of the coefficients in terms of the
remaining three. H ~, al, ad bl are retained as the basic para% ‘
eters, and the notation

/
alao=a.

I

(5)
bl/~ =db

is used, then equations (la) and (Sa) become:

‘r= ao[sin2(flxL) + c sin6(=L)][1 + a cos nq + (1.6a –1.8) cos 2nq)+

(().6a – 0.8) cos ~+b SiLIq + (3.2b + 3.6fi; sti2xxp + .

.(1.8b +2.4)-c) Sti 3nq] (6)
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Wt = -<~/n) [.in2(l’@ + c Sinqlmb)] [w

(o.8a – 0.9) sin @ + (0.2a – 0.2666

b Cos Ilq

‘9

+asinnp+

. . .) sti3nq)-

– (1.6? + 1.8Jc) COS @ – (0.6b + o.&) Cos ml (7)
. . J

CALCULATION OF STRAIN l!NERGYFOR TEE

SYMMETRIC DEFIWTED SHAPE

Strain Ener~ Stored h Rings

.

The strain ener~ stored in one-half of any one riqj is:

If the value of Wr is substituted from equation (6)

energy is sumned up over all the rings, the fo310wing
obtained: “

m

Ur = (1/2) ~ (EIr/~)[S~2(YCjfi) +
j=l

and the strain

expression is

(8)

(9) “

where m is the total number of rings included in-the wave length L.
The Integration yields a result in closed form. If EU. the rings have
the same bending rigid.im EIr, the total strain ener~ for one-half
of the cylinder is:

‘r= (a:@3)(EI~)5 [sh2(”Jfi)+c‘@’J@12(10)
j=l

—.—. ___ _ —.. .— ._ .-&______ ____ _ _



10 mm m 1963

.

where

[
w = x + 10.053096(1 – gn2) + 206.o1oo5(1 – .4n2)2+

90.303387(1 - 9n2)2 - 18.095573(1 - 4n2)(1 - gn2)] + ~

[
— 9.0477868(1 – 4n2)2 ‘- 1.5079645(1 – gn2)2 +

~0.15g289(1 - n2)(l - ~2) + 18.095573(1 - 4n2)(l - ~2)] +

[b 4(1 -n2) + 2*J+(1 – 9n2) + =3.69784(1 – 4n2)2 +

42.63669o(1 - gn2)2 + 2.4(1 - n2~(l - 4n2) -

3.68(1 - 4n2)(1 - z2) ] + a2[(fi/z)(I.- n2)2 + 4.021_z13M(~ _ 4#? .

0.5654867(1 - gn2)2] + 32 [(Jr/2)(1 - n2~ + 16.084954(1 - 4n2)2 +

5.08938(1 - gn2)2] + ah[6.4(1 - n2)(l - ~2) +

(n)3.84(1 - 4n2)(l - gn2)]
.

It is possible but cumbersome to sum up in closed form the trigonometric
functions describing the deflected shape in the axial direction as
given in equation (10). It was found more convenient to carry out the
summation numerically.

Strain Energy

The strain energy stored in
the radisJ direction is:

‘Stir = (1/2)

Stored in Stringers

the stringers because

L ‘r.trr /’L(g%?/&2)2~
i

where the sumation is extended
tmlge in on+half the cylinder.

equation (6) into equation (12)

J“o

over all the stringers

of bending in

(12)

involved in the
Sulmtitution of the value of Wr from
and integration gives:

.

.
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‘strr =

us~r =

the

/

L

(1/2)~ EIstrr(Qr)2(fi/L)4 [2 COS2(3tXfi) -2 Si~2(XK@) +

i
o

300 Sti4(Y@J] COS2(I@) – 6C sin6(nx/i)]2 dx

(~/L3)[l + (15/8)c + (44@8)c2] ~ EIsti (Or)2
i

r

The strain ener~ stored in the stringers because of bending in
tangential direction is:

.

s~t = (1/2)Z %trtu

/

‘(%tp)a ax
i“

o

(13)

(14)

where the summation is extended over all the stringers involved in the
lulge in one-half of the cylinder. With the aid of equation (7) this
strati energy becomes:

Ustrt = (X4fi3)[l + (15/8)c +

.

The strain ener~ stored in the

rL

(441/.I-28)C2]~ ~Strt(~t)2 (15)
i

stringers because of torsion is:

Ut = (1/2) ~ GC ) (1/r)2(%wr/&*)2 dx
i Jo

and again the summation is extended over dl the stringers

.

(16)

involved in
the b~ge in one-half of the cylinder. Ih this equation (l/r)@2wr/&~)
is the unit angle of twist for the str@ers. In the expression for the
Saint Venant torsional.rigidity

C = 0.14h4 (16a)

since the test specimens were provided with square secticm stringers of
edge length h. Differentiation gives:

.. —.—. ___ ___ _ ———- —.. ,..—__ _. ____ ._
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where

@r t [
= aon — a sti np – (3.2a – 3.6)sti @ – (1.8. – 2.4)sin ~ +

b COS w + (6.4b + 7.2fi)cos * + (~.4b + 7.2 fi)cos 3w] (17a)

This gives for the strain energy of torsion:

ut=(*&)[(l/4) +(15/32).+(189/5~)c2]~(0r’)2 (18)
i

where the summation is over one-half the cylinder, as before. Since the
variation of the torsional rigidity caused by the different amopnts of
effective width of sheet is small when calculated according to the
Saint Venant theory, it was considered permissible to assur& GC a
constant.

The VZiklOS Of ~rj ‘t> and q very from stringer to stringer.
JYLSO IS* ma Istit vary around the circumference because the

effective width to be added to each stringer changes. Therefore the
summations inticated in equations (13), (15), and (18) had to be
evaluated numerically for each cylinder investigated.

Strain Ener~ of Shear Stored in Sheet

The shear sbxatn energy per unit volume was taken as on~ the
average effective shear modulus multiplied by the square of the average
“shear strdn 7 for each panel of s~t. The average shear strain “7
was calculated from the relative displacements of the corners of the
panel, as shown in figure 3. Then the total strain energy of shear
stored in the sheet is:

u6h= (1/2) ~ y2Gef#1td (19)

where Lltd is the volume of one panel and the summation extends over

all the panels involved in the bulge In on~ the cylinder. The’
effective shear mdulus Geff depends on the geometric and mechanical

properties of and the average normal strain in the panel. Its value was
taken from the empirical curves.established earlier at 21BAL and
presented in figure 24 of reference 15. ,
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The average angle of shear y was calculated from the equation:

(lwqwi , +‘q+,-J- ‘q ,+,- ‘%+,,+1)+> 9 J >

where the ‘subscript i refers to the circumferential locatim, and the
subscript j, to the axial location of the corners of the psnel.

.

.The rotation wn of the tangent of the ring is given by the

relation:

,

I ‘n= (l/r) (~r/d) = (1/r)@r’ (21)

ti reference 16 the values
were determined.

a& = @r =

of the numerical factors ~, ~, and ~

2k/lCE

1

(d/r) ]}~ =–(1/’)11–”.”1666 . . . 2

Substitutions yield:

—

u~h = (WGopl) f Qj ~ (Geff/%)iRi
j=”

(22)

where Q is a function of x only, and R, a function of CP only,

(23)

given by the relations:

({
Q= sin2[mj/(m+l)]+c sin6[fij/(m+l)]}–

c sin6[x(j + 1)/(m + 1)]])2

sin’[fi(j + 1)/(m+ l)]+
.

(’4)

—. . . —....—. ——a .._. . . . . . ,—. —.— -—-—. .——.. —. —-— - —
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[(R = ao2 ~ Ori - %,+1)+ I%lpt, + “.,+l)+

(25)

It is possible to get a result in closed form for the sums.ions Q
and R but for convenience the sumnation was performed numerically.

WORK DONE BY EXTERNAL FORClZ3 -

I. wes observed in the ~erimen.s described in reference 9 that
the stress distribution was no. linear in the cutout portion of the
cylinder, altho@h the deviations from linearity were not large as a
rule. A good approximation .0 the experimental curves was obtained by
assuming a linear force distributim, which is not equivalent to a
linear stress distribution because of the varying amounts of effective
width of sheet added to the stringer sec.ions. A com@rison of the
strain distribution calculated on the assumption of linear force &Lstri–
bution with the experimental shahs is given in figure 4 of reference X2.
The expression used for the calculation of the force acting on the ith
stringer is:

Yf = Pcr[b/r + cos (a + 2Yti/S)]/(5/r + cos a) (26)

where Pcr is the cotiessive force acting upon the stringer at the

edge of the cutout, and 5 ,is the Mstance of the neu&al axis from the
horizontal diameter of the cylinder.

Equal and opposite forces are assumed to be acting at the x =
andx= L ends of each stringer. The distance between the points
application of these forces shortens at buckling. The work done by
forces is equal to the summation of the forces times the shortening
ti the strihgers involved in the bulge in mm-half the cylinder:

0
of
the
of

(27)
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substitutions

.

and integration give:

W = (%L) [(1/4) + (15j32)c + (@/5E)C2]@@r2 + @t2)

W = (#~)[(1/4) i-(15/32)c +

(2+”:)
(@/5~)c2]pcr~(pi~crj ‘r (28)

.
The summation in the right-hand member of equatian (28) was carried out
numerically.

ANTlslz4MEnmc -mm l?ATmmi

The expression chosen to represent the radial deflections that are
antisymmetric longitudinally is:

‘r {
= sin (m/t) + e sin (41m/L) –

[(1/3) + (2e/3)] S~ (g~fi)}~r

‘for

osqlsfi/n

OSXSL

where or is given by equation (12). Also,

(29)

,.

w=r o

for q > Z/n and/or x <0, x > L. The expression for the tangential
deflections, again on the assumption of inextensional deformations, can
be obtained from equations (2) and (29) and is given by

‘t = {
sin(2m/k) + e sin (4Ycxfi) –

[(1/3) + (2e/3)] sin (6m/t)}ot (30)

---- — . ...+ _ ~ —. ..— .— .— ... . — ——— _.
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.

for

where @~ is @ven by

05qSz/n

O~x~L

equation (3a). Also,

Wt=o

for q > X/n and/or x < 0, x > L. These

mnst satisfi the boundary conditions at q
~o@ (k) “

expressions for wr and Wt

= fi/n given in equations (4a)

It can be shown that the expressions for wr and wt given by

equations (29) and (30) satisfy the given boundary conditions for all
values of the longitudinal parameter e, as well as the parameters a
and b.
satis~

for any

In addition, it c= be ver~fied that equatians (29) and (30)
the reqyiretint

given value of

antisymmmtry in the‘sxial tiection, tily,

‘r(x) = -r(L=x)

CALCULATION OF STRAIN ENERGY FOR
.

DEFLECTED SIIAPE

The strain energies are derived in the
symmetric deflected shape. They are listed
equations from which they are derived.

Stxain

Worn-equatians (8) end
rings involved in the bulge

Ur = (%2/’r3)%M

(31)

THE ANTEYMMETEUC

sane way as those for the
below tith reference to the

Ener~ Stored in Rings

(29) the stiain energy of bending at the
h on~ the cylinder is:.

m.

[(1-/3)+ (28/3)] S~ (61-LIL)}2 (32)

*
where M is given in equation (U). The summation is taken over the
rings involve~ in the bulge end‘was evaluated numerically.
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Strain Energy Stored in S_&ingers

17

From equations (12) and (29) the strain energy due to radial
bending of the stiingers is given by

(33)

From equations (14) and (30) the strti energy due to tangenti~
bemiing of the stringers is

(34)

Equations (16 ) and (29) give for the strain ener~ due to torsion
of the stringers:

Ut = (Yt2p)(2 + 48 + 8e2)(GC/#) ~(*r’)2
1

(35)

where C is given by equation
strain energies were evaluated

Strain l!llergy

(16a). The smmations for all stringer
numerically.

of Shear Stored in Sheet

Itromequations (19), (21), (29), and (30), the strain ener~ of
shear in the sheet is:

‘sh = (two~l] ~ Q~ ? (Geff/%)iRi “ (36)
&o i=o -

where Q is given by

Q= ({ [sin 2fij/(m + 1)] + ; sin [4fij/(m + 1)] –

[(1/3) + (28/3)] s~ [6d/(m + 1)]}- { sin [2X(J + 1)/(m + 1)] +

e sin [41T(J + 1)/(m + 1)] - [(1/3) +

(2e/3)] sin [611(J+ 1)/(m+1)]})2
~d R is given by equation (25). The summations IQ and ~R were
evaluated numerically.

— —------- ..__ ._ ._. _ - -— —..—— ——..



18 NACA TN 1963

WORK DONE

nomequaticms (27), (29),
forces is:

BY EXTERNAL FQRCIS

and (30) the work done by the external

W = (#/’L)Ycr(2 + ke + 8e2)~(~i~cr)(~r2 + @t2) (37)

CALCULATION

The luckling condition is

0? BUCIUJNGLOAD

Ur +Ustir + Ustrt + u~ +us~ = w (38)

where the vslues of the strain energies and the work must be taken from
equations (10), (13), (15), (18), (23), and (28) for the longitudinally
symmetric buckling shape, or froq equations (32), (33), (34), (35), (36)>
and (37) for the longitudinally antisymnetric buckling shape. -
Equation (38) was solved for I?cr contained in W in the following
way .

Integral nunibersof s and (m + 1) were chosen for the number
of stringer and ring fields included in the bulge. For these values
the 02, M, and R functions reduced to quadratic expressions in a
and b. Next Pcr was aSSUmOd. T&k permitted the calculation of the

<

effective widths of sheet acting with the stringers, the moments of
inertia of the stringers, and the values of the effective shear modulus
in the sheet panels.

Finally, a trial tiue WaS chosen for the parameter c (for “tie
symnetric deflected shape) or e (for the antisymmetiic deflected
shape) in the expressions for the-longitudinal variation of the
luckled shape. w necessary summations were then carried out. Substi-
tution of ail
solution for

the results in-equation (38) made it possible to obtain a
P Cr in the form:

Pcr = pl(a,b)/p2(a,b)

where pl snd ~ are”quadratic e~essions in the parameters
and, b. Minimizing this expression for Pcr with respect to a
is equivalent to setting

(39)

a
and b



.
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Pcr = pl(a~b)/p2(a~b) =

where the partial differential coefficients of pl and p2 ere linear

functions of a and b. Equations (40) give three relations
between Per, a, and b, ‘whichmay be solved by a trial-and-error

procedure. With the aid of an assumed value for Per, a and b were
calculated from the linear equations. These values of a and b were
then substituted into the original quadratic expressions in equa–
tion (39), yielding a calculated velue for Per. This procedure was
repeated with new assumptions for Pcr until the value calculated was .
reasonably close to the one assumed. These values of a and b were
then substituted in the original expressions for the strain energies,
thus reducing the 02, M, and R functions to quadratic expressions
in c or e, depending on which type of deflected shape was under
considerateon. The necessary summations were carried out again, and
substitution of the results in equation (38) gave a solution for P ‘
in the form

, cr

Pcr = P3(@/P4(c) (41a)

or

Pcr ‘p5(e)/P6(e) (41b)

where
‘3

emd P4 are quadratic expressions in the parameter c,
and p

5
and p

6
are quadratic expressions in the parameter e.

Minimizing this expression for I?cr

equivalent to setting

Pcr = P3(c)/P4(c) =

P
cr = P5(e)lP6(e) =

or

with respect to c or e is

(ap3jac)/(a24~ac) (42a)

●

@p3Pe~l(ap6~e~ (@b)

where the partial.differential coefficients of p
3

and p1 are linear

functions of c, and the partial differential coefficients of p5

and p6 are linear functions of e. These equations can be solved by

the same trial-and-e~or procedure that was used to solve equations (40)
for a, b, and Per. If the ~alue of the parameter c (or e) was

. different from the trial value assumed at the very outset when the
parameters a and b were determined, then the new value of c (or e)
was substituted in the expressions for the longitudinal variation of the

buckled shape and the minimization procedure of equation (40) was

—..-.-. — . ..———. .._ __ __ ._ ___ .—___ .— _____ _____ . ___
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repeated in order to get new values for a and b. The process was
continued until *he values of all parameters reached reamnably steady
values and the value of Pcr approached a minimum.

This procedure involving separate minimizations for the laugitudinal
and circuml?erentialparameters was used because minimization with respect
to eJJ_the three.parameters at the same time would have yfeldednonlinesr
equations in the parameters. It was considered more convenient to repeat
the minimizations than to solve the nonlinear equations.

The procedure was carried out for different numbers of ring and
stringer fields included in the bulge. The smallest buckling load
obtained in this way was considered the true buckling load.

When the value of Pcr obtained in these calculations differed
materially from that assumed at the outset, the moments of inertia and
effective shear modulus had to be calculated again and the entire
procedure repeated.

Details of the procedure may be seen from the numerical example
given in the appendix.

COMPARISON OF THEORY-AND EmERmmT

Numerical calculations were carried out to obtain the buckling
load, for the axially symmetric deflected shape, of the cylinders shown
in figure 4. The bucklc~ load for the axially antisymmetric deflected
shape was determined only for cylinder 75. Typical deflected shapes”of
a ring and stringers are shown in figure 1 and the results of the calcu—
lations are given in table 1. The experimental bending nmmnts at
buckling were taken from reference 14.

The theoretical buckling loads were consistently higher than the
. experimental values, and the deviations between theory and experiment

seemed to increase systematically with increase in ring size. compar-
ison of the theoretical buckling loads for sxially symmetric and anti–
symmetric deflected shapes shows that the symnetric shape gave a lower
value but the difference was small. This indicates that the assumption
of a symmetric shape was closer to the true deflected shape than the
assumption of antisymmetry.

The tial wave length predicted by theory was found to be different
from the length of the cutout. .

Comparison of results obtained with the 45° cutout cylinders of
reference I-2with cylinder 72 of this series which has rings of the
smallest size shows a decrease in the-deviation between theory and
experiment from an average value of 33.9 percent to 18.1 percent. It

.
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appears that the assumptim
rati~ more free parameters
in the case of the heaviest

.
21

of a more complex deflected shaye incorpo-
was the cause of this improvement. However=
rings, even the present assumptions are not

sufficiently general to give a buckling load in reasonable agreement
with experiment.

,CONCLUSIONS

A strain-nergy theory was developed for the ganeral-instability
buckling load of reinforced circulfi monocoque cylinders having a long
symnetric cutout on the compression side and subjected to pure bending.
When the theory waE applied to four test cylinders of the emerimental
reports, the buckling loads obtained were 18.IL,26.5, 25.6, and 45.1 per-

.

cent higher than the experimental values. The average deviation was
28.8 percent.

Polytechnic Institute of Brooklyn
Brooklyn, N. Y., July 12, 1948

.

.
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APPmDlx

NUMERICAL IEKAMmE

In this appenti details of the calculati- performed in dete-
mining the buckling load for 21BAL cylinder 73 are shown for the case
of a longitudinally symmetric deflected shape. The geometric and
mechanical properties for this cylinder are:

Sheet thickness,
Radius, r, in. .
Distence between
Stringer spacing

in. . . . . . . . . . . . . . . . . . . . . . . 0.o12
. . . . . . . . . . . . . . . . . . . . . . . . . .
adjacent rings, Ll, in. . . . . . . . . . . . 3.8%
along circumference, d, In. . . . . . . . . . 3.927

I?@er of stringers in ~ Portion of cylinder, S . . . . . . . . 16
Angle ofcutout, 2a, deg..’= . . . . . . . . . . . . . . . . . . .45
Stringer cross section, in. . . . . . . . . . . . . . . . . 3/8 by 3/8
Area of stringer cross sect on, A, sq in. . . . . . . . . . . 0.14062

tTorsional rigidity, C, in. . . . . . . . . . . . . . . . 27.686x1 J
Ringcross section, in... . . . . . .. . . . . . . . . . . 1/4 by 1/
Moment of inertia of r- cross section, Ir, in.4 . . . 749.364 X 1d
Modtius of elasticity, E, psi . . . . . . . . . . . . . . . lo.~ x 106
Shear modulus, G= Go, psi. . . . . . . . . . . . . . . . . 3.9 “x10’6

At the outset, the assymed value of pcr was taken as 5300 popmis.
The shift of the neutral axis was calculated to be 1.1452 inches on the
basis of a linear force distribution for pure bending. This pertits the
setting up of the following table which gives the effective width 2W
of sheet to be
stringer cross
reduced moduli

added to the stringers, the nummnts of inertia of the
sections, the effective shear modulus Geff, snd the
of elasticity.

.

.



1.

‘1)] (2) \ (3) I (4)

i Pi

I
CA

I
G

0 53m 5.OM x ld 33.5 x ld

1 4198.93.939 23.3

2 2~50.9 2.429 ti.8

3 6K%.9 .578 , 3.1

[a = 1.14%; 6or - 3.3 x lo-q

(5) (6) (7) (8) (9) (lo)

I
% % stir %trt % %@

).17051.28119.69x ld 25.0 x d+ 9,79 x U+ 10.14 x M+

.1* l.Jt@s 21.T6 48.0 10.5 10.5

.16371.923 23.3-2 87.0 10.5 10.9

.W 3.9=723.92 623.0 10..9 10.5

i

I
u

o+l/4229.3xllT4

1+1/2 20.4 T
(13) (*)

e/~or%ITA

8.88 0.479

6.18 .497

2.73 .’420

---- 1.000

‘ In this table, COlum (1) refers to the stringer station.

equation (26), colum (3), by dividing oolum (2) by E =10.~Xc%~*~2) ‘B”b~edfmm. Colmma (4), (5),
and (6) oan be most conveniently filled b through the use of a previouaIY drawn ome of

the strain 6 against the area &ff of stringer and effeotive width combination. (A

ourve of this type waa used. In the present calculations

the following formula for the effective width:

, and was constructed with the ald of

{

2w= (1/e)(d/r) 0.st+l.7s7[(t/d)(6r- o.3t )rU2]2/3

}

(Al)

aerivea in referenoe 1.)

COIW (7) and (8) give the mments of inertia of the

tidth of a curved sheet oaloulated from the emations:

Gtrr= (hL/12) + {(h+ t)/2
- [~2w)2/24r]]2

(1/2wt) + (l/A)

Is~t = (h4/12) + (1/12 )(2w)%

stringers plus theti effeotlve

+ 0.8[(2w)2/24r]2%-t (A2)

(A3)
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where h iS the Wdth of the str~er. These ecpatlons were uo

derived in reference 1. -

If the strain in the string= is a%ove the proportional limit, it
is necessary to use the von K&m& reduced modulus of elasticity for
calculating the bendihg rigidity of the stringers. columns (9) and (lo)
give the values of the reduced modull based on the curves of
reference 17.

Column (U2 ) gives the value of the stiain in the middle of each
panel from w~ch the effective shear moduluE can be determhed. Qn the
basis of a buckling strain of the panels ~cr = 3.3 x lo-J+,column (13)
gives the ratio ‘/Gcr for each panel. The values of Geff/Go ti
column (14) are obtained from figurg 24 of reference 15.

For the evaluation of the Q2, M, and R functions, the nuniber s
of stringer fields included in the bulge in on-half the cylinder was
assumed ~ be
from equation

Only integraJ-

four. Thg corresponding value at n can be obtained
(Al)t

n = s/2s (A4)

punibersof stringer fields were used in tha summations,
so that the angle Q was replaced by its equivalent (2Yci/S),
where (2x/S) is the angle subtended by one stringer field, and i = 1,

293>*** denotes the circumferential.location of each stringer.
The trigonometric functions appearing in the expressicms for Qr, Otj
and Q.’ are given in the following table, together with the coeffi–
cients’of the trigonometric functions.

,.

[s=k; n=2]

1

Moltipller
for Or

Multipmm
for Qt

Multiplier
for ~’

I

:Onstant q=:

1
1 0.78;398
1 1.570796
1 2.356194

1

I
1

I
o

--k
I

T1 1
o.707m7 o

–1
-o.7&17 o

a 1.6a
–1.8

o.8b
o.5b 0-9

T2.cb
12.8b
14.4

1
4).707107

0
0.707107

o.6a
-0.%

o.3b
0.4

10.8LI
14.4

6
3.707107

1
). 707107

b

-0.5a

-2. Oa

o
1
0

–1

3.2b
3.6 .

4.4a
0.45

-6.4a
7.2

o
).707107

).%7107

1.8b
2.4

-o.la
0.133...

–;.?
.

,

.

8

.
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!tlhe polynmial Or for i = O, for example, is obtained by mltiplyi~, ooluinn by

coluum, the expressions in the row for 1 = O by the multipliers for Or and adding th

resulting products. The results for Qr, #t, and Qr’ are glved in the following table.

1

c

1

2

3

or ‘#t Or t

-1.6 3.28 0 4.c@&0705 o 1.6~ 90.477%8 o 25.GB

18.20&E!03 o.2&8428a Y.L7Mb a.7365949 4.4642@+a O. lklk21~b -!a.3946536–lo.3Y?8a -6.W>16%

-4.739s224–1.6a -oOeb –3.i’kG1647-0.48 4.8b jo.03@342 1.68 -1.2.&tl

-5.54399 -o.z~~~ –1.=olo@b ~.G49BP -0.@’u@@e -0.lkl~4b 28.MkW!09 2.44@O@a 6.2225416b

. .

The mlue of M oan be calculated with the value of n . 2 oo~~spon~~ to s . 4
and iS

M = 735@.5~ + 3k87’.l~79a + 37g45.g7g6b + 80>.8186a2 + 493s.8~b2 + 11~1.000ab (A5)

The funotlom
(‘rf - %+1)’ (%+ ‘%+1 ‘J W @r,’+@ 1’)ri+l

needed for the oaloulation
—

of R can be de’termlned by’ adking or mb’kotlng’the polynoI&LB in ad.Jaoent rows for eaoh

oolmm of the above table.” Howe&, it must

at i=4. The results are not given here.

and d = 3.927 inohes equations (22) give:

be remembered that all 0 funotfona exe zero

For W values of r - 10 inches
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% = 0.0s927

at
= 4.49871

1
(A6)

~ = -0.003272 J

Substitution in equation (25) gives the values of R which are listed
in the follming table.

[~= 0.03927; at= a.4g871; an = -o. 003272]

ii R

o ~.8ti9k216 0.2842619a -0.6423g40b

1 1.2486636 0.5269357a o. 0700127b

2 2.1360358 0.269@8g6a 0.4457607%

3 0.5765488 0.0263752a 0.E66206b

The 02, M, and R functions appear in the strti-ergy expres–
sions in quadratic form, but the squares of the polynomials are not
given here.

The next step in the calculations is to assume a value of (m+ 1),
the number of ring fields.involved b the ftilure. The v~ue chosm
was (m+l) =10 and the summations appearing in equations (10)
and (23) were evaluated numerically on that basis. These results as
we~- as the quadratic functions of c appearing in the expressions!

.’ for the strain ener~ of the stringers and the external work are given
in the following table.

[(m+ 1) = 10]

Factor for strain
ener~ of --

Ring bending 3.750 5.4613750C “ 2.25%595c2
Stringer lending 1.0 1.875c 3.4453125C2
Stringer torsion 0.25 0.46875C O.3691406c2
Sheet shear 0.4774575 0.8952328C O.6753475c2
External work 0.25 0.46J375C 0.3691406c2 .

.

.

.
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Finally a trial value ‘ofthe parameter c was chosen. D this
numerical example the value of c used is not the original trial valued
but one which was obtained after several trials. Substituting the
value c = –1.477 in the quadratic functions of c makes it possible -
tp evaluate the various strain energies in the form of quadratic
expressions in a and b for each value of i.

. .
The quadratic expressions of a and b in.02, M, and R are

mnl.tipliedby the following factors from equations (10), ~1~), (15),
(18), (23), end (28), which have been multipl.iedby Llao x for
convenience of calculation:

For

For

For

For

For

ring benting:

(*~~m3)(3.750+ 5.46875c +2.2558595c2) =9.10g90 (A7)

stringer bending:

(E#/L)(l.O + 1.875c + 3.4453125c2 )(%,) =

stringer torsion:

(GC/#)(0.25 + 0.46875c + 0.36g1406c2)

400,399. 816~i (@)

= 39.16829 (A9)

shear of sheet:

[%tr(m+ l)/fi]@eff/%)i@ =4774575 + 0.8952328c + 0.6753475c2)

= 58,h82. 6(Geff/~)i (Ale)

extern&l work:

(Pi~cr)(0.25 + 0.46875c + 0.3691406c2j= 0.362752 (Pi/l&r) (AU.)

Multiplication of the Q2, M, and R functions by these multipliers
and addition of the results make it possible to solve for Per:

Pcr
1,804,446 + 147,8Ua + 935,431b + 36,451a2 + 23,960ab + 130,5Mb2=

11o.o681 + 2.74494a + 61.82786b + 4.27776a2 + 8.93153b2 + 1.3g202ab
.. .

(A12)

—__________ ———— ___ —-—— _ __ - .———.—.
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Differentiation with respect to a and b, respectively, yields:

x’
147,812 + 23,960b + ~,902a

cr = 2.74494 + 1.39202b + 8.5~552a

1? 935,431 + 23,960a + 261.@2b
cr = 61.82786 + 1. 3g202a + 17. 8.6306b

1

(A15)

.

.

(A13)

These equations were reduced to two linear equations by assuming a
value Of Pcr = 5500 and clearing fractions. The two linear equations
were solved simultaneomly for a and b:

a = –3.0191 (A14)
b =–3.354 \

Substitution of these tialues in equation (A12) gave a value
of Pcr =5507pounas. This result was considered sufficiently close
to the value assumed originally.

The next step was to substitute these numerical values of a
and h into the Q2, M, and R functions in order to allow a tii—
mization with respect to the parameter c. However, the @2, M, and R*
functions happened to have been previously evaluated with a = –3.07
and b = –3.36. Since s@ changes of the parameters have llttle
effect on the buckling load, and since these values are very close to
those given in equations (A14), the latter values were used.

The numerically evaluated 02, M, and R functions were then
multiplied by the remaining factors for the various strain energies
from equations (10), (13), (15), (18), (23), =d (28), excl~i~e of the
quadratic expressions in c. This gave as nmltipliers for the c
functions:

For

For

For

For

For

ring bending: 161,811.8

stringer bending: 19,103.99

stringer torsion: 123,458.2

shear of sheet: 29,527.52

external work: 136.2066

.

.
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Multtplicatfm of the quadratic er@essions in c by these factors and
addition of the results made it possible to solve for Pcr as a
function of c:

6~,407 + I, oti,057c + 498,239c2
Pcr =

34.0517 + 63.8468c + 50.27g4c2

Differentiation with respect to c as in equation (42a)

P 1,006,057 + 996,478C
Cr = 63.8468 + 100.5588c

(u6)

gives:.

(~7)

Assumption of Pc = 5440 yields a value of c =–1.4757 from
equation (M-7). ~u~stitution of this value of c in equation (AI.6)
gives pcr = 5446. Since this value of c is approximately equal to
the tiial value c = –1.477 awmzmed at the beginning, the velue

* of Pcr obtained is considered the mtcdmum for the nuniber of ring and
stringer fields (s = 4, (m + 1) = 10) under consideration.

The entire procedure was repeated for other integral nunibersof
ring an~ stringer fields included in the bulge, and the lowest value
Of Pcr was taken as the minimum value, and hence the value corre–
spading to the buckling load, for the cylinder.

The final results of the procedure are listed in table 1 for the .
four cykhiders investigated. The cylinders are shown h figure 4.

.

. . . ... . .-— .—. .————_—-—. ..-. -..——. .—— . ..— —...-— —.— .—.. -———.,. .
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TABLE 1

REmm3 OF cALouLATIm

7’2
73
74
75 lIIT-

42 9 7 -2.90

42 10 -3.07

42 l? 14 -3.07

42 13 10 -3.07

Elpmetrio defleoted shape

-3.30 0.177 3744 251, COI
-3.36 -1.476 54.4.6 364,0CQ
-3.36 -1.463 61ti 405,m
-3.36 -1.478 8234 5W,(XXI

I t 1

Antlsyrmetrio defleoted shape

r
t~eraige detiation = 28.8 percenl

75 4 2 10 -3.07 -3.36 –1. 173 E!&o 5@t, ooo 373,6cK) 56.3

-

,
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+rf’nax
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(a) SynmeiA.c deflected shape

SlN2~+C SlN6~

.

of a stringer.

. C = –1.478.

f

(b) Antisymnetricdeflectedshapeof a stringer.

~lN Z7TX
y+esl N~- (++~e)s’N~*e=-’-’73.
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Figure 2.- S&n convetiion and deflwkd shape of cylinder.
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Figure 4.- Monocoque test
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