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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2020

COMPRESSIVE STRENGTH OF FLANGES

By Elbridge Z. Stowell
SUMMARY

The maximum compressive stress. carried by a hinged flange is com—
puted from a deformation theory of plasticity combined with the theory
for finite deflections for this structure. The computed stresses agree
well with those found experimentally. ZEmpirical observatlon indicates
that the results will also apply fairly well to the more commonly used
flanges which are not hinged. '

INTRODUCTION

Ordinarily the ability of columns and -plates to carry additional
load does not entirely cease when they buckle. If the load 1s increased
sufficiently beyond the buckling load, they will ultimately refuse to
carry more load, with subsequent permanent distortion. In the case of
columns, the maximum load 1s not far above the buckling load; in the
case of plates, there may be a considerable spread between the two
loads.

The first essential requirement for the solution of the problem of
maximum load is the existence of a finite—deflection theory for the
behavior of the structure. Maximm load always occurs at some finite
deflection or distortion beyond the buckling load. The problem of the
load for a given distortion is thus nonlinear even without the
introduction of plasticity. Few such solutlons exist for post—
buckling behavior of structures even in the elastic region?

The second egssential requirement for computation of maximum load
is the abllity to describe the nonlinear behavior of the structure .that
results from plasticity of the material. Neither columns nor plates
would ever possess a maximum load in compression, if the material of
which the structure was made obeyed Hooke's law at all times, although
they might be tremendously distorted. In such a structure it would
always be possible to add still another increment of load, which would
result in still another increment of distortion. The question of a
maximm load must therefore be directly linked with the failure of the
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material to obey'Hooke's law, that is, with the plasticity of the
material and the nonlinear behavior of the structure which results from
that plasticity.

For the calculation of the maximum load carried by a buckled
structure, these two essential but difficult requirements must be met.
This paper treats the maximum compressive strength of a simple plate
gstructure for which the effects of both types of nonlinearity can be
found, that is, the compressed flange hinged along one side edge.

The maximum load carried by a long hinged flange is computed as
follows: The strain distribution across the flange at any angle of
twist 1s found from knowledge of nonlinearity due to finite deflection.
This elastic strain distribution is assumed to persist into the plastic
region. This strain distribution is transformed, with the aid of
knowledge of nonlinearity due to plasticity, into a stress distribution
by means of some appropriate stress—strain relation. The load carried
by the flange at the particular twist 1s then obtained by integrating
the stress distribution across the flange. The load is then investi-
gated to see if it has a maximum value as the twist increases; the
maximum load should correspond with the experimentally observed maximum
load.

Experimental data on the behavior of hinged flanges have been
obtained by the Langley Structures Research Staff by the methods of
reference 1. These data are used in the present paper for comparison
with theoretical relations.

The theoretical treatment of the behavior of a hinged flange
commences in the next section with a discussion of the effects due to
finite deflections. '

NONLINEAR  BEHAVIOR DUE TO FINITE DEFLECTION

Theoretical strain relations.— A flange of length L, width D,
and thickness t 1s shown in figure 1 together with the coordinate
system. The flange is hinged along the line z = O and has a free
edge along the line 2z = b. Compression is applied longitudinally.

The load is applied uﬂiformly at first. The theory of appendix A

shows that, for strains below a certain critical strain €y the
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flange will shorten without twisting. The critical strain ¢ at

cr
which twisting begins is shown to be
(£/5)2 | L (xt)?
€op = + —-(—— (1)
2(1 + p) 3\L

where u 1is Poisson's ratio.

. As the load 1s increased beyond that required to start twisting,
both the strain and the stress distribution across the flange width
become nonuniform, larger than the average at the hinge, less than the
average at the free edge. The straln at any point (x, z) of the flange
is shown by the theory of appendix A to be

(t/b)° L5 ¥R (1o 22\ e &g;) 5
x 750+ u) * 2 " ok 1+ K ’ b2 Sé < L/~ (®)

in which k2 is a parameter lying between O and 1 which specifies
the amount of twist,

/2 _ )
do.
0 V1l — kzsinea

is the complete elliptic integral of the first kind, and
1

m2 = 12 [e - —(3&& = Kg(l + k2)<h—t>2

2(1 + p) L

The average strain €gv 1n the elastic range is the average stress
divided by the elastic modulus E.

Thus, if a value is assigned to k2 (a certain amount of twist),

both the quantities K and m® are determined; the strain at any
point (x,z) may then be computed.
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'Equation (2) may be simplified as shown in appendix A to the
following expression which holds over the essentially straight part of
the flange:

€ = €y + % €qv — Gcr)<l -3 —) . (2a)

Theory also shows that over most of the flange length (except at
the middle and extremé ends) the relation between the strain at the
hinge ¢y, the average straln over the width of the flange ¢._._, and

av
the critical strain €cp 1s
4 5
ey ~ G €n t g ecy (3)
while the rotation @, . at the middle of the flange is
t -1 1
¢max = \[5 = cosh™" —=—nu ) (&)
b . Vi — Eﬁ .
Or approximately
a7 L £ '
Pogx = 1-37 2 Veay — Sor — 1.55 - (ka)

Relations (1), (2), (3), and (4) are susceptible to experimental check,
and the following section describes the results of experiments designed
to test these relations.

Experimental check of strain relations.— The hinged flange shown in

figure 1 was realized experimentally by the cruciform column shown under

test in figure 2. The cruciform column has four identical flanges which
1f equally.loaded, will twist at the same time without restraint to
each other; thus the condition of zero restraint against rotation is

3
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fulfilled., The columns were all sufficiently short to cause them to
buckle by twisting rather than by Euler bending.

The tests included measurement of the stress-—strain curve for the
material from which the different groups of specimens were made,
determination of the buckling and maximum load for each specimen, a
study of the strain distribution across the flanges of two gpecimens,
and a measurement of rotation of each specimen at the middle.

Results of the buckling—load measurements and their connection
with the stress-strain curves for the specimens were gliven in refer—
ence 2 and are shown in figure 3 of this paper where the buckling stress
ig plotted against the calculated elastic buckling strain. Because the
. experimental points follow along the stress—strain curve, the proper
reduced modulus for pure twisting In the plastic range is concluded to
be the secant modulus, which agrees with the theoretical value of
reference 2,

) The relation between the computed and experimental strain
distribution over the width of the flange for one specimen at the
quarter height for a mumber of different loads is shown in figure k.

. The highest average stresses exceeded the proportional 1limit of the
material. The measured stralng for the four flanges were averaged to
give the points shown in the figure. These average strains were some—
what larger than the ratio of average stress to E at the highest
loads. From the experimentally observed average strain across the
flange at each load and the critical strain at which buckling began,
the corresponding theoretical strain distributions were computed from
equation (2a) and are presented as.the curves in figure L. This
calculated gtrain distribution agrees fairly well with that observed
experimentally. .

The relation between average strain, corner strain, and critical
gtrain given by equation (3) was investigated experimentally. From
measurement of the strain in two opposlte flanges of one buckled

specimen, averages were taken to give mean values of ¢, and €.

The critical_strain €, Wwas also accurately known. Figure 5 shows the

theoretical relation of equation (3) compared with the averaged
experimental points. The agreement 1s good. The strain €, ceases to

be elastic at a value of 0.002, so that both the curve and the points
extend well into the plastic region. The persistence of the agreement
“between equation (3) and the experimental points up to the highest
gtraing indicates that even though equation (3) was derived on an
elagtic basis, it is a good approximation in the plastic region also.

Figure 6 compares the theoretical rotation of three cruciform
specimens of widely different lengths with the measured rotations. The
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ordinate in figure 6 is the shortening S/L, which is the hinge
strain ¢€,. Rotation was measured by a pointer attached to the flange

and moving past a circular scale. Equation (L4a) was used to compute
the theoretical rotations. The agreement between theory and experiment
is good in this case also.

NONLINEAR BEHAVIOR DUE TO PLASTICITY OF THE MATERTAL

The material of the flanges (24S-T aluminum alloy) is defined by
the stregs—strain curve of figure 3. The figure shows that above 25 ksi
the material starts to depart from purely elastic behavior and becomes
partly plastic. As a result of this plasticity, the flanges exhibit
nonlinear behavior above about 25 ksi.

The most elemenfary’consequence of the plastic nonlinear behavior
is the substitution of Eg,, for E in the formula for cr1tlcal stress

which, for a hinged flange, is (reference 2)

. =E " € (5)

cr gec Ccr

Another consequence of the nonlinear behavior due to plasticity is
the existence of a maximum load. Experimentally, as the load 1is
increased more and mbre, the twist of the flange will increase, until
a value of load is reached at which the flange ceases to carry more
load; this value is the maximum load. As was pointed out in the
introduction, if the material of the flange obeyed Hooke's law strictly
at all times, the rotation of the flange would increase indefinitely
with increase in load. The exisgtence of a maximum load is- therefore
directly attributable to plasticity of the materilal.

As the structure deforms more and more beyond the buckling load,
new stresses are introduced into the stress system by changes in the
middle—surface dimensions. These additional stresses will combine with
the original stress that caused buckling to form a stress intensity oy.

For a combination of longitudinal compressive stress oy and root—
mean—square shear stress T averaged through the thickneés, the stress

intensity is oy =‘/°x2 + 3712. According to the deformation theory of

plasticity which is used herein (reference 2), the reduced modulus of
the materlal at any given stage of deformation beyond buckling will be
determined by the stress intensity oj (or the corresponding strain

intensity) at that stage.
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Since the maximum load always occurs at a finite rotation of the
flange, the two effects of nonlinearity must be combined in order to
account for the maximum load. Such a combination is effected in
appendix B and the results are given in the following section.

MAXTMUM LOAD OF A FLANGE

It is shown in appendix B how the maximum load on a hinged flange
may be computed from the dimensions of the flange and the stress—strain
curve for the material.

The strain distribution across the flange is given by equation (2).
In addition to these straing which arlse directly from the compressive
load, there are also shear strains in the flange due to its twist.
These shear strains become as large as two-thirds of the compressive
strains upon which they are superposed. Although, strictly speaking,
the deformation theory of plasticity has only been shown to hold for
simple loading (reference 3), its validity is also assumed herein for
complex loading. The compressive strains and the root-mean—square
shear strains were added in the proper mammer to glve a strain intensity.
(The highly localized effects of bending at the middle and ends have
been neglected.) From the compressive stress—strain curve for the
nmterial the value of the secant modulus Esec wag read at this strain

intensity. For increasing strain intensities the compressive stress ¢

at any point across the width of the flange is then simply ESec times

the compressive strain at the point.  Near the free edge the strain
intensity decreases; in such a case, the elastic modulus E 1s used to

compute the corresponding stress reduction. The average stress Ogv

1 b .
cav=glA'odz .(6)

The value of Oav 1s computed for a number of different twists until a

across fhe flange is then

maximum average stregss is found.

Omax
. Figure 7 shows the results plotted in a nondimensional form
gimilar to that employed in reference 1. The parameters used have some
theoretical justification and have the effect of making the information
given by the plot largely independent of the material, The agreement’
between the computed curve and the experimental points for cruciform—
gection columns is satisfactory. '
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The fact that maximum loads may be computed in this case solely on
the basis of deformation theory suggests that the theory is sufficlently
accurate when the stress state changes from pure compression to combined
compression and shear, for shear stralns up to two-thirds of the largest -
compressive strains.

An interesting side light on this computation 1s revealed by the
values of stress intensity at the supported edge when the load 1s a
maximum., The stress intensity for eight widely different cruciforms is
a constant, to about 1 percent, equal to about 47 kei. (See table 1.)

When the flanges are present.in actual structures, they are
generally connected to other members which offer a certain elastic
restraint against rotation along the supported edge. The question
arises as to what effect. this connection has upon the calculations
based on the assumption of a hinge comnection. The elastic restraint
along the supported edge will have two major effects: The critical
strain will be appreciably raised and the effective length L of the
buckles will be appreciably shortened. A necessary consequence 1s that
the rotation (which is proportional to L) is reduced and, therefore, is
more nearly of the shape of a circular sine along the length of the
flange than it would be when a hinge is present along the Joint. A
third effect is the introduction of a slight curvature across the width
of the flange. When the revised critical strain and the revised length
are ingerted into the formulas of appendix A, which were derived for a
-flange supported along a hinge, it is found that the rotation and the
© strain relations may still be accurately predicted for flanges with
restralnt along the supported edge. Such a result seems to indicate
that the small amount of transverse curvature introduced by the
‘restraint does not have an important effect on the formulas.

In view of the fact that the theory of appendix A applies fairly
well to flanges with restrained edges, i1t might be expected that the
maximum strength, also, might be given by the same theory. Experiment
shows that such is the case; the values of maximum strength for H—
gections are included in the experimental points shown in figure 7 and
the points intermingle with the cruciform points such that one set
cannot be distinguished from the other. The theory of this paper may
then be sald to apply-approximately to flanges with elastic restralnt
along one side edge as well as to flanges without elastic restraint.

- CAUSE OF MAXTMUM LOAD

Maximum load occurs when it is no longer possible for the stress,
on the average, to grow with increasing strain. The natural tendency
for the stress to grow is defeated by the decrease in effective modulus.
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In order to illustrate this effect graphically, figures 8(a)
and 8(b) have been prepared. These figures illustrate the strain and
stress distributions across a hinged flange, supposed to be of

24s-Th aluminum alloy of proportions % = 14 and % = 12. These
distributions hold over the greater part of the flange where the bending
is negligible. TUp to the critical strain of 0.002 and the critical
stress of 21.5 psi, the distributions are uniform. As the load is
increased beyond the critical value, the distributions become more and
more nonuniform as a result of twisting of the flange. With increasing
load, the strain increases faster at the hinge than at the middle of
the flange as shown in figure 8(a). For a time, the corresponding
stress also increases faster at the hinge than at the middle of the
flange, as shown in figure 8(b). . Eventually, however, the strain
intensity at the hinge (averaged over the thickness) becomes so large
that the modulus is greatly reduced. When that occurs, the stress at
the hinge line ceases to grow with increase in strain and even starts
to decrease (see fig. 8(b)). The maximum area under the stress curve,
and thsrefore the maximum load, occurs Jjust as the hinge stress starts
to recede, : :

CONCLUSIONS

A theoretical analysis of the compressive strength of flanges,
bagsed on a deformation theory of plasticity combined with the theory
for finite deflections for this structure, and comparison with experi-
nmental data lead to the following conclusions:

*1, The maximum load for a flange under compression and hinged along
one edge may be accurately computed from the dimensions of the flange
and the compressive stress—strain curve for the materlal.

2, Maximum load occurs when, because of the onset of. plasticity,
the effective modulus has been reduced to such a low value that it i1s
no longer possible for the average stress to increase with increasing
gtrain, Failure 1s not a local phenomenon but 1s an integrated effect
over .the cross section of the flange.

3. For a wide variety of cruciform sections, the stress intensity
(averaged over the thickness) along the hinge line at maximum load is
a constant to about 1 percent



10 NACA TN 2020

., The fact that maximum loads may be computed in this case
suggests that the deformation theory of plasticity is sufficiently
accurate when the stress state changes from compression to combined
compression and shear in the case when the shear strains are less than
about two—thirds of the compressive strains,

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va., December 9, 1949
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APPENDIX A

FINITE DEFLECTION THEORY FOR A HINGED
FLANGE UNDER COMPRESSION

Elliptic—Function Solution

The coordinate system and dimensions of the hinged flange (one—
fourth of a cruciform—section column) are shown in figure 1(a); the form
of the distorted shape is shown in figure 1(b). The fundamental
hypothesis of the calculation is that at any section x = Constant there
is no curvature of the flange in the direction of z. The correctness
‘of this hypothesis is amply borne out by tests on the flanges while
under twist. With this assumption it becomes possible to avoid a
formalized plate treatment of the problem.

For infinitesimal rotations, the differential equation of
equilibrium for a column under the simultaneous action of a compressive
stress o and torque T has been shown by Wagner (reference 4) to be

. ; |
d d g
GJ — oI _Q - EC =T Al
( Ip) 72 BT 3 (A1)
where
ag
GJ ™ St. Venant component of internal resisting torque
o :
pr o component of intermal torque due to application of

compressive force (This component is not a resisting
torque but aids the applied torque T in twisting the
column; its sign is therefore negative.) '

3
g—g component of internal resisting torque due to bending of
dx3 column as it twists
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For the case in which the applied torque T 1s zero, such as for
a compressed hinged flange, equation (Al) becomes

' 3
_ i _ g
(GJ oIy) o ECp 3 =0 (a2)

As previously mentioned, equations (Al) and (A2) are limited to
infinitesimal rotations.and thus cannot be used to determine the
behavior of a column above the buckling load where rotations may become
large. . ' ‘ '

In order to investigate the behavior of a compressed hinged flange
above buckling, a theory which permits the calculation of the large
deformations which may occur after buckling must be employed. The
differential equation (A2) must therefore be amended to include the
effects which appear at finite values of the rotation @.

These effects involve the changes 1n the middle—surface strain
that occur after buckling. As the plate twists, the longitudinal fibers
will be inclined at a small angle to the hinge line as shown in
figure 1(b). As a result, the longitudinal fibers are stretched in
varying amounts and the horizontal components of the forces along the
fibers produce a torque which resists twisting of the plate. The
resisting torque increases very rapidly with twisting of the plate,
which thus becomes progressively stiffer. The rapid increase of
gtiffness with rotation provides the.required mechanism for maintaining
the rotation at a finite value.

Derivation of the Basic Differential Equation

Stretching of middle—surface flbers after buckling.— A short
section of the plate as shown in figure 1(c) will have the length ac
before the plate buckles. After buckling, the length ac' will be
greater than ac because ac' 1is inclined at an angle 1y, with the
hinge line. (See fig. 1(c).) Thus the strain at the free edge €, due

to stretching for small values of 7y, 1is

ac — ac' 4 ‘
—€.b = ——ac—' =..sec 7-b - lx —2— (A3)

(The strain €, 1s positive when compressive. )
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If the line aa (fig. 1(c)) has been rotated an angle ¢ from its
original position, the free—edge fiber at ¢ moves a distance
b(¢ + df). The angle of inclination of the free—edge fiber is thus

_p(g+ap) —vF . g | (a)
dx dx

If the point c¢ 1s not at the free edge but at some interior
position a distance =z from the hinge line, it can similarly be shown

that

2 .
—-¢ = % ‘ (A5)
: Yz = 2 %% | (46)

From equations (A5) and (A6), the strain €, resulting from the
gtretching action can be given as '

--£ (92)2 - (A7)

Equation (A7) gives the difference between the hinge—line strain and
the straln at any fiber due to the stretching action, for a given
position along the width of the flange.

Middle—surface strain distribution.— A compressive load P applied
to the hinged flange will cause the ends to approach each other by a
distance ©&. The unit shortening e is 8/L Equilibrium of the
internal compressive forces with the applied force P requires that

= tE(/Pb (e + € )cos ¥, dz (A8)
0] -
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The angle vy, is usually so small that cos 7z may be taken as unity.
Then, substituting the expression for ¢, from equation (A7) into
equation (A8) yields

b o Y
2 2
P = tE 6 ~22 (@) 14y - maje — B2 92) (A9)
0 2 \dx 6 \dx
The unit shortening e 1is therefore

dx

e=-P—
AR

The ratio P/AE 1s the average strain over the cross section.
If P/AE 1is denoted by .., equation (Al0) becomes

2

e = €y + ﬁé— | (Al;)

The longitudinal middle—surface strain e

x &t any fibre 2z 1in the

cross section is therefore

2 .
7 2 2
G =e+ € = 6+ _%— - %; (92) (A12)

Moment due to axial stress.— The longitudina; gtrain €x does not

have the direction of the hinge line but of the slightly inclined
longitudinael fibers (the angle 7y,, equation (A6)). Consequently,
& has components perpendicular to the hinge line which create the

moment AM resulting from the applied compressive force.

The component of €y Dperpendicular to the hinge line at any
fiber =z is € sin y, and for small angles is approximately equal
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to éxz gg. As this component has a lever arm 2z, the internal
dx

resisting moment AM is

M =.—Etl/Pb <€Xz %£>z dz (A13)
i 0 :

Substituting the expression for € from.equation (Al12) into

equation (Al3) results in the following relationship:

3
M= -1 @, 2 2y 92) © (Alb)
Pax 15 P \ax . .

The term oIy %g is the same term that appears in equation (A2). The

last term of equation (AlLk) is the required additional -term which takes
into account the stretching actions, which occur for finite rotations
of the flange, and permits the computation of the rotation ,¢.

Bagic differential equation of torque for a compressed hingéd
flange.— The complete differential equation of torque which replaces
equation (A2) and includes the last term of equation (Allk) is

3 ‘ 3
(6T — oIp)QQ ~ ECpy, ap, 2 Eb21p<99) =0 (A15)
dx x> 15 dx -

The constants of equation (Al5) are

(A16)
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Substituting equations (Al6) into (Al5) yields

d_'}C3 t 2(l+u

32 { 2
. %l}av - {e/b) :I"g B(b) ( ) =0 (AL7)
A further simplification is effected by the use of

b =P %g w

‘g N 3 F . (n18)

' 2
m2=]_2€ _JEDL

2(1 + )

S

The substitution of relations (Al8) into equation (Al7) gives the
basic differential equation for a compressed hinged flange

d2 14"

at®

+ 1Py, _g y =0 (A19)

Solution of the Basic Differential Equation

The basic differential equation (A19) has the solution

g+ £ =42 b (A20)
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where c¢ and o are constants of integration. (The sign of the
radical must be chosen so as to keep d& positive.) With the

d
condition that 9 =0 for £ =0 <£ equals zero at the ends) and
the substitutions ‘

> (a21)

h2=n;2._ _u_.".".ce
' 2 Vh 5

S
equation (A20) may bé written
% d(yp/c)
= / L (A22)
° i - one) [ - 1B/e)7] |
With new variables ¥ and k defined by
\
-7
l gin T = —b
g c o
> (A23)
k=2 '
g
J -
equation (A22) is transformed into
7 .
e- 1 / __a¥ (A2k)
€ Uo \fI — KPsin®y |
In order to determine the constant c¢, use is made of the céndition

that 9, =0 for &= L (x = %) The upper limit for equation (A2k)

2t
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corresponding to x =

N |

must then be ¥ = n in order to satisfy the
first of equations (A23):

L_1 /" _ab
t
2 & o |/l - kzsingﬁ

or
/2
g =2 1y (A25)
V - K°sin? ¥
In elliptic—function notation,
\
/ = K(k)
V k sin a
? (A26)
g7
f da = sn l(sin ¥) = sn ( b)
0 . c
Vl - k251n2a,
’ /
Equation (A25) therefore may be written
4Kt
= N (A27)

while equation (A24) becomes

1l
0
bl
}_J
TN
6]
(¢]
E
v

x _ / '
L 0 Vl - kgs'inga,
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go that

7, = é- sn (”%) | (A28)

The coefficient c/g is readily found from the definitions of g
and h 1n equations (A21). From the first of these equations

Y - N \/Z;V_M_é

2(1 +p) 12

and from the second,

V5, (t/p)2 g2
’?h'"\'ﬁ\%av_e—(?/m_ﬁ

Making use of equation (A27) leads to the general solution:

(t/2°% 1 (k)2 [
" VB - e~ () () )

Another form of the solution which is sometimes convenient may be
obtained by using a different expression for h: Since

m° =_g? + 102 = g2(1 + ¥2) = (E%%)g(l + k2) | (A3O)

it follows that
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and that
h = kg = Jn
1 4+ k2
Hence,
7, = By sn(’%x): o lm sn(“Kx) (A31)
) 2 e V1 + k2 L

Critical compressive stress.— As the load on the flange, represented
by the term e€,,, diminishes from some large value, the angle 7, @s

given by equation (A29) will diminish, until finally at some value

of €gy» 7, Will become zero. This value of €,y 1s the critical

buckling strain.

The preceding section showed that the angle 4 is proportional

to. h, and therefore to k. As k approaches 2ero, K approaches ﬁ/e,
and the elliptic sine approaches the circular sine, Hence for loads
only slightly above the critical, from equation (A29),

2(1 +u) 1.2\ L L.

" =\/1—5\%av_ (£/b) __l_<21rt) aip 21X

At the critical load, 9, = 0, and for loaded edges clamped,

P (.7 S .
(eav)7b=0 for 2(1+w) 12 ( L) (432)

This 1s the expression given as equation (1) in the body of the paper.
The critical compressive stress Ospr 1s obtained by multiplying both
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sides of egquation (A32) by the effective modulus in compression E
Then '

_ _p | {8/m)F Léﬂ)g
Or ~ Beecfor ~ Boec o(1 + p) TS (A33)

This is the expression given as equation (5) in the body of the paper.

Rotation of flange.— The rotation of the flange is given by

P =3 f % 4(%) | (A3%)

and so is obtailned by a simple integration of the fiber angle distri-
bution along the length of the flange, subject to the condition that
the rotation is zero at both ends of the flange. |

- If an analytical expression for @ 1s desired, either
equation (A29) or its alternate (A3l) may be integrated. - Integration
of equation (A31l) gives

g5 m 1 [ )
2\ . 2 K L (L
.!:- cosh™! _r cosh™® V& = ko (/L) (A35)

r_kem o2 Vi

Since



22 ' .NACA TN 2020

the general integral becomes

2 2
¢=§6% osht — 1 _ —c:osh_lv{_ksn (4K /1)
- x° . V1 - k2 >x >3
=L_
¢=—‘{22—%cosh‘l—-—-l-—+cosh—l\/l—k28n2(qu/L) <%=>%=>%)
Vi -2 CVI- 2
Bt o1 1 x_1 x_3
g = 5 ¢ cosh V- I=F % [T A
- 1 x 1
¢ = 5% cosnt _ <...=._>
b 1 -x2 L 2

Variation of étrain over length and width of flange.— The
strain €, at any distance 2z from the hinge line was given in

equation (Al2) as

The slope of the free—edge fiber % may now be inserted in this
expression from either equation (A29) or (A3l). Thus

5 (t/p)° 1 uKt)e < 22 2<1+Kx>
€= € Zle - - = 1 -3 =— - A36
x ~ “av T 2| av 2(1+u) 22\L 33\ (436)
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or

2
_ 1_1:3111_2_(_ 27 o 4Kx
Tt TL e 3b2)sn<L | (A.36a)

Relationships between hinge—line, average, and critical strains.—
Along the hinge line z = 0, and equations (A36) give

_ 5. _ _(t/p)? __1_<th)2 2 1;_K_x_)
(), 0 .eav + 2 [eay Ao IAL sn < -

or

: 2
(&)y0 = v + % l—k%—n;z— sn2<h’—§x—)

() =Zc¢ i_(ﬂ+_l_.(§K_t)2 (A37)

or

5 km
+ 2

(A372)
24 14X

(GX)i.:O = €av

Along the hinge line, at x =0, x = %, and x =1,

(Ex)Z=O = Gav
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Thus at the ends and at the miidle the strain is uniformly distributed
across the width of the hinged flanges.

v Fractional shortening.— The fractional shortening of the
flange /L (1/2 of its length is considered for convenience) is

ol R

n
g
2
=
-
ol
ol i
E?f‘:g
3]
Pro
—
&
NS——
o
=
t
X

' /2 .
where E = L/Pﬂ VS — k2sin®a da. From equation (A30) m = E%E_Vl + kg,
0

and by use of this value of m,

_8 - o L 10tVkx—T | 8
e—L—eav+3<L>K(.K n o (438)

Approximate Relationships for Postbuckling Behavior

Ths preceding relationships for the behavior of a hinged flange
when compressed beyond the buckling load may be greatly simplified if
the flange is long enough so that bending is negligible compared with the

twist. Under such conditions the term ECBT.Q—% in the differential
) dx _
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equation (A15) may be neglected. The basic differential equation (A19)
then reduces to a simple algebraic equation

The fiber angle 7y, -— Solutions of the preceding equation ars

Yy = 0

", and

_ _(t/)?

, the term in length now being omitted.
cr .
2(1 + )

in which €

- Rotation of flange.— The approximate rotation will be the integral
of the approximate value of Yps O

¢ =.\/-12_—5 av ~ Gcr(%x%)

and .

¢=E—5 -9 G

A reference to figure 2 shows that the distribution of the angle @
1s nearly linear for large rotations.

1 L
The maximum value of ¢ is _Efgi Jggrt?j%; (E)

I

(] o
1AV

el ol
N———

Poox = 137 & A ~ T (ako)
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A second approximation, which confains a small correction term to
equation (ALO), may be found from the relations

lim 1 1 2
k31 cogh™ ———— = log ——
Vi - x° Vi - x2
and '
1lim : L
= 1 .
K1 T 108 5
1 -k
Since
log#:log—b’———logz
V1 - x° V1 - K2
as k—1,
cosh™t —E— - K — log 2
Vi -k

The exact rotation at" the middle of the column is given: by
equation (A35):

_ t -1 1
Prax = \E‘F cosh

-2
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therefore, as k—1,

¢m=\[5‘%[_f<—iogej

]
o |+
= -
§|E«
= .
c.*.
|
'_J
O
0.9]
™y

1.37 % VFay = Top — 1.55 & (A4L)

. . t
This corrective term 1.553 is always a small part of ¢max'

Variation of strain over width of flange.— The approximate strain
distribution is obtained from equation (Al2) by using the approximate
value of 1y from equation (A39):

€, = €gy * % (egv — ecr)(l -3 EE) (Ak2)
b :

UWKx

This result holds over most of the length of the flange but is in error
near the ends and the middle where s —£-> has a value different from

unity.

Relationship between the hinge-—line, average, and critical strains.—
Along the hinge line =z = O, so that, approximately

(x)pmo = T av = § Sor (ax3)

Fractional shortening.— The_approximate shortening is

L ' :
L (2 2 c = 2 5
°TL (/; '<E fav T X Gcr>dx = § av ~ § or (Abkk)

and therefore is 1dentical with ¢ along the hinge line 2z = O.
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APPENDIX B

- MAXIMUM STRENGTH OF A CRUCIFORM—SECTION COLUMN

The deformation theory of plasticity used here states that a
relation exists between,the stress intensity o3y and the strain

intensity ey which is of the following form for loading

(e1 increasing)

O'i = E

for unloading (e decreasing)

sec®1

dci =E dei

where
o4 =‘MéX2 + 022 = 050, + 31
ey = 2 Véxe + €z2 + € €, + %?

3 : .
Oys €x stress and'Strain in the x—direction
Oys€, stress and strain in the z—direction
T, ‘shear stress and strain

In the case of a cruciform—section column compressed beyond the

buckling stress

g

cr’

the value of Ox

is the stress in the x—direction
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and is always larger than o¢,,. Also o, = O, and with Poisson's

ratio equal to 1/2, €, = —-% €y SO that the .fundamental stress—strain

relation for increasing oy reduces to

' / 5
2 _ 2
0" + 312 = Egoo Vg™ + 3L
in which

= €
X Esec X

~ The value of <§x at any point (x,z) of a éfuciform flange is
assumed from appendix A to be '

T s <1_3z2>n2<5§)
: L

o2l +u) 12 2414+ k° b2

where k° 1is a parameter lying between -0 and 1 which specifies the

emount of twilst,
. /2
K:fﬂ‘ da
- 0 2 42

1l —- X"sin~a

2(1 + u)

212 [ SO

As soon as a value is agsigned to k2 corresﬁonding to a certain amount

of twist, the quantities K and m? are fixed and € may be computed.
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| Over most of the length of the column, Sn(E%E)Rs 1 and, therefore,
| the variation of €, with x may be neglected by taking

€=4m12_+g£+1ﬁ(1_3§_§)

o2l +p) 12 241 4 X

The shear strain y arises from the twist %g of the flange

after buckling and is proportional to the distance r away from the
center line of the cross section: )

d
= 2 —g
Y r ax

However for insertion into the formula for strain intensity, a value
of 72 is desired which is independent of r. Such a value may be

obtained by taking the average value of 72 over the thickness. The
mean value of 72 over the cross section is

7or [ - S -

From the theory of appendix A (equation (A31)),

| | 7b.=§ K
2 V14 x2

over most of the section for which sn(&%za ~ 1. Hence

2.5 (t)e' K
12 14+ 2

: . .
and thus the strain intensity vexz + %r is completely determined as

| gsoon as a value of the parameter k2 1is selected.
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From the stress—strain relation the value of the stress intensity
and of course Eg,, 1s determined by the value of the strain intensity.

(The elastic modulus E 1s used if the strain intensity is decreasing.)
The stress o, may then be computed by the relation: Oy = Egoc€x as a

function of the z—oordinate across the flange. The average value
of oy across the width of the flange is then ‘ '

:and is the average stress that would be determined from a testing
machine at the -value of k2 gselected. - .7

In the actual calculations, the width b of the flange was divided
‘into ten equal strips and the value of Ogy Wwas found by a numerical

summation. As the twlst of the flange varies from zero to infinity,

the parameter k2 varies from zero to 1. The value of Ogy may be
investigated as a function of k2 and will have a maximum at some value
of k2. This maximum value of Ogy multiplied by the total area gives
the maximum load for the cruciform flange under consideration.
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TABI_E. 1.~ SHOWING CONSTANCY OF STRESS INTENSITY

AT HINGE LINE AT MAXIMUM LOAD

Specimen At failure
N Ucr, Omax . o‘ii
b/t 4 L/b (ksi) (ksi) (ksi)
8 1 12 45.9 b5.7 "46.6
9 18 40.6 k0.0 | 45.9
10 g 44,8 k.0 4725
10 10 37.6 38.0 - h7.5
11 10 33. 36.2 L7.1°
12 L | 37.3 39.2 © 46,6
13 10 25.8 31.5 |+ k8.2
14 12 2l.7 31.3 - k8.2

f | , o “’“ﬁqmzig'f’
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1

4
z ' . z
(a) Without distortion. (b) With . large distortion.

i
1

(c) Enlargement of section dact.

Figure 1.~ Cruciform section, consisting of four identical flanges,
before and after buckling. Coordinate system is shown on one
_flange. : -7



NACA TN 2020

1C-XVID

Figure 2.- Buckling of a cruciform

“!ﬂﬁ;"’

}-3&92 5.1

section in compression.

35

|



~ Page intentionally left blank

Page intentionally left blank



NACA TN 2020 : 37

60

T
o

50

o©

40

30

Stress,
ksi

T

20

0 l 1 1 1 1 1 1 1 L 1
0 20 40 60 80 100

Strain

L 1 ) 4
120 140 16010

Figure 3.- Experimenta.i values of the buckling stress for cruciform-
section columns of 24S-Th extruded aluminum alloy compared with
the compressive stress-strain curve for that material.
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Figure U.- Theoretical strain distribution across a hinged flange of s
cruciform-section column compared with experiment. (Experimental
values are average for the four flanges; €op = 0.0016.)
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Figure 5.- Theoretical strain relation between €gyr €hs and | €cy Tfor

~¢€r

a hinged flange compared with experiment. (e av = Eeh + Z
9 &

for €qv > €op-
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Figure 7.- Comparison of theoretical curve for the maximum strength of
2Lks-Th alluminum alloy cruciforms with test results. Compressive
yield stress ocy = U6 keil. . (Experimental values for H-sections.
of various aluminum alloys have been added for comparison with
the theoretical curve.) )
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(@) Strain distribution. (b) Stress distribution.

Figure 8.- Theoretical strain and stress distribution across a flange of

a typical cruciform. %: 1L; %— = 12.
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