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SUMMARY

A technique is developed for the application of a channel design
method to the design of high-solidity cascades with prescribed velocity
distributions as a function of arc length along the blade-element pro-
file. The technique applies to both incompressible and subsonic
linearized compressible (ratio of specific heats equal to -1.0), non-
viscous, irrotational, fluid motion. An impulse cascade with 90° turn-
ing was designed for incompressible flow and was tested at the design
angle of attack over a range of downstream Mach number from 0.2 to
choke flow. To achieve good efficiency, the cascade was designed for
prescribed velocities with maximum allowable blade loading according to
limitations imposed by considerations of boundary-layer separation.

INTRODUCT ION

In order to obtain large pressure ratios per stage in axial-flow
compressors and turbines, cascades of blade elements with large fluid-
turning angles are required. To achieve these large turning angles

without serious shock losses due to supersonic peak velocities and without

boundary-layer separation due to excessive blade loading, the cascades
must be of high solidity. However, because friction losses increase
with the ratio of wetted surface to flow area, it is desirable that the
blades be as highly loaded as possible so that the solidity be no
greater than necessary. Thus it is desirable to have design methods

for high-solidity cascades with maximum prescribed velocities that do
not result in shock losses and with maximum prescribed deceleration
rates that do not result in boundary-layer separation. Such blade
elements should have optimum efficiency for the prescribed turning angle
of the fluid. :
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Two types of method are used for the design of blade elements in
cascade: (1) airfoil methods, and (2) channel flow methods. Airfoil
methods have been developed for incompressible and linearized compress-
ible flow (references 1 to 5, for example). These methods are exact
for irrotational, nonviscous fluid motion but generally become difficult
to apply if the blade-element solidity is large (1.5 or larger).

For large blade-element solidities, channel-flow methods of design
are used, in which the channel between blades is designed and the
"islands" between adjacent channels (fig. 1) constitute the blade
elements, with the nose and tail of the islands rounded off. Geometric
methods for channel design based on the combination of several circular
arcs have been used extensively (reference 6, for example), but these
methods have no direct control over the velocity distribution along the
blade-element profile.

In reference 7 the shape of the mean streamline between blade-element
profiles and the velocity distribution along this streamline are pre-
scribed together with the blade spacing, and the resulting blade-element
profile and velocity distribution along it are determined. The method
involves approximations that are accurate for high-solidity cascades
but has no direct control over the velocity distribution along the pro-
file surface.

Design methods for blade elements of high-solidity cascades with
prescribed velocities along the blade-element profile are given in
references 8 to 10. All of these methods involve approximations. In
reference 8 the desired velocity distribution is obtained by trial-and-
error methods. In reference 9 the shape of one channel wall and the
velocity distribution along it are prescribed so that, as in reference 7,
the problem is overdetermined and therefore approximate. In refer-
ence 10 the manner in which various flow conditions vary across the
" channel of high-solidity cascades is assumed.

A technique for application of the channel design methods of refer-
ences 11 and 12 to the design of high-solidity cascades with prescribed
velocity distributions as a function of arc length along the blade-
element profiles is presented herein. The technique applies to both
incompressible and subsonic linearized compressible (ratio of specific
heats equal to -1.0), nonviscous, irrotational, fluid motion and gives
exact results except for the approximation resulting from rounding off
the nose and tail of the blade element (which rounding-off, as will be
discussed later, should be done with care to avoid local peak velocities
and rapid decelerations). In order to investigate the validity of
rounding-off the nose and tail and to investigate effects of compressi-
bility and viscosity, a high-solidity, 90° impulse cascade was designed
and tested. To achieve good efficiency, the cascade was designed for
prescribed velocities with maximum allowaeble blade loading according
to limitations imposed by boundary-layer separation (reference 13). The
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cascade was developed for incompressible flow and was tested at the
design angle of attack over a range of downstream Mach number from 0.2
to choke-flow conditions. The data were analyzed and correlated by
methods developed in the report.

The application of a channel design method to high-solidity cas-
cades reported herein was developed at the NACA Lewis laboratory during
1951 and is part of a doctoral thesis conducted by the senior author
with the advice of Professor Ascher H. Shapiro of the Massachusetts
Institute of Technology.

CASCADE DESIGN METHOD

A cascade design method based on the channel design methods of
references 11 and 12 is developed for nonviscous, irrotational, incom-
pressible or linearized compressible fluid motion.

Theory of Method

Outline. - Consider the flow of fluid past the high-solidity cas-
cade in figure 2. Any two blade elements and their respective stagna-
tion streamlines upstream and downstream of the cascade constitute a
flow channel. In the proposed high-solidity cascade design method the
shape of this channel will be determined, except for regions in the
vieinity of stagnation points, for prescribed variations in velocity as
a function of arc length s along the channel walls between points
corresponding to the nose and tail of the blade elements. The channel
design methods of references 11 and 12 will be used to solve for the
shape of this channel between high-solidity blade elements.

The flow field of the two-dimensional channel between blade ele-
ments is considered to lie in the physical xy-plane where x and y
are Cartesian coordinates for which the units are so chosen that the
channel width downstream at infinity is unity. (All symbols are defined
in appendix A.)

At each point in the channel between blade elements the velocity
vector (fig. 3) has a magnitude Q and a direction 6 where Q is
the fluid velocity for which the units are so chosen that the channel
velocity downstream at infinity is unity. For compressible flow, the
velocity q 1is related to the velocity ratio @Q by

q=qu

where q 1is the velocity for which the units are so chosen that the
stagnation speed of sound is unity and where the subscript d refers
to conditions downstream at infinity.
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Solutions for two-dimensiocnal flow are boundary-value problems.
That is, the solutions depend on known conditions imposed along the
boundaries of the problem. In the inverse problem of channel design
the geametry of the channel walls in the physical plane is unknown.
This unknown gecometry apparently precludes the possibility of solving
the problem in the physical plene and necessitates the use of some new
plane. This new plane must be such that the shape of the boundaries
along which the velocities are prescribed is known. It is also desira-
" ble that the coordinate system of the new plane be orthogonal in the
physical plane. A set of coordinates that satisfies these requirements
is provided by the velocity potential lines of constant ¢ and the
streamlines of constant ¥ (where @ and ¥ are defined in refer-
ence 12), which are orthogonal in the xy-plane and for which the geo-
metric boundaries are known constant values of ¥ (equal to O
and ﬁ/Z) in the @QV¥-plane. The distribution of velocity as a function
of ® along these boundaries of constant ¥ is known because, if

O
I}

Q(s)

or

a(s)

is prescribed, the definition of @ (reference 12) gives

q

¢ =0(s)
from which

Q = Q(®)
or

qa = a(®)

The technique of the channel design methods developed in refer-
ences 11 and 12 is therefore to solve for the physical xy-coordinates
of the channel walls in the @QW¥-plane where the prescribed boundary
conditions for the two-dimensional flow problem are known.

The channel design methods of references 1l and 12 are applied to
the design of high-solidity cascades as follows: Along the upstream and
downstream stagnation streamlines (fig. 2) the velocity will be assumed
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constant and equal to the upstream and downstream velocities, respectively.
The stagnation points on the blade surface are ignored (vhich practice
results in a cusped nose and tail that are rounded off as discussed
previously) and the velocity at the nose and teil are assumed equal to
the upstream and downstream velocities, respectively. Along the channel
wall corresponding to the suction surface of the blade element the
velocity accelerates from its upstream value at the nose to some maximum
value after which it decelerates to its downstream value at the tail.
Along the channel wall corresponding to the pressure surface of the blade
element the velocity decelerates fram its upstream value at the blade
nose to some minimum value after which it accelerates to the downstream
value at the tail.

Because of the velocity difference over that portion of the channel
walls corresponding to the blade element surfaces, the channel turns the
fluid an amount A8 that can be computed by equation (E5) of refer-
ence 12. If a specified value of A6 is desired, the prescribed velocity
distribution must be adgusted by methods to be considered later, to
obtain this turning.

The physical coordinates of the channel are determined in the
Qd¥-plane for the prescribed velocity distribution according to the design
methods of references 11 and 12. The "islands" between adjacent channels
(fig. 1) in the physical xy-plane constitute the blade-element profiles.

"The cusped nose and tail of these islands are rounded off at the pre-

viously selected positions for the nose and tail of the blade-element
profiles.

Nose and tail positions in O@V¥-plane. - Because the channel design

- is carried out in the ¢@V¥-plane, it is necessary to determine the posi-

tions of the nose and tail on the pressure and suction surfaces of the
channel walls in the @V¥-plane. Consider the flow of fluid correspond-
ing to the channel between blades (flg 2). The change in velocity
potential ¢ from the upstream boundary, at which conditions are con-
sidered uniform, to the nose must be equal along both upstream stagna-
tion streamlines so that

Oc -0y =0p - 0p

from which

¢p - 00 =g - 9y (1)
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where the subscripts A, B, C, D, and so forth, refer to positions defined
by the velocity potential lines in figure 2. But, because conditions are
uniform along the upstream boundary -

d _ 0
—T__Bﬁ 5 A = tan e'u (2)

where n/2 is the change in V¥ across the channel and where the angle
f' 1is measured counterclockwise from the positive x'-axis of the
x',y'-coordinate system in which the cascade lies along the y'-axis
From equations (1) and (2)

QD 'CI)C = % tan 6' (3)

Equation (3) determines the difference in @ on the two walls of the
channel at the points in QV¥-plane corresponding to the nose of the
cascade blade. Likewise, the difference in ® on the two walls of the
channel at the points in the @®V¥.-plane corresponding to the tail of the
cascade blade is given by

Equations (3) and (4) determine the relative positions on the channel
walls in the ®V¥-plane of points corresponding to the nose and tail of
the blade profile, respectively.

Prescribed velocity distribution. - In general the prescribed dis-
tribution of velocity as a function of arc length along the channel walls
between blade-element profiles can be arbitrary for the proposed blade-
element design method except that the velocity is higher on the suction
surface than on the pressure surface, the resulting blade-element profile
must be practical, and the difference in velocity distribution on the
two walls must satisfy equations (3) and (4). In addition the prescribed
velocity distribution must result in the prescribed turning angle. This
last condition can be determined by computing the turning angle from
equation (E5) of reference 12 and, in general, the original velocity dis-
tribution must be adjusted by trial-and-error methods to achieve the.
correct (prescribed) turning angle. Along the channel walls upstream
and downstream of the points (and at the points) corresponding to the
nose and tail of the blade element profile (fig. 2) the velocity is
assumed constant and equal to the upstream and downstream velocities,
respectively,

CyY¥ve
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In the remainder of this report it is assumed that the velocity dis-

tribution is prescribed, for convenience, by loge Q (for incompressible
flow) as a linear function of & along the channel walls in the
d¥-plane (a typical example of such a velocity distribution is given in
fig. 4). The velocity accelerates along the suction surface (‘I’ = 0)
from the upstream value Q; at the nose ®¢ to a maximum value Qpgx
at which it remains constant until it decelerates to the downstream
value Q3 at the tail ®g. The velocity decelerates along the pressure
surface (¥ = n/2) from the upstream value Q, at the nose &p to a
minimum value Qpin &t which it remains constant until it accelerates
to the downstream value Q3 at the tail QF. The accelerating flow
along the suction surface and the decelerating flow along the pressure
surface near the blade nose and vice versa near the tail will, in
general, result in a physically practical blade-element profile. An
equation for the turning angle A5 that results from this linear dis-
tribution of loge Q@ and which must satisfy the prescribed turning
angle is developed next.

Turning angle AS. - From appendix E of reference 12 the channel
or cascade turning angle A9 1is given by (for incompressible flow)

i el d log. Q d log. Q
-2 e e
A9 = = o) <__BE.__ £ -\ /o ad (5)
i 2

— Co

For linear variations in loge @ with &

d log, @ A log, Q
Y = yX) = constant

and for the type of linear velocity distribution given in figure 4,
equation (5) integrates to give

Ja\e)

Ak

(loge QI;:;.X) <¢C + ?CC) + <lOge 'Zé—.:x—> (@m + ¢E) -

(loge Q’sin> (®p + ®pp) - <1oge %> (Opp + OF) (6)
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which is the cascade turning angle. For a prescribed value of Af,
equation (6) establishes a relation among Qmaxs Qmin» Qu» 2@» ®cr ¥ce»
dp, o, ®E, PEE, PF, and Ppp. For linearized compressible flow, linear
distributions of loge V (defined in reference 12) with @ of the type
shown in figure 4 could be prescribed in which case the turning angle A6
would be given by equation (6) with Q replaced by V.

Allowable deceleration on suction surface. - In order to achieve the
desired turning A6 with the minimum number of blades, the difference
(Quax - Qpin) for incompressible flow or (Vmax - Vpipn) for linearized
compressible flow must be large; and the arc length over which Qmax
and Qpuin are prescribed should be extensive. However, the magnitude
of Qmax 1is limited by shock losses (compressible flow) and cavitation
(incompressible flow). Also, the arc length over which Qpax is pre-
scribed is limited (in percentage of total suction surface length) by
the allowable rate of deceleration from Qmgx to Q3 along the suction
surface near the blade tail. This limitation will be considered next.
The deceleration from Q; to @Quin along the pressure surface near the
blade nose is not so critical because the boundary layer is thin in this
region.

The allowable deceleration without boundary-layer separation on the
suction surface is determined by the ratio Qd/Qmax and the blade-element

Reynolds number based on blade chord (reference 13). This allowable
deceleration can be expressed as a ratio of arc lengths A, where A
is defined by

fgg_:_fg (7)

A= SE - SC

where the reference point for s 1is arbitrary. The maximum allowable

value of A for given values of Q3/Qpay &nd Reynolds number is given
in reference 13.

From equations (3) of reference 12 the arc length (sgg - s¢) is

given by .
o ,
(s s)—fccg+fm9 (8)
EE - %) = oo QTSP @

noja
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where for the type of velocity distribution in figure 4

: -0, A
loge @ = loge Qy + (1oge Quax - 10ge RQu) (ﬁ) (Oc<P<®cc)
and ; (9)

From equations (8) and (9)

%, ey oo = % (anax'%>+°m'°cc
2 VEE T T G \ Gnax@u Qs
Oge%

and, likewise,

°E - QEﬁ <éd" Qmax>
Q4 \ UWSnax

2 (o8 - %) = & (ogg - o) +
loge

so that equation (7) becomes

o o . 1-n%c % Qmex'q'u>+¢ o leoge<qmax>
% EE ce Q4 - Smax

(10)

Equation (lO) determines the minimum value for ¢E if the maximum allow-
able rate of deceleration between Pggr and O 1is not to be exceeded.

The values for A in reference 13 are based on maximum allowable
safe rates of deceleration which decrease in the direction of flow as
the boundary-layer thickness increases. Thus the required distribution
of loge Q along ® 1is not necessarily linear as assumed in this
report. However, as will be shown later, the assumed distribution of
loge @ with @ bhas similar characteristics to those required in

reference 13 and is considered'accurate enough for engineering purposes.
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Rounding-off nose and tail of blade-element profile. - After the
prescribed velocity distribution has been selected to meet the conditions
discussed previously, the channel shape is determined by the numerical
methods developed in references 11 and 12. The islands between adjacent
channels (fig. 1) in the physical xy-plane constitute the blade-element
profiles. Because the stagnation points are not considered in this
design method the nose and tail of the blade element are cusped. These
cusps are eliminated by faired curves (circular‘arcs, for example) that
are tangent to the channel walls at the previously selected positions
for the nose and tail of the blade-element profiles.

Design Procedure

The various conditlions to be satisfied in the application of the
channel design method to the design of high-solidity cascades of blades
‘with prescribed velocity distributions along the blade contours have
been discussed and the details of the numerical procedure for the channel
design itself are the same as that outlined in references 11 and 12. A
brief step-by-step outline of the conditions to be satisfied and the
numerical procedure follows:

(l) The cascade, or channel, turning angle A6 and the upstream
and downstream velocities q; and qg are prescribed. (For incom-

pressible flow the upstream velocity Q, 1s sufficient because Q4
equals 1.0.) The cascade stagger angle is fixed by these prescribed con-

ditions and the equation of continuity. The flow msy be incompressible
or linearized compressible.

(2) The solution for the equivalent channel wall coordinates will
be carried out in the @V¥-plane. The relative positions of points on
the channel walls in the ¢V¥-plane, (Jp - ®¢) and @ - ) in
figure 2, corresponding to the nose and tail of the blade profile are
determined by equations (3) and (4).

(3) The prescribed velocity along the channel walls upstream of
$c and ®p are equal to the upstream velocity.

(4) The prescribed velocity along the channel walls downstream of
®E and QOp are equal to the downstream velocity.

(5) The velocity distribution along the suction surface of the
blade-element profile, between the points ®¢ and O (fig. 2) on
the channel wall in the transformed OQV¥-plane is prescribed as an
arbitrary function of arc length. Usually a practical blade shape
results if the prescribed velocity increases from the upstream value
at the nose GDC) and then decreases to the downstream value at the
tail (@g).

2443
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(6) The prescribed velocity along the pressure surface of the
blade-element profile, between the points ®p and dp (fig. 2) on the
channel wall in the transformed ¢¥-plane, is prescribed as an arbitrary
function of arc léngth along the blade profile. Usually a practical
blade shape results if the prescribed velocity decreases from the
upstream value at the nose (®p) and then increases to the downstream

value at the tail (bp).

(7) In order to obtain an efficient high-solidity cascade the dif-
ference in prescribed velocities on the channel walls corresponding to
the suction and pressure surfaces of the blades should be large so that
the blade spacing is large enough to prevent serious friction losses.
But the maximum prescribed velocity on the suction surface should not be
so large that losses result from shock or that serious boundary-layer
separation losses result from rapid deceleration to the downstream
velocity at the blade tail (@E in fig. 2).

(8) The prescribed velocity distribution on the channel walls must
satisfy the prescribed cascade, or channel, turning angle A9. This
angle is determined by equation (E5) of reference 12. If the prescribed
velocity distribution does not satisfy the prescribed turning angle, the
velocity distribution is adjusted by trial-and-error methods, or for the
type of linear velocity distributions given in figure 4 the proper
adjustment in velocity can be determined directly from equation (6).

(9) After the prescribed velocity distribution that satisfies the
conditions just outlined has been selected, the channel design is deter-
mined by methods outlined in references 11 and 12.

(10) The cusped nose and tail of the islands that result between
adjacent channels in the physical plane (fig. 1) are rounded-off by
faired curves (circular arcs, for exsmple) that are tangent to the
channel walls at points corresponding to the nose and tail of the blade
element (P; through ®p in fig. 2). Finally, if desired, the dis-

placement thickness of the boundary layer can be estimated by boundary-
layer theory and subtracted from the preceding contours to obtain the
final blade profile. Thus the high-solidity cascade design is complete.

Numerical Example

In general as the percentage reaction decreases and as the blade
camber (or turning angle) increases the cascade efficiency decreases
(reference 14, p. 232). The problem selected is therefore to design
an efficient impulse cascade (zero percent reaction) with large turning
angle.
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Prescribed conditions. - An impulse cascade with 90° of turning was

designed for incompressible flow with the following prescribed conditions: .
(1) o'y = n/4
A
(2) 6'q = -n/4 B
(3) @ = = 1.0 o
' - 3
Prescribed velocity distribution. - For convenience the velocity o

' distribution has been specified by linear variations in loge Q with o.
The following conditions were arbitrarily selected:

(1) Qpax = 1.5

(2) ¢c =0

(3) ®cc - 0c = Opp - ¥ = O - g =
(4) dgg =«

The quantities (@p - ®¢) and (Pp - Pg) are obtained from equa- -
tions (3) and éé) and are equal to =n/2 and -n/2, respectively. The

quantity O (fig. 2) is given by equation (10) with A equal to 0.5,

and is equal to 3.75 n/2. (The value of 0.5 for A was obtained from

fig. 5(a) of reference 13 for Qg/Quax equal to 0.667 and for a blade

Reynolds number equal to o, which Reynolds number gives the minimum,

and therefore safest, value of A.) The value of @Qpip, Wwas obtained

from equation (6) with A9 equal to x/2.

Qqpin = 0.66687

The resulting prescribed distribution of loge @ with ¢ is given

in figure 5(a). The corresponding distribution of Q with arc

length s along the suction surface can be obtained from the definition
of ® in reference 12 and is given in figure 5(b). The velocity dis-
tribution between Qpgx (1.5) and Qg (1.0) is similar in shape to
that resulting from the maximum allowable safe rates of deceleration in
reference 13, so that the assumed linear variation in loge @ with ¢

satisfies approximately the conditions on which the results of refer- -
ence 13 are based.
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Cascade design. - The channel shape corresponding to the prescribed
velocity distribution in figure 5(a) was determined by the relaxation
methods used in reference 11 and is plotted in figure 6 together with
the resulting high-solidity cascade of blades formed by rounding-off

‘the cusped nose and tail of the islands formed between adjacent channels.

For the experimental investigation a cascade of these blades with a
chord of 5.5 inches was constructed and the coordinates for this blade

.profile are given in table I. The blade profile was not adjusted to

provide for the displacement thickness of the boundary layer. The
characteristics of the resulting cascade are given in figure 7 on the
X'y'-plane in which all linear distances are dimensionless, being
divided by the blade chord c. The reciprocal s'/c of the cascade
solidity {where s' is the blade spacing) is 0.6130. The maximum blade
thickness is approximately 18 percent of the chord, the trailing edge
thickness is approximately 2.8 percent of the chord, and the radius of
the circulsr arc at the blade nose is 3.7 percent of the blade chord.
The average angle B'poge ©Of the blade surfaces tangent to the circular

arc at the blade nose is 46.3° so that the blade is overturned 1.3° at
the nose (fig. 7). The average angle B'tayy ©Of the blade surfaces

tangent to the circular arc at the blade tail is -46.7° so that the
blade is overturned 1.79 at the tail. The blade profile is very
much like the best shape developed in reference 6 by combination
of circulaR arcs. ‘

CASCADE TESTS

An experimental investigation was made on the blade profile just
designed in order to determine if the rounding off of the cusped nose
and tail has a serious effect on the resulting agreement between the
prescribed velocity distribution on the blade surface and the distribu-
tion measured by test and to determine if the design procedure taking
into account present knowledge of boundary-lsyer separation results in
efficient blade shapes. In addition, the blade profile, which was
designed for incompressible flow, was tested over a range of downstream
Mach number from 0.2 to choke flow in order to determine effects of
compressibility.

Description of Apparatus

Flow tank. - As indicated in the line drawing of figure 8 the cas-
cade of 900 impulse blades was attached to a short tunnel of straight
parallel walls that was mounted on a rounded approach at the flow test
tank. Dimensions of the tank and piping are given in figure 8. The
tank contained a honeycamb of square cells (2 by 2 in.) 8 inches deep.
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Immediately upstream of the honeycomb were three screens; one 28X30 mesh
and two 40X60 mesh with the mesh oriented 90° apart. The tank pressure,
and therefore the flow rate, was controlled by a valve upstream of the
tank. The maximum flow rate through the tank during the tests was

88 pounds per second. The rounded approach to the tunnel was elliptical
in cross section. A photograph of the test setup is shown in figure 9.

Tunnel. - The tunnel consisted of straight parallel walls that could
not be adjusted to account for boundary-layer growth or to simulate the
shape of the stagnation streamlines upstream of the cascade. (For high-
_ solidity cascades the position and shape of the upstream tunnel walls
have little effect on flow conditions in the channel between blades
‘where the character of the flow is almost exclusively influenced by the
shape of the blades.) The tunnel length was short to prevent large
boundary-layer growth on the tunnel walls. The cross section of the
tunnel normal to the direction of flow was 11.91 by 16.50 inches.

» Cascade. - The blade element profile is described in table I and
the cascade characteristics are given in figure 7. 8Six blades with a
chord of 5.5 inches and an aspect ratio of 3.0 were used (see refer-
ence 15, p. 3). The blade span was therefore 16.5 inches. Based on a
blade chord of 5.5 inches the Reynolds number Re was approximately

related to the downstream Mach number Mg by y

Re = 3x106 My

Thus for the minimum test value of Mg equal to 0.2 the Reynolds
number was 600,000, which is well above the critical values indicated
in reference 13. A photograph of the assembled cascade is shown in
figure 10.

’

Instrumentation
Tank. - The total pressure upstream of the cascade was measured by
a static tap downstream of the honeycamb in the tank (fig. 8). The
total temperature of the air was measured by a thermocouple in the tank.

Tunnel. - Static pressures on the tunnel walls were measured at the
eight tap locations indicated in figure 11. The static pressure used to
determine flow conditions upstream of the cascade was measured at tap 3.
The variation in static pressure along the tunnel wall at taps 1, 2,
and 4 from the pressure at tap 3 is shown for the entire range of down-
stream Mach number My in figure 12. In this figure py is the total

pressure (assumed equal to the measured tank pressure) and subscript 3
refers to tap 3. The position of the cascade relative to the tunnel

2443
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walls could not be adjusted to result in equal pressures at corresponding
taps (5 and 7, for example) on opposite walls. The resulting difference
in static pressures at taps 5 through 8 and the variation in pressure
with downstream Mach number is shown in figure 13. The higher static
pressures at taps 7 and 8 than at taps 5 and 6 resulted because the
cascade was positioned relative to the tunnel walls in such a manner
that the blade directly downstream of taps 7 and 8 projected slightly
into the tunnel thus leaving space for some boundary-layer bleedoff

into the room and at the same time causing the upstream stagnation
streamline to turn, as it would for an infinite cascade, in the opposite
direction to the cascade turning.

Cascade. - Static pressures at midspan on the blade surfaces of the
center channel in the cascade were measured at 48 locations indicated
in table II. 1In addition total pressure and flow direction surveys were
made at midspan across the center channel between blades 1n a plane

l% inches downstream of the exit plane of the cascade. (The flow

direction was essentially constant in the survey plane.) The total
pressure probe was unshielded and the yaw probe was of the wedge type.
The §tatic pressure pg, used to determine flow conditions downstream of

the cascade, was measured at a wall tap located approximately l% inches

downstream of the exit plane of the cascade and was for all values of
My approximately equal to atmospheric room pressure.

Test Results

Static pressures on the blade surfaces of the center channel in
the cascade were obtained for eight values of the downstream Mach number
between 0.2 and 0.79. (The cascade choked at a downstream Mach number
between 0.75 and 0.79.) In addition, total-pressure surveys were made
and the flow direction was measured downstream of the cascade for five
values of the downstream Mach number between 0.3 and 0.7. The results
are plotted in figures 14 to 17.

Pressure coefficient P. - The pressure coefficient P .is plotted
in figure 14 as a function of the coordinate x'/c along the blade
surface (fig. 7). The pressure coefficient P 1is defined by

P'pd
P (11)

" Pya " Pg

where p 1is the static pressure and where Pt,d is the total pressure -
downstream of the cascade exclusive of the wake and is therefore equal
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to the upstream total pressure. For incompressible flow the pressure
coefficient P, defined by equation (11), reduces to the usudl definition
for pressure coefficient, that is, pressure difference divided by down-
stream, or upstream, velocity head. The pressure tap corresponding to

a given data point can be determined from the value of x'/c and

table II. For incompressible flow P is related to Q by (appendix B)

P=1-@2

2443

The variation in P with x'/c for the design variation in Q 1is
given by the regular solid lines in figure 14.

Tn figure 14(a) the results are plotted for the downstream Mach
numbers between 0.2 and 0.6. For these Mach numbers the flow is every-
where subsonic. The agreement between the measured and prescribed
(design) values of P 1is good for Mg equal to 0.198 but becomes
progressively worse because of compressibility effects as Mg dirncreases.

In general, the discrepancy between the measured and prescribed values
of P at Mg equal to 0.198 can be attributed in part to the lower
than design flow rate that results from the reduced effective flow area
due to the wake displacement downstream of the cascade. That is, the
channel between blades turned a slightly smaller quantity of fluid than
designed for, and therefore required slightly less pressure difference
on the blade surfaces. The important discrepancy between the design and
experimental value of P on the pressure surface at the nose (x'[/c
equal to -0.393) results from rounding-off the blade nose and will be
discussed later.

In figure 14(b) the results (P against x'/c) are plotted for
downstream Mach numbers of 0.70, 0.75, and 0.79. For these Mach numbers
it will be shown that local regions of supersonic flow exist on the
suction surface of the blade and shock phenomena result as indicated by
the rapid fluctuation in pressure. For all three of these values of
downstream Mach number two regions of shock appear on the suction sur-
face; one at x'/c approximately equal to -0.275 and the other cen-
trally located around x'/c equal to zero.

Velocity Q. - The velocity Q, which is dimensionless, having been
divided by the downstream velocity, is plotted in figure 15, as a
function of the ideal (design) velocity potential & along the blade
surface. The pressure tap corresponding to a given data point can be
determined from the value of @ and table II. The prescribed variation
in Q with ® is given by the regular solid lines in figure 15. The
experimental values of @ were derived from the total pressure and the
measured static pressures as indicated in appendix C. (Note that the
total pressure was assumed equal to the tank pressure so that in the -
presence of shock losses the computed velocities are indicative only.)
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In figure 15(a) the variation of velocity @ with ¢ is plotted
for the downstream Mach numbers between 0.2 and 0.6. For these Mach
numbers the flow is everywhere subsonic and the agreement with the
prescribed velocity distribution is considered quite good and appears
to be independent of the downstream Mach number My. (This independence
of downstream Mach number will be discussed later.) It is concluded
that blades for high-solidity cascades can be designed for prescribed
velocities by the channel flow methods of this report and that rounding
off the nose and tail of the blade-element profile has negligible effect
on the velocity distribution along the blade surface except in the
vicinity of the blade nose. The discrepancy at the blade nose will be
discussed later.

In figure lS(b) the variation in velocity Q with ® is plotted
for downstream Mach numbers of 0.70, 0.75, and 0.79. For these Mach
numbers local regions of supersonic flow exist on the suction surface of
the blade and shock phenomena result at the points indicated previously
by the pressure distribution in figure 14(b).

— —

[4Y) w

Loss coefficient . = The loss coefficient
(Pt - P)d (Pt - P)d

has been computed from the total pressure survey data taken downstream
of the cascade for five values of Mg between 0.3 and 0.7. This loss
coefficient is plotted in figure 16. The average total pressure loss
® was calculated by methods given in appendix D. The loss coefficient
at first decreases with increasing Mg, probably as a result of the
increasing Reynolds number, and then increases rapidly, as a result of
shock losses, after Mg equal to 0.6..

Turning angle Af8. - The measured value of the cascade turning

angle A6 1is plotted as a function of Mg in figure 17. For values of

Mg less than 0.5 the turning angle is insensitive to Mach number, but
for the two largest values of Mg (0.6 and 0.7) the turning angle

o)
increased about l% . The design turning angle was 900, so that for My

equal to 0.5 or less the measured turning angle agreed within 0.5° with
the design turning angle.

Analysis of Results
The test results are analyzed for the continuity condition, com-

pressibility effects, and momentum considerations. The cascade per-
formance is then compared with that of similar cascades reported in

~ the literature.
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Continuity. - In figure 18 it is shown that as the downstream Mach
number Mg increases the upstream Mach number M,, determined from the
static pressure measurement at tap 3 in figure 11, becomes progressively
less than Mg. For an impulse cascade M; should equal Mg, and the
measured difference between Mg and My was sufficiently great to
require an investigation of the continuity condition upstream and down-
stream of the cascade.

From the total-pressure surveys downstream of the cascade the
velocity distribution is obtained as a function of y'/s', where y!
is measured from the center of ,a wake, and a typical example is given
in figure 19 for a downstream Mach number of 0.3. (From the relatively
small momentum losses indicated by this velocity distribution it is
concluded that boundary-layer separation on the blade surfaces was
negligible.) From this velocity distribution the flow rate W through
the channel between blades can be determined from the continuity equa-
tion

1.0

Wq = s . p"q" cos 9'g d(%%)

where p" and q" are the density and velocity, respectively, in
dimensional form and 6'y 1is the measured flow direction downstream of

the cascade in the x'y'-plane. Upstream of the cascade, flow conditions
are uniform and the continuity equation becomes

Wy = s'(p"q" cos 8%)y

The flow rates W, and Wy are plotted in figure 20 and it is seen
that the continuity condition (Wu = Wa) is satisfied. The increasing
magnitude of (Mg - My) with increasing Mg (fig. 18) must therefore
be caused by the displacement of the wake downstream of the cascade.

If A* is the ratio of the effective flow area (geometric area
minus the effective displacement area of the wake) downstream of the
cascade to the geometric area upstream of the cascade, Mg and My are
related by (appendix E)

T+1
2(y-1)
Y-1., 2
M 1+ --——-Mu
U2 % (12)
Mg -1 . 2
1+ 5= Mg

CYve
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For an impulse cascade with no boundary layer, A* equals 1.0 and from
equation (12) My is equal to Mg. If however the effective displace-
ment of the boundary layer is 5 percent, A* is equal to 0.95 and the
relation between M; and Mg is given by the dashed curve in figure 18.
Thus, for a given value of A* a cascade designed for impulse operation
without a wake exhibits progressively more reaction as the downstream
Mach number increases. '

In figure 18 for values of Mg greater than 0.75 the value of My
remains essentially constant and equal to 0.6, or a little higher, so
that the cascade is choked. In figure 15 the high value for Q on the
pressure surface at @ equal to n/2 indicates that the choke condi-
tion occurs along this value of ¢. Figure 6 shows that for this value
of ®(n/2) the flow area of the channel between blade elements is a
minimum. Thus the upstream Mach number for choke flow could probably be
increased by a slight modification in the blade element design in the
regions of @ equal to =n/2. (For example, the manner in which the blade
nose is rounded-off might be modified to increase the minimum flow area.
Also, the blade nose might be extended farther upstream along the
channel boundaries (shown in fig. 6) to guide the fluid into the minimum
area in the proper direction. Or perhaps near the nose a less rapid
velocity deceleration might be prescribed on the pressure surface, or a
less rapid acceleration on the suction surface, so that the rate of area
convergence and divergence in the vicinity of the minimum area would be
reduced.) In addition this design modification would eliminate the large
deceleration of the velocity along the pressure surface following the
peak velocity at & equal to ﬂ/2 and might thus improve the efficiency
of the cascade by eliminating a possible region of separated boundary
layer.

Compressibility effects. - The effects of compressibility on P
and Q are shown by the effects of M3g in figures 14 and 15. Consider
the region of constant prescribed velocity along the suction surface.
Provided the local velocities are subsonic the absolute magnitude of the
pressure coefficient P decreases with increasing Mg (fig. 14(a)) but
the velocity Q remains essentially unchanged (fig. 15(a)). This
behavior of P and Q is unlike that for isolated blades (airfoils)
but compares favorably with that for the known compressible flow between
a curved channel consisting of streamlines from a free compressible
vortex. (The regions of constant velocity along the pressure and suction
surfaces of the blades suggest that thé channel between these regions can
be approximated by the flow between selected streamlines of a free vortex
for purposes of this investigation.) In appendix F equations are derived
for computing the variation in P and @ with the equivalent Mg for
those radii of a free campressible vortex for which the values of " P
and Q at Mg equal to zero (incompressible flow) are the prescribed ‘
values for the cascade design (Qmax = 1.5, Quin = 0.66687, and so
forth). The resulting distributions in Q and P with Mg for the
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compressible vortex are shown in figures 21 and 22, respectively, and
are compared with the test values of Q and P at taps 44 and 20 on
the pressure and suction surfaces of the blades, respectively. The
agreement in trends is good and indicates that the observed variations
in P and Q with M3 1in the tests are reasonable. Thus, for the
high-solidity impulse cascade of this report the distribution of @Q is
essentially independent of downstream Mach number Mg.

The appearance of supersonic velocities on the suction surface of
the blade is indicated (in figs. 14(b) and 15(b)) by sizeable variations

in P and Q (with x'/c and &, respectively) due to shock phenomena.

For a given value of Mg there is a critical value of Q (ch) for
which the velocity corresponding to Qcr 1is sonic. This relation is
given by (appendix G)

(13)

which is plotted in figure 23. For test values of - @ about equal to
1.5, such as exist on the suction surface at ® equal to =n/4, the
value of Mg in figure 23 is about 0.63. Thus in figures 14(b) and
15(b) shock phenomens are cbserved for values of Mg equal to 0.70,
0.75, and 0.79.

Momentum. - From momentum considerations it can be shown (appen-
dix H) that the blade force in the direction of y' (per unit length
of blade span) is equal to

s!' sin G'd cos G'd 1.0 ‘ t
y
Fy: = = . p"d(q"d)2 d<§7> -

1 1 1 1
s' sin 6 u ©os e u
g

oy (a")? (14)

where p" and q" are evaluated from the test data by equation (C2) of
appendix C, equations (D2) and (D3) of appendix D, and the known value
of the stagnation speed of sound ag.

From the measured pressures on the blade surface the blade force
Fy. is also equal to

CFHy
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Fy| = C(p.t,d - pd.) (
nose

where the subscripts

tail

Fr

2

- F 0> ()

21

(15)

n/2 and O refer to the pressure and suction sur-

faces of the blade, respectively, and where for a given M3 the integral

is equal to the area under the curve in figure 14.

The blade force Fy.

has been computed from the test data by equations (14) and (15) and the

values are compared in figure 24.

The agreement is considered satis-

factory and serves as a check on the accuracy of the experimental data.

Comparison with other impulse cascades. - The test performance

LAG and minimm &/(py - P)dj of the 90° impulse cascade given in this
report is compared in the following teble with that of other impulse

cascades reported in the literature.

Blade | Inverse of | Loss coeffi- | Turning Reynolds Comments Reference
solidity cient angle, A6 | number
s/c ) (deg) Re
(Pt - P)d
A 0.750 0.035 90 2X10° Airfoil blading, ‘14,
(min.) t/c = 0.10 fig. 62
B .750 .035 86 Low Blade shape similar 16,
speed to blade C fig. 178
c .613 .038 90.5 | 1.5x106 | Designed for pre- This
(min.) scribed velocity report
gradients that
avoid separation
D .500 .038 87 Low Airfoil blading 18,
- speed fig. 177
1
E .500 .039 90 2)(105 Airfoil blading 14,
: (min. ) t/c = 0.10 fig. 62
F .574 .05 88.6 | 1.8X10° | Two circular arcs 8,
plus flat section, p.4
similar to blade C
G .625 .072 90 2x10° "Conventional" impulse 14,
(min.) blade, t/c = 0.22 fig. 62
H .500 .09 88.7 | 1.8X10° | Two circular arcs, 8,
sharp nose and tail, p.4
symmetrical
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The blades A to H are arranged in order of increasing minimum loss
@ .

coefficient . All cascades have approximately a 90° turnin

zigfjiﬁa PP y g

angle. Blade C, from this report is seen to have about as low losses

as any reported in the literature. The low loss coefficients of

blades A and E are questioned in reference 14 (p 233) because of the
experimental technique. Also, the thin profiles {small values of t/c,
where t is the maximum blade thickness) of blades A, D, and E prohibit
their use in turbines near the blade root (where impulse conditions are
usually approached) because the blade taper requires thicker profiles at

the root. Blade B has a thicker profile and gives excellent performance.

It is similar in shape and performance to that of blade C, developed in
this report.

It is concluded that, if properly applied, the high-solidity blade-
element design method developed in this report can result in efficient
blade profiles for incompressible flow or for compressible flow with
local subsonic velocities. These profiles can be designed directly
without extensive experimental trial-and-error development.

SUMMARY OF RESULTS AND CONCLUSIONS

A technique is developed for application of a channel design method
to the design of high-solidity cascades with prescribed velocity dis-
tributions as a function of arc length along the blade-element profile
and for prescribed turning angles of the fluid. The technique applies
to both incompressible and subsonic linearized compressible (ratio of
specific heats equal to -1.0) fluid motion, and the results are exact
except for the usual approximation resulting from rounding-off the nose
and tail of the blade element. In order to investigate the effect on
the velocity distribution of rounding-off the nose and tail, a high-
solidity 90° impulse cascade was designed and tested. To achieve good
efficiency, the cascade was designed for prescribed velocities with
maximum allowable blade loading according to limitations imposed by
considerations of boundary-layer separation. The cascade was developed
for incompressible flow and was tested at the design angle of attack
over a range of downstream Mach number from 0.2 to choke flow. From the
results of the tests it is concluded that:

1. Blades for high-solidity cascades can be designed for prescribed
velocities by the channel flow methods of this report.

2. Rounding-off the nose and tail of the blade-element profile has
negligible effect on the velocity distribution along the blade surface
except in the v101n1ty of the blade nose.

2443
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3. The distribution of the velocity (expressed as a ratio of the
downstream velocity) is essentially independent of downstream Mach num-
ber, provided the maximum velocity on the blade surface is subsonic.

4. For the velocity distribution that was prescribed (and measured),
the boundary-layer separation on the blade surfaces was negligible.

5. For downstream Mach numbers of 0.5 or less the measured turning
angle was less than 0.5° greater than the design turning angle (90°).

6. The cascade choked near the inlet at an upstream Mach number
slightly greater than 0.6. This Mach number for choke could probably
be increased by a modification in the profile design near the blade nose.

7. Sonic velocity first appears on the suction surface of the blade
at a downstream Mach number of about 0.63 and for downstream Mach numbers
of 0.70, 0.75, and 0.79 shock phencmena were observed on the blade sur-
faces.

8. A cascade designed for impulse operation without a boundary layer
exhibits progressively more reaction in the presence of a constant wake
displacement as the downstream Mach number increases.

9. If properly applied, the high-solidity blade-element design
method developed in this report can result in efficient blade profiles
for incompressible flow or for compressible flow with local subsonic
velocities. These profiles can be designed directly without extensive
experimental trial-and-error development.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronsutics
Cleveland, Ohio, November 30, 1951
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APPENDIX A

Symbols
The following symbols are used in this report:
ratio of flow area downstream of cascade to flow area upétream
local speed of sound
stagnation speed of sound
blade chord (fig. 7)
blade force in the direction of y!
gravitational acceleration
constants, equations (Fla) and (F4a), respectively, of appendix F
Mach number, q"/a
pressure coefficient, equation (11)
static pressure (dimensional form)
loss in total pressure at point downstream of cascade

velocity (for which units are so chosen that channel velocity
downstream at infinity is unity)

critical value of @ for which velocity corresponding to ch
is sonic; related to My by equation (13)

velocity (for which units are so chosen that stagnation speed of
sound is unity)

velocity (dimensional form)

perfect gas constant

Reynolds number based on blade chord

radius from center of free vortex (for which radius the units
are so chosen that width, downstream at infinity, of channel

between cascade blades that is belng simulated by free vortex
is unity)

2443
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nose tail
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distance in xy-plane measured along direction of flow
from arbitrary reference point (for which distance the
units. are so chosen that channel width downstream at
infinity is unity)

blade spacing (fig. 7)

temperature of gas

me.ximum thickness of blade-element profile

velocity parameter defined in reference 12

flow rate (per unit length of blade span) through
channel between two blade elements

Cartesian coordinates in physical plane (for which
coordinates the units are so chosen that channel width
downstream at ‘infinity is unity)

X,y coordinate system.fotated and translated so that
cascade lies along y'-axis (fig. 7)

average angle of blade surfaces tangent to circular arcs
at nose and tail, respectively, in x'y'-plane (fig. 7)

ratio of specific heats
finite increment

flow direction in physical xy-plane (measured in counter-
clockwise direction from positive x-axis)

channel, or cascade, turning angle

. flow direction in physical x'y'-plane (measured counter-

clockwise from positive x'-axis)
ratio of arc lengths, equation (7)
density (expressed(as ratio of stagnation density)
density (dimensional _fom) |

velocity'potential'dsed as Cartesian coordinate in trans-
formed QV¥-plane and defined in reference 12



26 . NACA TN 2652
v stream function used as Cartesian coordinate in trans- -
formed Q¥-plane and defined in reference 12

Iy average loss in total pressure, equation (Dl
appendix D

Subscripts:

AB,. « « , H positions defined by velocity potential lines in fig-
ure 2

CC,DD,EE,FF values of ® defined in figure 4

d conditions downstream at infinity

max maximum |

min minimum

t | 4. total, or stagnation, condition

ﬁ cdnditions upstream at infinity

0 ‘ right boundary of channel, when faced in direction of
flow, along which V¥ 1is equal to zero

3 tap 3, figure ll-

% | left bdundary of channel, when faced in direction of

' flow, along which V¥. is equal to =x/2

2443



C¥¥e

NACA TN 2652 27

APPENDIX B

RELATION BETWEEN ‘P AND Q FOR INCOMPRESSIBLE FLOW

From Bernoulli's equation for incompressible flow, if q" is the
velocity in dimensional form and p" 1is the density in dimensional
form _

2
llqll - -
P+ L_Zg Py =Py g
and
pnqn 2
Pg + g = Py,a (B1)
from which
2 ’
D"q,"d_ q"z . , .
(p-pg) = 7g l'qT'z' - (B2)

. d
Therefore, from equations (Bl), (B2), (11), and the definition.of Q

P=1-q?

"which relates the pressure coefficient P +to the velocity Q for

incompressible flow.



28 : NACA TN 2652
APPENDIX C

CALCULATION OF Q FROM MEASURED STATIC PRESSURES

From the general energy equation

! T _ r-1 2 ‘

vhere T 1s the temperature of the gas and y 1s the ratio of specific
heats so that : '

from which‘
-1
2 .
a= "\t - gﬁ (c2)
Therefore,
-1
1 - (g.)‘r
t
le-q—%ﬂ Y‘_l
p 4
Pt,d
where

Pt = Pg,q = constant

2443
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APPFENDIX D

1

CALCULATION OF AVERAGE LOSS IN TOTAL PRESSURE ®w FROM
TOTAL PRESSURE SURVEY DOWNSTREAM OF CASCADE

By definition the mass-weighted average value of the loss in total
pressure (A@t,d) downstream of the cascade is

o [feralen, gay
W = 2

\/“pnq ay
where the integration is taken across an entire channel equal in width

to the blade spacing and therefore including the wake region. The
density p" 1is related to the pressure p by

(p1)

1
" p )T : "
b= (5 , (Dp2)
P <?t '
. where, from the perfect gas law,
p
t
n o=
P"y = FT; (D3)
so that from equations (D1), (D2), (D3), and (C2)
(D4)

where Py 1is fhe total pressure measured by the survey along y!'.
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APPENDIX E

RELATION BETWEEN M, AND My FOR VARIOUS AREA RATIOS A*

From continuity considerations
py(M8), = o4(Ma), A* | (E1)

where p 1s the fluid density expressed as a ratio of the stagnation
density, where M is the local Mach number, where a is the local
speed of sound so that the product (Ma) is equal to the velocity q",
and where A* 1is the ratio of the effective downstream flow area to the
upstream area. . From the general energy equation,

Tt' .
- r-1
=1+ (z2)
so that
aq Tq
— —
&y Ty
and
A 1
L r-1 r-1 . 2\-1
p_d_(ii_) N N
p.. \T -1, 2
u u l+'2—Md
from which equation (El) becomes
T+l
2(r-1
1+*2;lMu2 -
‘ L3N Pl
My = MgA T ' (12)

2443
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APPENDIX F

EQUIVALENT CQOMPRESSIBLE FREE VORTEX

The regions of constant, prescribed velocity along the pressure and
suction surfaces of the 90° impulse blade suggest that, for purposes of.
investigating the variation in these velocities with the equivalent
downstream Mach number, the channel between these regions of constant
velocity can be approximated by the flow between selected streamlines
of a compressible free vortex. First the radii for these selected '
streamlines are determined for an incompressible free vortex to give the
prescribed values of QO and Q for incompressible flow along the

2
suction and pressure surfaces of the blade, respectively.

Incompressible free vortex. - For an iﬁcompressible free vortex
Qr =X, (F1a)
or
Qo*o = Qufx | (F1b)
22

where r, 1like the Cartesian coordinates x and y, 1is expressed in
units of the channel width downstream at infinity of the channel between
cascade blades that is being simulated by the free vortex.. From
continuity

‘ . . |, Qdr=1.0 : (r2)

0 .

A

so that from equations (Fla) and (F2)

Tx
2

7= 1.0

Kl loge

O

and therefore, from equations (Fla) and (F1b)

1 . .
Qo 1oge Q;.
2
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and
; 1
T o=—= (F3b)
2 QE 1oge
2

| &

Equations (F3a) and (F3b) give the radii that determine the channel in
the free vorteéx (compressible or incompressible) which is equivalent to
the channel between the cascade blades in the region of constant pre-
scribed velocity along the pressure and suction surfaces. For the pre-
scribed values of Qn and” Q (1.5 and 0.66687, respectively) the

5
values of r, and r  given by equations (F3a) and (F3b) are 0.82260
and 1.84992, respectively.

Compressible free vortex. - For a compressible free vortex

Qr = K, | (F4a)
or '
Q%0 = Uux (F4p)
27z :
and, from continuity,
g
5
. PRAr=p, (Fs)
O .
where, from -equation (C1),
1 1
71 T-1 ~
I - -1 .2 2)
o= {a;) - (-1t g, (rea)
so that
2

1 \TT
g = Q _.’—”-2-3: qu> : (F6b)
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Equation (F6a) expands in series form to give
l,2. 2,297 4 4
pﬂl—‘é‘Qq_d +-8_di = e e o (FGC)

50 that equation (F5), together with equations (F4a), (F6b), and (Féc),
integrates to give

1 r
- pAS 2y 3
¥-1 z K,
Y-1 2 _ z Y 1 1
pd=(-2qd> = K loge o=+ —3 /2' -
0 < r
n 0
2
2«y) 4.5 /1 1
z5 quz ;—4--;—1 + oo . ‘ (F7)
LS o

where, from equation (E2),

T M )
d : da
4 =Y Al - ' (F8)
t .Y_l 2

L+5=My

From equations (F7) and (F8) K, 1s a known function of M; and there-
fore Qy and Q  are given by (F4a). The variation in Q and Q

2 2

with My 1is plotted in figure 21, \

The pressure coefficient P is defined by
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so that, with Py = Pt,d’

J_

S
9 M )

T

1-(1-%%2)T-l

Equation (F9) determines P for given values of Q and Qg+ The vari-
ation in Py and ‘P, with My 1is plotted in figure 22.
' 2

Choke flow. - Choke, or maximum, flow occurs when the derivative of
the flow rate with respect to a characteristic velocity is zero. From
equation (F5) the flow rate is proportional to Py and from equa-
tion (F4a) the velocity at .each radius is proportional to K, so that
choke flow occurs when

dp
-4 _ 9
K,
therefore, from equation (F7)
r
L 2, 2
= 3
7 S K 1\ 5(27) 4,4 /1 1
O=loger—+ i 5 - =\ = 35 Ko ——4——-—4+...
0 r r r r
g 0 T 0
2 2
or
2 'z
31 O L\ A8 /L _ 1N\ ,.5(@x) /1 _ 1 log. 2
4 r_,%z roz 16 r%Z roz 8 <r£4= ro4 e I'O
2p 2 _ Z
Ga e S{a-r 1 1
16 4" T
rE To
2
(F10)

The value of My for choke flow is then obtained from equations (F7),

(F8), and (F10). For the values of r; and r_  given by equations (F3a)

2
and (F3b) the value of M; thus obtained is 0.815.
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APPENDIX G

CRITICAL VALUE OF Q FOR WHICH VELOCITY IS SONIC

For a given value of My there is a critical value of Q (ch)
for which the velocity corresponding to Qor 1s sonic. By definition

(G1)

By definition @ 1is equal to Qer if M 1is equal to 1.0 so that
equation (Gl) becomes

(13)

Equation (13) gives the relation between Qcr and My, which rela-
tion is plotted in figure 23.
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APPENDIX H

BLADE FORCE COMPUTED FROM MOMENTUM CONSIDERATIONS

If the viscous shear forces, which are relatively small, are
ignored, the blade force Fyq acting on the fluid in the positive
y'-direction (fig. 7) must, from momentum considerations, equal the.
change in the rate of momentum, in the positive y'-direction, of
the fluid flowing through the cascade. The rate of momentum flow into
the cascade in the positive y'-direction is

A 3 ] 1
s' sin 6 u ¢os 6 u

g

1" 1" 2
p",(a",)

where flow conditions are considered uniform upstream of the cascade,
and the rate of momentum flow out of the cascade in the positive
y'-direction is

1.0
s' sin e'd cos G'd

g

" 1" 2 y_'>
p"(a"y) d<s,

where the flow direction is uniform at a station far enough down-

stream. Therefore, Fy' becomes
1.0
s' sin 6'; cos 6! 2 '
= d d " 1" N _
Fyo = , 2 P"a(q"q)" 4 (gT)
0 :

1 3 1 L
s' sin 6 u cos 6 u

=

0"y (a",)2 (14)

Equation (14) gives the component of the blade force in the positive
direction of y'.
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TABLE I - BLADE PROFILE COORDINATES

[900 impulse cascade; prescribed velocity
distribution, fig. 5; incompressible flowJ

Ly — -
ol
a
o~
1.._
> Y
] L | | |
0 1 2 3 4 5
X, in
X YTr YO X Yw YO
2 2
0 0.203 0.203 2.4 1.078 2.044
.05 .069 .354 2.6 1.094 2.032
.10 .028 .456 2.8 1.100 1.996
.15 .009 .554 3.0 1.094 1.938
.20 .000 .647 3.2 1.079 1.863
.25 .006 .736 3.4 1.052 1.770
.30 .024.. .821 3.6 1.016 1.660
.35 .061 .905 3.8 .969 1.536
.40 .104 .985 4.0 .909 1.397
.45 .147 1.063 4.2 .831 1.246
.50 .189 1.135 4.4 . 729 1.085
.60 272 1.253 4.6 .608 .914
.70 .353 1.352 4.8 473 . 736
.80 .430 1.440 5.0 .325 .558
.90 .504 1.520 5.1 .246 .468
1.0 .H73 1.593 5.2, .167 .376
1.2 . 701 1.718 5.3 .085 .284
1.4 .812 1.821 5.35 .044 .239
1.6 .899 1.904 5.40 .007 194
1.8 .965 1.967 5.45 .003 .149
2.0 1.014 2.012 5.50 .071 071
2.2 1.052 2.036
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TABLE II - STATIC TAP LOCATIONS ON BLADE SURFACE AT MIDSPAN
|:90o impulse cascade.:l
X
-~ 2_
<
-
s 1 v‘w
Y
0.203 rad IL 0.071 rad
0 1
X, in.
x' y| xl yl
Tap X Y T C_ [o] v Tap X Y C_ 'c— ] 1'
. 267
9 {l0.015 |0.280 [|-0.443 |0.172 || 0 o | 33 |4.651 |0.888 |0.400 |0.187 || SgE | 0
T ) : 27
10 71| .s95 || —.a12 | 214 || & 34 [l4.832 | 709 || 433 | 151 || g
2r 28
11 | .297 | .81 || -.385 | .252 || & 35 5,038 | .s24 | .467 | .113 || 1§
) 3 9
12 || .a18 [1.014 || -.360 | .286 | 1% 36 ||5.248 | .332 || .s02 | .o75 | 29T
4 ' 30
15 || .535 |1.180 | -.336 | .314 || & 37 ||5.468 | .133 || .538 | .035 || ig
5 22
14 || .668 |1.321 | -.309 | .337 = 38 |[5.384 | .017 || .521 | .015 || =E | %
6 . 21
15| .817 [1.454 || -.280 | :358 | 1g .39 ||5.147 | .209 || .481 | .oss | =7
7 0
16 || .974 [1.575 || -.oe9 | 377 | 1B 40 Jla.871 | .a21 || .435 | .oe8 | 2T
gr | - '
17 fl1.141 [1.684 || -.217 | .39¢ | 71g 41 [j4.556 | .635 || .382 | .1e2 | T
9 18.5
18 ||1.314 [1.780 || -.184 | .408 | 1g 42 |4.369 | .746 | .350 | .166 |7z~
10T 187
19 ||1.494 |1.863 || -.150 | .420 | 1§ 43 ||4.174 | .842 || .317 | .187 | 4§
12 ‘ 17.5
20 ||1.873 {1.985 || -.079 | .435 | 1§ | 44 |3.960 | .922 | .279 | .205 ||*5ET
lam 177
21 |l2.266 | 2.041 || -.007 | .438 | =1 45 |3.740 | 984 || .241 | .220 || g
157 - 167
22 ||2.464 |2.042 | 029 | .435 || 5% 46 3.304 |1.066 | .163 | .243 || 3%
18 '
25 |[2.661 [2.023 | .064 | .428 || g ‘47 |l2.859 |1.099 | .083 | .2s57 || 3T
17 14
24 |[2.857 [1.981 | .o099 | .a17 || =g 48 [2.414 |1.079 || .002 | .261 || “I%
187 137
25 (|3.055 [ 1.919 | .134 | .402 | 7% 49 ||1.975 |1.008 |-.078 | .256 | Y&
19 : 12,
26 |[3.253 {1.840 | .168 | .384 || “1g 50 [1.754 | .951 [-.118 | .250 ||*5aT
20
27 (|3.451 |1.744 | .202 | .363 | % 51 [1.538 | .875 |-.160 | .240 || 22T
21 11.5
28 ||3.648 |1.632 || .236 | .339 | <& 52 |1.342 | .782 [I-.197 | .227 ||244pT
22
29 [[3.844 [1.507 | .269 | .313 || g 55 [1.156 | .673 j-.233 | 211 || 4%
23T 10
30 || 4.039 | 1.368 | .302 | .84 || g se || .838 | .459 ||-.294 | .178 | g
24
31 |(4.255 |1.218 | .334 | .258 || Sq§ 55 || .565 | .244 ||-.347 | .144 s
257 8
32 ||4.432 [ 1.058 || .367 | .221 | & 56 | .333 | .046 |-.395 | .12 1§

Evpe
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Channels

41

Cascade blade obtained by
rounding off nose and tail
of island between adjacent
channels

Nose and tail of island

Figure 1. - Cascade blade obtained in xy-plane by rounding off nose
and tail of island between adjacent channels designed for prescribed

velocity distribution along walls.
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—— el !

Stagnation
streamlines

Downstream
boundary

Blade tail

Upstream
boundary

en adjacent stagnation streamlines with velocity potential

Figure 2. - Chaunnel betwe

lines and subscript conventions for flow through cascade.
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v

Q
Q ds
N dy
e
dx
T
- X '
Figure 3. - Magﬁitude and direction of velocity at point
- in xy-plane.
o (9max) gor)
loge Q
V=0
(Q)
dc o
L
m‘:g ¢E
(len)
®pp ®pp
¢

Figure 4. - Typical example of linear, prescribed variation in loge Q
with @, including subscript convention for @ and Qq.
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16.5

k— 8.25 —»

Sl

®+

® +

r\
3.9 : +®
L .

Rear Side Front
Figure 11. - Static-pressure tap locations on tunnel walls. Circled numbers are tap
numbers. All linear dimensions in inches. .
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.01
t
1
4
o) m—
-.01—
My
o 0.198
o .298
o .397
-.02— a 497
v  .596
& > .695
alls a 754
t | o 4 ,788
il -
-.03_
b
0
- .04
>
-.05—
4
-.06 '

N

Figure 12. - Variation in static pressure (with downstream Mach number) at

four tunnel wall taps indicated by corresponding circled numbers in
figure 11.
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-1.5
_ Mg
?\ O 0.198
L 0O .298
O 397
A .497
v  .596
-1.0—
Prescribed variation
in P
-.5
P o]
.5+
Prescribed variation
in P
I ::NACA;;
1.0 ] ] | 1 ] | 1 ] |
-.4 -.3 -.2 -.1 [¢] 1 : .2 .3 .4 .5
. x'/c

(a) Downstream Mach numbers between 0.2 and 0.6.

Figure 14. - Variation in test values of pressure coefficient P with position x'/c
along surface of blade element. (The pressure tap corresponding to a given data
point can be determined from the value of x'/c and table II.)
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-1.5
. Mg
D> 0.695
- < .754
4 .788
-1.0F

55

Prescribed variation
i P

Z»/:I’escribed variation

= in P
1.0 I I ] | I f | | ] 1
-.4 -.3 -.2 -.1 0 .1 2 3 4 5
x'/c
(b) Downstream Mach numbers of 0.70, 0.75,and 0.79.
Fi

gure 14. - Concluded. Variation in test values of pressure coefficlent P with
position x'/c along surface of blade element. (The pressure tap corresponding
to a given data point can be determined from the value of x'/c and table II.)
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Mg
- O 0.198
0 .e98
<O 397
A .497
v .596
1.6
Prescribed variation
in Q
l.4—
l.21— E;
v
1.0 /
Prescribed varlation
in Q
.8
.6
A
2
N | i L 1 | 1 |
0 3 @ ™ T
2 2. 52 42
]
(a) Downstream Mach numbers- between 0.2 and 0.6.
Figure 15. - Variation in test values of velocity Q with coordinate ¢ along surface

of blade element. (The tap position corresponding to a given data point can be
determined from the value of ¢ and table II.)
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. 57
2.0
Mg
> 0.695
L 4 . 754
1.8 A4 .788
m
<t
<
o~
1.6
Prescribed variation
1.4
1.2
Q 1.0
. a— Prescribed variation
.8 in Q
LB
A
L2
0 | | ] ] | | ]
Y T us I s
2 22 32 43
[

. (b) Downstream Mach numbers of 0.70, 0.75, and 0.79.

Figure 15. -~ Concluded. Variation in test values of veloclity Q with .coordinate ¢
along surface of blade element. (The tap position corresponding to a given data
- point can be determined from the value of ¢ and table II.)
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Figure 16. - Variation in pressure-loss coefficient
with downstream Mach number.
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90 | | | e
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My
Figure 17. - Variation in air-turning angle with

downstream Mach number.
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1.0— '} o— -0 —0

8
/
Q .6
A
.2
l [ | | :
0 .2 4 .6 .8 1.0

y'/S'

Figure 19. - Variation in Q with y'/s' between wakes down-
stream of cascade. Downstream Mach number Mg, 0.30.
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12
My = c.7
10—
. .6

8- Perfect .0
> agreement
2 A\
o
[
0w .
~ 6L
=

.3
44—
21—
| | | l l NAGR
0 2 4 6 8 .10 12
Wy, 1b/(sec)(ft)
Figure 20. - Comparison of measured flow rates upstream and downstream of

cascade for five values of downstream Mach number.
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\ 1
1.8 \
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\
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1.6— \
Qo Suction surface
\ |
N\ |
1.4 Sonic velocity:)\ N I
~ |
N !
AN
1.2 —O— Tap 20| gee taple II N
O Tap 44 ~
Equation (F4a) [N -
] ~
~
' ~
Q 1.0 ~
|
|
I
.8}~
Qg Pressure surface |
2
.61 I
l
|
| |
. ]
Choke flow-/l
|
B |
|
| ] | | | 1 | i ]
0 1 .2 3 4 .5 .6 7 .8 .9 1.0
My

Figure 21. - Variation in velocity @Q with
and suction surfaces of blade and at

downstream Mach number Mg at statib taps on pressure
equivalent radii of a free compressible vortex.
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=1.4

I
I
|
!
!
|

Sonic
velocity

-1.0— Suction surface

—O— Tap 20 Lgee taple II
-6 O Tap 44
——— Equation (F9)

-4
Choke flow

Pressure surface

o ";ﬂ

Figure 22. - Variation in pressure coefficient P with downstream Mach number Md at

static taps on pressure and suction surfaces of blade and at equivalent radii of a
free compressible vortex.
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2.0

with downstream Mach number.

Figure 23. - Variation in Q..
(For a given value of Ma, sonic velocity occurs at ch.)
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from static-pressure measurements

Fy.

-400
My
0.7
(e
-300p—
.6
o
-200|— 5
4
-100]—
.3
| l | :
0 -100 -200 -300 -400
Fy1 from momentum equation (14)

Figure 24. - Comparison of blade force in direction
of y' as determined from measured static pressures
on blade surface and from momentum equation (14).
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