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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS .—

TECHNICAL l?m 2512

STRESSES IN A TWO-BAY NONCIRCULAR

UNDER TRANSVERSE LOADS

By George E. Griffith

SUMMARY

CYLINDER

.— —.. —

A method, taking into account the effects of flexibility and based
on a general eighth-order differential equation, is “presentedfor fi”nding

..—

the stresses in a two-bay, noncircular cylinder the Cross”’se=io= of ““”
which can be composed of circular srcs. Numerical exmnples are given
for two cases of ring flexibility for a cylinder of doubly symmetrical
(essentially elliptic) cross section, subjected to concentrated radial,
moment, and tangential loads. The results psrallel those already obtained
for shells with circulsr rings.

INTRODUCTION

In airplane fuselages with flexible rings subjected to concentrated
loads, the stresses in the neighborhood of the load differ markedly from
those given by the simple engineering formulas, and more refined metfio~”

—

which take into account the interaction of rings and shell, are neede-d
.—

to predict the stresses accurately. The first paper on this subj-ect, ““ “-
published in May 1944, was that of Wignot, Combs, and Ensrud (reference 1),
who treated the circulsr cylinder subjected to concentrated loads but
neglected the effect of the extensional deformations of the shell.
Hoff (reference 2) gave a more complete analysis, including the effects
of many rings, for the case of symmetric transverse loads. The results
were corroborated experimentally by Kuhn, Duberg, and Griffith (refer-
ence 3), who also extended the theory to include concentrated moment
and tangential loads. Later, Duberg and Kempner (references 4 and 5)
reduced the labor of computation by giving the results in t_he__formof
charts and showed that for practical purposes it was usually sufficient
to consider only a region within 2 bay lengths of the load. Further
investigations considered additional effects, heretofore neglected; such
as the shearing and axial deformation of the rings (references 6 to 8),
bending rigidity of stringers (references 8 and 9), shear carriedby the
stringers (reference 7), and eccentricity of ring and sheet (references_6,
7, 8, and lO).
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All investigations referred.to dealt exclusively with reinforced
monocoque cylinders of circular cross section. The present paper gives
an analysis for a two-bay noncircular cylinder, enclosed between ring
bulkheads rigid in their planes, with the middle, flexible ring subjected
to concentrated and distributed loads. The fundamental assumptions used ‘
in the analysis are the same as those-previously used for circular
cylinders.

Many noncircular fuselages can be closely approximated by using
circular sections of different radii and Joining the sections at–points
of tangency. The rings discussed herein are of this form. Associated
with each ring section is a two-bay panel (fig. 1), any number.of similar
panels comprising the complete two-bay cylinder. The solution for the
stresses in such a structure is based on the development of a general
eighth-order differential equation, written in terms of the moment at
the skin center line. A separate differential equation of the same
general form applies to each curved panel in the structure. Application
of the correct boundary conditions results in sets of simultaneous
equations which yield the unknown constants in the moment expression.

Although a two-bay cylinder does not conform to the usual fuselage
structure, it is believed, on the basis of comparisons with some of the
work previously mentioned, that--theresults obtained are indicative of
those found in more complicated structures. In accordance with the
findings of prior investigations, shear and axial deformations of the
loaded ring are neglected, but eccentricity of--ringand sheet is included.

The numerical examples deal with a doubly symmetrical, two-bay
cylinder of nearly elliptic cross section (fig. 2), subJected.to concen-
trated loads.

SYMBOLS

A
_ t’R6

IL3

B _ Et’R2
..- ----

GtL2
. .-

Cq coefficient of shear flow in sheet

CH coefficient of ring

CM coefficient of ring

Cv coefficient of ring

axial force

bending moment

shear force

.--.

.—
.
,

.

. ...

. .

.

.
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E

G

H

I

L

M

%

l.f~

P

R

RI, R2

T

v

afbi

Young’s modulus in sheet and ring, ~unds per square inch .—

sheer modulus in sheet, pounds per square inch .—

axial force acting on sheet, pounds

moment of inertia of ring section, inches4

length of bay, inches .-

bending moment at sheet center line, inch-pounds

applied concentrated

bending moment about

applied concentrated

moment, inch-pounds

neutral axis of ring, inch-pounds.-

radial load, pounds

radius to sheet center line of circulsr panel, inches

radii of circulsz panels comprising cylinder, inches

applied concen~ated tangential load, pounds

shear force, pounds .-

complex roots of auxiliary algebraic equation (used when real
roots also occur)

Cl i dli, cmnplex roots of auxiliary algebraic equation (used when no
C2 ~ hi real roots occur) --

e eccentricity of ring and sheet (distance between sheet center
line and neutral axis of ring), inches

f distributed radial load acting on sheet, pounds per inch

h distributed axial load acting on sheet, pounds per inch

i = @

kl) ~ real roots of auxilisry algebraic equation —

m distributed moment acting on sheet, inch-poundsper inch

P normal force in stringers, pounds per inch
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t

u

v

V()

w

x

Y

a

T

‘ shear flow in sheet, pounds per inch

distance in c~ctierentid direction, inches

thickness of all material carrying bending stresses In panel
if uniformly spread around cfictierence, inCheS

thickness of sheet, inches

displacement of sheet in axial direction, inches

displacement of sheet in circumferential direction, inches

displacement of sheet in circumferential direction at ring,
inches

displacement of sheet or ring in radial direction, inches

distance in axial direction measured from loaded ring, inches

shear strain in sheet

normal strain in sheet in circumferential direction

normal strain in sheet in x-direction

angular distance, degrees or radians

stringer normal stress, pounds per square inch .

normal stress in sheet in circumferential direction, pounds
per squ~e inch

shear stress in sheet, pounds per square inch

.

.

—

“

—

--

GENERAL DIFFERENTIAL EQUATION

The basic element of the present analysis is a two-bay panel, as
shown in figure 1, composed of-sheet, longitudinal stiffeners or stringers,
and transverse stiffening ring sections of constant radius. Distributed
or concentrated loads are applied in the plane of the middle or flexible
ring. By ~oining several panels at points of tangency, many two-bay
cylinders of various cross-sectional shapes can be achieved.

In actual practice the sheet covering is outside the rings, and
this eccentricity of sheet and ring is henceforth taken Into account.

.

.
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For convenience the moment considered is the moment which exists at the
. sheet center line rather than at the neutral axis of the ring. From

this moment the bending moment in the ring is easily found.

The underlying assumptions used in the analysis sre as follows:

(1) The shear stress, csrriedby the sheet alone, mayvsry in the
circumferential direction but remains constant in the axial direction.

(2) The material in the cross section of the panel (sheet and
stringers) capable of carrying normal stresses due to bending of the
panel is assumed spread around the cticumference in_a fictitious sheet
of thickness t’.

.

(3) The loaded ring has no torsional stiffness or bending stiffness
out of its plane.

. (4) The end ring supports are restrained trom deforming in their
planes but are free to wsrp out of their planes.

Under these assumptions, for any panel with constant geometrical
properties, a general differential equation is developed for the mcxient
at the sheet center line. All forces. stresses. and disdacements in

.

the appendix for development) is -
the panel may be obtained from that m&ent. Tl& general-differential
equation (see

d%—+
~8

[

3B

where

[

F(e) =R2@#

[

R2 &

d@6

((2-3B)~+I _
)

6e2A d%f6B+—
# ~-

-~F-=+$]9’6At-: +9M=F(’) ‘1)

.-
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When the ratio e/R, a measure of the eccentricity of-the ring and

sheet, is very small(:<<g) it can be neglected; equation (1) then

contains only the two nondimensional parameters A and B, which are
6

related to the geometry and physical.properties of the panel: A = ~
IL3

and B = ‘~. The ratio A/B is an index of the over-all flexibility

of the structure. When this ratio is very small the ring section is
rather rigid. A large value of A/B (500, for example) Indicates that
the ring section is somewhat flexible, causing radical departures of the
stress distributions from the elementary values. In actual practice
the parameter B varies over a small range (between about 10 and 80),

whereas A is usually much larger and may be as great as 2 x 107, or
even more; consequently, flexibili~ may be thought of in terms of
parameter A alone. Values of A less than about 200 usually indicate
relatively inflexible rings, and increasing values indicate increasing
ring flexibility.

The right-hand side of equation (l), F(e), contains terms resulting
from the application of distributed loads; if only concentrated loads
are present F(8) becomes zero.

SOLUTION OF GENERAL DIFFERENTIAL EQUATION

The solution of equation (1) depends upon the nature of the roots
of the auxiliary algebraic equation associated with the differential
equation. Of the required eight roots of the algebraic eq-tion, four
may be real and four ccmplex, or all eight may be complex. .(For the
special case of no eccentricity of ring and sheet, sets of-roots for
several combinations of parameters A and B are given in table I.)

If there are four real roots ikl} ~~ and four complex roots
t(a f hi), the solution for the bending moment is

M=
-kle

C1eklo + C1le + C1l-eW + C~e-~e +

~Ve(a+bi)e + Cwe(a-bi)e , ~lle-(a+bi)@ ,

.

.—

—

—

.

—

.

.

-(a-bi)e + paticul~ solution
cVIIIe (2)



NACA TN 2512

which can be written in real form as

M = Cl SiIlhkle + C2 cosh kle + C3 sinh k# + C4 coah l@ +

c~ Sinh * COE be +C6sinha8Sin W+C7 coshs8sinb8+

% cosh * COS be + gJ(e) (3)

If there sre four pairs of.complex roots *(cI.~ dli) and
k(c2 * d2i), the bending moment is —

(c~+d~i)e (cl-dli)e -(c~+d~i)e -(cl-dli)O
M = C1e + CIIe + CII1e + Cme +

~e(c2+d2i)~
+ Cne(%-d2i)e + CW1e-(c2+%i)G ~

-(c2-%i)e +pwticul~ solution
%IIe

which, written in real form, becomes

M= Cl sinh cle cos d18 + C2 sinh CIEIsin dle + C3 cosh cle sin dle +

c4 COSh Cle COS dle + C5 Sinh c2e COS d# + C6 Shh C2e Sin d# +

C7 cosh c@ sin d# + C8 cosh c2(3cos &# + JJ(e) (5)

Since the particular solutions gJ(e) and ~J(e) depend upon the fo?xn
of F(e), no formal solutions are given here. Further remarks concerning -
the solution of equation (1) are confined to the solution in real form,
either eqyation (3) or equation (5).

Equation (3) or equation (5) expresses the moment in any particular
panel where A, B, and R are constant; such a“solution exists for each
panel constituting the structure to be analyzed. For the case of a

.-

circulsr cylinder, solution (3) or (5) is the ssme as the energy solutions

(4)

of

.

. of

references 2 and

RELATION BETWEEN

All forces and
the moment given

3 for a si&ilw”two-bay structure.
—

TEE MOMENT M AND OTHER FORCES AND DISPLACEMENTS

displacements in the panel may be expressed in terms
by equation (3) or (5) and derivatives of this moment.
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As previously noted, this moment is the moment at
and with the exception of the ring bending moment
displacements sre those at the center line of the

NACATN 2512

the sheet center line,
all other forces and
sheet. When no

.

eccentricity is involved the sheet center line coincides with the neutral
axis of the ring. Of major interest in a structure such as the one
described herein are the forces, stresses (obtainable from the forces),
and displacements listed in the following paragraphs, together-with their
mathematical expressions which are readily obtained in general form in
the appendix. These expressions become considerably simplified in the
absence of distributed loads. (For positive sign convention of the
displacements and forces see figs. 1 and 3, respectively.)

The eight quantities.listedin this peragraph are associated with
the boundary conditions (discussed in the next section). These
quantities - the forces and displacements at the flexible ring, the
shear flow at the panel edge, and the axial displacementbetween the
flexible and rigid rings at the panel edge - are:

.

(1) Bending moment, M

(2) Sheer force

v lm
‘Rai7-m

(3) Axial force

(4) Sheet shear flow

(5) Axial displa~ement

—
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●

(6) Tangential displacement

.o=.*[%+~-R2[+% +,[+q}+

,:t1{2+%-R2~+5+ *&+$]]

(7) Radial displacement

. ..&{~+$-R2~+s+i@ <y]}+

)d2M ~f-edm—-
dg2 z

displacements(8) Rotational

aw+vo.

{

L dM+2d%+d%

[
R2h+— df d3f

ds R ‘— — —
—-

2,3Gt ~ d@3 @5 ‘z+=+

1

( ‘$~]+6~t,Ez:’

m+2$ —— — —-
+2d%+d7M

R de5 &7

[ 1]

R2d2h+d& +d3f+d5f +ld2m+2d4m+ d6m ,
~ ~~~

(

-—
R ~2 ~~

(

edM e d3M ~R df d2m—— ——-
EI d9 ‘RW3

)
—-e Z
de

The shear and normal stresses in the two supporting panels follow.
The shear stress T in the sheet is given by

.=*{#+~-R2[+g+,f +~jJ] (6)

\
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The stringer normal stress u is

The ring bending moment, that is, the bending moment about the
neutral axis of the ring, is

For no eccentricity the moment at the sheet center line becomes the
ring bending moment.

BOUNDARY CONDITIONS

Inasmuch as a general.differential equation of the form of
equation (1) applies for each of the panels comprising a given structure,
a like number of bending-moment solutions of the form of equation (3)
or (5) results. For the determination of the unknown coefficients
appearing in these solutions a sufficientinumber of boundary conditions
must be found, one for each coefficient. Regardless of the number o??
panels, the boundary conditions involve only the eight expressions
listed in the previous section, consisting of the forces and displacements
which occur at the sheet center line.

Although, for a particular problem, the application of these
expressions depends upon the structure to be analyzed and the loading,
all the boundary conditions may be summarized in one general statement:
No change in displacement or forces can occur across a boundary unless
a concentrated force is applied at the boundary, in which case the change
in forces must equal the applied force. Any concentrated load in the
plane of the ring can be resolved into a radial or shearing force, a
tangential or normal force, and a moment. Then when a concentrated load
is applied, the boundary conditions require that the difference in
shear forces of the adjacent panels be equivalent to the applied radial
load, the difference in axial forces be equivalent to the applied
tangential load, and the difference in moments equal the applied moment.
In the absence of any concentrated loads, all the forces and displacements
must be continuous; that is, all eight expressions in one panel must
equal the corresponding expressions in the adjacent panel. If a concen-
trated load is a~lied within a @nel, it Is necessary in the analysis
to consider the point of application of the
to consider the panel as two panels, one on

load as a-boundary and; hence,
either side of the load.

.

k..

—
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.

Although terms
expressions for the
boundary conditions
displacements.

.

11

associated with distributed loads appear in the
boundary conititions,distributed loads affect the
only in-firectly

Further discussion of boundary
the numerical examples, is given in

inasmuch as they affect the

conditions, as they apply to one of
the following section.

NUMERICAL EXAMPLES

The numerical examples deal with two geometrically similar cylinders
constructed of four panels forming a doubly symmetrical, essentially
elliptic cross section (fig. 2), with the flexible ring subjected to ““-
concentrated radial, moment, and tangential loads at an intersection
with the major axis. Cylinder 1 has a very stiff loaded ring and
cylinder 2 a relatively flexible loaded ring. For each cylinder the
sheet thickness inconstant, there is no eccentricity of ring and sheet,

* and the radius RI of the top and bottom panels is one-third the
radius R2 of the middle panels. The moment of inertia of each ring is

constant, but because of the change in radius, the rings change in
relative stiffness from one section to another as indicated by the change
in A/B given in table II. As seen in figure 4, the top panel, section 1,
joins the middle panel, section 2, at e = 600, and the middle panel
joins the bottom panel, section 3, at 0 = 120°. (These dimensions were
also used in constructing fig. 2.)

Comparisons of the calculated distributions of bending moment, shear
force, and axial force in the ring and of shear flow in the sheet with
the distributioti glvenby the elementezy theory ,=e shown in figures 5 “’–

--.—

to 10. The necesssry numerical values used in the calculations sre given-
in tables II and III. For ease in reading figures 5 to 10, the abscissa,
although it actually represents distance along the perimeter, is given
in degrees measured from the vertical axis of symmet~ (as shown in
fig. 4). Thus, since the ring perimeter of section 2 (fig. 4) is three
times that of section 1 or section 3, whereas the angular distance for
all three sections is the same (600), the distance in figures 5 to 10
along the abscissa from 120° to 600 (corresponding toosection 2) representa
three times the distance from 1800 to 120° or from 60 to 0° (corre-
sponding to sections 1 and 3).

For the numerical examples, the labor of computation necessary t.a
calculate the bending moment and other desired quantities may be shortened
somewhat through cognizance that antisymmetrical loading produces an
antisymmetrical moment distribution about the vertical axis an-d”””sjiiietricel
loading yields a symmetrical distribution. Hence, only half the cylinder

. at the ring need be considered (fig. 4). The procedure used in obtaining
the numerical results is illustrated by taking as an exemple cylinder 2
subjected to a concentrated radial load at e = 1800. The discussion

.
to follow is confined to cylinder 2 so loaded.
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In the top

d%
~

Differential Equations and Solutions

panel, section 1 (fig. 4), the differential equation is

14d%l 37dk 20cl%+ 900000M . ~
3~4 T~2

.—— -—— -
3 ~6 729

The resulting auxilisry algebraic equation yields the eight complex
roots (see table II):

f(cl i dli) = +(2.509792 t

f(ca ~ qi) = +(0.915713 *

Since symmetrical loading is applied to the
this section is given by only the symmetric

Msection 1 = C2 sinh Cl@ sin dle

% ShIh C2e sin d#

In the middle panel, section 2, the

The auxiliary algebraic equation has the

.

—
.

o.6zL665i)

2.101999i)

structure, the moment in
terms:

+ c4 cosh Cle COS d~e +

+ C8 cosh C2~ COS d2e (9)

differential equation is

d%~ + 900000M = O
dez

eight roots (see table II):

*% = k5.534415

~k2 = ~7.395633

~(a ibi) = ~(2.18u06 * 4.291882i)

The moment in section 2 is then

‘section 2 = Cg’ Sinh kle + Clo” cosh kle + C1l’ Sinh ~e +

C12‘ cosh k2e + C13 sinh @ cos be +

C14 sinh * sin M3 + C15 cosh a sin~ +

C16 cosh # COS be

.
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but since kle and k@, when 19= 60° and e = 1.20°,sre large enough
so that their respective hyperbolic sines and cosines ue of dmo.e’t _
equal magnitude, it is better for computational purposes to rewrite the
moment in section 2 as

same

sane

.

.

ke
1 +Cloe-kle+CHe%e +C12e-%e+‘section 2 = C9e . .

C13 SiIlh* COS b8 + c14 Sinh ae sin be +

C15 cosh * sin be + C16 cosh % cos Ml (lo)

For the bottom panel, section 3, the differential equation is the
as for the top panel and the auxiliary algebraic eq~t,ion has the
roots. Hence, the moment is givenby

Msection 3
= C17’ SiIIh Cle COS dle + C18’ Sinh Cle Sin dle +

However, for
respectively,

computational
form

Msection

Clg ‘ msh C1e sin~e +c20’ cOshcle cos ~e +

C!21sinh cze cos qe + c22 sinh C2e sin d# +

C23 cosh c# sin d@ + C24 cosh c2e cos &#

e = 120° and f3= 180° the hyperbolic sines and cosines,
of cle sre almost identical, and it is advisable for

purposes to rewrite the moment in the bottom panel in the

Cle

= C17e
-Cle

3 Cos dle + c18e Cos dle +

Cle -cle

Clge - sin d,e + C..e A sin dle +

C21 Sinh

C23 cosh

.
Equations (9) to (n)

twenty boundary conditions

-L Zu L

~e cos *e +c22 SimC2e sind# +

c#3 sin d@ +C24 cosh c2e cos d@ (Xl)

Boundary Conditions

contain twenty unknown constants; hence,
are needed.. No boundary conditions are found \

..—

.—
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at e = O, since continuity of all forces and displacements is already
satisfied as a consequence of taking advantage of the symmetry of the
structure and loading. The boundary conditions to be used in the
calculations must be found at e = 600, e = 120°, and e = 18oo.

Eight of the boundary conditions are supplied at G = 60°, where,
in the absence of any concentrated loads, all eight expressions in
section 1 must equal the corresponding expressions in section 2. That
is, the moment, shear force, displacements, and so forth, must be
continuous. For example, the first condition requfies continuity of the
moments, or

‘section 1 -M section 2 =0

which can be written

Clfi dlfi Clfi dlfi
C2 sinh ~ sin~ + C4 cosh — Cos —

3 3+

c2flsin %?~ c27i
C6 Sillh—

Coa d2%

3
—+ C8COSh— —-
3 3 3

(-

klti klfi $2”.—
C9e 3 + Cloe 3 T

“12 ‘“
-7+

+ Clle e

.

.

.

.

—

The other seven boundary conditions appearing at e = 60° are written
in a similar manner. The same continuity of the forces and displacements
must exist at e = 120°. Thus sixteen boundary conditions are provided,
with the four remaining conditions to be found at e = 180°.

For an applied radial load, the’sum of the shearing forces on either
side of the cut must equal the applied shearing load P, Because of .

the symmetry of the structure and loading, half of this load is carried
by section 3 and the other half of the load is carried by the panel
to the left, which need not be considered. Furthermore, the shear
flow in the sheet is O at f3= 1800, there can be no tangential or
sidewise displacement at e = 1800, and there are no angular displace- W
ments caused by a concentrated radial load at this point. Hence, the
four boundary conditions needed may be summed up as follows:
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‘180° = 0.5P

‘01800 ‘
o

()dw V()

aE+rl&o=o-

E~ations (12a) to (12d) can be reduced by ~oper substitution to

(a)(%),mo=o“~%

()&(b) — = -O.5PRl
de3 ~80Q

()

(c) ~ = 0.5PR1
t@5 ~800

()d7M
(d) — = -O.5PRl

~7 ~800

(12a)

(12b)

(12c)

(12d)

—.

For exsmple, e~tion (12a) can be written

c~fi

( )
-c X

C19= Cl s~ dlfi + dl COS~lfi - Cme 1
( )
Cl SiIt dln - dl COS dlfl +

C21 f2

(
c= C2

C2362

C24@i* c2~ COS %fi - ~ coshc2flsin~~ =0.5PR1

cosh cpfi COS d2fl -
)

q sinh c2fisin d2fi +

)cosh c2fl sin ~fi + d2 sifi cpficos ~fl +

)sinh c2fisin ~fi + ~ cosh c2ficos ~fi +
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The solution of the twenty equations given by the boundary conditions
yields the values of the unknown coefficients C29 C&, . ● ● C23J C24
shown in table III. The bending moment in the loaded ring at any angle G
is then found by using equation (9), (10), or (11) with the appropriate
coefficients. For example, substituting coefficients %7 to C24

from table III into equation (11) for e = 180° gives

‘180° =
-0.119054X 10-5PR1(2.656444X

(-O.202194X 10%R1)@.376443 X

@.342801 X 10-%Rl)@.656444X

10~(-0.372983) +

lo-~ (-o.372983) +

103)(0.927839)+

(0.=6297 X 1011%
J( )0.376443 x 1o-3 @.927839)+

( )
-0.497509 X 10-lPR1 (8.444w6)(0.g4~8)+

( )-0.226239 X 10-lPR~ (8.444906)f0.314983)+

(0.375148 X Zo-1pR1)(8.901257)(0.314983)+

(O.532861 X 10-1PR1)(8. W-257) {0.949098)

= 0.161390PR1

CONCLUDING REMARKS

The results obtained from the numerical.examples agree with those
previously obtained for circtia CYliMers (see, for example, references 2
and 3) in indicating that concentrated loads applied to flexible rings
produce stresses in the rings and shell considerably different from those
computed from an engineering analysis (wherein the ring is treated as
a free ring supported by the usual elementary torsion and bending shears).

Ring flexibility is essentially indicated by th parameter A
()

_ t’R6
=3 J

where A is everywhere less than about 200 the engineering analysis is
adequate, but if A exceeds 200 such an analysis is inadequate.

.

.

.

.

.

.
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The main effects of flexibility =e to change considerably the distri-
bution of stress and the magnitudes of the maxbnm 0tres6es. The change
in maximum stresses is indicated in the folLowing t~le, which gives the
approximate ratios of the absolute values of the maximum stress coeff i-
cients for cy~nder 2 (A * 206 near the load but 1%,000 some distance
away) to the maximum stress coefficietis obtained from an engineering
analysis:

Radial 1°”514“511”01104
Moment 11”0147”513“416“3
Tangential I .21 5.41 .211.0

For much lsrger values of A, that is, for greater flexibility, the
ratios greater than unity would increase considerably, those less than.
unity would decrease somewhat, and the ratios of unity would remain
unchanged.

.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics

Langley Field, Va., August 1, 1951 .—

.
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DEVELOPMENT OF

APPENDIX

GENERAL DIFFERENTIAL EQUATION

.

Consider the two-bay panel with uniform geometrical properties
(fig. 1), loaded in the plane of the middle ring. In accordance with
the assumption that the shear stress in the sheet may vary circumferen-
tially but remains constant in the axial direction, an infinitesimal
element of the sheet is subject to the stresses shown in figure 1.

Equilibrium in the x-direction requires that

Since

and

equation (Al) becomes

&r
*t’dxds=OStds&+ax

?t=q

Ut’ ‘P

ap+~=o
ax a6

Integrating equation (A2) with respect to x gives

However, since

P =Oatx=

P -1-

(Al)

(A2)

the end ring supports are fre’eto wszg out of their planes,
L, and therefore

m

●

fl(s) = L+ ‘ .—

Then

p=(L-x)~

The strain relation in the x-direction gives
.

&l=
ax ~x=.+
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so that “

(A3) “-“

Integrating equatiqn (A3) with respect to x gives . . ... ..

().2 ~ X2 aq-——
u – ~~, as

+ f2(s)
2

but since, from symmetry of the struct~e and loading> u = 0 at x = ‘~

fz(s) = o

so that

1 Lx-??+u=— Et 1 ()
(A4) ‘“” ‘--

The she= strain can be expressed as

from which u can be eliminated and v can be found in terms of q.
Differentiating equation (A4) with respect to. s and substituting the
result into equation (A5) gives

av ()lh X2 ~pq
—=— -—
ax c%Et, ‘~~

Integrating with respect to x yields

q 1

()

LX2 X3 a2q
v =—x - — —- — —+ fs(s)

Gt Et! 2 6- aa2 .-

but since the.end ring supports are rigid in their planes, ~ = O at
x= L, and

fs(s) =
L3 a2q

-&q+——
3Et’ 3s2

so that

v x-
=-++i (3Lx2 - X3 - =3) ?#

Gt as
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. ●

This displacement in the sheet at the ring, where x = O, becomes

L3 a2qTo . ..&q+ -

m%’ ae2

.
(A6)

The relation between the strain in the sheet in the circumferential
direction and the deflections at the ring is

()

dvO
es=~w-v

where by continuity w is the radial deflection
Since the strain c~ in the sheet is the strain

of the ring,

‘s e%
es=—=-—

E EI

Thus the radial deflection can be expressed as

.=..~+~

of both r-ingand.sheet.
at the outermost fibers

.

.

(AT)

Differentiating equation (A6) and substituting the result into
equation (A7) yields

~_e> ;t~+ L3 d3q-——
“x ~

(A8)

The relation between the ring bending moment and the radial
deflection is given by (see, for example, reference 11)

b)%=-‘1 Q+w
(R - e)2

(A9)

Performing the indicated differentiation of equation (A8) and substituting
the result into equation (A9) eliminates w and gives

(A1O)

.

.
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9

It is now convenient to find the relation between the shear flow
in the sheet and the moment at the sheet center line, as well as to.
express the moment at the ring center line in terms of the moment at
the sheet center line. Figure 3 shows an infinitesimal segment of the
loaded ring and the positive directions of the forces. For the first
of the three equations of equilibrium, taking moments about the origin ——.
gives

-dM+RdH+R%M+Rnd6 +2R2qW=0

or

Sunmation of the tangential,forces
gives

.

RdH—- )R2h - ~“

de
(All)

(neglecting terms of higher order)

Vde -Rhde -2Rqde -m. o

. or

v =~+Rh+2Rq “

Summation of the forces in the radial direction gives

-Hd9+Rf~-W=O

or

H= -~+Rf (A13)

Substituting the value of ~ from eqyation (A.12)into equation (Ali) —

yields the shear force at e: -

v lm
‘Rw-m

(A14)

Differentiating equation (A14) and substituting the result into
equation (A13) gives the value of the normal force at the sheet center ‘-
line at G:

(A15)
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Differentiating equation
equation (All) gives the

{

ldM
q =— —

~2 de

(A15) and substitutingthe result
expression for the shear flow in

‘5-R2F+~+~[+51
l--

The bending moment about the ringcenter
composed of the moment M and the product of
the eccentricity e, or

MR =M-eH

‘J
line can be

into
the sheet at 6:

(A16)

seen to be
the axial force H and

.—

%4. M+=~.
R d~2

eRf-- e ~ (A17)

Differentiation of equations (Q6) and (A17) and substitution of
the result into equation (A1O) leads to the desired differential equation:

where

[ 1F(8) = ‘2 ~ + (1 --’3B)5 - 3B ~ +

.

.

Equation (A18) is the general form of the differential
bending moment at the sheet center line for–any of the
the structure. The bending moment in the ring for any
given by equation (A17).

equation for the
panels comprising
such panel is

.

.
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TABLE I. —R2UIB0 FAUXDXAHALGIMRW WWl!IfXHSE’Je.OFOR

2Q

fl.2~205

*7.745793

do.6E23k f 1.467!Y381)

@.@7436

*7.744229

h(o.972538 * l.%%wli)

t3.157270

?7-728363

L(l.4475N* 2.&M3wi)

&.ol&03

*7.539@k

k(2.055771* k.0301%l)

[ 1A.=$; B=’$

*13.416404

*(O-475554 * 1.297397i)

*1.613689

H.3.416370

*(0.7* *“1.n4525i)

f(l.23639k f 2.3@8951i)

E!.835266

*13.41XC9

@.837706 f 3.41-)

150

j9.743842

f(o.371310 * 1.189335i)

*1.3261&J

@.213202

t(O.661073 i 1.521962i)

*2, 1.17014

&. 2131&3

dl. o!52130f 2.085072i)

*3.230>42

*21 .213049

N.5$!XJ17 f 2.95yj@i)

.

350

io.571042

*32.403439

f(o.2!W365 ~ 1.l13M4i)

+UW2601

_J32.403439

f(o.547534 ~ 1.3740S01)

*1,795392

W. 403439

~(o.896469* 1.8L7@i)

Root
Syribols

.

. ,
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TABLE II.- NUMERICAL VAIXIESUSED IN COMPU!CATIONS

[

6
A t’R 1Et,R2

=—; B=—
IL3 GtL2 ‘ -.

*linder Section A B A Roots of auxiliary equation
E

w .236301

1 and 3 ~
% 9

0.03 *2.581786’ .

~(0.109747 ~ 1.019532i)

1
il.061451

2 m 20 2.50 &7.7458~

+(0.521510 ~ 1.354493i)

+(2.509792 ~ o.621665i)
1 and 3 = % - 92.59 -

729 9 +(0.915513 ~ 2.101gg9i)

2

&. 534415

2 150,000 20 7500.00 *7.395633

~(2.18u06 ~ 4.29188-2i)

*

.
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TABLEIII. - VALUES OF COEI!FICHMTS1FOR NUMERICALEXAMPLES

Cylimier1 Cylimler2

:oefficlent 14MK Lead

Radial Mcunent Tangential Radial Moment Tangential.

c1 ------------ 0.147537 o.2@767 ------------ -0.860733-030.11930143

C2 0.679031-01---------------------- 0.949137-04------------------.-”.

C3 ------------.z~041-04 -.1Y7406-03------------.2S731-03-.37151.8-04

C4 .I.25895-05----------- -------------.284700-03---------------—------

C5 -------------.136156 .754809 ---------------.148018-o1.22123&c2

C6 -.525229 ------.----.--------------,197121-02-----------------------

C7
-------------.165618 .236338-03 -.-------------.521539-02.48459-03

C8 .282018-01 ----------------------- -.35@0-02 ------------------------

C9 .171565-01 .188166 .202467 -.657213-08 .14c&9-(%-.16142347

Clo .3Q3490-01-.121785 -.111398 -.534558-01 .270768 -.6976!72-01

Cll -.264559-~o.116591-M -.116591-10.397640-09 -.1615W08 .-flo774-09

c12 .889303 -.50$263-01.8z)18X0 -.479259 -.3e061.2+01.638771

%3 .329176-01 -.296012 .4729s4 -.122989-01-.B61&74-01.48586542

%4 -.49ML6 .373871-01.290987 .829422-03 -.49m6-01 .70290%02

%5 .192013 -.18422P -.160403 -.117551-02 .471184-01-.66&s4-02

C~6 .720834-01 .274929 -.403188-01.131739-01 .392728-01 -.527300-02

%7 -.119460 -.uS4389-ol.174960 -.119054-05 .778086-04-.192s9844

C18 .315057 .363960 .22&5ti -.M219ha1 -.711069+ol.872951

%9 -.8@224-08..174922-09 .303.27L-07.342801-04 .&4877-04.168139-04

cm . -.71wa-02 -.259599 -.364881 .m6297+01 .882602+01-.l12279tol

C21 -.640348-o1.207820-02.128917+01-.497X9-01 -.142194 .194136-01

c= -.531867 .131177-01 .50@8-ol -.2262s9-01 -.709217-01.~707B1-02

%3 -.@629 -.S04436 -.s28941 .375148-01 .124468 -.1o4012-o1

C24 .194401-01-.2k?ss3-01-.613555-03.732861-01 .167720 -.2b1624-01
. ————

%e foil.oulngconventionis ueed to indicatemultiplicationfactors: ~

+01 = x 10; +02 . )( 102; al . x 10-1; -O2=X1O
-2

; and sO fcu-th.
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\

Rigid Flexible
\

Rigid

\

Figure l,- Two-bay panel

and sheet stresses.

showing positive directions of displacements

I ‘Wigid ~

Figure 2,- Two- bay cylinder, composed of four circular panels, with doubly

symmetrical nonckcular rings, used for numerical examples,

.
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Figure 3,- Free-body diagram of ring section showing positive

directions of forces,
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~ Section 2
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Figure 4,- Cross- sectionai view of half of loaded ring used

numerical examples.
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Figure 6,- Ring shear- and axial- force distributions

concentrated radial load P at @= 180°t
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Figure 7,- Bending-moment and shear- flow distributions praduced

by concentrated moment load Mc at 8 = 180°,
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Figure 9.- Bending-moment and shear-f low distributions produaed

by concentrated tangential load T at 8 = 180Y
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