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TECHNICAL NOTE 2705

THEORY OF SUPERSONIC POTENTIAL FLbW IN TURBOMACHINES

By Robert H. Wassernm¥\

SUMMARY !

A general method for solving supersonic potential flow problems for
stationary or rotating coordinate systems is presented. The principal
attributes of the method are: It can handle flows which cannot be
treated as two-dimensional, and a sound theoretical basis gives assur-
ance of its validity for a class of boundary-value problems. An appli-
cation to the design of a compressor rotor is made.

INTRODUCTION

The fluid flow through a turbomachine is intrinsically three-
dimensional. This fact must be considered for a full understanding of
such flow, and in particular for adequate treatment of such problems as
off-design performance surging and secondary flows due, for example, to
boundary layers. However, this three-dimensionality is not easily
accounted for theoretically, even in the idealized case of no viscosity
or heat transfer. In existing approaches, some sort of two-dimensional
flow is first considered, such as flow through a cascade (Tyler, refer-
ence 1), exially symmetrical flow (Marble, reference 2; Goldstein,
reference 3), flow in surfaces of revolution (Wu and Brown, refer-
ences 4 and 5), or flow over other special surfaces (Stanitz, refer-
ence 6). In some cases, this flow serves as a first approximstion and
is modified to give normal variations by Taylor series expansions
(Reissner, reference 7), by use of Ackeret's two-dimensional vortex-and-
source method (Meyer, reference 8) or by successive applications of two
or more different types of two-dimensionsl flow (Wu, reference 9).

The solution of the two-dimensional problems and the extensions to
three-dimensional flow both generally involve one or more of the following
numerical techniques: wuse of formal series; repeated substitution of
"approximate solutions" into the differential equations; and replacement
of differential eguations by difference equations and subsequent sppli-
cation of relaxation or matrix methods. There is no assurance that
numerical results obtained by such means correspond to a solution of the
original three-dimensional problem.
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The present treatment is a direct attack on the supersonic three.
dimensional problem; it dispenses with special two-dimensional flows.
Moreover, the mathemeticel basis of the present treatment due to
E. W. Titt (reference 10) contains a gusrantee that the numerical pro-
cedure involved shall converge "locally" to the correct answer.

The fluid flow through a single component of a turbomachine is
treated herein - either a rotating or a stationary component. Moreover,
consideration is limited to regions in g component in which the fluid
flow may be considered inviscid, isentropic, and irrotational. Such
regions, however, are permitted to be bounded by surfaces on which these
assumptions are not vaelid - such as shock surfaces. In such a region,:
the flow is described mathematically by
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when the flow space is provided with cylindrical coordinates z,P,r
which rotate with the angular velocity o of the wheel. No’ge that the
sound speed a 1is a function of I, w, &, %%, %, and 5% A
solution of this equation, and thus of a flow problem, is obtained in
the region when suitable physical conditions are given on the boundary
of the region. A description of a method of solving eguation (1) with
suitable boundary or initial condition will be presented first from a
general point of view. Then an application of the method to a specific
flow problem will be made. The work described herein was done at the
NACA Iewis laboratory. .
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" GENERAL THECRY

For the present purposes, equation (1) is characterized by the
statement that it is a single quasi-linear partial differential equation
of the second order for a single function of three independent varigbles H
that 1s, it is an equation of the form

2 2 2 2 ‘ 2
113% 12 d%0 13 3% . 229% -_ 235 3% 33 3%
TNET ot mxtt st Spwt? 3ztP=0
(2)
3% 30 3

where ald and b are Functions of z, o, r, O, 3z S =md I

(A1l symbols are defined in the appendix.) The method to be described
for solving equation (2) is a so-called characteristic method. The
central idea of such a method is to solve a differential equation by
replacing it by an equivalent system of differential equations, each
equation containing derivatives with respect to fewer independent
verigbles. This is done by utilizing characteristic manifolds. The
problem is thus reduced to solving the equivelent system called the
system of characteristic equations (Courant and Hilbert, reference 11).
In reference 10, a system of characteristic equations for equation (2)
is obtained by means of characteristic surfaces, and a constructive
existence theorem for the characteristic equations is presented.

Characteristic Surfaces
On any surface

z = z(s,w)

? = ¢(s,w) (3)

r = r(s,w)
the following six second-order strip conditions are required:

o3z, 3% . % o ‘ @)
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(5)

(6)

(7)

(8)

(9)

Since the determinant of the coefficients of the partial derivatives of
® of the right-hand side is zero, this is a singular system. If the
determinant of the coefficients of equation (2) and the coefficients of
the five linearly independent expressions on the right-hand sides of

equations (4) through (8) is zero, that is:
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then the surface given by equation (3) is called a characteristic
surface, Clearly, whether a surface 1s characteristic depends on the

solution &(z,p,r). The left-hand side of equation (10) can be expanded

by Laplace's expansion by minors of the last two rows to give

2¢z¥% . 3z d dz d
sz (32) + me 3232 (s + 200) 235 -

2
Aoy (?p) + (B25 + B3a) g—q’%—r- Azs (?g} =0 (11)

where the A;j are minors obtained from the first four rows, with the
18 ang ,jth columns omitted.

Just as the two-dimensional method requires the existence in the
plane of characteristic curves (see reference 12), this method requires
the existence in gpace of characteristic surfaces. Thus, the class of
solutions of equation (11) is examined. In this class, there are those
characteristlic surfaces which can be parametrized by two space coordi-
nates. For concreteness and because they are suitgble for later appli-
cation, the following two cases are considered: (1) s =@ and w=r;
end (2) s =2 and w=r. In case (1), equation (11) becomes

P 2 i P
A2 <%czp> Ay g—% Aoy = (12a)

where Ac_:fj are obtained from Aij by putting (%z;’ S%P’ %) (g%, 0, l>.

and taking the elements of the first row of equation (10) as functions
of ® and r. In case (2), equation (11) becomes

Alp + AJZ_4 gﬁ) XA (aq)> =0 (12p)
z oz o9 or oP
where Ajj are obtained from Aij by putting \3% v S/ ° 0, 3—,

and taking, the elements of the first row of equation (10) as functions of
z and r.

Since equation (12a) is a first-order equation in two independent
varigbles, it may be solved with a given noncharacteristic initial curve
= £1(t), o = f3(t), r = £3(t) having first derivatives such that
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as ‘ .
Efé # 0, such that initial values of %%, and %% satisfy equation (12a)

on the curve, and such that

a7 3z ¥z 3z Y3 (1)
T T T T

(see reference 11, p. 63 £f.), and similarly for equation (12b). Then

oz o
for these two cases, respectively, the initial velues of 3 and 3z

mist satisfy

* [0z 2 * Oz * ’
Ass BTP) + Ay S By =0 (14a)

J
(@]

A\
* * 0P x (Q0
Mg + Mg 35~ Bog (’55 = (14b)
. .

where Aij are obtained from Aij by putting

dz OP or dz 49 dr

pore et eeg Bl W T 53’ e and taking the elements of the first row of
equation (10) as functions of +. Equation (14a) has two solutions for

8%:,,j.f

* 2 * x
Ajp® + 4 A Ay > O (15)
%*
My £ 0 (16a)
oP
Equation (14b) has two solutions for 5. if
AT,2 + 4 AJp Ay >0 : (15)
*
Aoy £ 0 (16b)

Thus, under either of these pairs of conditions there are two character-
istic surfaces through the initial curve. -

0072
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Recall that in the two-dimensional case, there is a criterion for
the existence of two one-parsmeter families of characteristic curves in
the plane. These are taken to form a new curvilinear coordinate net -
the characteristic coordinate net. The characteristic equations are
then obtained as equations in the characteristic coordinates or param-
eters (reference 12). In three dimensions, the criterion is for the
existence of two characteristic surfaces through each curve of a set of
curves in space. If approprlate families are selected from this collec-
tion of surfaces, the procedure is somewhat analogous. Meking such a
selection requires specifying an initiasl value problem.

Initial Value Problem

Since, for example, ® = constant satisfies the partial differential
equation él) in an arbitrary region, it is clear that a solution of
equation (2) satisfying further conditions is wanted. Thus, in addition
to the condition that a function &(r,p,z) satisfies equation (2) in a
given region, further conditions are required of the form: on a speci-
fied part ¥ of the surface bounding the given region, & as well as
its first derivatives %g, g%; g% are to teke on a priori given values.

These may be given arbitrarily up to certain limiting conditions.

Let an initial surface ¥ be given. It is assumed to be not char-
acteristic; that is, it does not satisfy equation (ll). A one-parameter
family of curves is selected which simply cover 3 and which are nowhere
tangent to r = constant curves; each curve may therefore be parametrized
by r. Under the conditions (15) and (16a) or (15) and (16b), there is
a pair of characteristic surfaces passing through each curve, and these
surfaces plus r = constant surfaces may be taken as coordinate surfaces
of a new coordinate net, since the Jacobian of the transformation

z = z(u,v,r)
®= CP(qu:I:) | ‘ (17)

r =

is not zero on % (reference 10). X may be given by
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z = z(s,r)
@ = (s,r) (18)

where s 1is now the parameter of the family selected, and the character-
istic surfaces are

z = z(u;vg,r) - A
P = qJ(uJVO:r) } (19)
r=r
J
and
z = z(ug,v,r) \
® = @(ug,v,r) L | (20)
r=71 J

For convenience, put u = f% s and v =-u on .

The limiting conditions on ¥ other than those already mentioned
are: the functions defining 2 and their first derivatives with
respect to B are partially analytic functions with respect to w.

This is to be true of all the functions defined on § (cf. reference 10).

The remaining limiting conditions on the initiasl functions are the strip
od o 9%
conditions. On any surface, in particular on %, 33, 3p dr mst

satisfy the two first-order strip conditions

od

d . oz 209 30 dr
T E s tHE TR s (21)

00%2
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d , b3z . 3039 dor
Sl tow T (22)
Characteristic Equations

In terms of the parametrizations of equations (19) and (20), the
characteristic surfaces are obtained from equation (11) in the forms

2 2
Ao (gﬁ) + Ay % g—flp A (g&') =0 (23)
3z\2 dz 3P 3p\?
AT (&Er) + My 5 & - M (6?) =0 - (24)
oz 0P i3

Note that Agj and AXJ are the seme functions of §, 5y, & °, the

distinct notation indicating that here in the first case ai'j are con-

sidered functions of u,r and in the second case ald are considered
functions of v,r so that in general the common notation Qij will

suffice.

Alp # 0 implies that Qi # 0 on 3. et the root determined by

-4, +\/Q:2L4 + 4, 0y

equation (23) considered as a quadratic be Py = zcﬁz

and let the root determined by equation (24) be

_ -Q, -[Qf, + 4, 924.

Then equations (23) and (24) become:

P2 205
%._ pl%’:o - (258)
g% - pzrgiv? =0 (26a)

Similarly, if Ag4 # O then equations (23) and (24) become

%—S-Tlg-g=o (25b)

Cem sram s e e e A s e s s m S T e e e e e e ot s e e e Nt A e T i ey e M % T = = m [t g i - —— e = A =~
r
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8\_" - Tz 5; = O (26b)
where T3 = —]L :
On any surface the 12 third-order strip conditions must also hold.
They are arranged as follows,.where ¢ takes on the values 2z,9,r

successively and subscript notation is used for derivatives with respect
to z,9,r:

D d d ar
v Pz = Pzze ‘5%'- + sze‘c)ch"' ®ore 'a%

3 3 3 d
5 v = Pape 5o + Bpgey * Ypre 5

0 d o Jo)
E‘I’re=‘1’zre3€+%a£wp+‘brre§§; (
27)

d d d or
35 %ze = P2z 'a'g' + q’zq)eﬁg)"' Cre 35

3 oz oY or
38 Ppe = Pzepe 3 ‘I’cpcpea‘s' + ‘I’rcpe 38
d dz e dr
In addition, the third derivatives must satisfy
21 3 y 22 3
alltbzze + 28 (Dcpze + 2a 1<I>I.ZE + & ‘I’cpcpe"' 28 2<I>rq,€ + a35<1>rr€ + a]élszz +
2a§}¢ﬁg + 2830, + a%2¢ﬁu)+ 2a2?Qﬁ$'+ 83, + b = 0 (28)

which are obtained by differentiating equation (2). Iet

00%2
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11 21 3l 22 . 32 33
Ble) =d & +2a ¢ +2a & +a & +2a & +a & + b,
€ zz € oz € rz € QP € TrQ € rr

' (29)

so that in equations (27) and (28) there are for each € seven linear
nonhomogeneous equations in six unlcquns which may be written as:

- - - o T
1 0 12 5 13 .22 5023 .33 °, . _ B(e)
dz o or ' e}
¢ 5 s ° 0. ol | ®up s ae
oz 0P Oor < d
o £ o & £ o 8 v e S Spe
: S} QP 9 9
o o F o 5 &K Pepepe = | & %e | (30)
dz 9P or o)
d 3s 3s °© 0 © (I)CPI‘G s 2z¢
oz 3P or ® o) o
0 ds 0 o8 Js 0 rre ds e
oz P or IS}
| ° 0 % % &% & | 5 %e |

Now if the surface is a characteristic surface, the matrix of equa-
tion (30) is of rank 5 or less (cf. equation (10)) and thus, as consist-
ency requires, so is the augmented matrix. This in turn requires that
the two sixth-order minors formed from the augmented matrix by deleting
the last row and second column and the first row and second column be
zero. In particular, on the characteristic surfaces given by equa-
tions (19) and (20), these minors upon expansion become:

3P J 9z J
\ ‘9245§$®ze+§2125{{5§?cp€

13 33 dz| d 23" 33307 d 33 3z o9
={ [Za -a 31—']5 (Dz€+[za e E]&%ﬂi'ka E(bre"'B(e)}SE&l—

(31)
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on Vv = constant,

dz 9
Q24FB— z€ Q:LZ‘&ﬁ%s
d 9P| o
={ [ 13_ 335‘2‘]8“ Z€+[g 23_ 33;’]? q,e+aF’5§’?<I>r€+}3(e)}%-zr-§—f;P
) (32)

on u = constant, and if oz acp;é

3%z 3 5 3P d dz 9 9

or 5u Yae ¥ & 5u Ype * 5u%re ~ 5w o Yue *Su oy Ype (D)
on Vv = constant, and if .g_:g%;éo,

Bza BQDB Ps) 9z 9 P d

yg arg‘q’qae Ed)re'ﬁ&'q)ze+5555®cpe (34)

on u = constant.

By means of equations (25a) and.(26a), equations (31) and (32) may be
expressed in terms of pl and Pot

Qoa Saﬁcbzc‘ h2 ey %q’q)e + E(e) %ﬁ' =0 (35a)
o) 3 3
Qs 57 Oe- Uz P2 37 Ve + E(e) 5= = 0 (368

By means of equations (25b) and (26b), equations (31) and (32) may be
expressed in terms of Ty and Tp:

Qoa 71 2= Bue - Mg o Bipe + E(e) 2 = 0 (55b)

Q24 ga; ®e-Sha ga\;‘l’q)e + E(€) g%—? =0 (36b)

~00tre
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Now consider equations (25b) and (26b); equations (21), and (7)
to (9) with s = u; equations (35b) and (36b) with z for €; equa-
tion (35b) with ® and r for €; and equation (33) with ® and r
for €. These are 12 partial differential equations for 12 functions

' (ya,) = (Z;CP: ¢,’®Z’¢CP’®I"®ZZ’®ZCP’¢ZI"®W¢CPI"®I‘I‘)

in (u,v,r) space. They are first-order nonlinear equations, which,
however, are linear and homogenous in derivatives with respect to u
and v. They have the form

12

a,aya'

lai Sa_ =0 i=1, 3, 4,--, 7, 9,--, 12
a,:
(37)

12 aya
Z a% T: =2, 8

J ov
a=1

dy,
al a %

where i and a 3 are functions of Yy, and S

In the (u,v,r) space the initial surface:Z becomes u + v = O.
The values of the functions yg on X are (y@)(o) = yolu,-u,r) =
§a(ﬁ u,r), vhere S;cx, are initial values on Z as functions of s,r.

d 3y \(0) 3%
The values of B—i’g on X are (53;5”—) =§fg:‘

3wl < 2
The values | 5= and ST of §— aqd Sy on 2 are
obtained by solving equation (37) on the initial surface with
3 \(0) 3y \(0) O - |
(g—u—> '(Bv_ =/235; k=1,2, 3..., 12 (38)
Equations (38) come from ;a'(_s',r) = y (u(s), v(s), r) and the relations
2y Bzy“

8=y/Zu=-J2Zv onthe initial surface. Finally, s—s° end s—==

' 32y \(0) 3 (3%, (0) 3y, (0)
on & are, respectively, <$§1) = 5(23?@-) and (B—r—&) =
o
or \ov/ °
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The 12 equations (37) with these initial functions on u + v = O
constitute an initial value problem. It follows from the proof of refer-
ence 10 for the general case that this problem is equivalent to the
initial value problem for equation (2). A solution of this problem thus
leads immediately to a solution of the initial value problem for equa-
tion (2). Uniqueness is also preserved.

. 0072

Solution of Equivalent Problem

Equations (26b) and (36b) with € = z are differentiated with
respect to u, and the others are differentiated with respect to v 80
that there are obtained 12 equations linear in 12 second-order uv
derivatives and nonhomogeneous,

> by
Dia Fiov = &1 (39)
[0 9
The matrix of Dy, of this system is:
_ l l —
-Tq 1 | :
=T 1 |
2
————————— t-—=—=—=1
¢, 0 : 0 -1 0 O l
% Poe 00 0 O by
0 Bz) | iy Sy, O 0o 0 O
0 E(z) | by Qo 0 0o o 0 |
0 B®) o om0 @0 0
0 E(r) : , O 0 Tf)24: 0 sz 0
9 _ 9 | o 0 ., 1 0
3o 300! | r
0 d I
- aq)zr 3}@(91‘ ! : 0 0 Z,. 0] CPr 1
- | —

in which the elements of the empty rectangles are all zero. Briefly,
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0o,
Diq = 1:'2__=_I_1§'__
Fyio'l Ig
The augmented column Gy of equation (59) is
BT BZ
57' du
BTE oz
du ov
3%, 3, ) BCDCP 3o
“3dv du  Ov du
ob, od
2z 0% zZop OP
ST TS
2 0z BQCPCPBCP
" "3v du~ ov Jdu
_ BQEr Sz B¢&m 3p
dv du - ov du ‘
_ OE(z) o _ 81'1924 <I)zz anZ a(I)sz
v 1 v S T ov odu
OE(z) o E”'-29‘24 a<I>zz BQJZ a@
~ du v~ " ou  ov t ou Bv
Bquﬁ Bm acﬁz B 4 a®zm
ov Bu' - Bv ou
) a 3 ANyp My, 3Ty 3%y
NtTT U T T
a2 Sz 32 5 |30 Bzr Bgvz \qu Bqaxb
v or pz SuF\Svor PP/5u " v OSu " ov  ou
de ® -9z 32 o 0P oz, 00, o, a(I)Cpr
v or *rz)Ju T\3v o7 “ro T9 Jdu T dv Ju

Solution of this system yields a set of équations of the form

(40) .
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where

By By Byﬁ o2 Vg Bzyﬂ
fo = fa yB’Bu’Bv’Br’B or’ ov or

fale} -4

since Ty = O when £}, = 0, theng DMW_GB is satisfied

%y
identically and Bﬁ‘? may be chosen arbitrarily and the remaining

equations solved for the remaining second derivatives. To solve the
transformed initial value problem, reference 10 uses an extension of the

Plcard method.

I equation (40) 1s integrated with respect to v from the initial
surface u + v = O to an arbitrary point u,v,r (see fig. 1),

Bym Bya' v
S5 (u,v,r) - So (u,-u,r) = £y av (41)

u

Then integration again with respect to u from u = ~v to any velue of
u gives y, as

u aym
Ya,(‘v:v:r) + S (u,v,r) du
- o

u |y v
Yol -7, v,T) +f BT:Q (u,-u,x) + f £, av| du
- ~u

v

Yq,(u: v,r)

(42)

oy -
The quentities y (-v,v,r) and -BT—:.L (u,~u,r) are known, but £, depends
on values of ya at points not on u + v = 0; a zeroth approximation
pir (0) is therefore chosen for f,; and a method of successive approxi-

mations is employed. Iet £ (0) be f, with the values of its argu-

ments assuming their initial values at corresponding v. This gives new
Bya, (l) ayd, (l)
values | s— for s (u,v,r) and in turn new values (y,) for

¥o{u,7v,r). The relation
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Bym Bym “
S (u,v,r) = S (-v,v,r) + £y du (43)
. -V .

Y ) (1) oy, \(1) [y \(D)
similarly gives (%) . The functions (y,) (1) ’(Bu—g_ s '&-O‘L
and thelr derivatives with respect to r are substituted back into
equations (42) and (43) and the process is repeated. In general,

@'?)(ml) = @%)(0) + I " fa(v) av’ (44)
(%)(vﬂ) =<%>(O) +fu fa,(v) st (es)
v
and
y ) 5 (0 j: : (:%)(Ml) au! (46)

where v=1, 2, . ..
The ya(v) converge to the solution of the transformed problem.

In the application which is now to be considered, the design of a
rotor, AY # O does not always hold, so that the equivalent problem must

also be expressed in terms of equations (25a), (26a); equations (21), and
(7) to (9) with s = u; equation (35a) with z and ¢ for ¢; equa-
tion Esea) with @ for ¢€; equation (35a) with r for €; and equa-
tion (33) with 2z and r for ¢. The use in this application of two
different formulations of the equivalent problem can be avoided by
putting w=® or w= 2 Iinstead of w = r when characteristic sur-
faces are selected. Then, the physical condition which must be satisfied

is w‘% + W?p> az, which may be assumed to hold everywhere.
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‘ROTCR DESIGN

Shock Surface X and Upstream Suction Surface Zz

As an application of the general theory, the flow of air through a
rotor of an axisl compressor is considered. Attention is focused on a
single rotor passage and on the sir flowing into, through, and out of
this passage. As the alr upstream of the blade passage flows into the
blade passage, the blades affect 1t in one of the following general ways.
In the idealized case of thin blades, the upstream velocity can be arbi-
trarily prescribed subJect only to the condition that the components be
uniform in the tangentisl direction, and then if the design point is
chosen so that a blade is tangent to the relative stream surface at its
leading edge (that is, if the blade satisfies l Ve = Wp %;—? + W, g—?
along its leading edge), then the air will flow smoothly into the
passage. On the other hand, if the blades are not thin (nor have cusp-
shaped leading edges) then for no steady upstream velocity that may be
specified can both the pressure and suction surfaces satisfy the condi-
tion, so it would seem that there would have to be a discontimnity in
velocity as the air enters the blade passage. An indication of what
actually happens for a blade with arbitrary leading edge is given by the
following result (cf. Jones, reference 13) for approximately straight
leading edges with approximately constant wedge angles.

(a) If the component of the upstream relative velocity in the plane
normal to the leading edge is supersonic, then in g1l other respects the
upstream velocity may be arbitrarily prescribed and a discontinuity, or
shock, generally will occur.

(b) If the component of the upstream relative velocity in the plene
normal to the leading edge is subsonlic, then this velocity component
makes zero angle with the blade in this plane and the alr passes smoothly
into the passage. In general, the condition on the velocity.in (a)
permits specification of upstream velocities within a considerable range
including steady, uniform upstresm velocities. In (b) the rotor effects
an adjustment of the velocity upstream mgking an a priori prescription
of the velocity upstream unrealistic.

In view of the foregoing considerations, it will be assumed in the
sequel that the upstream velocity components are prescribed according
to (a). If the wedge angle (at each radius) is small enough and if at
design point the suction surface at its leading edge is tangent to the
upstream relastive flow, then there will be “a shock surface Zl coming

off the pressure surface attached to its leading edge @ and going
across the passage and downstream toward the suction surface with leading

edge @ (fig. 2).

2400
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The shock surface X is described by

2 2
A @ ] ot 2|2 ol ot v
a a ] al

.
v W W W W

with a given leading edge. In equation (47), subscript’ notation is used

for derivatives of ®; A 1is a measure of the entropy change across
Z,; and the coefficients are evaluated upstream of Z,. In order to

obtain the differential equation for 21, first note that

1 . . -
Prvr - T Wq) + Pzwg I‘CPZWZ -~ Vi + W,
2 = W
VCPI. +;]-'§-+<Pi1/w$. +Wc2p"""’i

(cf. f£ig. 3). Or in terms of Bq,

cos d;l =

2
(ml‘wr - ch + I‘CPZWZ)
But by means of the conservation principles for shocks and the Prandtl

relation, sin? B; i1s in turn expressible in terms of pressure ratio
according to

= sinz Bl (4:78.)

P2 1 2
o= 718 e’ By - (47b)
- -1 a; . . i :

(see reference 12.)

Finally, the Rankine-Hugoniot relation gives

2 x (p_2>l/Y
P2 Py

D, 2, \(1/7)
ot p2K<‘5i'> -1
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- P2
where K= e AS/CP That is, 5;. may be expressed in terms of entropy

change across the shock,
P2
7. = E(® (47¢)
1

. Y
when sin B, and 22 gre eliminsted among equations (47a), (47b), and
1 1 s P)

P 2
(47c), equation (47) is obtained with ﬂp—J’—‘z‘— = A
(1 - %)
It is assumed that Zl intersects the suction surface along a curve
cy2. Then the blade passage is split into a region upstream of Zl
and a region downstream of X,. Again, for simplicity, let the suction

surface between the leading edge @ and the curve c1p be constructed

t0 coincide with a stream surface of the upstream velocity. Thls part

22 of the suction surface then is described by

1
WoPp + WPy - T Wp =0 (48)

with a given leading edge, and the intersection of Zl and Zé deter-’
mines cjp. Thus, the effect of the rotor is confined; to the region
downstream of Xg.

The entropy is now assumed to be uniform upstresm and downstream of
2y, and its change is constant across Zl. Then if the flow is irrota-

tional upstream of El, it will be irrotational downstream of Zl. As
a result, equation (1) will hold downstream of %,. The downstream

irrotationglity under the given assumptions may be demonstrated as
follows: On either side of X, (reference 9)

- WX(EXV) = - §I + TYS

_ 2400
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By hypothesis, VI = 0 upstream of Zl' Since I does not change in

crossing a shock and entropy is constant downstream by hypothesis,
DS DI

ﬁ = ﬁt—’ re
of I, WXEXV) = 0. If YXV £ 0, then a vortex line must follow a

relative streamline. Since it cannot terminate, it must intersect X4

VI =0 downstream of Z; (use T

ference 9). Thus downstream

and so YXV has a component normal to Zl at Zl. However, this implies

that the vorticity upsiream is nonzero since the normal component will
not change across the shock. Thus, VXV 74 0 leads to a contradiction.

Note that among the consequences of the assumptions A and I are
constant. For simplicity it will be assumed that H = constant and
Vgr = constant upstresm. Moreover, if W, = O upstream of 21’ then

W, = constant and equation (47) is of the form:

c

2 2 2 2 9
(Cgx® + CR) @2 + (Car® + Cg) @2 + (C5r” + Cg) @, + Cqr® + Cg + == 0
’ (49)
since &2 = Kl - &2 All Ci and Ki are constants. When equa-
r .

tion (49) is subJected to a Legendre transformation

F(¢,m) +®(z,r) = 2t + m

dP dP
(=% =
Z___BF r_BF
X TN

the following expression ls obtained:

. \ ‘ . 2
_ (c:lg2 + 05112 + Cst + Cq) (g%) + (Cat? + Cgn? + Cgt + Cg)(%%) +Cg =0

(50)
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so that

F(¢,n) "ffN(g)Tl) dn + L(¢) , (51)

If the velocity on the upstresm side of the shock is
(Vz1> W1, Wp1) and on the downstream side (w,p, Wpp, Wpp), then

from the shock relations,
rCP a2 L - uZ l—uz I
V22 1 xP,w,g - Wy + Icprer o2

\
=2
Clel + TP,V QL - I'chrcPr"rrl]

Vo = -85 1 - w2 +l-p'2—rcpzw +3 2w +rCPrw] &
P2 qu)zzl_wq)l+zq)r 02 B zl 2%l rl

W. rcpra 1 - + 1-p? [—mzrépw + TOP_We + 5w 1,
r2 < lrchzl'wCPl"'rq)r 0,2 A AR L 3"rl

(52)

where aj 1s the upstream sonic velocity and (—’i are functions of
r®., P, related to ¢. This is shown as follows.

If the velocity is decomposed in the direction normal to Zl and

in the two parametric directions on Zl, the components being denoted
by Wy, Wy, Wpg, Tespectively, then on elther side of Zl there is
the relation (fig. 2):

Wy = .fxu W, + A:L2 Ve + Alz3 W,
Vipg, = a2t Wy + 222 W+ 223 Wy, (52a)

Wpg = Ast Wy + INE Vet IS Wy
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where the matrix of coefficients is

9.0 -0 r®, O
L 2 o - G
o2 0301 r% rcPrrch 1

2
-rPr®,03  rP,03 0103

Equation (52a) comes from

WoR

P '
where Wﬂ~—é£ is the projection of Wy 1in the radial direction, and

rqDZ
o)
(Wz -5/ 3

Wy —- is the projection of Wy in the sxial direction,

2 2 2
01=0 - (rpy)

2 _ 2 _ 2
g =0°- (rp)

Wpy/Oy is the projection of Wpy in the radial direction and Wpgp/oz
is the projection of Wgp in the axial direction. Since the determinant
of the matrix of coefficients of equation (52a) is not zero,

11 12 13 )
WI‘=B WN+B WTz-l-B WTR
_ 2l 22 23
Wp =B Wy+ B Wpy+ B W ) (52p)
Wy, . WN+352 WTZ+1335 W )
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where the matrix of coefficients is

TP 1 0
T G

0
N g
G G = Om ©
r
o, L
o Ox

Inasmich as equations (52a) and (52b) hold on both sides of the shock,
the subscripts 2 may be placed on velocity ccmponents in equation (52b)
and the subscripts 1 on velocity_components in equation (52&) .

Furthermore, note 'that IJTZl = WTZZ, .W'IIT.Rl = sz’ ‘EN].WNZ = C% - ZW%:L
Prandtl relation, reference 12) and c2 = u (2hq + W2). Substituting
) * 1 1

equations (52a) in (52b) gives equation (52).

Downstream Suction Surface 23

As mentioned in the section GENERAL THECRY, it is necessary to know the
firgt derivatives of &, which is essentially the velocity in this case,
on a surface X in the rotor passage. This surface is taken to be one
obtained from Z.'L and 23 , the part of the suction surface downstream

of cqp. It will be seen that on such a surface the conditions required
in GENERAL THECRY can be satisfied. Thus, conditions on 23 must now

be prescribed to campletely determine its shape and the velocity on it.

This may be done in many ways. How it is done best, the factors involved,

and the limitations imposed depend on performance and constructibility
requirements of the rotor. If, for the moment, it is assumed that the

shape of 2% 3 and the velocity on it have been completely determined, |

then according to the GENERAL THEORY, the velocity (Wr s Vigps wz) can be

determined at every point in the rotor passage. Thus, in particular,
the presgure surface is obtained as the stream surface through the
leading edge (1) ; the velocity distribution on it, and the velocity dis-
tribution downstream of the rotor are also obtained. On the pressure
surface there are certain constructibility requirements, and on the
velocity distributions, certain performance requirements. An obvious
requirement is that the pressure surface should intersect the suction
surface in a curve cz4 Wwhich may be taken as the trailing edge of the

rotor blade. Another requirement is that the velocity distribution on
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the pressure surface (as well as on the suction surface) not give rise

to shocks and be fairly "smooth" for high efficlency. Further, uniform
work input or free vortex flow downstream of the rotor is desirgble. In
order to meet these and other requirements, there are the choices in the
selection of conditions on 2 %z Pplus the choice of the ass yet undetermined

constant, A. The following procedure is -given as an exampie.

For strength and simplicity of construction, a good specification

would seem to be that 2 z have straight-line elements sloping slightly

Goward the radial direction in 2z = constant planes (fig. 1). Thus
Iz:@= ®(z,r) would be given implicitly by

sin [m(z) - ®]= - 1(z) ;os m(z) | (53)

with the stipulation that m(z) - ® be small and positive. Here 1(z),
the intercept on the line @ = g-, and m(z), the angle with the line
®= 0, are determined in the interval (zq, 2;) in terms of ¢, evalu-

ated on cip by

ten [m(z) - @] = ro (z) . (54)

vhich is obtalned by differentiating equation (53) with respect to
and

sin [m(z) - Wz)]= ~ 1(z) cos u(z) — (55)

r(z)

wHere ci, 1s given by ®(z) 'and r(z). In general,” ¥, and @, are
determined on cq1p by

tHe latter condition being required in order to avoid reflected shock
along Cipe.



26 S NACA TN 2705

Beyond 2o, 1(2z) and m(z) may be chosen to give the suction sur-

face the desired turning. These functions and their first derivatives
are required to be contimious at 2z = z; as well as beyond. Thus

_az_cp = g(z,r) may be prescribed, where g(z,r) is determined from pres-
z

sent experimental or theoretical knowledge of maximum blade turning

before stalling. Differentiating equation (53) twice with respect to =z

and eliminating g_czp and @ yield the relation

v [_ZH(Z): 1'(2z), 1(z), m"(z), m'(z2), m(z)] =0 (56)

Tet

m(z) =A23+Bz2+CZ+D

and from the boundary condition on m(z) and m'(z) at z =2, anda
downstream curve z = zy, the coefficients A,B,C,D are obtained. From
equation (56), 1(z) is then obtained with boundary conditions at 2z = zj.

In order to obtain the velocity components on 25, it is first noted
that on Zz they must satisfy

Wp = TPV, + rcprw (57)
ow, Ow, o,
r B—-+I'CPI.§£—1‘¢PZ?'¢ZWCP'ZUWZ=O (58)

Equation (58) is a necessary and sufficient condition that there exists
a function ®(z,r) on Tz which satisfies the first-order strip con-

ditions. TFor 21 such a condition follows automastically from the
assumption of upstream irrotationslity. .

If the magnitude of the (relative) velocity on Z is then pres-

cribed according to what would seem to bé a desirable blad.e loading, then
eliminating w, and W, among equations (57), (58), and

W =wf_+wé+w§ yields an equation for Wy, Of the form

2400
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) d
Bl(r,z,wq),w) Sz Vo t 82(r,z,wcp,w) 35 Yo t 83(r,zf,wcp,w) =0
(58)

In this equation,

81 (2,7, ¥, W) 2r2CPrConzwz

Sz(z,r,wcp,w) = 2r I.CPZOZWI.

3w, | v 305
ZGCrI’CpZOZWZ Bzﬂ + 2GCrrq)ZGZWr 5‘9 + <rCPZ -6?2-> w% +

83(z,7,wp, W) =
3% 3% 303 ‘ i
e ) g o ) - o e+

(rcpr)Z&mtpz}Wz + 2re, {[(lcpz)z(pz - a—??} Wq,‘ + (I'CPZ)32‘D}Wr -

rp, o () ? W -, § (r9p)? WP

2 _gé
03 =07 -1

The w, and w, appearing in the expressions on the right-hand sides

are eliminated, respectively, by
2.2 2.2 2
Oow, - Zﬂzwcﬁvz + G]_ch - (I'CPI.) Wz ='0 (50)

% - 2r g, + 05 - (19,)2 W = 0 (61)

Alternatively, wcp(or vg) may be prescribed on %z according to
a desirable loading. Then conditions (57) and (58) lead to
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%, ow, Ow, (chz chcPrz)
2 + + - Ww
(pr oz aor ('Pr q)% Z

2

orv p 1 Brv6 wr®-rvy
= "7z 3¢ +<CPI' +q;.rr2> 3z rchg Pz (62)

Equations (59) gnd (62) are solved with given Yo and w,, respectively,
on cjyp. In particular, a free vortex distribution may be prescribed at

Z-—Zd.

Validity of Conditions Required in General Theory

In order to apply the general theory, condition (15) in particular
must be verified. When the coefficients of equation (2) are tgken to be
those of equation (1), then

ar!
A;_; =7 [(r‘wcp - r@'w,) (r'w, - 2'w.) - azz‘rcp]

Ayp = - f"zl[(rlwcp - rcp'wr)z - 2((:_'?')2 * (r(‘,')’)z)]

too = o[ ey - w)® - (2 4 (2]

When the indicated algebra is carried out, the following expression is
obtained:

CaB(ayd
A% 1 anloal, - 220 [zz(wz - &f) - (’T"W)_z]

rl

vhere T = (z', r9', r'). Thus, condition (15) beccmes

(W - &%) - (TWE >0

A}
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whilch reduces to

cos® (T,W) < cos? @ (63)

Since 0< 6< /2, the angle between T and W mst be greater than
0, or the curve parametrized by t through a point on (21,23) mst

be outside the Mach cone with vertex at that point. This condition can
always be satisfied by properly choosing the + curves. If, as in the
formulation of the rotor problem, these curves are chosen to be

z = constant curves, then the application of other conditions such as
sssuming radial leading edges may prevent difficulties.

If conditions (16a) and (16b) are examined, it is seen that Aj;
and A§4 are quadratic forms in ro',r' and z',r', respectively. For

equation (1), they are definite quadratic forms if W?P + wf. > a and

wz + wz > a2 respectively. In the application developed herein, it is
2 r J P 2

assumed. that at least one of these inequalities holds at every point of
(21,23) . Roughly, far enough upstream in the rotor w_> a and far

. P
enough downstream in the rotor w, > a.

Furthermore, it must be shown that the surface (21,23) is nowhere

tangent to a characteristic surface. A sufficient condition for this is
that the Mach cone with vertex at each point of (Z;,2z) cut (Z7,Z3),

because if (21,25) were tangent to a characteristic surface at some

point, it would have to be tangent to the Mach cone at that point. This
condition is verified by showing that at each point the angle B,

between the velocity vector and its component tangent to (Z;,2z) 1s
less than the Mach angle. This is obvious for Zz. For &, note that
this condition is equivalent to

£ gin® B, < 1 (64)
2
a3
and that the relation
P1 2y 2 _: 2 2 )
5—=T(l—u)—zsm Bo - W (64a)
2 ag )

e e e e i  m m ek e e e A = T mmr o T o A 2t % - A -t A o  —heat Yo v A% seiemie ammt ceem am v —me
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D
analogous to equation {47b) with ITl- < 1 becomes equation (64).
2

Finally, in order to apply the general theory, the initial surface
® has to be partially analytic with respect to r in every z interval.
Clearly, (2;,%3) does not satisfy this requirement in intervals con-

taining points of the curve of intersection of Z , end 23. Conse-
quently, % is constructed from (Z,,%;) by replacing (2,,25) between
z7 and zy {cf. fig. 1) by a surface given by a third degree polynomial

in z with coefficients functions of r such that it, as well as its
first derivative with respect to 2z, matches the original surface on

z, and 2z,. The same thing is done for the function &, It is

reasonasble to assume that the preceding conditions are still valid.

Integrands for Equations -(44) and (45)

In solving for the uv derivatives from the linesr equations (39)

it is clear that £, 1is obtained in terms of iy, Oy, Ty, T, %@,

X, oQ,, oy o7 9T,
Ov’ ou’ ov’ ov’ ou’
Byd Byd Byd Byd

in terms of Yy, ST SV and derivatives of Yy, Sa and . with

E(¢), égsﬁl’ agﬁz). These mist be expressed

respect to r <for the integration.

Evaluating the aj"j as the coefficients in equation (1) gives

171 2 2(1 d 2 _ 2) (39?2
S P T

r

| .
Q,, = 0%-2a%-20,0, % +(¢§ - az) (5;) (66)

1 3 i1 i 1(1 be) oY

(67)

N 00%2
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/

On 2, it will be more convenient to have these functions in terms of

velocity components. Since now g—g = 0 they become

- rzﬂlz =|:wcp - Itprwr]z - of lEL + (Icpr)ﬁ } - (65a)

924 = w?z - a2 - (66a)
'-Qléc =WV l: - r(rePr)jl (672)

In order to get the expressions needed for T 7 and T,, these eqguations
are substituted into

i y +V 0y + 00,0, . {hy \/914 + A0,
1= : %)24 ’ 2= 3224
Further ’ the derivatives of equations (65) and (66) with respect to
o1y o1, -
u and v are required; for S and S these, as well as the
derivatives of equation (67), are substituted into

or; b 383914 - Sy ga‘;ﬂ
A
Qf, 3;924 - 9249143; Gy - 205, 5—912 + Zhpfh, B—Qz
24VQ14 + 400,

oT, 3245;1 g 91453924

ou 2%,

0fy 2 Oy - Dy, O% Q- 28, 0 4 2 Qs 204

z{%ﬂj Qi; + 400,
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For the E(e),

E(z) = B(z) +[z<hr¢zz - (92 - #?)

[2 %(% - ‘m') oy - ‘@% - az> %ﬂ‘gfq’w* @’% - az) & Our

E(®) = B(p) + [2®r¢z - (@%

[ 32 0- a) 0 - (02 - ) ]2 ogue (03 - &) Frtor

E(r) = B(r) + [2@1.@2 - (<1>§ - a2> %%

[o 22 0 w) 0, - (62 - o) 32 20 + (08 - ) Z 0

NACA TN 2705

(68)

g‘%] > Gugt
(69)

Ba; O +
(70)

where B(z), B(¢), and B(r) are obtalned from equation (29) in which
a%'j and b, are given by the follcwihg:

11 _
ay = 20,9, - 2aa,

a3 =00, +020

271z

azs=‘1’_r?9£+l(%_m>¢rz

zZ r r r\r

a:{q—;l- = 2¢Z®ZCP— Zaacp
13
g = ®r¢ch+ ‘Dz‘!}cp

® 8
a25=—r?ﬁ’+5(~1.9-w)4’rcp

P r r r

]

22 R w) e
(%m' >¢T“zzaaz

00ve
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) o) 29 )
all = 2¢Z¢ - 2aa a%—z = ;(-1‘9 - (DI')‘DZI- + ; (¢CPI‘ —
20N /9 2aa 2
2 ) ® r 2
e = 00, + 0.0, af? = 3 [<¢Cpr - T) (? - )] T2 T3

r
e 1O 0 (e )
e L 0y (s )
e 3 ]y & (O )

Again, as for the Q previously, on X it will be more convenient
) i]j .

to have the E(¢) in terms of velocity components. Since again %f =0,

they are’

E(z) = 2w, Ea? q)zz +|:% Vgr - (W§ - 2) ggilgal-, ¢’qu+ (W% - az) % o, +

1 ®
2 {wz(bz% - aa, 0y + ;[wcp@zz(p@z T Wy _';.OE q)ch] + qu’zgz + W Bl +

Depz, (DQ %
_'Jé ETCP - <I)cpcp' aazq’cpcp]"' %l}’cp(brzcbrcp + Vp : ] + Wy O - a‘512‘1’1:1'} -
r

-I]f[:(wq) + (m')2 + az] ¢, - %‘W’r [(V{p + ar) q%% + aaz] (68a)



34 NACA TN 2705

E(Q) = 2wy, ga; 0 +[-§- Veghy = (w2 - &%) %ﬂ% D+ (w2 - &?) ga;%pr +

) 2
1l e ¢
2 {qu’zq)q’zz - aagd,, + ¥z =3 ‘I’qu + Vip —:CQ:] + wrgpquzr + qu’qzr‘pzr‘ +

R

1 2 AL @ z]

;iE’cp"cpq:’ % %ch+ ¥r 220 + Wlor| + Vrlprler - %"’rr} )

' ‘ 2W. )

%‘-[(wcp + (nr)2 + az]Qrcp - Tr' [(ch"' ar) __;Ep + aacp] (68b)

B(r) = 2wy, % chr + [%. Vi - (wf. - 2) ?g]% (pcpr"' (wﬁ - &8) _65; B +

1 %I‘ w_ o+ ar
2 {WZ®E¢ZZ - aaTQZZ + —]-:- E{p@m_@ch+ Wy T' (bch - ZWZ i:-r—-— QZ cp]'l'

Oy - 2(Wp + @) 2 ]
1
Wr(p‘,?r + WZQI'I‘QZI‘ + ;Z-ETCP Pr rcP ¢W- aay, QCPCP'*"%.— qup +
i Cpr - 2(ve + ar) o ] 2
= YoplrrOor + Vr = | + Wplrp - 22 P ¢ -
W o (w,. + ar)? 2
%[(wcp+cnr)2 + az:l Qn: - ?rz(wcp+(nr) -;E- 3—%——+ 284, _aT]

(68c)

Finally, the derivatives of equations (68) to (70) with respect to v
and of equation (68) with respect to u are required.

In all these expressions, a and its first derivatives are obtained
from

; - : -1 1
8 =I.2_1 [21 + (xw)? - wz] = (r-11+ 5= (Za) D - 92 - ;—z-tqu,-.cpg)

gle}i7ZA
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CONCLUDING REMARKS

A method has been presented by means of which a detailed numerical
description of many types of fluid flows 1in turbomachines can be obtained.
The method 1s gpplied to one particular type described to the point
where a solution is obtained merely by substitution of numerical values
in the given equations. Once the algebra needed to obtain such equations
has been done for any problem, the work involved in getting numerical
results is not expected to be prohibitive, particularly in view of the
fact that it lergely consists of iterated integration, which type of
calculation is well suited to rapid execution on high-speed computing
machines.

Lewis Flight Propulsion Laborstory
National Advisory Committee for Aeronautics
Cleveland, Ohio, February 12, 1952
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APPENDIX - SYMBOLS

The following symbols are used in this report:

A,B,C,D constants in equation for m(z)

v)]
Aigo Biys
A% A’;_ fourth-order minors obtained from the first four rows of
37 "1y tion (10)
a v equation
Ayys By
Ai'ii coefficients in velocity transformation
a sound velocity
121 2 _ .2 1
allal2g13 q’z -a ;(%‘D‘mr>°z oo q’z
R
21,22 23 |- 0 B, = |(Z2. a2 =(Z2_ur/®
a’—a""a %1‘ ar [¥z rz T wr a \T wr/*r
o 2

a3la3?a3 o. 0, %‘<¥ -mr)‘br &7 - a2

sid coefficients in velocity transformation
= 12 1 22 2 3
B(e) = a];:ld)ZZ + zae(pch'*' Zaezlbzr + a€®W+ Zag’d’cpr + ae®H + b,
®.\2
b -1 l:(:ﬂ_’) + a{l d.
T r
Cy constants i =1, . . . , 9
12 inte?:'section of Zl and 22
Czy trailing edge
1
2

Ca o [ZI + (mr)z]

NNHR2
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L(¢)
1(z)

m(z)
N(g,m)

coefficients in equation (39)

L4

- 9‘3321‘ -Zalﬂa%- Q- Es%r - 2223 aa?Qcpe+a33 0 @re +B(¢g)
€ =2,p T
Legendre transformation of ®(z,r) in equation (49)

lntegrands in solution of equivalent problem
coefficients in equation (39)
given turning on Z3

total enthalpy
static enthalpy
h + -]2—' Wl - %a)zr2
48
e °p
constants, 1 =1, 2
arbitrary function in equation (51)
intercept on = /2 of generator of Z,
Mach number .

angle with ®@= 0 of generator of 23

integrand in equation (51)

static pressure

coordinate in cylindrical system

entropy

parameter on a surface

magnitude of tangent vector | -

parameter on a curve
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transformed coordinates
ch + or N
magnitude of relative velocity

parameter on a surface

components of relative velocity

coordinate in cylindrical system
angle between velocity vector and normel to I
complement of o -

submatrices of Dia,

ratio of specific heats

coefficients in equation (59)

an index denoting z, @, or r

independent variables of Iegendre transi‘oma:tion
Mach angle

s function of entropy change across shock

-1
T+L

a root of equation (47c)

roots of quadratic equation, 1 =1, 2 ‘

initial surface

shock surface
suction surface shead of shock surface

suction surface behind shock surface
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= (rp)? 41+ (rg)?
of = of- (x,)? g=0f -1  of =02 - (np,)?
_2 o2 2
0 = E:IEE - (qu)
2

Eg = lfuz -1
o = L. (rep.) 2

1-p2
Ty roots of quadratic equation
¢ velocity potential
) coordinate in cylindrical system
¥ function in equation (56)
w angular velocity of wheel
Q, ) [azz - 2a%%_+ asscpﬂ
924 all Zalszr + a332r
%914 al? - ol%p, - 2?0z, + %%,z
Subscripts:
d downstream
i) omitted columns in expansion of equation (10)
N velocity componént normal to shock
TZ component tangent to shock in 2z = constant surface
TR’ component tangent to shock in r =

constant surface
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1 ahead of shock surface

2 behind shock surface

Superscripts:

ij distinguish coefficients in velocity transformations (52a)
and (52b)

(v) the vth approximation

! derivative with respect to t

REFERENCES

l. Tyler, R. A.: The Available Theoretical Analysis of Two-Dimensional
Cascade Flow. Aero. Note AN-4, Div. Mech. Eng., Nat. Res. Council
Canade, 1949. Ottawe, May 1948.

2. Marble, Frank E.: The Flow of a Perfect Fluld through an Axial
Turbomachine with Prescribed Blade ILoading. dJour. Aero. Sci.,
vol. 15, no. 8, Aug. 1948, pp. 473-485.

3. Goldstein, Arthur W.: Axisymmetric Supersonic Flow in Rotating
Tmpellers. TN 2388, 1951.

4. Wu, Chung-Hua, and Brown, Curtis A.: A Method of Designing Turbo-
machine Blades with a Desirable Thickness Distribution for Com-~
pressible Flow Along an Arbitrary Stream Filement of Revolution.
NACA TN 2455, 1951.

5. Wu, Chung-Hua, and Brown, Curtis A. : Method of Analysis for Compres-
sible Flow Past Arbitrary Turbomachine Blades on Generasl Surface of
Revolution. TN 2407, 1951.

6. Steanitz, J. D.: BSome Theoretical Aerodynemic Investigetions of
Jmpellers in Radial- and Mixed-Flow Centrifugal Compressors.
A.5.M.E. Preprint No. 51-F-13, 1951.

7. Relssner, Hans: Blade Systems of Circuler Arrangement in Steady,
Compressible Flow. Courant Anniversary Volume, Interscience Pub.,
Inec., 1948, pp. 307-327.

8. Meyer, Richard: Beitrag zur Theorie feststellllender Schaufelgitter.
Nr. 11, Mitteilungen aus Inst. f. Aero. (Zurich), 1946.

0072



6T

NACA TN 2705

9. Wu, Chung-Hua: A General Theory of Three-Dimensional Flow in Sub-

10.

lz.

13.

sonic and Supersonic Turbomachines of Axial-, Radial-~, and Mixed-
Flow Types. NACA TN 2604, 1952.

Titt, Edwin W.: An Initisl Value Problem for All Hyperbolic Partial
Differential Equations of Second Order with Three Independent
Veriables. Anngls of Methematics, vol. 40, no. 4, Oct. 1939,
pp. 862-891.

. Courant, R., und Hilbert, D.: Methoden der Mathg—:?ma.tischen Physik.

II. Julius Springer (Berlinm), 1937.

Courant, R., and Friedrichs, K. 0.: Supersonic Flow and Shock
Waves. Interscience Pub., Inc., 1948.

Jones, Robert T.: Wing Plan Forms for Hlgh-Speed Flight. NACA Rep.
863, 1947. (Formerly NACA TN 1033.)

41



42

NACA TN 2705

Figure 1. - Paths of integration.
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Figure 2. - Bhock and suction surfaces.
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Figure 3. - Velocities at a point of shock surface.
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