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TECHNICAL NOTE 2568

EFFECT OF SLIP ON FLOW NEAR A STAGNATION POINT
AND IN A BOUNDARY LAYER

By T. C. Lin and S. A. Schaaf
SUMMARY

Theoretical analyses are presented of the effect of slip on the
flow of a rarefied gas near a stagnation point and in a boundary layer
on a flat plate. The results indicate that the stagnation pressure is
increased because of the effect of slip but that there is a negligible
effect on the flat-plate skin-friction coefficient in the range of
application of the analysis.

INTRODUCTION

In the rarefied-gas—dynamics regime it is known that the ordinary
condition of no slip at a wall is altered and should be replaced by a
relation between the wall shear and a slip velocity, usually taken to
be given in the form indicated in equation (4) or equation (13) (refer-
ence 1). It is also believed that the Navier-Stokes equations of gas
dynamics are inadequate for accurate description of the flow field.

At least three different systems of supposedly more adequate equations
have been proposed in references 2 to 6 but their validity remains open
to question. It is the purpose of this note to determine theoretically
the rarefaction effect of slip in the boundary condition, using the
Navier-Stokes differential equations. As will be indicated below, it
is probable that the rarefaction effect associated with the boundary
condition produces terms of the same order as the still undetermined
rarefaction effect associated with the differential equations. Hence,
the present analysis probably furnishes only a partial improvement over
the normal density treatment. The relatively simple boundary-layer case
is considered first and then the more complicated stagnation-point flow.

This work was conducted at the University of California under the
sponsorship and with the financial assistance of the National Advisory
Committee for Aeronautics and was under the supervision of Prof. R. G.
Folsom, E. D. Kane, and S. A. Schaaf of the Department of Engineering.
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SYMBOLS

radius of curvature of nose of impact tube or radius of sphere

= 1 4 2
Cu Pu/g vy

Cu, = Puo/% Yy

2

stagnation-point function, defined in equations (16) and (17)
stagnation-point function for no-slip case

slip correction to stagnation~point function, equation (2))
zonstant in equation (18)

molecular mean free path

Mach number

gas pressure

mean hydrostatic stagnation pressure
normal pressure in z-direction

normal stagnation pressure

viscous correction to impact pressure, given by equation (53)

viscous correction to impact pressure for case of no slip

distance from z-axis
Reynolds number

Reynolds number based on x (uox/v)

bangential velocity component, that is, velocity component in
x—direction; also radial velocity component, that is,
velocity component in r—-direction
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u free-stream velocity past flat plate

v normal velocity component, that is, velocity component in
y-direction; also axial velocity component, that is, velocity
component in z-direction

Vi undisturbed free-stream velocity of gas

X distance tangential to flat plate

y distance normal to flat plate

Z distance normal to wall

a coefficient of sliding friction

B velocity expansion parameter, given by equations (13)
Yy ratio of specific heats of gas

&% boundary-layer displacement thickness

8% no-slip boundary-layer displacement thickness

7 dimensionless independent variable, defined by equation (15)
1 dimensionless parameter, defined by equation (20)

K mechanical~viscosity coefficient

v kinematic-viscosity coefficient (u/p)

3 coefficient of slip, defined by equations (5) and (12)
o) gas density

o Maxwell's reflection coefficient

\ stream function, equations (2)

Wo Blasius stream function

slip correction to Blasius stream function

&
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Subscripts:

B condition at edge of boundary layer
1 free-stream conditions

o no-slip conditions

BOUNDARY~-LAYER FLOW

The stream function for incompressible boundary layer on a flat
plate is governed by the Blasius differential equation (reference 7)

oy %y sy ddy _ .y 1)
ayaxay’axayz‘vay3

where

o=
oy
> (2)

(3)
u=u,, y=
and for the rarefied-gas-dynamics regime (reference 1)
)
Exk=u, -0 ()

§=O.9982;°L ()
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where o 1is the Maxwell reflection coefficient and L, the molecular
In terms

mean free path. For the case of diffuse reflection £ = L.
of the stream function

T
¥y=0, y=0

>
'8—2“{"':%, y~0 a‘l!=u’y'=oa
52 o7 y o

(6)

where equation (6) reduces to the ordinary density case if L = 0. Write

Y=, t Ly

Substitute into equations (1) and (6) and equate coefficients of L

to O and obtain

o Py, B N DN,

9y ox dy ox ay2  oy3

Mo

Ho
Wo =0 and 5;— =0 for y =0, and 5;— =u, for y =

P A A A i T 2
3x Oy Oy Oy OX 0y OX g2 g2 OX -

~

> (1)

-/

} (8)

Clearly the system of equation (7) is exactly the ordinary Blasius case
and the solution is well-known. The solution of equation (8) may be

directly verified to be given by

4

Y5

(9)
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so that ¥ is immediately determined, to order L, from the known
Blasius solution. The displacement thickness is given by

x - ” 1l 3
A

I e la%) LL[“¥¢
= __—_dy'_._. - 1Q
/;( Yo 3y U Jo _ 2 v

This may be written in the form

EXf - 1732 (1 - 0.867 21 ) (11)

\Fex \Rex

There is no change in the drag coefficient to the order of terms
retained. This somewhat surprising result arises from the special
nature of the assumptions made and it should not be inferred that there
is no decrease in skin friction due to slip effects in a physical
rarefied-gas flow. The mathematical expression indicated in equation (9)
is a solution to the incompressible boundary-layer equation with a slip~

flow boundary condition. Terms of the order 1/ Rey as compared with

terms retained have been systematically neglected in reducing the com-
plete Navier-Stokes equations to the boundary-layer equation. The
assumption of incompressibility also limits the applicable range of
Mach numbers. Thus the assumptions implicit in the use of equation (1)
restrict the Mach and Reynolds numbers to roughly

M < 0.5
Re, > 104

The effect of slip on the boundary-layer displacement thickness, for
example, the term O.867YVVRBX in equation (11), is thus less than

1/2 percent in the range of applicability. A more important fact, how-
ever, is that this term is only one of several different terms of the
form

Consta.nt/\lRex or Constant M/\’Rex
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which would presumably be obtained in a complete analysis, that is, a
solution of the complete Navier-Stokes equations for compressible flow.
The present result with respect to skin friction thus seems to indicate
only that the slip boundary condition, by itself, is initially of less
importance than low Reynolds number modifications of boundary-layer
theory in determining skin friction in a slightly rarefied gas. In this
connection it should be noted that the somewhat cruder analyses of
references 8 and 9 as well as the experimental data obtained at Berkeley
and presented in references 10 and 11 (see fig. 1) all indicate a rela-
tive decrease in skin friction due to slip effects at sufficiently low
Reynolds numbers but only after the skin friction has first increased
above the value it has at high Reynolds numbers. This is presumably
associated with the breakdown of boundary-layer theory, that is, to the
increasing importance of additional terms of the form Constant/ﬂﬁE;.

A further assumption implicit in the use of equation (1) is that
rarefied-gas-dynamic terms, for example, Burnett terms, in the basic
differential equations such as those discussed in references 2 to 6 may
be neglected. Inspection of these equations suggests that additional

terms of the form Constant Vﬁg would also arise in this connection.
There are also additional terms in the boundary condition (reference 1)
but these do not affect the present results to the order of terms
retained. In the stagnation-point-flow analysis presented in the next
section, such effects have been neglected; the complete Navier-Stokes
equations have been solved to the order of terms retained, however.

STAGNATTION-POINT FLOW

It is the purpose of this section to provide a theoretical basis
for the interpretation of impact-tube measurements taken in a high- .
velocity gas stream of sufficiently low density so that the effect of
velocity slip on the reading of the instrument can no longer be ignored.

Considered first is the problem of finding the flow in the vicinity
of a forward stagnation point for a viscous fluid having the plane 2z = 0
ag a fixed wall. At the surface of the wall are prescribed the boundary
conditions that the normal velocity is zero and that the tangential
velocity - that is, the velocity of slip - is proportional to the
velocity gradient in the normal direction. It is known from the kinetic
theory of gases that the factor of proportionality ¢ is essentially
(reference 1): )

£ = 0.998( ;O)L (12)
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where o 1is the Maxwell reflection coefficient and L, +the molecular
mean free path. At large distances from the wall the motion is essen-
tially the same as that given by the potential flow. It follows thatbt
the boundary conditions for the problem are:

For 2z = 0O:

u=t832 and v=0
7]

[l
3
VvV

For =

(13)

u=Pfr and v = -2p(z - &%)

o/

On assuming that the flow is steady, incompressible, and free from
external forces, the forward stagnation-point-flow problem can be
reduced to that of solving the third-order nonlinear ordinary differ—
ential equation (reference 12),

frev s 2881t - (£1)2 + 1 =0 (k)

satisfying certain conditions on the boundary with

n = (/)2 (15)
u = Brf'(n) (16)
v = -2(gv) 2 () (17)
and
p=K--:2Lp(Bzr2+v2)+u§-§ (18)

The primes denote differentiation with respect to m. For the present
problem, upon using equations (15) to (17), the boundary conditions
(equations (13)) become

£(0) =0
£1(0) = af''(0)
1
» C | (19)
(o) =1 J
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where

A= §(p/V)1/2 = 0.998<?{}5§L(B/v)1/2 (20)

using equation (12).

Now if £, denotes the function f for the nonslip case, one has
(reference 12)

LM + 28 £ 10 - (fo')2 +1=0 (21)
and .
£ (0) =0
fo1(0) =0 ? (22)
fo'(“’) =1

From Homann's solution to f, (reference 13)

~

fo(») = m - 0.5576

£,'1(0) = 1.317 , (23)
£o''(w) =0
N
For )\ small, one may write
£ ='f0 + My @)

accurate to the first power of A. Then from equations (1k), (19), (21),
(22), and (24)

flrn + gfofln - 2f0|f1' + Zfo”fl =0 (25)
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. and
£7(0) =0
£11(0) = £5'1(0) > (26)
fl'(oo) =0
J

also accurate to the first power of A. Differentiating equation (21)
with respect to 1 once, one obtains

£ 1+ 2ep 1t = 0 (27)

From equations (22) and (23) it is seen that f_, satisfies the conditions

£,'(0) =0
(28)
fo1'(x) =0

If £, is replaced by £ !, equations (25) and (26) are reduced identi-
cally to equations (27) and (28), respectively. Therefore

£ =1, (29)
is the solution to equations (25) and (26). Hence from equation (2L)
£f=1=F,+ A\, (30)

Thus, besides the parameter A, the function f of the slip case is
expressed in terms of f, and its derivative f,' of the nonslip case.

Making use of equation (30) and Homann's solution to f, (reference 13),
one obtains in figure 2 the curves of f, f', and f'' for A = O.l.
Referring to equation (50), A = 2M/M§E (see fig. 3). The corresponding
curves for the nonslip case and the potential case are also shown in
figure 2 for comparison.

At the stagnation point r =2 =v =0 and p = pgy. Substituting
these into equation (18)
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_ av
Pst = K * u(az>z=o (31)

where Pgt 1s the mean hydrostatic pressure, or the mean of the normal
pressures across any three orthogonal planes, at the stagnation point.
For impact-tube measurements the normal stress across the wall Pzy at

the stagnation point is of special interest. For incompressible flow,
in general (reference 1l),

ov
= - + 2 — 2
Pgg = “P * 2L — (32)

At the stagnation point

Pgz = (pzz)st

O

From equations (32) and (31)

(pzz)st = K + U(%%)z=o (33)

From equations (15) and (17)

(89)eo = 282" @ (31)
From equation (30), upon using equations (23) and (22)
£1(0) = 1.317A (35)

Substituting equation (3L) into equation (33), and using equation (35),

(Paz)st = —(K + 1.317 x 2up)) (36)

where the negative sign indicates compressive stress.

The above equation is a solution to the Navier-Stokes equations with

slip. ©So far no boundary-layer assumption has been made.
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JIMPACT TUBE

Solution (36) will be applied to the case of an impact tube with a
half-spherical nose, tested at subsonic speed at low pressure conditions,
with its longitudinal axis placed parallel to the direction of the flow,
Let the flow along the central streamline leading to the stagnation point
decelerate isentropically to the outside seam of the boundary layer,
which is presumed to form in the neighborhood of the stagnation point.

It .is assumed that in the boundary layer in the neighborhood of the
stagnation point the flow can be treated as viscous and incompressible
and that outside the boundary layer the effects of viscosity can be
neglected.

At the point of the boundary layer where the stagnation streamline

enters, that is, z =12z, r =0 and (QI)
Z=ZB

o3
that from equation (18)

-2B (reference 15) so

K = (pB + % pBVBz) + 2uf (37)

where pg and Vg are the pressure and velocity at the point zg. The

term in parentheses represents the impact pressure PR recorded by an
impact tube placed in a gas stream if the effect of compressibility in

the boundary layer is zero. Since this was previously assumed for a
subsonic fléw, the impact pressure is given by the conventional isentropic-
flow equation (reference 16) i

Il

Pp pB+%pBVB2

]

-1 y-1
pl(l A 5 H12> (38)

Substituting these into equation (36)

X
- -1
(Pzz)st = = pl(l * 72—1 M12)7 + 2uB(1 + 1.3170) (39)
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The constant P must be determined from the velocity distribution
at the seam of the boundary layer which surrounds the body at the stag-
nation point. Since the flow outside the boundary layer is assumed
inviscous and compressible, P can be deduced from the corresponding
ideal subsonic compressible pattern. For a half-spherical impact tube
of radius b, B has the form (reference 17)

V
- Ll 3y
B 2b<8 R | (L0)
where 7V, is the undisturbed free-stream velocity.

1

Because of the presence of a boundary layer of average displacement
thickness 6%, the effective radius of curvature of the nose of the
impact tube becomes b + §*. For viscous incompressible flow passing a
sphere, the .average displacement thickness §&,* of the boundary layer
of the nonslip case can be expressed as (reference 13)

6 * T] »* .
R (i)
\’i Re
2
where
T]o* =mM- fo(w) ()42)
pV;b (43)
Re = ———
®
Similarly
6* n*
-F =
43
5 Re
with
n* =7 - £()

From equation (30), upon using equations (23) and (22),

f(e) =mn - 0.5576 + \ )




so that
nN* = 0.,5576 —

and
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(0.455 - 0.816)\)

6%
b \Re

Therefore equation (L4O) becomes

31

i1 (%? EN Mi?)

Bz%(l -

Substituting this into equation (39)

4 29

y -1

+ 0.455 - 0.816x>

%% Ml2)(l + 1.317)

(pzz)st - pl<l * 2 b

1

Consider next the expression for A.

y—1 uv (“ -
PHF)Y , b \B

I

, 0.455 - o.816f>
|

(L5)

(L6)

(L7)

(L8)

Substituting equation (48)

into equation (20) and for the present, since A is small, neglecting

the slip correction to the effective radius

1 - 0.2521,2 1/2

of the impact tube,

L\fe

¢

A= 1.3&3(2 = c)

Upon using the relation (reference 18)

1+ 0.455[\Re/ P

L/b = 1.255{y I1/Re

with ¥ = 1.405 and o =1,

equation (L49) becomes

(L9)

(50)
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(51)

5 \1/2

1l- O.252H1 My
[Re

The variation of A with the rarefaction parameter Ml/Re for various

values of the Mach number 1Y} is shown in figure 3. Substituting
equation (51) into equation (48)

A = 1.997
? (1 + 0.1455 /\Re

1
-1 27_
(Pzz)st = 'Plcl * 2;5—— My ) -

1 - 0:252m.2 \1/2 ]
(—2—9 3 Mlz)[l + 2.63( i L
LSRRV 1+ 0.455/\Re/ _|\Re (52)

b 1/2
L4 0S5 _ 1 4 1 - o.252r112 / 1y
\Re 1 + 0.455 /{Re Re

If Pu denotes the viscous correction to the impact-tube pressure,
from equation (48)

_um (3—9- 3L 2) (1 + 1317\

8 3 1
w5 T, 0ss - 0.8k (53)
VRe
For the nonslip case A = O, Pu = Puo. From equation (53)
o -0
p, -1 3L (s)

bo =5 T, 0.558
e

so that, upon using equation (51)
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— 0082, 2)1/2
PlJ- = (1 + 0’1'55/\’%) V-R_e (55)
P _ 2\1/2
T e .

+

0155 /{fRe P3/2 Re

(

For Mi/Re small and M; small the above expression is larger than

unity. It follows that the effect of slip increases the viscous cor-
rection to the impact-tube measurements. The curves of Pl_,,/Pp'0

against Mj/Re, 1/Re, and Re for various values of Iy are given
in figures L4, 5, and 6, respectively.

Define
P
= ]
CU 2
z PN
N (56)
Py
C = 0
l'I'O 1 v 2
2 ./

Upon using equations (56), (53), (52), and (51), the variations of Cy
and Cuo with Re and 1/Re for M = 0.4 and 0.8 are shown in fig-

ures 7 and 8, respectively.
SLIP FLOW PAST A SPHERE

It is interesting to note that at the stagnation point the normal
pressure across the wall increases with tne coefficient of slip,
although at the same point the mean hydrostatic pressure, that is, the
mean of the normal pressures across any three orthogonal planes,
decreases. This is due to the fact that for the slip case the normal
velocity gradient (dv/dz) at the stagnation point is no longer zero.
It follows that the effect of slip increases the viscous correction
(reference 15) to the impact-tube measurements. A similar result is
obtained for the case of the slow translation of a sphere through a
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viscous fluid with slip from the well-known solution given by Basset
(reference 19 or reference 1li, pp. 603-60L). In his case the inertia
terms are neglected.

For the case of the slow translation of a sphere through a viscous
fluid with slip the impact pressure Py at the forward stagnation point

has been obtained by Basset (reference 19), who neglected the inertia
terms which are small in comparison with the viscous and pressure terms.
If b is the radius of the sphere, Vq, the velocity, a, the coef-

ficient of sliding fribtion, and pl’ the hydrostatic pressure, then

6
1+ 22
- 38 - " ab
1 pl+2b1+3_u; (57)
' ab

On using the relation (reference 18)

& - 1259 (58)

equation (57) becomes, for ¥ = 1.405 and o =1,

The viscous correction to the impact pressure is

3 uTy 1+ B.88M /Re

T Rl s L.LLM, [Re (60)
For the nonslip case & =, from equation (57)
38
Puo 2 T (61)
Therefore
P 1 + 8.88M

Puo 1+ h.hllﬂl/Re
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As a comparison the curve of PH/PHO for the Basset sphere against
Ml/Re is shown in figure l.

CONCLUSIONS

A method has been developed for determining some of the rarefaction
effects in slip-regime flow for the flat plate, a wall, and a hemi-
spherical impact tube, using a reduced form of the Navier—-Stokes equa-
tions and a slip boundary condition. With this method it was found

that:

1. The effect of slip on the viscous flow about an impact tube is
to increase the viscous correction to the ideal impact pressure.

2. The effect of slip on the flat plate is to reduce the boundary-
layer displacement thickness. There is no effect on the drag coef-
ficient to the order of terms retained in the analysis.

University of California
Berkeley, Calif., October 20, 1950
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Figure 6.- Effect of slip on viscous corrsction Ph/PMo against Re at

various Mach mumbsrs,
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Figure 7.- Viscous correcticn with and without slip,

agalngt BRe.
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Flgure 8B.- Viscous correction with and without slip, Cu and Guo,

against 1/Re.
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