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SUMMARY

An accurate method of determining secondary stresses in thin-
walled, uniform beams of closed cross section is herein presented.
The cross sections are assumed to be preserved by closely spaced rigid
diaphragms. 1In section I the integrodifferential equation governing
axial displacements is formulated and solved for a beam without longi-
tudinal stiffeners. In section IT the corresponding summation-
difference equation is developed and solved for a beam with stiffeners
(flanges and stringers). The cross section, loading distribution, and
end conditions are assumed to be arbitrary.

By introducing generalized difference equations the mathematical
analysis for the stiffened beam may be performed in a manner exactly
analogous to the process used for the unstiffened beam. A separation
of variebles in the homogeneous equation leads to the natural stress or
displacement modes for a cross section. The solution of the nonhomo-
geneous equation is then expressed as an expansion in terms of the
natural stress modes. Particular attention is given to cross sections
with single symmetry and double symmetry. :

HISTORICAL NOTE

Reference will be made only to papérs which give exact solutions
for beams having rigid bulkheads with monocoque (unstiffened) or semi-
monocogque (stiffened) sections. In most cases the solutions for semi-
monocoque sections are those obtained by replacing the true section by
an idealized section in which the normal stresses are carried on a
finite number of stiffeners and uniformly distributed shear flows are
carried on the connecting webs or wall elements.

If an idealized cross section has only three stiffeners, or flanges,
the distribution of axial stress must be planar and there are no sec-
ondary stresses. The doubly symmetrical rectangular idealized section
with four flanges was introduced and analyzed by Ebner in 1933
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(reference 1). This cross section has one secondary stress mode which
occurs under torsional loading. Ebner considered such modifications of
the problem as the effects of web buckling, shear deformation of the
ribs, and finite rid spacing. The solution for the four-flange doubly
symmetrical sectlon wasg also determined independently by Grzedzielski
in 1934 (reference 2).1 This author recognized the importance of
idealizing the cross section for stress-analysis purposes. A compari-
son of the solution for the four-flange section in torsion with experi-
mental tests on a box beam was given by Kuhn in 1935 (reference L).

A four-flange section with curved webs of arbitrary shape was
analyzed by Kirste in 1937 (reference 5). This author gave the loca-
tion of the principal shear axes for any arbitrary cross section. He
also gave the formulas for the associated shearing section properties.
The torsional section constant was called the central moment of inertia,
while the areas resistant to horizontal and vertical shear were called
the reduced areas. This author also located the zero-warping axis for
a four-flange beam. He showed that warping displacements in a four-
flange beam are due entirely to the torque about the zero-warping axis.

The first exact solution for a secondary stress mode in bending
was given by Kuhn in 1937 (reference 6). The cross sectlon considered
by him was & rectangular, five-flange, open section in which the bot-
tom wall was missing. The section was symmetrical about a vertical axis
and had a single central stringer on the top wall. Experimental test
results were compared with the theoretical solution.

A general solution for stiffened beams of arbitrary cross section
was given by Ebner and KOller in 1937 (reference 7). The beam was
assumed to have rigid or elastic stiffening rings at finite spacing and
to carry bending or torsional loads. The secondary self-equilibrating
stress distributions were chosen in an arbitrary manner. Energy prin-
ciples were used to determine the spanwise variation of the secondary
stress distributions. The underlying viewpoint of the analysis con-
sisted of regarding the structure as a space framework. The calcula-
tion effort required by the method is so extensive as to make the method
impracticable except for a beam having a small number of stiffeners and
stiffening rings. The specific cross sections considered in detail by
Ebner and Kdller were elliptical sections with four stiffeners and with
six stiffeners having double gymmetry. They also considered a circular
section with twelve stiffeners and double symmetry. These authors did
not introduce the principal shear axes or the associated section

1The formulasg of reference 2 are derived in a different manner in
reference 3 where a corrected formule is given for the rate of twist at
the root of a cantilever beam.
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properties. A comparison was given between theory and experiment for
a beam of circular cross section.

Following the method of analysis that had been given by Kirste, a
more comprehensive treatment of the four-flange beam of arbitrary cross
section was given by Drymeel in 1941 (reference 8). This author gave
many new formulas and equations for the three-flange section and the
four-flange section. He gave a careful, detailed study of the geometric
properties of the ghear-carrying area of idealized gtiffened sections.
He showed that the "reduced areas" are a maximum and a minimum with
respect to the principal shear axes. He also showed that the "central
moment of inertia" is & minimum when computed with respect to the prin-
cipal shear-axes. Formulas applicable to erbitrary cross sections were
given for lateral deflections due to shearing strains in thin-walled
beams. Strangely enough, thegse formulas, even today, are not well-
known even though the deflections due to shearing strains are of appre-
clable importance 1n seroelastic and dynamic analysis of airplanes.

The first exact analysis for a beam of monocoque, or unstiffened,
cross section was given by Von Karmin and Chien in 1946 (reference 9).
Their solution is limited in its applicebility to sections having double
symmetry. They considered only the torsion case and assumed the beam
to have closely spaced rigid diaphragms. The integrodifferential equa-
tions governing the axial displacements were formulated and solved for
a semi-infinite cantilever beam acted upon by a torque at the tip.
Stress dlstributions were. obtalned for a rectangular section and a
rectanglelike section with rounded corners.

A very generel and comprehensive exact analysis of beams with
rigid diaphragms was given by Hadji-Argyris and Dunne in 1947 (refer-
ence 10). The end conditions, loading conditions, and cross section
were considered to be arbitrary. Conical as well as uniform beams were
analyzed with muilticell or single-cell cross sections. Both open and
closed cross sections were considered with and without stiffeners. It
is imposslble to summarize the contents of the paper here because of
its great length. The method of analysis used by these authors 1is
entirely different from that employed by Von Kdrmén and Chien. The
differences between the methods are discussed in the text. These
authors found a zero-warping axis to be associated with each secondary
stress mode corresponding to the axis found by Kirste for the four-
flange section. They illustrated clearly the large difference which
may exlst in the positions of the zero-warping axis and the shear center
for a four-flange beam. A detailled analysis of a four-flange tapered
wing with cut-outs was presented.

Specific formulas were given by Kempner in 1947 (reference 11) for
a slx-flange doubly symmetrical hexagonal section. A five-flange open
gsection, obtained by removing the bottom webs and bottom stringer, wes
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also considered. The beam was subJected to vertical bending loads only.
Theoretical solutions were compared with experimental results which had
been previously published by Peterson in 1945 (reference 12).

A rather simple method of analysis was given by Levy in 1947
(reference 13) for beams with arbitrary stiffened cross sections but
limited to beams with finite bulkhead spacing. The loadlng was assumed
to consist of concentrated loads applied at the intersections of the
ribs and spars. The solution involved the use of equilibrium conditions
and an energy principle. The method is applicable to beams with cut-
outs and sweepback. However, a comparigson of theoretical solutions by
Levy's method with experimental results, for a swept beam, was given by
Bisplinghoff in 1949 (reference 1k4) and did not show satisfactory agree-
ment. Deflections rather than stresses were compared. In the theory of
Levy and the beams tested by Bisplinghoff the ribs of the swept beam
were parallel to the plane of symmetry of the airplane.

The solution for a swept beam with closely spaced diaphragms was
given by Wittrick in 1948 (reference 15). The method of analysis used
was an extension of the theory of Hadji-Argyris and Dunne (reference 10)
to include the effect of sweepback. The general integrodifferential
equation for the stress function for a beam of arbitrary cross section
was formulated. Specific solutions were given for uniform and
exponentially varying section torque and bending moment.

An exact solution for a single-cell monocoque (unstiffened) beam
with closely spaced diaphragms wes given by Adadurov in 1948 (refer-
ence 16). The cross section and loading were assumed to be arbitrary.

" This author introduced a stress function having its first derivative
proportional to the axial displacements and second derivatives propor-
tional to the stresses. The method is actually a minor modification of
the method of Von Kdrman and Chien (reference 9) but is extended to
arbitrary cross sections and loading. The author's method of solution
is unwieldy because he failed to introduce the principal shear axes. No
specific solutlions were obtained.

Two specific solutions for swept beams were given by Thompson and
Wittrick in 1949 (reference 17) using the theory that had been pre-
viously published by Wittrick (referencze 15). The first solution was
given for a singly symmetrical trapezoidal sectlon with four flanges
and closely spaced diaphragms located in a skewed position with respect
to the axis of the beam. The walls were assumed to carry both normsl
and shearing stresses. The loading congisted of a concentrated moment
and a concentrated torque at either end (the St. Venant problem). In
the second example the cross section was a doubly symmetrical rectangle
and the loading was assumed to produce a section torque varying
exponentially.
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A general anslysls of stiffened beams with arbitrary cross sec-
tlons was given by Duberg in a thesis submitted to the University of
Illinois (Feb. 1948). An abstract of this thesis was published sub-
sequently by Duberg in 1949 (reference 18). The problem treated by
this author may be regarded as an extension of the four-flange problem
treated by Kirste and Drymael to sections with more than four stiff-
eners. The method of solution used by Kirste and Drymasel cannot be
extended directly to more than four flanges and new methods of solution
are required. Duberg's method of solution resembles that of Von Kdrmdn
and Chien 1n that the axial displacements were chosen as the unknown to
be determined. Principal shear axes play an essential role in this
method of analysis and convenient formulas were glven for thelr calcu-
lation. The formulas correspond closely to those given by Kirste and
Drymeel. Numerical methods were employed to obtain two solutions for
cantilever beams having rectangular cross sections with single symmetry.
Both finite rib spacing and closely spaced ribs were considered.

The method of analysis to be given in this paper may be considered
as an alternative to the method of Hadjli-Argyris and Dunne. It corre-
gponds to, and employs ideas contalned in, the papers by Kirste,
Drymael, Von Kdrmén and Chien, and Duberg.

This work was originally a thesis for the degree of doctor of
philosophy at the California Institute of Techndiogy and has been made
available to the NACA for publication because of its general interest.

I -~ BEAMS HAVING THIN-WALLED UNSTIFFENED CROSS SECTIONS

Introduction

In section I the beam will be assumed to have a thin-walled,
unstiffened cross section. It will be agssumed to consist of a single
cell without cornmers. This is the simplest and most convenlent section
to conslder in developing a rational theory for the determination of
secondary stresses in thin-walled beams of arbitrary cross section. The
loading conditions and end conditions for the beam may be of any
arbltrary nature. The beam is assumed to be of uniform section with
no cut-outs.

The wall of the cross section is assumed to be sufficiently thin
that one may consider the stresses to be uniformly distributed over the
thickness of the wall. The thin shell then acts essentlally as a
membrane. The shell is assumed to be stebilized by closely spaced
rigid diapbragms which preserve the cross-sectional shape of the beanm
under the action of loads. It will be assumed throughout the analysis
that the diaphragms are infinitely stiff in thelr own planes but
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completely free to warp out of their plenes. This assumption is the
only one which has a significant effect upon the final results and is,
thus, the principal source of any error which may be contained in the

solution.

Upon replacing the real, physical beam by & similar beam having
rigid diaphragms, one obtains a well-defined problem in stress analysis
for which exact solutions can be obtained. Such exact solutions of the
similar beam may, in most cases, be regarded as "accurate" (but not
exact) solutions for the real, physical beam. One may also obtain
approximate solutions for the similar beam with rigid diaphragms. Such
solutions may be regarded as "approximate” solutions for the real
physical beam. Many such approximate solutlons have been published for
beams having simple cross sections.

Symbols
A cell area
Ay area of monocoque cross section
Ag horizontal shear-resistant area
Ay vertical shear-resistant area

CTi’CHi’CVi section constants associated with ith stress mode

E Young's modulus
E' = E
1 - u2
g transverse distribution of axial displacements or normal
stresses
F stress function

spanwise varlation of axial displacements
shearing modulus of elasticity

spanwise variation of normel stress

H p @

horizontal section shear
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Ic

=

S S L

Q

central moment of inertia
polar moment of inertia
moment of inertia asbout x-axis
moment of inertia about y-axis
torsion constant

bending moment sbout X-axis
bending moment about y-axis
normal-stress flow in monocoque sectlons
applied horizontal loading
applied vertical loading
axial force in beam

shear flow

radius to a tangent
tangential coordinate

applied torsional loading
wall thickness of monocoque sections
section torque

horizontal displacement
vertical displacement
vertical section shear

axial displacement
rectanguler coordinates
centroidal coordinates

angle between tangent and x-axis
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v4 shearing strain
€ normal strain
2] angle between prin¢ipal bending axes and principal sheer
axes
A characteristic number
G. '
u = ok also Poisson's ratio

o) angle of twist (rotation)
tangential displacement
g normel stress

T shearing stress

Fundamental Equations of Elasticity

The beam and coordinate system are shown in figure 1. Boundary
conditions on stresses or displacements must be known at each end of
the beam. A segment of the curved wall is shown in figure 2(a). It is
convenient to introduce the coordinate s which is measured around the
periphery of the beam along the center line of the wall. A point in
the wall of the beam may be located by giving the values of s and =z
rather than the values of x, ¥y, and z. The coordipate s and the
shear flow q are congidered to be positive in the counterclockwise
direction as shown in Pigure 2(a). :

The differential element dsdz is shown in figure 2(b) with the
forces which act on it in the axial direction. The remaining forces
which act on the element are shown in figures 2(c) and 2(d). Assuming

that Hooke's law is applicable, the stresses and strains are related by
the following well-known equations:

o, - uog = Ee, (1)
o5 - uo, = Eeg (2)

) Tgz = GVgg (3)
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Because of the assumption of infinitely stiff dlaphragms, one may
imnediately set ¢€g equal to zero, since such diaphragms would prevent
eny strain in the wall in the tangential dlrection. Using equation (2)
the following equation is obtained:

=0
e (4

Us = LIO'Z

From this equation the tangential normal stress may be computed at any
point after the axial normal stress distribution has been determined.
Equation (4) may be substituted in equation (1) to obtain oz in terms
Of GZ‘

o, = ( E 2>éz =E'e, (58)
lL-p
where
B
E' = 5b)
1l - u2 (

The strains at a& point may be expressed in terms of the axial dis-
placement w and the tangential displacement £ by the following
well-known equations:

=32 (62)
7’SZ = % + %i- (6b)

The axiael displacement is measured as positive in the positive direction
of the z-axis while the tangentlal displacement 1s positive in the posi-
tive direction of the 8 coordinate, that is, counterclockwise. The

stress og and the strain e do not appear in the analysis henceforth

and the subscripts of the remalining stresses and strains will be dropped

with the following change of notation: o =o0,, €=¢, T=T.,

. maF ML e__ M __» . _. e AN A xe . s _ 2 . _a_a _
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elasticity gives the following formules for stresses in terms of
displacements:

=g (7a)
T=G%+G§ (7o)

The last fundamental equation which is required for the analysis is
that which expresses the law of equilibrium of forces acting on a dif-
ferential wall element in the axial direction. These forces, as shown
in figure 2(b), lead to the following well-known equation:

CCA g (8)

Formation of Second-Order Equations

Equations (Ta), (7b), and (8) must be solved simultaneously.
These three equations contain the four unknowns o, T, &, and w. By
combining these equations in various ways, three different second-order
differential equations mey be obtained. These three equations express
relations between the displacement £ and one of the three vari-
ables o, T, or w in the following forms:

3%y  E' 3w 32§
YRR T A ()

2 2 3

30  E'Jdo J ¢

29  E 20, g =0

de2 G Jz2 ds dz2 (50)
2 2 3

T E'QdT ot

S iS5 -E =2 =0

d3sc @ 32 dz3 (9¢)

The first of the above equations may be obtained immediately by
substituting equations (7a) and (7b) into equation (8). Equation (9b)
is most easily derived by differentiating equation (9a) with respect
to 2z and multiplying each term by E'. Substitution of equation (Ta)
then gives equation (9b). In order to derive equation (9c) one may
differentiate equation (7a) with respect to & and equation (7b) with
respect to z +to obtain
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3 _ g D
ds ds 0z
or
¢ 3 _, Fu
E'9s -~ Os 0z
and

dr . w . >

dz G Ss oz ¥ G 322

4

Subtracting from the above equation the preceding one gives

o _ G o _ 3¢
dz " E' ds 352

Differentiating the above equation with respect to z and equation (8)
with respect to s gives

P o e ook

322 E' oz Jds 323
and

G BQT G 320

Adding the above equations and multiplying by E'/G gives
equation (9c).

The fact that equation (9b) may be obtained from equation (9a)
indicates that there is a close mathematical association between the
axial displacement w and the normal stress o. A stress function F,
introduced by Hadji-Argyris and Dunne (reference 10), bears a similar
close relationship to the shearing stress. In extending the analysis
to semimonocoque, or stiffened, sections it is advantageous to use
shear flow as an unknown rather than shearing stress. The shear flow
and normal-stress flow are defined by the equations

P =t (10a)

qQ=t7 (10b)

where 4y 1is the wall thickness and will be considered to be a constant
for convenience. The stress flows are related to the stress function
by the equations
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D = gg (11a)
a=aq - %% (11b)

In equation (11b) the term g, is the shear flow that may be computed
from the section torque T with the formula from the torsion theory
of St. Venant

% = 3% (12)

where A 1is the area of the cell formed by the center line of the wall.
If equations (11) are substituted into equation (8), the equation of
equilibrium, it will be seen that the equation is satisfled by any
streas function.

It is now possible to obtain a second-order equation relating F
to the displacement £. Multiplylng equations (7) vy t, and
gubstituting equations (11) into them gives

JF re OW
3 =Pt Sz

or

E"S'E- Etw‘a—' '%y"y

Differentiating the first of these equations with respect to s, the
last with respect to 2z, and adding give

3°F B! B2F . E! aqo
SR o

A second-order equation may be obtained for the shear flow by differ-
entiating with respect to z.

2 2 3
d° [oF E' 07 [OF e O
—B-B—E'(E - q‘) + F a:é(& - q + E tw aZ B O




NACA TN 2529 13

The quantity q, mey be inserted into the first term since it is a
function of 2z only. Substituting equation (11b) gives

3 _
Bz3

It should be noted that this equation is also obtained immediately by
multiplying through equation (9¢) by ty.

qu E' 3%q .
s> * ?;.Bze T

0 (14)

It 1s now seen that the solution to the stress problem may be
obtained by solving any one of the four equations (9a), (9b), (13),
or (14). In each case the first step must be the elimination of the
tangential displacement £. This elimination from equations- (9a)
or (9b) is obtained through considerations of equilibrium between
internal stresses and externsal loads. On the other hand, the elimina-
tion of €& from equations (13) and (14) is obtained through considera-
tlon of the necesslity for continuity of the axial displacements. Con-
sequently the process of solution for equations (9a) and (9b) is
entirely different from that required for equations (13) and (14). Thus
the two possgible methods of solution differ, essentially, in the order
in which one must introduce the concepts of equilibrium and continuity
into the analysis. The anelysis of Hadji-Argyris and Dunne (refer-
ence 10) involved the solution of equation (13) while the analysis of
Von Kérmén and Chien (reference 9), and also that of Duberg (refer-
ence 18), is based upon equation (9a). The analysis of this paper will
be based on both equations (92) and (9b). No further consideration
will be given to equations (13) and (1k).

Principal Shear Axes and Associated Section Properties

In the development of an exact analysis in which axial displace-
ments, or normal stresses, are considered to be the unknowns, it is
found to be very convenlent to use coordinate axes in the cross section
which have been called the principal shear axes. Convenient formulas
for computing the location of these axes were given by Duberg (refer-
ence 18). At any given point of the wall a tangent to the center line
may be drawn as shown in figure 3(a). The radius from the origin of
the principal shear axes to the tangent is indicated as r while the
angle made by the tangent with the positive direction of the x-axis,
meagsured positively in the counterclockwise direction from the axis,
is indicated as a. The location of the principal shear axes lsg defined
in terms of r and "a by the condition that the following three
integrals must vanish:

Sftwr cos a ds = O | (158)
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ﬁgtwr sin @ ds = O (15b)
ﬁgtv cos a sina ds = 0O (15¢)

The integration is to be carried over the area of the cross section. In
the case of a single-cell section such an integration becomes a line
Integral and hence the symbol for a line Integral has been used for
convenience. (This integrating symbol would not be appropriate for =a
multicell section.)

The principal vaelues of three section properties, which are
egsoclated with the principal shear axes, may be defined by the
following formmlas:

I, =‘52[;twr2 ds (168)

Ag = jg t,, cos‘a ds (16b)
2

Ay =5£ t, sin"a ds (16c)

The first of  these section properties was introduced by Kirste (refer-
ence 5) and called the central moment of inertie. The megnitude of this
constant lies intermediate between that of the torsion constant J and
the polar moment of inertila IP

I,2I. 237

The constant AH may be considered as the area resistant to horizontal
shear and Ay mey be consldered as the area resistant to vertical
shear. The sum of the "horizontal” and "vertical" shear areas is seen,
from equations (16b) and (16c), to be equal to the total area of the
wall of the beam

AH+AV=A‘W

Aw =§tw ds

where




NACA TN 2529 15

The areas Ay and Ay were also introduced by Kirste (reference 5) and
called reduced areas.

Elimination of Tangential Displacement

In order to eliminate the tangential displacement £ from equa-
tions (9a) and (9b), it is necessary to make further use of the assump-
tion of rigid bulkheads. Because of thls assumption a cross section of
the beam experiences "rigid body" displacement under the action of load.
The horizontal displacement u and the vertical displacement v are
parallel to the principal shear axes and must in general be regarded as
the translations of the origin of the principel shear axes. The rota-
tion, or angle of twist, of the cross section is indicated by ¢@. These
displacements, and the corresponding contribution that each maskes to the
tangential displacement &, are illustrated in figure 3. Because of
rotation about the origin the tangential displacement is given by the
product r@. Because of horizontal translation of the cross section
the tangentlal displacement 1s wu cos a. Because of vertical trans-
lation of the cross sectlon the tangentiel displacement is v sin a.
These individual effects may be superimposed to obtain the formula

E=rp + ucosa+ vseina . (17)

If the above equation were used to eliminate & one would obtain
a relation between the unknowns w or o and the dlsplacements ¢, u,
and Vv vwhich are also unknown. It is necessary to find a relation
between @, u, and v and the applied loads in order to obtain a
direct relation between w or o¢ and the applied loads. The required
relations are obtalned by equating the section torque and section
shears, as computed by statics from the external loads, to the section
torque and section shears as computed by an appropriate integration of
the internal shearing stresses. (Secondary stresses in indeterminate
beams will not be discussed.) Thus the section torque T, the hori-
zontal shear H, and the vertical shear V are related to the internal
sheering stresses by the following equations:

5{; t,Tr ds = T (18=)
ﬁg trcosads=H (18p)
ygth gin a« ds = V (18¢c)
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In equations (18) the shearing stress may be eliminated to obtain
a relation between the tangential displacement and the loads by
substituting equation (7b).

G%twrg—:ds+G§£twrg%ds=T

]
==}

ow ot
ngtw cos a-d—s-ds + G tw cos oub—zds

Il
<

Gygtw sinccgls-rds +G§§‘tw sina%é-ds

It 1s now necessary to eliminate the tangential displacement from the
above equations by substituting equation (17). In making this substi-
tution it will be found that in each equation two integrals vanish
because of the applicability of equations (15) which define the loca-
tion of the principal shear axes. After substitution of equations (17)

and (15), the above equations become

ngtwr-g—:dsu}%ﬁgtwre ds = T
G‘?S\tw cos cx.g—-:ds +G%fw cosea ds = H

ngtw sina,g—: ds +Gg—:y§‘tw sinea, ds = V

In the above equations the second integral in each equation is
seen to be one of the section properties which were previously intro-
duced by equations (16). Because of the use of principal shear axes
one may solve the above equations for the derivatives of ¢, wu, eand v
independently rather than having to solve a simultaneous system. This
1s the reason for employlng the principal shear axes as reference axes.

" Inserting the section constants and solving for the cross-sectional

displacements gives

T iy ow
%‘5=ﬁ;-1—c-5§twr¥ds (19a)
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du _ H _ 1 ow 9b
Az Ghg —AHyg"’W“”‘a—s as (190)
av v 1 ow

EE”G_A}"A_V'thW Sin“'a_éds (19¢)

The above equations may be substituted into equation (17) if it is
first differentiated to obtain

ot dp du av
&-—rdz+cosaa+sinaa

Substituting equations (19) into the above equation gives

o8 Tr Hcosa . Vsina,__ dg -
3z “ &1, T T GAg Ghy twr?

cos a gin a ow
%tw cos aB-— ds - ——V—Eg‘tw sincca—s- ds

The above equation gives £ as a function of the applied loads
and w. Thus it is seen that this equation may be used to eliminate §
from equation (92) to obtain an equation relating the axial displace-
ments to the applied loads. Substituting the above equation into
equation (9a) gives

2 2

Fw  E'dw 1 dr ow ldcosco

az-l—G-a—Z—e-Ia-E tw::'-a—é-ds-AH %cosas—ds-
1dsina eln a ds___Tir__H dcosa_V d sln a
Ay b ds =~ T T GI,ds " GAp ds GAf;  ds

(202)

This partial integrodifferential equation, with the appropriate boundary
conditions, defines the relation between the axial dlsplacements and

the loads. A corresponding equation for o mey be obtained by differ-
entiating with respect to z and multiplying through by E'.



18 NACA TN 2529

1 dsina do E'ft dr PH dcosa . PV d sin a
ﬁgtvsm“‘a—ds‘ (I s thg 98 TEy  as

(20b )'

On the right-hand side of equation (20b) t 1s the torsional load per
unit of length, is the horizontal component of resultant load per
unit of length, agg py 1is the vertical component of resultant load
per unlt of length.

At the root of a cantilever beam, or the end of a fixed-ended
beam, the boundary condition is that w 1s zero. At the tip of a
cantilever beam, or the end of a simply supported beam, the boundary
condition is that o 1s zero. This latter condition may be interpreted
as meaning that Bw/az is zero. A third type of boundary condition
may arise when shearing or normal stresses of known' distribution are
being applied to the free ends of the beam.

Deflections Due to Shearing Strains

Before proceeding to a solution of the equation it is worth while
to draw a few simple conclusions concerning the deflectlions of the beam
from the equations of the previous section. Equation (17) for & may
be substituted into equation (7b) for T +to obtain

ow do du dv
T =G +Gr gLt Gcosag, +Gsinag (21)

It is convenient to consider, for the moment, that the beam is loaded
in such a way as to produce rotations only without translations.
Equation (21) would then become

d T oW

T E% ¢ " 3s
- ow

=7 -3

This equation indicates that the angle of twist may be considered to
consist of two parts, the first being due to shearing strains and the
gecond due to axisl displacements. If this equation is multiplied
through by tyr ds and integrated over the cross sectlon, equa-

tion (19a) will be obtained. This indicates immediately that the first
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term on the right side of equation (19a) gives the rate of twist
(change of rotation per unit of length) due to shearing strain, while
the second term gives the rate of twist due to axial displacements. A
gimilar interpretation can be given to the terms on the right-hand side
of equations (19b) and (19c).

It is of considerable practical importance to be able to compute
deflections of thin-walled beams due to shearing strains. The proper
formulas for this purpose are obtained Prom equations (19) by setting w
equal to zero.

dp T

dz =~ GI. (22a)
du __H

dz ~ Gbg (22b)
av )

3z T Gy (22¢)

These formulas were given by Drymael (reference 8). Equations (22) are
exact formulas for the derivatives of the deflections due to shearing
strain of a beam with rigid diaphragms. It is of considerable interest
to note that the deflections due to shearing strains are independent of
the distribution of the shearing stress on the cross sections.

In the case of torsion there 1s no practical need for computing
the angle of twlst due to shearing strains at various points along the
span. However, equation (222) 1is useful in giving the rate of twist at
a flxed end where w = O. This is useful in certain methods of deflec-
tion calculation. In the case of horizontal or verticel bending, egqua-
tions (22b) and (22c) enable the designer to compute the deflections
due to shearing strains at verious points along the span. This glves
an indication of the physical significance, as well as the practical
utility, of the section constants I., Ag, and Ay.

When the axial displacement w 1s known it may be substituted into
the integrals which appear in equations (19) in order to determine the
deflections. By substituting ean approximate solution for w into
equations (19) one mey obtain an approximate solution for the deflec-
tions. In order to show the relationship between equations (19b)
and (19c) and the engineer's customary equations relating bending
deflections and loads, the axial displacements may be assumed to have
planar distribution. It 1s more convenient to substitute for normal
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stresses than axial displacements. Equations (19b) and (19c) may be
differentiated with respect to 2z +to obtain

2
Zzg = - iﬁﬁ - Eg&Hh/ﬂtw cos a g% ds (23a)
2
Zg=-§Xv-E} fth;inag—gds (23b)
z

The normal stress in equations (23) may be assumed to be given by
the flexure formula in the form

S S N (k)

In equation (24) the distances x and ¥ are measured from the cen-
troidal axes of the cross section. The moments My and and the
moments of inertia Ix and Iy are computed with respect to the cen-
troidal axes. In general, the centroidal axes, or principal bending
axes, do not coincide with the principal shear axes. Equation (24) may
be substituted into equations (23) to obtain approximate formulas for
the curvatures of the beem. This substitution is explained in detail
in appendix A and leads to the following equations:

dau -Pg M‘y cos 6 Mx sin O
dz2 GAH E']'_y E'Ix

(25a)

d2V -Py M, sin & M, cos @

+ -
a2  Ghy E'Ly E'I,

(25p)

In these equations 6 1s the angular difference between the position
of the principal shear axes and the principal bending axes. In the
great majority of sections 6 will be small and will have the value of
zero when the cross section has an axis of symmetry. If 6 1is small
enough that the terms containing sin 6 may be dropped and the cos 6
replaced by unity, equations (25) take the following well-known form:

@u P My (26a)
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sv__¥X __X (26b)

In equations (26) the first term on the right-hand side is an exact
formulae for deflections due to shearing strains while the second term
1s an approximate formula for the deflections due to axlial displace-
ments or, as is more commonly stated, due to normal strains.

Simplifications Due to Symmetry of Cross Section

A maximum amount of simplification arises in the analysis when the
cross section of the beam 1s symmetrical about both of the principal
shear axes. In this case the centroidal axes are also the principal
shear axes. The general integrodifferential equation for w may be
replaced by three independent equations in which the actions of torsion,
horizontal bending, end vertical bending become completely separated.
From considerations of double symmetry it is found that equation (20a)
must be replaced by the followlng three equations:

2 2

% E'd%W 1 drﬁg dw T dr

2 G322 Tods W 38 % T T GT, ds (272)
Bzw + E' BQW _ j; d coscxﬁgt cos a ow ds = - H 4 cos a (27b)
32 G 32 A de W Js GAy ds

2 2
Ow  E'0w 1 dsina ow V dsina

Equation (27a) was derived and solved by Von Kdrmén and Chien (refer-
ence 9). The development of equations (27) is given in appendix B. A
corresponding system of -equations may be derived for the stress distri-
bution in a beam with doubly symmetrical cross sections. These equa-
tions are as follows:

2 1 32 1
M+£M_Lﬂﬁgwr§§ds=%% (28a)




22 NACA TN 2529

2 2 E'p
0 E'O0 1 dcosa do H d cos a
S22 + 3 2 —AH 5 ty cos @ 5= ds = . P (28b)

o1 ﬁg do E'pV d gin a
+ = -—=——Yt,8ina ds =
32 G 3.2 Ay ds ds GAy ds

(28c)

Every term of equation (27a) or (28a) is antisymmetrical sbout both the
x-axis and the y-axis. Every term of equation (27b) or (28b) is sym-
metrical about the x-axis and antisymmetrical about the y-axis. Every
term of equation (27c) or (28¢c) is symmetrical about the y-axis and
antisymmetrical about the x-axis.

If a cross section has only one axis of symmetry, the general
equation for w 1is replaced by two equations. For the case of a
cross section which 1s symmetrical about the x-axlis the equations take
the following form:

G, ds @y  ds .(290)

Equations (29) are derived in appendix B. Equation (29a) indicates
that the solution for axial displacements due to horizontal loads may
be considered separately from the action of vertical and torsional
loads. Every term of equation (29a) is symmetrical about the x-axis
while every term of equation (29b) is antisymmetrical about the x-axis.

For the case of a cross section which 1s symmetrical only about
the y-axis, the equations for w take the following form:

3w . E' dw 1 dst ow V_d st
W W s8in a sln a
32 |~ G 3,2 By s f}gt" sln @ 35 9° ="Gay ~ as (30e)
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¥w  E'dw 1 dr dw 1dcosa§£ dv
352+Eaze—-f;a§gtwr3_sds-fﬁ—ﬁ— twcosa,a—é-ds=

- T dr _H dcosa (30b)
GI, ds GAg ds

Equations (30) are derived in appendix B. Every term of equation (30a)
1s symmetrical about the y-axis while every term of equation (30b) is
antisymmetrical about the y-axis. It is obvious that equations for the
normal stress, corresponding to equations (29) and (30), may be readily
derived.

A few comments concerning the effects of symmetry upon deflections
may be of some interest. Considering a cross section having double
symuetry, the solution for w from equations (27) may be substituted
into equations (19) to obtain the deflections of the beam. It will be
found that torsional loads produce rotatione only, horizontal loads
produce horizontal translatidns only, and vertical loads produce verti-
cal translations only. For the case of a cross section which is sym-
metrical about the x-axis, the solution of equations (29) may be sub-
stituted into equations (19) as before. It will be found thet hori-
zontal loads produce only horizontal displacements. However, vertical
loads produce both vertical displacements and rotations, and torsional
loads also produce both vertical displacements and rotations. In the
cagse of a cross section which is symmetrical sbout the y-axis, vertical
loads produce only vertical displacements but there is an interaction
effect between horlzontal loads and torsional loads. Such interaction
effects do not occur in elementary beam theory wherein one considers
only primary stresses.

Solution of Homogeneous Equation

The solution of the nonhomogeneous equation which governs the
axial displacements, or the normal stresses, may be determined by
assuming thet the unknown may be expanded into an infinite series of
appropriate orthogonal functions which individually satisfy the
boundary conditions and the conditions of continulty. The orthogonal
functions which are appropriate for the analysis may be determined by
considering the solution of the homogeneous equation and the boundary
conditions. In the case of cantilever beams, simple beams, or fixed-
ended beams, the end conditions are homogeneous. The transverse dis-
tribution of the solution must be continuous and single-valued, or
periodic.

The case which 1s most eagily understood and capable of being given
the simplest explanation of the method of solution is that of a beam
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with doubly symmetrical cross section acted upon by torsional loading
only. It was this case which was treated by Von Karmén and Chien,
although their considerations were limlted to a cantilever beam of
gsemi-infinite length acted upon by a torque at the tip. In the present
analysis the loading distribution and end conditions will remain
arbitrary.

The homogeneous equation governing the axial displacements in a
cross section with double symmetry is obtalned by setting the right-
hend side of equation (27a) equal to zero.

> L2
B_H_,_E__a_.!_igygtwr%gdﬂ:O (31&)

rSs .ds =0 (31p)

A standard well-known method for the solution of homogeneous partial
differential equations is to assume that the unknown may be expressed
by a separation of the variables. The same method may be employed in
solving the above integrodifferential equations. The displacement and
gtress may be assumed to have the following forms:

w = f(8)g(z) (32a)
o = £(s)h(z) (32b)

where
h=E"' %% (32¢)

The relationshiﬁ between g and h eariges from the relationship
between w and o as expressed by equation (7a). It is also clear.
from equation (7a) that, if w and o can be expressed by a separa-
tion of the variables, then the transverse distribution of both func-
tions must be the same.

Substituting equation (32a) into equation (31a) gives

a°r LE'P a2 g

g ﬁgtwr — ds =0
d92 G 352 Ic ds
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Dividing through by the product fg and transposing the first and
third terms gives

E' g _ 1% L& af
ot Epw E e (33)

Since the left side is a function of 2z only while the right slde is
a function of s only, each side may'beeequated to a constant inde-
pendently. Equating the left side to A~ gilves

g o
Q-E-—'_g-o
dz
or (3ka)
2
d
—g-u2g=0
dz
where
2
2 A
" =%,_ (3kb)

The corresponding equation for the spanwise distribution of o¢ is
obviously

&n _ ulh = 0 ‘ (3kc)
5
dz

Equating the right-hand side of equation (33) to A2 gives the
following equation for the transverse distribution of w or o:

2
a—f
d—sé'+ )‘. f - I dsjgt"’r (35)

It 1s convenlient for the analysls to introduce the following integration

by parts: .
P tur 35 ds = - tr I ae (36)

The bracketed term, which usually arises in an integration by parts,
venlshes here because f must be continuous and periodic. Although
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equation (35) is en integrodifferential equation it is convenient in
certain phases of the analysis to consider the integral in the equation
as a section constant for the beam. If the stress distribution were
known it could be substituted into the integral which, in turn, could
be evaluated to obtain a scalar constant that would be dependent only
upon the properties of the cross section. This section constant, which
is associated with torsional loading, may be indicated as Cp and
defined as follows:

CT=-§twrg_::dS=Sgtwfg_§ds (37)

Using equation (37), equation (35) may be converted into either of the
following forms:

2
def 2 1l dr dr
d—s-é'-l').f-l-zd—s"ygtwfd—s'ds—o (38&)
2 C
a=f 2 T dr
AT T =0 (380)
ds c

It is of some interest and benefit to draw a comparison, at this
point, between the present problem of determining transverse stress, or
displacement, distributions, and the natural vibrations of a thin ring.
The analogy is of a physical nature only, since the problems do not
correspond mathematically. The ring that is to be considered lies in =
plane and has a doubly symmetrical shape. It is to be considered as a
free body vibrating in space without a gravitational field. The only
vibrational displacements that are to be considered are those that are
normal to the plane of the ring. There will be four infinite sets of
modes that could be excited as follows: (a) Doubly symmetricel,

(b) doubly antisymmetrical, (c) symmetrical sbout the x-axis only, and
(d) symmetrical about the y-axis only, where the x-axis and y-axis are
in the plane of the ring. In a similar manner there will arise four
infinite sets of natural "displacement modes" or "stress modes" in a
cross section having double symmetry. Each type of mode will be
"excited" by a particular type of loading. The relationship between
type of mode and loading is as follows (see appendix B):

M
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Mode Loading
(a) Doubly symmetrical ————— Axial force
(b) Doubly antisymmetrical ————3% Torsion
(c) Symmetrical about x-axis ———» Horizontal bending
(d) Symmetrical about y-axis ———) Vertical bending

The analogy with a vibrating ring is useful in suggesting terminology,
in visualizing the stress distributions that are being determined, and
in suggesting calculation techniques for idealized stiffened cross
gections that are to be treated in the second section of the paper.

Solutions of equation (382) exist only for certain characteristic
values of the parameter A. Ordinarily characteristic numbers are
determined by boundary equations. In the present case the function £(s)
is governed by continuity and periodicity conditions which do not
provide a characteristic equation. (In the case of a section with
corners, the condition of continuity at the corners provides the charac-
teristic equation.) The characteristic equation was obtained in a
simple manner by Von Kérmén and Chien by setting the line integral in
equation (38a) equal to unity. The resulting equation determines an
infinite set of values of A. Inspection of equation (38a) shows that,
if the lipe integral is replaced by any convenient constant, then the
equation becomes a nonhomogeneous differential equation which can be
readily solved. The solution for £(s) will contein the number A
and hence there will be an infinite pumber of stress modes.

Unfortunately the simple method used by Von Kdrmdn and Chien to
form the characteristic equation cannot be extended directly to arbi-
trary cross sections. Consequently a method of forming the character-
istic equation will be presented which can be extended to arbitrary
cross sections. Equation (38b) suggests the following form of the
general solution:

f = A sin As + B cos As + Cpo(s,)) (39)

where ¢ remains to be determined. Substituting equation (39) into
equation (38b) gives the following equation for @:

2 3
d_9+x2 —_ ._1..._._
P =- (ko)
. ag? I, ds

The function ¢ 1s the particular integral of equation (40) and is a
function of the coordinate s and the parameter A.
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It is now necesgsary to show that the constants of integration A
and- B must vanish for noncircular sectlons. The stress mode £ 1is
doubly antisymmetrical. It is convenient to choose the origin of the
coordinate s on one of the axes of symmetry. The term sin As may
be made doubly antisymmetrical by a proper cholce of values of A. At
first thought this would seem to be an appropriate method of determining
the characteristic velues of A. Since dr/ds 1is antisymmetrical it
is seen from equation (40) that ¢ must be antisymmetrical. However,
the term cos As is symmetrical ebout the axis upon which the origin
of s 1is chosen and, hence, B must be set equal to zero.

In order that the term sin As shall be antisymmetrical it 1s
necessary that A have one of the values Ap given by the following
formulsa:

xn=i’%’5 n=1,2,3, ... (41)

where L is the circumference of the center line of the wall of the,
cross section. The geometric quantity dr/ds may be assumed to be
expanded into a Fourier series as follows:

dr = hin
E—;ai sin 2222 (42)

The function @(A,s) may also be expressed as a Fourier series

oo

> bi(ry) sin l*iL"B (43)

1=1

) -

Substituting equations (42) and (L43) into equation (40) leads to the
following formula for Dbi:

a
by = s (1)

where

hix

T i=1’2,3,... (ll'5)

(l)i=

For each value of @, as defined by equation (43), there will be one
term in the series for which w3 equals Ap and hence for which by
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becomes infinite. Hence the only possibility for a finite solution
for ¢ to exist is for all of the af walues to be zero. This means
that dr/ds must venish, which would be true only for a circular sec-
tion. An examination of equation (40) shows that if dr/ds wanishes
the function ¢ must either be zero or be proportional to the quan-
t1ty sin As. In the latter case ¢ would add nothing to the formula
for f as given by equation (39) and hence may be assumed to be zero
for a circular cross section. For the noncircular section it 1s impos-
sible to obtain a finite gsolution for @ by choosing A to make

sin As antisymmetrical. The only alternative in this case is to choose
A" equal to zero. Thus the following formulas for the stress distri-
bution have been derived:

Circular section:

H
]

A gin As (46a)
Noncircular section:

hid

cro(n,8) (46b)

In the case of the circular section A 1is given by equation (41). For
the noncircular section a characteristic equation must now be derived.

Multiplying through equation (46b) by dr/ds and integrating over
the cross section glve

dr dr
Freto- e

or

ar
Cp = cT52§twcp I ds

or

(ygtwq)%ds-l)c.r=o (47)

Equation (47) mey be regarded as a homogeneous algebraic equation in
which Cr 1is the unknown and thus remeins arbltrary. The term Cg
plays the role of an amplitude factor which must be determined subse~
quently by introducing & normelizing condition for the stress modes.
The coefficient of Cp must vanish and hence
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Do Eas= (48)

Equation (48) is the characteristic equation which determines the values
of A and agrees with that given by Von Kdrmén and Chien. The above
derivation of the characteristlic equation can be extended to arbitrary
cross sections as will be shown in the next section.

The section constant is determined by introducing the following

normalizing condition: .
551—.‘;2 ds = 1 (49)

This normalizing condition is more convenient in the analysis, for both
monocoque and semlmonocoque sections, than the engineering types of
normalizing laws which might be suggested by the vibration anslogy. The
method of solution for the natural stress modes should now be clear.

The function ¢ is determined in terms of A by solving equation (L0).
Expansions in Fourier series should be useful for this purpose. The
functions @ and dr/ds are then substituted into equation (48) to
determine the characteristic values of A. The gtress modes are then
known except for the coefficients Cp which are determined to satisfy

equation (L9).

Stress Modes for Arbitrary Cross Sections

The solution for the stress modes and cheracteristic numbers for
arbitrary cross sections wlill be stated briefly. If the right-hand
side of equations (20) is replaced by zero and a separation of vari-
ables 1s introduced, the following equation will be found to govern the
transverse distribution of displacements or stresses:

2 C C C
g—g + 2% + TE.%E +~K§-E-E%545 + KX-Q—E%E—E =0 (508)
ds c 98 H 8 v 8
where
CT =§]§th £ s (50b)

g = ‘ﬁgtwf d cos a ds (50¢)
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d sin a
The solution of equation (50a) may be written as follows:
f = Cpop(r,s) + Cog(r,s) + Cyoy(n,s) (51a)

he d d the fol :
where @p, @, and Qy are governe by the following equations

+ A%, =~ (51b)
PR i
2
d Py
2 l d cos a
+ A, = - (51c)
a2 TR as
2 .
d QV 2
1 d sin a
12 T TR T as (51a)

Terms conteaining constants of integration in the formula for f have
been omitted since they may be shown to vanish for noncircular sections
by arguments similar to those used in the previous section. Since, in
the present case, bending as well as torsional action is being con-
sidered, the complete solution must include the planar stress distri-
butions of ordinary engineering beam theory. These primsry modes must
satisfy equation (50a). The planar distribution mey include the effect
of an axlal force as well as bending moments.

If a planar distribution of stress is assumed, it will be found
that the section constant Cp has the value zero by evaluating the
integral which it represents. The value of A which is associated
with the planar modes is also zero. IT and @y are defined to
have the linear distributions a + x and + ¥y, respectively, in
equation (5la) for £, this plapar distribution will be found to satisfy
equation (50c) if A and Cr are set equal to zero. This exlistence
of a solution for a zero value of A 1s & feature of the present
problem which 1s not found in the solution of homogeneous second-order
differential equations with homogeneous boundary conditions (the
Sturm-Liouville problem).

The characteristic equation may now be developed by the same
method that was used in the previous section. Equation (5la) must be
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multiplied through successively by the followlng quantities:
dr/ds, d cos a/ds, and d sin a/ds. Integration over the cross sec-
tion in each case gives the followlng three linear algebraic equations:

cT_cTygtwan—-—ds+ch§twq>H—ds+cv§thwq>V—ds (52a)

o = CT§£‘I a cos T ae + CHE#“ d cos T ae 4 Cvﬁﬁ‘l d cos T 4
(52p)
Cy = Grjg' d 31n < a4 + CHS#\l d sin T a5+ Cvjﬁ‘l d sin O aq
(52¢c)

Equations (52).are a homogeneous system of three algebraic equations in
which Cp, Cqg, and Cy are the unknowns. The integrals which appear
are functions of A and may be regarded as scalar coefficients of the
equations. After transposing &1l terms to one side of the equations
the determinant of the coefficients may be isolated and set equal to
zero. This provides the characteristic equation which determines the
values of A. The calculation task of determining the characterigtic
values of A 1is clearly & formidable one for arbitrary cross sections.
For each value of A a solution of equations (52) exists for relative
values of Cp, Cg, and Cy. Their specific magnitudes must be deter-
mined from the normelizing condition as.expressed by equation (49).

=

Orthogonality of Stress Modes

In order to obtaln a solution to the general nonhomogeneous equa-
tion for stresses or displacements it is necessary to determine the
orthogonality properties of the stress modes which have been defined.
Since this argument follows customary well-known mathematicel methods,
it will be given only for the doubly antisymmetrical modes (the torsion
case) in a beam having a cross section with double symmetry.

Equation (38b) may be written for the mth and nth stress modes as
follows:

2
a-t 2 C
m Tm dr
dse + km fm +.:—[:- i - 0 (533)




NACA TN 2529 33

2
af o) C
n Tn dr
P + Ay fp + T;— et 0 (53b)

Equation (53a) is to be multiplied through by f£,, equation (53b) by £y,
and both equations are to be integrated over the cross section.

acr c. C

m 2 Tm Tn

‘?gfn 'd—sé— tW ds + )»m %‘fnfmtw ds + T =0 (5’4&)
a2ty 2 CopCrm

%fmc—lge—tVds+)\njgfmfntVds+——I—c——=0 (5kb)

The first term in each of these equations may be integrated by parts
to obtain

2
a-t df, 4t
R = -2
ﬁgfn 24, ds = 2Tt ds
e, ag, ag,
ﬁgfm'@—twds=' a-s—--d—s—twds

The bracketed terms vanish since the stress mode and its derivative
must be continuous and periodic. These formulas show that the first
terms of equations (54a) and (5Wb) are identically equal. Hence, by
subtracting equation (54b) from (54a), one obtains

(- ) P Eataty 25 = 0

Since the A's form'a discrete set of numbers, the first factor in

the above equation does not vanish and the followlng orthogonality
condition 1s obtained:

Fgfmfntw ds = 0 : (55)

A similar development of equation (55) can be formulated for arbitrary
cross sections.

In deriving the solution of the nonhomogeneous equation for
stresses or displacements it 1s convenient to have one additional
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relationship which may now be derived. Making use of the normalizing
condition as given by equation (149) it may be seeq that, wgen m = n,
the second term of equation (54b) is equal to A, or Ay . When m

does not equal n, the second term of equation (54b) venishes because
of equation (55). Thus equation (5U4b) may be rewritten in the following

manner:

2
s i Cp.C
ygf —2 b, ds + BB o Pa (568)
ds® c
where
o, . m # n
B = (56b)
1, m=n

Solution of Nonhomogeneous Equation

Again the action of torsional loads on & beam having cross sec-
tions with double symmetry will be considered first. The equations
that must be solved are equations (27a) and (28a). The displacements
and stresses may be asgssumed in series form as follows:

w= f(s)gy(z) (5Te)
n=1

o= ¢ _(s)n_(2) (57b)
n=1

Substituting equation (57a) into equation (27a) gives
& ' af
E E g 280 1 dryy, g —2lag = - L 4r
gnds — n g2 Tcd8J W\, "nds GI, ds

Interchanging the order of summation and integration in the third term
of this equation and introducing Cp, as defined by equation (37) give

a®
Zgn—+—zf in T, dsZ Crnén = GI ds
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The preceding equation must now be mnltiplied through by £, and
integrated over the cross section.

2
&z, ' d
E €n
E gnyg — t,, ds +—G—E 77 P Tufnty ds +
n

ar T ar
£y o by dsgCTngn=-ai:jgfmd—stwda

The integrals which occur in the second series of this equation may be
evaluated from the normalizing condition and the orthogonality condi-
tion for the stress modes. All terms of the series vanlsh except the
mth term. After introducing Cq, and rearranging terms the equation

becones
E_dgm Z dfth_'-Tan_-CTmT
G gz2 - G6I

(o4

The quantity in the parentheses has a finite value only when m = n.
Substituting equation (56) into the above equation will give the equa-
tlon governing the spanwise variation -of the mth displacement mode.
The subscript m may be changed to n for convenlience to give the
equation for the nth mode as follows:

B d%n 2 Crdl
G 32 n =~ g1,

Multiplylng through by G/E' and introducing p as defined by equa-
tion (34b) gives

2
5~ by €y = C F ' (58a)

The corresponding equation for the stress distribution is

d Cm..t
eh“ T (58b)

C

The complete solution cen now be obtained. After computing the
transverse stress modes as previously explained the constants Cpp,
and p, are known for each mode. Equetion (58a) may tHen be solved
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for the spanwise variation of the displacements due to the applied loads.
The solution of equations (58a) or (58b) may be written in either of
the following forms:

g, = Aeuns + Be-Llns + V¥(8) (59a)

gn = A sginh [J.ns + B cosh IJ.nB + 'llf(B) (59b)

The coefficients A and B may be determined from the boundary condi-
tions after the particular integral V¥(s) has been determined for the
given loading.

In the case of & beam of arbitrary cross sectlion without symmetry
the same mathematical method may be applied to equations (20). The
resulting equation for the spanwise variation of axial displacements is

dgn_”.2 =_CTnT_CHnH_CVnV (60)
az2 n n E'I, EAg E'Ay

A corresponding equation may be written for the stress distribution.
Equations (59) also give the form of solution for equation (60). It is
of interest to note that a zero-warping axis for the nth mode may be
located by setting the right-hand side of equation (60) equal to zero.
However, it is not apparent that there is any practical value to be
gained by locating this axis in the present method of analysis.

Asgsociated with each normal stress mode there 1s also a shearing
stress distribution. These shearing stresses are computed for each
normael stress mode independently by integrating equation (8), the equa-
tlon of equilibrium. This integration is also required in primary
stress analysis and hence is well-known. The constant of integration
for the secondary shear flow is determined from the condition that the
resultant torque must be zero.

IT - BEAMS HAVING THIN-WALLED STIFFENED CROSS SECTIONS

Introduction

In section IT a method of analysis is to be presented which is
directly applicable to beams of practical cross sections such as occur
in airplane wings and fuselages. The beam will be assumed to have a
thin-walled stiffened cross section which may be of single-cell or
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multicell design. The type of cross section which is actually to be
analyzed is the idealized stiffened section which resuits from the
customary engineering idealization that is used in primary stress
analysis of airplanes. The loading distribution and end conditions
will agaln be considered as arbitrary.

Ag before the beam will be assumed to contain closely spaced
Internal rigid diaphragms which stabilize the shell and preserve the
cross-sectional shape. There are two sources of error in the present
analysis. The firgt 1s the idealization of the cross section and the
second is the assumption of rigid bulkheads. As explained in section I,
it 1s possible to obtain "approximate" solutions or "accurate" solutions
for stresses and digplacements. Only accurate solutions will be
considered herein.

The introduction of generalized difference equations permits the
analysis of a semimonocoque, or stiffened, section to be developed in a
manner that is exactly analogous to the method of solution which has
been previously given in terms of analytic functions for monocoque
sections. The use of generalized difference equations provides certain
conveniences and simplifications which are not found in the customary
algebraic treatments of the gtiffened beam. The differencing symbols
have been specifically defined for application to the stress-analysis
problem of idealized multicell cross sections.

Symbols
aj area of jth stiffener
Ay central area associated with kth web
Ag total area of stiffeners
J gstiffener number
k web number
Ly length of kth web
Py axial force in jth stiffener o
Bx warping stiffness of kth web

7Tj’7Hj’7Vj geometric discontinuities at jth stiffener

[A] matrix of stiffener areas
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[B] matrix of warping stiffnesses

[r] matrix of geometric discontinuities

Difference and Summation Definitions

The idealized semimonocoque section which is to be analyzed has a
finite number of stiffeners which carry all of the normal stress and
the shear flows are distributed uniformly over the comnecting webs.
The idealization is illustrated in figure U4t where a small portion of
the cross section of a beam is shown. The flange and stringers of the
true section are replaced by idealized stiffeners centered on the webs.
The idealized stiffeners also include an "effective width" of web
material as is commonly employed in primery stress analysis. In the
idealized section it 1g assumed that the webs which connect the stiff-
eners are stralght. The curvature of the webs is neglected. The
idealization of a cross section for secondary stress analysis need not
be highly accurate for design purposes although for research studies
gome improvement in the accuracy of the idealization may be found
desirable.

The normal stresses on a cross section act over the area of the
stiffeners only. The normal stress oj, acting on the Jth stiffener,
may be miltiplied by the stiffener area a3 to obtain the axial
force p; on the stiffener. The axial forces acting on three stiff-
eners on'a straight wall are shown in figure 5(a). The shearing
gtresses are distributed uniformly along each individual web. The
shearing stress Ty, acting on the kth web, may be multiplied by the
wall thickness tx to obtain the shear flow qi acting on the web.
The distribution of shear flow over a cross section is given by a
stepped diagram as illustrated in figure 5(b).

The above definitions in regard to stresses are equally useful in
primary or secondary stress analysis. In the secondary stress problem
displacements must also be considered. Because of the fact that each
idealized web has been assumed to be straight, the tangential displace-
ment &y of points on the kth web will be a constant for the web and
the transverse distribution of £y will be a stepped diagram. The
function £ will thus behave in the apalysis in a menner similar to
the gtress T and the product tyfy, may be regarded as a "flow-type"
quantity. The axial displacements must be considered to be defined at
the stiffeners, the displacement w3 occurring at the jth stiffener.
It must be agsumed that the axial displacements have a linear variation
over each web. The resulting distribution of axial displacements 1s
given by & broken-line diagram as shown in figure 5(c). The distribu-
tion of axial displacements must be a continuous function from physical
conslderations. ’
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All quantities entering into the analysis which are dependent upon
the transverse coordinates are completely defined by giving their
values either at the stiffeners or at one point on each web. Those
functions which are defined over the webs are uniformly distributed
over each web. Those quantities which are defined by thelr values at
the stiffeners are given a subscript J. Those quantities which are
defined by their values over the webs are given a subscript k.

Just as two types of functions arise in the analysis, so it 1s
necesgsary to define two types of differencing symbols. The symbol A
indicates a differencing operation which produces a function that is
defined by its values at the stiffeners. The symbol Ax indicates a
differencing operation which produces a function that is defined over
the webs. The differencing symbols may be defined most conveniently
by applying them to particular functions. The difference ZXAywy may be
defined as the difference between the value of wj at the forward
gtiffener and the value at the rearward stiffener relative to the
kth web. If the forward stiffener is stiffener a and the rearward
stiffener is stiffener b, the difference Xwj 1s defined by

LWy = Vg - W (61)

Thig definition is illustrated in figure 5(c). The above difference
must be divided by the length Lk of the kth web to obtain the slope,
or derivative, of the function. The correspondence between derivatives
and differences is as follows:

ow 1
Ss 7 I &)

Throughout the analysis for multicell sections the positive direction
for the coordinate s and all "flow-type" quantities is counterclock-
wlse along the outer shell and in the positive direction of the
coordinate axes on the interior webs.

The symbol Aj 1s defined as the difference between outflow and
Inflow at the jth stiffener. This definition of a differencing symbol
is of a rather general nature since it may be applied at a flange
having any number of connecting webs. The difference Asqe is illus-
trated in figure 5(b) for a stringer with two connecting webs. If the
web ahead of the jth gtiffener is web c¢ and the web behind the Jjth
gtiffener 1s web d, the difference Aﬁqk is given by

quk =9 " 9 (62a)
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In this case no clear correspondence between derivatives and differ-
ences is apparent. A second example of the difference quk is shown

in figure 6 where the jth stiffener is connected to webs a, b, and c.
The positive directions of the shear flows are indicated. The differ-

ence A % becomes

J
A% =% " % T % (620)

In addition it is necessary to introduce summations for the
idealized stiffened sections corresponding to the various integrals
which occurred in the analysis of section I. Two types of summations
must be introduced to indicate summation over all of the stiffener
areas or summation over all of the web areas. Three simple examples of
summations over the stiffener areas are as follows:

]?=Za.jor'j =ij (63a)
3 3
My = ;aa"ﬁj = ; Py%; (63p)

My = JZ 850y = ; P33 (63¢)

It is apparent that these summations give the axial force and bending
moments on the cross section. Three simple examples of the second type
of summation are as follows:

T = ¥ e idaT = g B4 (6ha)

H = ; by Tidpe CO8 ay = g Qi lqe o8 oy (6kp)

V = Z Ty Tyl 8in o =Z Ly 8in oy (6h4c)

k k
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Thege summations give the section torque and shears. The geometric
quantities 1y, cos qr, and sin ap are constant over the kth web

gince the web is assumed to be straight in the ldealized section.

It may be worth while to note that the introduction of generalized
difference equations in one-dimensional problems would be of no practi-
cal value. In such problems difference equations become useful only
when the regularity of the structural layout leads to "standard differ-
ence equations" such as those treated in chapter XII of reference 19.
In problems of two or more dimensions, however, it 1s found that gener-
alized difference equations are of considerable value. They not only
provide a mathematical method of complete generality for deriving the
equations governing the axial displacements or dtresses from the basic
equations of elasticity but, more importantly, they make clear the
possibility of using the method of separation of variables in spite of
complete irregularity of the structural layout which may occur. .The
method of analysis for an idealized stiffened multicell sectlon may be
carried out, step by step, in a manner exactly parallel to the method
used in section I for the single-cell monocoque section which is more
eagily understood. The method of separation of variables leads auto-
matically to the natural stress modes for the cross section. The pos-
sible utility of generalized difference equations in other planar or
spatial structures, such as gridworks, remains to be investigated.

Fundamental Equations of Elasticity

Since the present analysis is exactly parallel to that given in
gection I, it need be stated only briefly. The analysis will be made
clearer by frequent comparison with corresponding equations in sec-
tion I. The stresses are related to the strains by the formulas

Tx = G7k (65b)

The gtrains are related to the displacements by the following formulas:

v 3 '
€5 =53 (66a)
ot
T T flkf Ay ¥ 5 (66v)

Equations (66) are comparable with equations (6) of section I. From
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equations (65) and (66) it is seen that the stresses may be expressed
in terms of the displacements by the formulas

ow ' .
oy =B Y (67a)
ot
The stress flows are given by the following formulas:
ow
"y = 80y = Bay 350 (682)

Gty o
Qe = bk = o Lywy + Gy 3

ot
OBy + Gy 5= (68p)

where

By = % (68c)

The quantity GByx may be called the warping stiffness of the kth web.

The forces which act on a differential length of a stiffener are shown
1n figure 7. The equation of equilibrium for the stiffener becomes

dp
=4+ Aqg = 0 (69)

This equation corresponds to equation (8) of section I.

Development of Equation for Axiel Displacements

In the present analysis the equation will be derived only for the
axial displacement. Equations for the other functions may be readily
derived. Substituting equations (68) into equation (69) gives the
following equation relating the displacements.
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2
aw oy
Ea Ez?i + GAJ(BkAkwj) + GAJ<tk éz_) =0 (70)

This equation corresponds to equation (9a). The second term in this
equation is a second-order difference quantity.

Before eliminating the tengential displacement it is necessary to
introduce the definition of the principal shear axes and the associated
section properties. The principal shear axes are located by the condi-
tion that the following three summations must vanish:

E;:'tkrELk cos oy = O (T1=)
j;:jtkrELk sin o =0 (T1p)

}Z:jtkLk cos ap sin aqp = 0 (T1c)
k

The associated section properties are as follows:

Ic = ; kK (T22)

Ag = zz::tkLk cosamk (72b)
i

A, = ; t, I sinea,k (‘72¢)

Convenlent methods for calculating these section properties are given
in appendix C.

Corresponding to equation (17) of section I the tangential displace-
ment of all points on the kth web 1s related to the cross-sectlonal
displacements by the formula
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b = Ty + u cos ay + v sin oy (73)

The section torque and shears bave been expressed in terms of the shear
flows by equations (64). If equation (68b) for the shear flow 1s sub-
atituted into equations (6h4), the following eguations are obtained:

3
G;tkrﬁwj+G2kjtkrkLk5;§E=T

ot
¢St cos algry + G D by cos G 525 = B
K K

o
GZtksinakAkwa+GZ il sinak5;]5=v
E X

Substituting equation (73) and omitting those summations which vanish
according to equations (71), the above equations become /

GZtKrkAka+G%ZWk2=T
3 ' K

i
e}

thkcos a_KAKwJ-%G%Z‘};tkLk cosEQr.K

]

Gz:tksinakAka+G%YZ—§ tklrksingak v
k k

Introducing the section properties as defined by equations (72) glves,
after rearranging terms,

. = -

1
T T L e (The)

v 1
%= -GKI; - KE zk: Ty CO8 aylyWy (Thb)

e e ——
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v _ vV _ 1
o . T AV By sin oyywry (The)

These equations were given by Drymael (reference 8).

The required formula for § which will permit its elimination
from equation (70) may now be obtained by differentiating equeation (73)
with respect to 2z and then substituting equations (T4).

13 T, H cos a V sin «
k k k k k
3z "Gt T T eam Ghy T. E;Z‘tkrkﬁkwj -
cos oy sin mk

Z ty, cos akakwj - Z ty sin akAij
k

This formule mey be substituted into equation (70) 40 obtain the
following equation governing LEE
dzw

ag(Pdigrs) + G a3 5—2‘1 - %; AjPric g PRV A’lgAapmc g i

VA

1 T -H )
K;I‘ Aijkg kaAkwj = -a]—:c—:' Ajka - EA—H- Aijk - EAJQVK (75)

In equation (75) the flow-type quantities oo P @nd  py, bave
been introduced in accord with the following definitions:

e = BTy | (76a)
=t cos a (76b)
Py = by Bim o (76c)

Equation (75), which is for arbitrary cross sections, may be
replaced by simplified groups of equations for sections having single
or double symmetry Jjust as in section I.

In section I an integration by parts was introduced after the
varigbles had been separated. This integration by parts could have
been introduced earlier in the original partial. integrodifferential
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equation but there was no apparent reason for so doing. In the present
case an appreciable simplification of the form of the equation may be
obtained by performing a summation by parts ( corresponding to an
integration by parts) providing one simultaneously introduces new
symbols for such geometric differences as Ajpfk' Consequently the

followling definitions are introduced:

Ty = Agemc = & (b (77e)
TR} = AP = Ay (tk cos “k) (77D)
7Vj = A,ijk = A,j(tk sin a.k) (T7¢)

Convenient methods for computing these geometric discontimuities are
given in appendix D. . The operation of summation by parts may now be
performed on the summations which occur in equation (75) to obtain the
following formulas:

kZQTkAkwj - JZVJAJQE; = - JZ YTV (78e)

Z; ey = 2 Ve = L gy (780)

]

? Py = - JZ“JAJ% = - JZ Ty (78c)

The validity of the above summations by parts is demonstrated in
appendix E. Equation (75) way now be written 1n the following form:
2
aw 7, 7 7
E J TJ Hj Vi
A W, +5a + + — + W, =
1B Y T I JZ”BJ"J Ax jZ ¥y * By JZ-_ Vi

T H Vv
oG Ypy - e THy - @y 3 (79)
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Simplifications Due to Symmetry of Cross Sectlion

The arguments which permit the replacement of the general equation
for axlal displacements by groups of simplified equations are identicelly
the same as those used In section I. Hence it 1s not necessary to
repeat the arguments but merely to state the equations. In the case of
a cross pection having double symmetry the four comporents of axial
displacement are governed by the followlng four equations:

2
B dw
AJ(BkAka) +3 83 ——ldza =0 (802)
E T
25(Pitay) + G 83 dza fjl TT3¥y = GT 71 (80b)
g & dwy 7m
8y (Pibicty) +§ 25 5 * A E; Ty = g 7ay (80c)
d2

7
Ay (ﬁkaﬂwj) + S K?‘ ; TWi¥y = -ET{—V- 3 (804)

In the case of a cross section which 1s symmetrical about the
x-axis the two components of displacement are governed by the following
two equations:

2
dw 7
E J .2 1
Aﬁ(BkAij) 32y = + o :%::753“5 = “Gag 753 (81a)
g, O oy A7)
2g(Ptey) * G % TRt %: T3V * R ; 7y =
I v (81b)
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In the case of a cross section which is symmetrical about the y-axis
the two components of displacement are governed by the followlng two

equations:

d'w 7T
Aj(BkAkwj) g a, dz j Z ps¥s EH g Tagiy =

T H
@I, 'ry T GAg THj (82v)

Solution of Homogeneous Equation

The solution of the nonhomogeneous problem may again be expressed
in terms of the natural displacement modes which arise from the homo-
geneous equation after a separation of the variables. The axial dis-
placement may be assumed as the product of a function of J by a
function of z.

Wy = fjg(z) (83)

For convenience the doubly symmetrical cross section will be considered
with torsional loading (the antisymmetrical modes). The homogeneous
equation is obtained from equation (80b) by setting the right-hand side
equal to zero.

2
ay(Bds) + G o ZZZ * 7T Z regvy = (84)

If equation (83) is substituted into equation (84), the variables
may be separated in the same manner as explained in section I. The
spanwise and transverse distributions are found to be governed by the
following two equations:

)
%g -vPg =0 (852)
Z

2 L] -
AJ(BkAk:Efj) + Va4 T ;yTJfJ =0 (85D)



NACA TN 2529 k9

where pe = l;g. Unfortunately the method of solution for the stress
modes which was used in gection I 1s not particularly convenient here.
The solution of equation (85b) may be obtained by several different
methods. Equation (85b) involves only one independent varieble. In
such cages, ag has been previously noted, the use of genéralized differ-
ences offers no assistance in the solution of the problem although they
do permit the writing of the equation in a condensed form.

In order to solve equation (85b) it is necessary to recognize that
it represents a homogeneous system of linear algebraic equations which
must be solved simultaneously. For simple cross sections having only a
few stiffeners the equations may be solved by direct algebraic methods.
For sectlons having a large number of stiffeners numerical methods of
solution must be employed. In order to proceed to the solution of the
original nonhomogeneous problem, it will be assumed that the patural
stress modes have been computed.

The equations which govern the stress modes for other types of
loading and symmetry conditions will now be stated briefly. For a bean
with a doubly symmetrical cross section acted upon by horizontal loads,
the stress modes are symmetrical about the x-axis and are governed by
the following equation:

Ui

A4 (BAT) +7\.afj +E1§5:733f3 =0 (86a)

For a beam with a doubly symmetrical cross section acted upon by verti-
cal loads, the stress modes are gsymmetrical about the y-axis and are
governed by the following equation:

[ by(BuEy) + Aayty + A Z ity = (86b)

If the cross section of the beam has single symmetry about the
x-axis, the symmetrical modes are governed by equation (86a) while
antigymmetrical modes are governed by the following equation:

7 y
AyPy) + 7oty %: Mgty tw o gy =0 (0T

When the cross section of the beam has single symmetry about the y-axis,
the symmetrical modes are governed by equation (86b) and the
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antisymmetrical modes are governed by the following equation:

(BkAkf)+kaf + ZTJJ Zyﬂjj_o (87Db)

If the cross section is completely unsymmetrical the stress modes are
governed by the following equation:

2 7T 7" Ty
(88)

Solution of Nonhomogeneous Equation

Before solving the nonhomogeneous equation it is necessary to prove
the orthogonality of the stress modes and to introduce a law of normali-
zation as in section I. Since the proof of orthogonality follows the
same method used in section I it will be omitted. The condition of
orthogonality and law of normalization may be stated in one equation
by using a Kronecker delta.

g ajf,jmfjn =8 (89a)
where
1, m=n
Bum = (89b)
0, m 74 n

In equation (89s) f,jm and fjn are the mth and nth modes, respectively.
Equation (85b) may be written for the nth mode to obtain

2
Aj(BkAkfj) + 2 ajfjn + 5:1 Cppy = O (90=)

where

Cpp = %: Y13%3n (90b)
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Multiplying through equation (90a) by fjm. end summing over all
stiffener areas give, after introducing equations (89),

C.C
;fmAj (Biiews) + 2 = oy, (91)

Equations (89) and (91) may now be employed in solving the nonhomogeneous
equation.

A beam having a crogs gection with double symmetry and acted upon

by torsional loading will again be considered. The exial displacement
may be assumed to be given by a finite serles as follows:

Substituting this formula into equation (80b) gives, after interchangling
the order of summation in the third term,

E, 7_131 =
ZSA BkAkf,j ) 3 j jn = Z RN AT (93)

Equation (93) must now be multiplied through by £ and summed
over all stiffeners. Reversing the order of summation n the first two
terms gives ’

Z Z &nf g (Pliclyn) + +g Z Z

C

i N
Ic Tnfn = “GI; “Tm

ajfjmfjn +

Introducing equations (89) and rearranging terms gives

2
E d8gy CopCrn
15 e[ - 3]

Substituting equation (91) and changing the subscripts m to n give
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or . (9ka)

2
dz2 Yo &n EIc

-~

Equation (94e), with the end conditions, gives the spanwise distribu-
tion of each stress mode and thus completes the solution for the
displacements.

Similar equations may be developed for the spanwise distribution
of stress modes with other types of loading and symmetry conditions.
Since the mathematical method of development of the equations is the
same in all cases, the equations will be merely steted without proof.
For a doubly symmetrical section subjected to horizontal loading the
stress modes are det«rmined by

2 .
d g, o) Contl
- = (9kv)
dz2 "n ®n EAH

where

Can = j%: 785% in (9kc)

For a doubly symmetrical section subjJected to vertical loading the
stress modes are determined by,

/

2
d gy 2 ' CynV
- S (9ka)
d22 "o &n EAV
where
Cyy = Z;yvjfjn (Ske)

When a cross section has single symmetry about the x-axis, the
symmetrical stress modes are governed by equation (9Ub) while the
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antisymmetrical modes are governed by the equation

2

e Co T Cy V
2 Tn Vn
2 Mg T UET_ O ERy (9k1)

If the section has single symmetry about the y-axis, the gymmetrical
modes are governed by equation (94d4) while the antisymmetrical modes
are governed by the equation

2
az2 0 ®n T TEIC T EA

When the cross section 1s completely unsymmetrical, the stress modes
are governed by the followlng equation:

2
d gn - una = _CTHT - CHDH - CVnV ‘ ( 9’-!-]’1)
az2 &n EI, EAg EAy ’

A convenient method for calculating the section constants Cgp,, Cgp,
and Cy, 1s given in appendix D.

Evaluation of Difference Term

In each of the equations for transverse stress, or displacement,
modes there appears a difference term of second order. This term must
be expressed in algebrdic form before the stress modes can be determined.
The difference term has the form Aﬂ(BkAkfj). In converting this dif-
ference quantity to algebraic form it is necessary to express all sub-
scripts in terms of stiffener numbers. The subscripts referring to
webs must be eliminated.

In figure 4(b) there is shown a segment of an idealized stiffened
section in which web a and web b are connected to the jth stiffener.

The first-order difference quantity Akfj is expressed, over web a,
in the following manner:

() =25 502

The quantity Bk@kfj becomes, for web &,

(5kﬁkf3)k=a = B3(3-1) (%5 - %3-1)
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For web b this quantity becomes
(But3) oy, = Pa(aw1) (T2 - £

In the above equations it should be noted that the single subscript on
the relative warping stiffness £ has been replaced by a double sub-
script corresponding to the stiffeners at either end of the particular

web belng considered.

The second-order difference quantity mey now be expressed in the
following algebraic form:

25(Bituty) = (Budaty) oy - (Pita) s
= B3(3+1) T30 - (238)%5 + B3(3-1)%5-1 (95a)
where
Z38 = By(5-1) * Py(g+1) (950)

The quantity XsB 1s the sum of the relative warping stiffnesses of
the webs which connect to the Jth stiffener.

It may be of some interest to note the algebraic form of the dif-
ference term when more than two webs connect to the stiffener as may
occur in multicell sections. In figure 6 there are three webs connected
to the jth stiffener. The agsumed positive directions for all flow-
type quantities are indicated on the webg. The difference term, for
this case, becomes

% (BkAKfJ) - (BkAka)k=b ) (BkAkfvj>k=a ) (BkAka) k=c

Pimfm + Bj(g+1)T341 - (sz)fj + By(3-1)f3-1  (96a)
where

%8 = Byjo1) * By(3+1) * Pm (96b)

Modified Stiffnesses for Symmetrical Cross Sections

In any idealized stiffened cross section the number of stress modes
will be equal to the number of stiffeners. For a section with n stif-
feners there will be three primary planar modes and n - 3 secondary
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self-equilibrating modes. For an unsymmetrical section equation (88)
corresponds to n linear algebraic equations which may be solved to
obtain the stress modes. If a cross section has an axlis of symmetry,
the symmetrical and antisymmetrical modes may be computed from two
independent smaller systems of equations. The conditions of symmetry
may be conveniently incorporated into the equations by using modified
stiffness values for webs or stiffeners which lie on an axis of
gymmetry.

As an example a section may be considered which is symmetrical
about the y-axis and which has a web on the y-axis as shown in figure 8.
The symmetrical modes are governed by equation (86b) which may be
written for every stiffener in the cross section. However, it is only
necesgsary to write this equation for the stiffeners on one side of the
axls of symmetry. For a symmetrical mode the axial displacements will
be uniform over the central web as shown in figure 8(a). The axial dis-
plecement and normal stress will be the same in stiffeners 3 and L,

If equation (86b) is written for stiffener 3, and equation (95a) is
substituted, the following equation may be obtained:

7
-B3Ty + (3B)f3 - B3afa - 1% %: rvify = ACagty (97)

Assuming that a system of equations would be formed for all stiffeners
on the right side of the axis of symmetry, it becomes essential to
eliminate f) from equation (97). Since f) 1s equal to f3 it may

be replaced by f3 to obtain
7.
2
B3af3 - B3pfp - ;73‘ A?Vvafa = M agfy (98a)

slnce

Equation (98a) could have been written immediately by omitting the term
containing the stress value on the left side of the axis and assuming
the warping stiffness of web 34 to be zero as shown on the right-hand
gide of figure 8(a).

In & similar manner the antisymmetrical mode may be considered as
illustrated in figure 8(b). In this case it is found that the standard
gptiffness value must be multiplied by a factor of 2 as Indicated on the
right-hand side of figure 8(b).
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The cross sections may have a stiffener on the axis of symmetry as
shown in figure 9. The equetion which is associated with this stiffener
may be formed, for the symmetrical mode, by multiplying the stiffener
area by one-half as shown in figure 9(a) and omitting the term con-
taining the stress in the stiffener on the left side of the axis. If
there i1s a geometric discontinulty at this stiffener a factor of one-
half must be applied to this quantity. If there is an internal web
lying on the axis its stiffness must be multiplied by one-half.
Although the use of modified stiffnesses does provide some convenience,
the advantage of their use is not large since the symmetry conditions
are easy to apply. For a section with double symmetry it is only neces-
gary to consider the material of the cross section that is contained
within the first quadrant.

Algebralc Equations for Stress Modes in a Doubly’Symmetrical Section

The bending and torsion modes for a doubly symmetrical section are
governed by equations (85b), (86a), and (86b). An equation for the
doubly symmetrical modes, which are due to axial force, may be obtained
from equation (80a) by a separation of the variables. An algebraic
form of the equations for the stress modes may be obtained by replacing
the second-order difference term by its algebreic equivalent asg given

by equations (95) or (96).

For purposes of illustration a single-cell section may be con-
sidered in which each stiffener will be connected to two webs. Typical
equations for the jth stiffener in each stress mode appear as follows:

' 2
By(g) T + (B8 - ap®)ey - By(g1)Tya = O (992)
2 T
Pa(s) T+ (ZIIB - ap®)ey - By(3)£ + T z? rpgfy =0 (990)
- a2, - 78j _
Bi(seny Ty * (zja a )fj By(3-1)%-1 * Bg ;@mfJ =0 (99%)
2 Ty
'Bj(,j+l)fj+l + (ZJB - aj)-. )fj - BJ(J-l)fj-l + K;I-‘i jZ?’vaJ =0 (99(1)
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Each of the above equations is a typical equation of a system of equa-
tions governing a particular type of mode. The number of equations in
each system depends upon the number of stiffeners in the first quadrant
having finite values of stress. The process of formation of similar
equations for sections having single symmetry or without symmetry is
obvious. Examples of the application of these equations to specific
cross sections are given in a subsequent section.

Matrix Forms of Equations for Stress Modes

The stress modes for an unsymmetricel section are governed by
equation (88). In order to express the corresponding system of algebraic
equations it is convenient to introduce the notation of matrix algebra.
In order to make clear the meaning of each matrix symbol it is desirable
to show the matrices in expanded form. In order to avoid the necessity
of wrlting out large metrices the expanded matrices will be written for
an unsymmetrical four-flange section. The contracted matrix equations,
however, will have complete generality.

Before writing the equations it is useful to note that the summa-
tions which occur in equation (88) may be expressed as scalar products
of vectors. If [f] indicates & column matrix, or column vector,
then [f]' will Indicate a row matrix or row vector. The prime is used
to indicate the transpose of a matrix. If [f] is a vector of stress-
mode ordinates, then [f] and [f] for a four-flange section are
given in expanded form as

[2] = , [f:" . El £, f3 fﬂ (100)

Vectors of the geometric discontinulties associated with the flanges
are defined by

zﬂ = ET]. Tro 7p3 Tmb (101a)
R | e
m| = [7111 B2 73 7HY] (101v)
£ N I T T (101c)
|’V ] l:v1 v2 V3 vk
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The summations which are contained in equation (88) may now be expressed
by the following scalar products: |

=)

[N

o
]

[ ] ' [£] (1028)

m\z
<
H
()
!

= [7H]' [£] (102b)

1
>_ 7%y = [l [2] (102¢)
Equetion (88) mey now be written in the following form:

By (Bitacty) + Aoayry + ;—?ET]’[_{'] + Z—E'il:yﬁ:['[f]+ g;i[yvj' [£]=0 (103)

Substituting equation (95a) and transposing the term containing X2

gives

7 ;
Ba(s+0)Tse * (EP) Ty - By(3-1)%5-1 - 1—?@] [£]-

i ] [F] - 2T ] - ot a0h

In this eguation the coefficients of the first three terms are
warping stiffnesses. These coefficients, for a four-flenge beam, mey
be arranged to form the following matrix:

=8 B O -B1 |
By IR “Bo3 0

[2]- o B I by (105)
Py © Py P




NACA TN 2529 59

The rows of this matrix contain the warping stiffnesses as they would
appear in the four algebraic equations for the stress modes. It may
also be noted that the subscripts correspond to the position of the
element in the matrix. This will be true for any cross section. The
diagonal element of the Jth row is the sum of the stiffnesses of all
webs which connect to the Jth stiffener. The nondiagonal nonzero
elements of the jth row are the individual stiffnesses of the webs con-
necting to the jth stiffener. From these considerations it is seen
that this matrix.can be easily formed for any cross section from the
web dimensions.

On the right-hand slde of equation (104) there appears the gtif-
fener area. These areas may be formed into the following diagonal
matrix:

a1 0 0 0 |
0 a 0 0
[A] = 2 (106)
0 0] a3 0
B 0 0] a8 _I_I'J

Using the definitions of equations (105) and (106), the system of equa-

tions, corresponding to equation (104), may be written in the following
matrix form:

Elle] - 2xlon] bnl Te] - sl D] T2 - &5 ol o] ] - 7]
(107)

When a column vector is premultiplied by a row vector the result is
a scalar number. Hence the product may be sald to be a scalar multipli-
cation. Examples of such products are given in equations (102). In
equation (107) 1t is seen that there are three terms in which column
vectors of geometric discontinuities are postmultiplied by row vectors
of the same geometric quantities. When a column vector is postmultiplied
by & row vector the result 1s a gquare matrix and the product may be
called a matrix product of two vectors. It is convenient to introduce
matrix symbols for these products as follows:

I:PT] N Eﬂ Eﬂ (108a)
EH] i [71;] I?H]' .‘~(108b)
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(108c)

In expanded form these matrices appear as follows for & four-flange

‘beam:

[%] -

[r] -

"o %

71772

2
Tqpo

Yo 770

"m w2
2
l: 7

ZH37H2

7V37V2

7vl+7v2

- 773

Tpo?r3

73

Tvo'y3
2

s

Ty’v3

Tp1 7y

TpoTpy
(109a)
Tp37qy
2
Ty

"m7as

THoHY : )
109b

Ta37my

vy
T2y
(109¢c)
T3y

2
Tyy

p—

The formation of these matrices 1s obvious by insﬁection since the
subscripts correspond to the position of the element in the matrix.
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Equation (107) may now be written in the following form:

FIET- 260 - AEIE - 5] - LR

The vector [f] may be factored out on the left-hand side to obtain

- AR ARE R

} The matrices within the braces may be combined to give this equation in
the form

[CI[£] = ATAJ[ £] (1108)

where

[41- 51 - 2] - 2] - ] (100

The matrices [A] and [C] are dependent solely upon the geometric
properties of the cross section. Convenlent methods for computing the
elements of [:Frj, E‘Hj, and LT‘V:I are shown in appendix C. The
only information that is required for the computation of these latter
matrices is the coordinates of the stiffeners with respect to the prin-
cipal shear axis. Thus the properties of the cross section which enter
into the matrices [C] and [A] are the areas of the stiffeners, the
coordinates of the stiffeners, and the warping stiffnesses of the webs.

A few comments concerning numerical methods of solution of equa-
tions (110) may be worth while. It would seem, by analogy with vibration
problems, that the method of matrix iteration could be applied after

multiplying through the equation by [A] 1. However, unfortunately, the
process proves to be divergent. If the matrices are reduced to eliminate
the planar modes, the iteration process will continue to be divergent.
There are several numerical methods which may be used to solve these
equations. However, a study of the relativé merits of such methods 1is
an extengive project in itself and will not be treated herein.

Equations governing the stress modes in sections having single or
double symmetry will now be congidered. From arguments similar to those
used to derive equetions (110), two matrix equations may be obtalined
for the symmetrical and antisymmetrical modes for a cross section which
1s symmetrical about the x-axis as follows:
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Cei 2] = ¥2l[z] (Symmetrical) (111e)
[ca][£] = ¥[&][£] (Antisymmetrical) (111p)

o) - 5] - & e
2] - 1 &iFa] - A )

If the cross section is symmetrical about the y-axls, equations (11lsa)
and (111b) may again be used with the following definitions of the

coefficient matrices:
o] - B ] (1120)

[c2]- [2] - %:Fa] - 2Fx] (1120)

If the cross section has double symmetry, there are four types of modes
as determined by the following matrix equations:

[CS:I EE'_—I -2 Elj”:f] (Symmetrical) (113a)

where

[ca][£] = 22 [a][z] (Antisymmetrical) (113b)
I:Cx:l EE’:[ = XzEx][f] (Symmetrical sbout x-axis) (113c)
[cil EIE’] = XEEA][:E] (Symmetrical sbout y-axis)  (113d)

where

[es] = [2] (113¢)
[¢a]=[®] - £ira] (113¢)

[ex]=[2]- &[] (113g)
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[ey] = [2]- AlT,E‘v:] (113h)

For simple cross sections algebraic solutions of equations (111), (112),
and (113) may be readily derived. A few examples are given in the
following section.

Examples of Stress Modes and Section Constants

A few simple examples will be solved for the stress modes and
section constants. Four rectangular sections, having various mumbers
of stiffeners, and also a trapezoidal section, will be considered. The
rectangular sections will have double symmetry while the trapezoidal
section will have slngle symmetry.

N .

Four-flange section with double symmetry.- The dimensions-of the
section are indicated in.figure 10(a) and the web stiffnesses are shown
in figure 10(b). Since the section is doubly symmetrical it is only
necessary to consider the first quadrant with modified stiffnesses as
shown in figure 10(c). In the case of a four-flange section there are
three planar modes and one secondary mode. The secondary mode 1s gov-
erned by equation (99b) which takes the following form:

by,

TL 2 .

(Z‘.]_B)fl - Tc-—('yTlfl) = Vaf (114)
The coefficient of the first term 1s given by

Z.B = e(sh + Bb) , (115)
The geometric discontinuity is given by (see appendix D)
7p1 = O (AkPy)
= 2Py - hpPp = %(Bb - By) (116)

The central moment of inertia is given by (see appendix C)

P2
o Tefncfnen o
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Inspection of equation (11L4) shows that the stress fy is arbi-
trary. Its value must be determined by the normalizing condition as
expressed by equations (89). The following formula is obtained:

£y = (118)

§||H
2]

The remaining stresses are obvious from the conditlions of symmetry. The
only remaining unknown in equetion (114) is the characteristic number M.
Substituting equations (115), (116), and (117) into equation (114) leads
to the followling formula for A-:

2 _ PPy
2(Pp *+ Pp)

This formule was originally given by Grzedzielski (reference 2).

(119)

In order to determine the spanwise variation of the stress mode it
is necessary to determine the section constant Cp. This constant is
given by the followling formula:

Cp = 2;:7ijd

24

= by £ = e (5 - Py) (120)
8

It is also of interest to note the following section properties which
are obvious in this case:

Aq

2bty,
Ay = 2hty

Six-flange section with double symmetry.- This section is illus-
trated in figure 11. There are six stress modes of which three are
primary and three are secondary. The doubly symmetrical modes wlll be
first considered. Only the first quadrant, as shown in figure 11(b),
need be considered with modified stiffnesses as shown. Corresponding
to equation (99e) two equations may be written as follows:

(B12 - a2 ) - Byofp = O (122a)

(121)
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82 2

The determinant of the coefficients must veanish.

(312 - a1>‘2) -B1o
’ ' =0 (123)

-B1o (Bl2 . % )‘2)

Since the primary planar mode has the characteristic value A = O,
the expansion of the above determinant must lead to an equation which
is linear in A°. This equation may be immediately solved to give

2 1 2
2° = Blz(a—l + 55) (124)

The determination of the secondery stress mode consists merely of

solving for fa in terms of fl. This may be done by substituting

equation (124) into equation (122a) or (122b). It may also be done by
using the orthogonelity condition between the primary and secondary
modes. After normslization the stresses thus obtained are

2

1 a
P, o= — == (1253)
LV
2a.
1 1
P = e——] —= (125b)
27 Y B2

Four stress modes remain to be determined. There will be one
doubly antisymmetrical mode. In this mode the stresses in stiffeners 2
and 5 will be zero. The section will thus behave as & four-flange sec-
tion under torsional loading and the formulas which have been previously
glven may be used to determine this mode. If the beam 1s subJected to
horizontal bending there will be one planar mode which mey be computed
from the flexure formula.

Under the actlon of vertical bending two stress modes will arise.
These modes will be symmetrical about the y-axlis and antisymmetrical
about the x-axis. The essential stiffnesses are shown in figure 11(c).
The stresses are governed by the following two equations:
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2
by
V1
(Z18)£1 - Biofs - Ay TL- 2a1 ) (126a)
2 a,
-B1ofy + Biofp = 2 = fp (126b)

When these equations are solved the normalized values of f7 and fo
for the secondary mode are fognd to be the same as given by equa-
tions (125). The value of A“ for the secondary mode is given by
equation (124). In order to calculate the spanwise variation of the
secondary mode it is necessary to determine the section constant Cyo-

Using equation (9Le) this constant is found to have the value

CV2='\]'A—B éa_l

Six-flange sections with double symmetry and two cells.- This cross
section is 1llustrated in figure 12. Tt differs from the previous cross
section by having an internal vertical shear web. It may be readily
determined from symmetry conditions that five of the six stress modes
for this section are identically the same as for the previous section.
The mode which is different is the secondary mode due to vertical
bending. Since the mathematical methods of solution are the same as
before, the final formulas will be stated without derivation for the
secondary vertical bending mode only.

(127)

The characteristic number 1s given by

o 1 lL7V12 2 7v22
Ay o Ly vl R iy v (128)

The stiffness quantities Z1B and ZoB are modified stiffness values
as shown in figure 12(c). They are given by the formulas

£,p

P12 * 2Byg

ZpB = Byp + Bos
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The norﬁalized formulas for the stresses are again given by equa-
tions (125). The section constant Cyp 1s given by

. > ap 2aq
Cve =-K;<2’°16J@ - tes\/g) (129)

Eight-flange section with double symmetry.- This cross section is
illustrated in figure 13{(a). There are two modes having each type of
symmetry. The stresses and characteristic number for the secondary mode
having double symmetry are obtained from equations (124) and (125) by

a

substituting ao for 52' The two doubly antisymmetrical modes are

governed by the following equations:

7
(Z18) %1 - $refe - I_zl ;}Z7T3fj = 2%y (130a)

» ,
By oty * @:eﬁ)fe = Ma,f, ‘ (130p)

The characteristic equation is as follows:

”7T12 2
b L S U P12
=0 (131)
e
-B1o (E oPo= agh )

Both modes arezsecondary and it is necessary to solve a quedratic
equation in A~. Consequently no simple formulas can be given for

these two modes.

In the case of verticel bending there is one primery mode and one
secondary mode. For this secondary mode the stresses and characteristic
numbers are again obtained from equations (12L) and (125) by substi-

' 2

tuting a, for 7. The assoclated section constant Cyo 1s given by
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— (132)

The equations which govern the horizontal bending modes are as follows:

TH1 2
(548) %y - Byofp - Ay ?7135’?3 =Aafy (133a)
2
Bipfy + (Z8) 8, = 278yt (133b)

The characteristic equation is linear in X2 and leads immediately to
the following formula:

by 2
2 _ 1 H1 1 13
> =a1631‘3‘ H)+a2>:2;3 (131

Orthogonality between the primary and secondary mode is expressed by
the following equation:

- lx f + 8 x2f =0

or

a1x1
fa = ’(%)fl

If the above formula is substituted into the normalizing equation, it
is found that the normalized stress formulas are as follows:

£, = —XE\I? (1352)
ﬁ; 1 ,

I b (135D)

f, = vﬁ?_
y
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The associated section constant CH2 is given by
btyoxs fE5
Cpo =- = o (136)

Trapezoidal section.- This section is assumed to have single sym-
metry as shown in figure 1k. The section properties Ag and Ay may

be immedistely determined to be as follows:

Ag = 29015 c052a12 : (137=2)

By = byl + tpglog + 2byplyy sin‘app (137p)

The remaining section properties camnnot be determined until the prin-
cipal shear axes are located. Because of symmetry it is only necessary
to locate the origin of the axes. This is determined from equa-

tion (71b). This equation provides the following formula for the
coordinate of the first flange:

X1 1

This formuls may be obtained immediately by direct substitution into the
formulas given by Kirste (reference 5), Drymael (reference 8), or Duberg
(reference 18). The radii to the wall segments and the geometric dis-
continuities may now be computed.

Two of the stress modes are symmetrical about the x-axis. These
are primary modes due to axial force and horizontal bending. The
remaining two modes are antisymmetrical about the x-axis. One of these
is a primary mode and the other a secondary mode. The antisymmetrical
modes are governed by the following equatiomns:

T 7Vl 2
(B18)1 - Profp - T g Tosts ~ & jZ Tyt =ty (1398)

T2 Ty2
‘512f1 + (Z2B)f2 - -I—c— g 7ijj - AT ‘J.L")’ijj = aglgfz (139b)
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The characteristic equation is linear in A.E and yields the following
formla:

2 2 2 2
o 1 2yr1” 21 15 2rr2”  2rve
> —a—1<le S el v = L e v (240)

In the above equation the summations Z‘.lB and 225 contain modified
stiffnesses as illustrated in figure 14(Db).

The stress values are most easily obtained from the orthogonality
condition which is expressed as follows:

8,¥,%y + 8yt = 0

or

21Y1
£, = -(a2y2)fl (141)

The normslizing condition then gives the following specific stress

formulas:
¥, a,
-2 ,/_2 (142a)
\/I_ ay
p.o

e (142b)

t, = \/,_

The section properties CV2 and CT2 are given by the formilas

7v1y2 \/_- Tyoyy \F ) (143a)
<7le2 \/_ Yoy \/‘ > (143Db)

Cyp =

<**1|“>

k’:
5
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where
Ty = by 8IR oy - by (1§3c)
Typ = ~tpg = t1p 8in a4y ' (1434)
71 = T1ob10 - Tty (143e)
Yoo = r23t23 - 5t (1437)

CONCLUDING REMARKS

A method of solution has been obtained for determining secondary
stresses in thin-walled beams of arbitrary cross section. Monocoque
sections with corners require additional conditions of continuity at
the corners and have not been considered. The introduction of general-
ized difference equations for the semimonocoque sections appears to
offer definite advantages and may prove to be useful in the analysis of
other types of structures. By using these difference equations the
analysis for stiffened beams can be carried out in a manner exactly
parallel to the method of analytic functions for a single-cell
unstiffened beam.

Future research study should consider elastic ribs for wings,
elastic stiffening rings for noncircular fuselages and the thick-
walled wing without ribs. It is possible that the natural stress modes
will be useful in such problems. An extension of the present theory to
swept beams is also a currently important problem. Although of lesser
practical importance, the effect of secondary stresses on vibration
frequencies may now be determined. Practical numerical methods of
computing the natural stress modes of stiffened sections should be
developed. A comparison of all available test data with accurate, as
well as approximate, solutions for secondary stresses would be of
considerable interest.

California Institute of Technology
Pasadena, Calif., Jamary 21, 1951
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APPENDIX A
DEFIECTIONS DUE TO PLANAR STRESS DISTRIBUTION

Equations (23) give the following relations between stresses and
deflections:

2
du
2 GAH E,A_Hyg‘tw cos a F ds (A1)
v Py
The flexure formula defines a planar distribution of stresses as follows:
X Y
P S i .4 (13)
5L L

It is necessary to express the centroldal coordinates X and ¥y
in equation (A3) in terms of the coordinates x and y with respect
to the principal shear axes. The relationship between the two coordi-
nate axes is shown in figure 15. From the geometry of this figure it
may be shown that the coordinates of a point are related by the
following equations:

X=X +xcos6 -ysinf (AL)

§=§o+xsin6+ycose (a5)

The differentials dx, dy, and ds are related to the angle «
by the following formulas:

= gin o
(A6)

BIf B&l&

= CO8

It is necessary to determine ao'/Bs to substitute into equa-
tions (Al) and (A2). Differentiating equation (A3) gives
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do My ax Mx gy
S T &'t a (A7)
v p'y
Differentiating equations (AL4) and (A5) gives
%:%cos@-%sih@ (A8)
dy dx a
%=§sme+£cose . (A9)
Substituting equations (A6) into equations (A8) and (A9) gives
dx
35 = o5 o cos 6 - sin a sin 6 (A10)
-g%_:cosa,sin6+sincncose (A11)

Substituting equations (A10) and (All) into equation (A7) gives
g—cl:liy-(cosacose - 8in a sin 6) -j-lﬁ(cosor,sin9+sincx,cos 6)
8, Iy Ix
(A12)

The integral contained in equation (Al) may now be evaluated as follows:

M
coscx,aads=—-3—r cos a{cos a cos 8 - sin a sin 6) ds +
%%

%\?gtw cos afcos a sin 6 + sin a cos 6) ds (A13)

Two of the four integrals on the right-hand side vanish because »of the
definition of the lqcation of the principal shear axes as expressed by
equation (15c). The integral tekes the following value:

ﬁgtw cos or,ggds =?AH cos 6 +I&AH sin 6 (A1k)
y x
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Similarly the integral in equation (A2) may be shown to have the
following value:

ﬁgtwsinms—ds_-hl%Avsin6+%Avcose (A15)

Equations (Al4) and (Al5) maey now be substituted into equa-
tions (Al) and (A2) to obtain the following formulas for deflections:

au Py M.y cos 6 Mx sin 6
az2  GAg ~ Bl T EL (A16)
dav Py My sin & M, cos @
2= GAV E'T, T TET (A17)

These equations are given in the text as equatioms (25).
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APPENDIX B

EFFECTS OF SYMMETRY OF CROSS SECTION

The axial displacements in an unsymmetrical cross section are
governed by equation (20a). From considerations of symmetry it is
possible to replace this equation by four equations of simpler form.

It is well-known that solutions to structural problems involving one
independent variable can be divided into symmetrical and antisymmetrical
parts when the structure is symmetrical. In the case of a beam with a
cross section having double symmetry, since the transverse distribution
of stresses or displacements on a cross section depends on two inde-
pendent variables, the solutions may be divided into four parts or com-
ponents. The four components of a function will be indicated, in the
present appendix only, by subscripts defined as follows:

a antisymmetrical about both axes
8 symmetrical about both axes

X symmetrical about x-axis

v symmetrical about y-axis

The stresses and displacements which occur on a cross section may
be expressed in terms of their components as follows:

g+ Tg ¥ Tx + %;}

0=0_+0_+0_+0
X v

a 8
> (B1)
§=§a+§s+§x+§y
'W’=W’a'+ws+W’X+W’y
W,

Three geometrical quantities r, cos a, and sin a, enter into the
enslysis. For a section with double symmetry these quantities have the
following symmetry properties:

r ——) Symmetrical gbout both axes

cos o —3 Symmetrical about y-axis

sin o —» Symmetrical about x-axis
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The symmetry properties of the derivatives of these geometric quantities
are readily seen to be as follows:

dr/ds —> Antisymmetrical about both axes
d cos a/ds —> Symmetrical about x-axis
d sin a/ds —> Symmetrical about y-axis

It 1s now necessary to determine the symmetry properties of the
second derivative of w with respect to s. The four components of
the second derivative may be indicated as follows:

% [Pw Q% % Q%
= (m)s * ('a'sf)x +(53) 22

2

ds v
If a function having double symmetry is differentiated once, a function
having double antisymmetry is produced, end vice versa. If a function
which is symmetrical about the x-axis is differentiated once, a function
is obtained which is symmetrical sbout the y-axis, and vice versa.
However, if a function has a particular type of symmetry, the second
derivative of the function will have the same type of symmetry. Con-

2
sequently the four components of g—g can be written in terms of the
8
four components of w as follows:
2 N
% _ 9 Ya <_5_21) _ 82wxs
3°)  ° %) 287
a 8
- (23)
% _ aawx Fw - azw}’
3s° ds” s 3%
X y
A

In addition it is necessary to consider the integrals which appear
in equation (20a). After an integration by parts the integrand of each
integral contains the product of a geometric property and the axial
displacement. The only component of the axial displacement which con-
tributes a finite quantity to the value of a given integral is that
component which has the seme symmetry as the geometric property
appearing in the integral. From this consideration the three integrals
are seen to have the following values:
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¥ o A
§V§“=ftﬁg§“
ow.
%twcosagds=j§twcosafds } (BY4)
W
ﬁg\twsinag%dsuﬁgtwsinayzds
7

It is now possible to consider the symmetry properties of each
term in equation (20a). The first two terms have four components as
defined by equations (B1), (B2), and (B3). Each of the remaining terms
has only one type of symmetry which may be determined from the symmetry
properties of the derivatives of the geometric properties of the cross
section. The sum of the terms on the left side of equation (20a)
having a particular type of symmetry must be equal to the term on the
right side having that same type of symmetry. This permits the writing
of four equations corresponding to the four types of symmetry as shown
below.

Symmetrical gbout both axes:

Bewg E' BQWS _o (25)
32 T @ 32 T

Antisymmetrical about both axes:

- ek R o 7 il o (26)
Os oz

Symmetrical about x-axis:

]

a%"x E! a%" 1 d ow. H d cos o
- s cna e g g (D
ds oz

Symmetrical about y-axis:

3w 3w oW, in
y, E'Zy_ldsina Y gg =4 ds8ina
.as_e.+—€-a?______.yg\twsinaa-s—ds_ a (BB)
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A corresponding set of four equations for normal stresses is readily
obtainable.

The displacement distribution governed by equation (B5) is due to
the action of an axial force only. Methods for the solution of this
elliptic equation are well-known. The problem is mathematically equiva-
lent to a flat rectangular plate with transverse stiffeners of infinite
stiffness and with sidesway prevented. Equations (B6), (B7), and (B8)
are given in the text as equations (27) with the subscripts omitted for
convenience. The subscripts which appear in equations (B5) to (B8)
show clearly the particular component of the displacement which is
associated with each type of external loading. From the differential
equations which relate T, o0, and & to w it is possible to deter-
mine which component of T, o, or £ occurs with a particular type of
loading on a beam with doubly symmetrical cross section.

When a cross section is symmetrical about one axis only, the solu-
tion for an unknown may be divided into symmetrical and antisymmetrical
parts only. For a cross section which is symmetrical about the x-axis
only, the geometrical properties of the cross section have the following
symmetry properties:

r —> Symmetrical about x-axis

cos o —>Antigymmetrical about x-axis

s8in o — Symmetrical about x-axis

dr/ds — Antisymmetrical sbout x-axis

d cos a/ds — Symmetrical sbout x-axis

d sin a/ds —> Antisymmetrical aebout x-axis

By using arguments similar to those used for the doubly symmetrical
section, it is found that equation (20a), for the general cross section,

separates into the following two equations for sections which are sym-
metrical about the x-axis:

b4 ldcosa, H 4 cos a

.|.__.___..-- ﬁg CO8 o Lds =y S SB a (B9)
32 O 3.2 b 5 Ghg ds
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0% oy gt Pvgy 1 ar Moy
5t T 7 "Ly W s
o8 Pe) c
T _d£ _ V ds8in o
GI, ds ~ GAy ds

In these equations the subscripts

antisymmetry, respectively, about the x-axis.

19

1l dsina

o om0
ds - gy s J twelno—5—ds =

(B10)

sx and ax dindicate symmetry and

Equations (B9) and (B10)

are given without subscripts as equations (29) in the text.

In a similar manner it may be shown that, for the case of a section
which is symmetrical about the y-axis, the general equation separates

into the following two equations:

3% ' %

agy %‘a;y-idsmasgtwsina Y s des(:;.-l;a. (B11)
B8 Z

3% w ow aw

ay E! ay 1l dr ay 1dcosa.

552 +?§e—-fgajgtwr%? S i s Pl cos @ gh ds =
T dr H d cos a

"GI, ds “GAy ds (312)

These equations are given without subscripts in the text as equations (30).
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APPENDIX C

SHEARTNG SECTION PROPERTIES FOR STIFFENED SECTIONS

Referring to figure 16(a), the kth web is shown to extend from
stiffener a to stiffener b. The length of this web Ii has a hori-
zontal component given by x, - x3,, or -Akxj and a vertical com-

ponent ¥ = Yg» OT Aky,j' The trigonometric functions of the
angle a; may thus be written as

" cos o = %;Akxj (c1)

sin oy = i LY 3 (c2)

The shear resistant areas are defined by equations (72b) and (T2c).
They may thus be computed from the following formulas:

Ag

2l oo’ = ) (ayxs) (c3)

Ay

thka sinoy, = ; (A_kyj)zﬁk (ck)

In order to develop a convenient formula for computing the central
moment of inertia it is necessary to define the "central area" which
may be associated with the kth web. The central area A4y 1s illustrated
in Pigure 16(b). It may be defined as the area of the triangle formed
by the kth web and the two radial lines drawn to the origin of the
principal shear axes from the ends of the kth web. The radius ry is
relgted to the coordinates of the stiffeners by the following equations:

Iy = Xg sin a - yg cos oy
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Substituting equations (C1l) and (C2) gives
Xa Ja
e = o A5 T T A

R -

=le( oTb = Ta¥e) (c5)

The area Ak may now be related to the coordinates of the stif-
feners by the following equations:

2h = Tyl = Xy - Vo5 (ce)
This formuls may be written as a determinant.
Xa Xb

2y = (c7)
Ya b

. The formila for the central moment of inertia is given by equation (728a)

and may now be computed from the following formula:

- g by Ly Ty = ‘%_ (2Ak)2ak (c8)
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APPENDIX D
GEOMETRIC DISCONTINUITIES OF CROSS SECTION

Reference may be made to figure 4(b) where the jth stiffener lies
between web a and web b, The geometric discontinuites, which are
defined at the stiffeners, are given by equations (77). The discon-
tinuity 7 3 is defined by

7m5 = O5Pm - Aj(tk cos ak) (p1)

This may be written as

7Hj=tbcosab-tacos o
Substituting equation (C1) gives
tb teg
7Hy = Ty (K1 - X)) - I (3 - %3-1)
= By(g+1)%ge1 - (Z5B)%5 + By(3-1)%3-1 (r2)

From equation (D2) it is seen that the column vector |:7H] as defined
by equation (101b) may be computed from the following matrix formula:

[7a] = -] ‘ (p3)

where

(] - [ - - - g

The matrix [B:] is defined for a four-flange section in equation (105).

Equation (D3) is also applicable to multicell sections. From similar
arguments the discontinuity Ty 5 is found to be given by the following

formmilsa:

Tyy = By(gen)¥aen (B58)95 * By(3-1)731 (k)
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The column vector Eyv:l is given by the equation

bl - 5] - w

[y]’ = ElyE T y];l

The discontimuity 7Tj is defined by the following formula:

Toy = Ajka = Aj(tkrk) (D6)

Introducing the central area A, gives

7oy = B3(2BAy) (D7)

The square matrices E"T], E'H], and E‘V] are most readily computed
from their definitions as given by equations (108) after the column

vectors E)’T], Eyﬂ__l, and EV:I have been computed.

The section constants Cgp,, Cg,, and Cy,, corresponding to the
nth stress mode, may be immediately computed from the formumlas

Q
B
|
~2
=}
<.
H
C
=}
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APPENDIX E
SUMMATION BY PARTS FOR STIFFENED SECTIONS

The summation by parts which is to be Jjustified is given by equa-
tions (78) and has the following form:

l; Py = _ijjAjpk (E1)

The proof will be given for a very simple multicell section. The sec-
tion to be considered is shown in figure 17. It has two cells and four
stiffeners. The webs and stiffeners are numbered and the positive
direction of flow-type quantities is shown.

The first summation of equation (E1l) may be expanded in the
following menner:

g pkAkwj = plAle + pzagwj + p3A3w,j + plLAhw,j + p5A5WJ =

pr(Wy - W) + Pa(Wp - Wy) + p3(W3 - Wp) + ey, - W3) + pg(vy - vy

The terms on the right-hand side may now be arranged in the following
manner:

4? ANy = (P - P+ p5) +Wp(ep - pg)

wa(P3 - oy - Ps) * w (ey = #) (22)

The summstion which occurs on the right-hand side of equation (E1)
may be expanded as follows:



NACA TN 2529 85

= WA 0 + Wolopr + W3l3p + WAL Pk

“[]
«
e
b

wy(pp = Py - P5) *¥p(Pg - pp) ¢
wg(ph + pg - p3) + wh(pl - qg (E3)

If equation (E2) is now compared with equation (E3), it is seen that
equation (E1) is valid. It is clear that the argument could be applied
to sections having any finite number of cells or stiffeners since no
new element would be brought into the problem by increasing the number
of cells or stiffeners.

»
A
-
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Figure 1.~ Coordinate sgS'fem.
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(a) Differential element.

t o, twds

(v+2T dg)t dzl o T 1, d
w dz|| T'waz

o 4 00
(Gii-az dz)+wds
(b) Axial forces.

tt,ds
ds

t,.,dz [

1 ostwds

———— V

. (¢) Tangential forces- (d) Normal forces.

Figure 2.- Forces acting on a wall element.
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y A
S, g=rep
< &
&/ <
, - x
(@) Due to rotation.
y i
¢
=== E=vsing
.
\4 \\\\
r NG
L
- X
(b) Due 1o vertical translation.
yi

(c) Due to horizontal 4ranslation

Figure 3.- Tangential displacements.
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~

Flange S'l'r*mger‘s

(a) True section.

J+!

.
) e—— —— J
4

(b) ldealized .section.

Figure 4.- ldealization of beam cross section.
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(@) Singulariﬂes .
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(b) Step function.
wl
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J
(c) Broken-line function.

Figure 5.~ Tgpical functions for idealized

sections.,
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Figure 6.- Shear flows at Jth stiffener.
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< dz -~
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Figure 7.—- Forces acting on a differential
len9+h of a stiffener.
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(a) Symmetrical case.

(b) Anﬁsgmme'l'rical case.

Figure 8.- Modified warping stiffness.
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3

1111}

T

(b) Antisymmetrical case.

Figure 9.- Stiffness modifications
for a central flange.
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Figure 10.- Four*flange section.
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y A yi

a B2 8, a CITA:Y
> ?""-)—_—_(') -

10 2036
- X - X

4

(b) Double (c) Single

(a) Stiffnesses. symmetry. symmetry

about g-axis .

Figure .- Six~f|ange section.
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Yy Y1 .
- 2s a, B 2 a, | Bz 3,
? ’-FE Z o 2 20
0 H - 16
(325 —x o ' -
4 5
(b) Double (c) Single
(a) Stiffnesses. symmetry. symmetry

about y-axis

Figune 12.- Six-f‘lange section with two cells.
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4
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LIL
(a) Stiffnesses. .
ya
0 a,. S 23 20,3 &, Lz 3y
——-0—0 O 1
1
2
19 -—xX @ne - X
(b) Double symmetry. (c) Double Antisymmetry

Figure 13.- Eigh'l'-flange section.
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(a) (b)

Figure l4—Tr~apezoidal section.
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Figur*e rlS.-Rela‘l'ive posi'ﬁons of coordinate axes.
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(a) Coordinates of web. (b) Central area.

Figure 16. - Geometric properties associated
with  Kkth web.
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Figure |7.-Elemen‘l'ar~5' section - with two cells.

NACA - Langley Fleld, Va.




