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SUMMARY

The spectrum concept ls employed to study the selective effect of
a stream contraction on the longitudinal and lateral turbulent velocity
fluctuations of the stream. By a consideration of the effect of the
stream contraction on a single plane sinusoidal disturbance wave,

- ‘mathematically not dissimilar to a triply-periodic disturbance treated

by G. I. Taylor, the effect on the spectrum tensor of the turbulence
and hence on the correlation tensor are determined. Lack of inter-
ference between waves follows from the postulation of a low .level of
turbulence; this and the assumption of an inviscid fluild imply neglect
of decay effects. The compressibility of the main stream is taken
into account, but the density fluctuations associated with the tur-
bulence is assumed to be negligible; this would be the case if the
turbulence originated from wakes and boundary layers in the very low
gpeed portion of the flow. For an-axisymmetric contraction and a
particular isotropic initial turbulence some . -explicit results are
obtained. The one~dimenslional longitudinal spectrum is found to be
distorted (as well as reduced in amplitude) with its peak shifted well
to the right of the initial position above the zero of the wave-number
scale. The selective effect of the contraction on the mean square
longitudinal and lateral components of turbulent velocity 1s found to
be given uniquely when the Initial turbulence is isotropic, regardless
of the details -of the apectrum. If the initial dpectrum is anisotropic,
as, for instance, that produced by a damping screen, then the selective
effect is altered.

In a crude extension, decay effects outside the scope of the '
theory are allowed for in first approximation. With this extension,
a comparison with experiment is made of the selective effect on tur-
bulent intensity where the estimated decay effects are comparable with
the contraction effects. The agreement is good for the longitudinal
component, very poor for the lateral component, the experimental data
themselves being in conflict.
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INTRODUCTION

The generation of a wind-tunnel flow is always accompanied by a
certain amount of turbulence; this is one respect in which the flow fails
to simulate free-flight conditions. Measurements in the tunnel, particu-
larly thosé sensitive to boundary-layer behavior, are known to be affected
by this turbulence. Accordingly, the tunnel designer attempts to reduce

_'the intensity to the lowest practicable level. The use of honeycombs and
damping screens in a large low-speed section (settling chamber) followed
by a sharp contraction to the much~higher-speed working section is known
to be effective. The honeycombs and screens located in a low-speed
gsection reduce the absolute level of the turbulence with little drag
penalty; then the relative level is greatly reduced by the large gain
in tunnel speed through the contraction, aside from any effect of the
contraction on the.absolute level, '

Once the characteristics of honeycombs and screens are known, the
further quantitative estimate of the reduction in turbulence involves a
knowledge of the effect of the tunnel contractionl on the turbulence.

It is known that the longitudinal component of the turbulence is greatly
reduced (in absolute value) by the contraction; the behavior of the
lateral component appears, on the other hand, to vary from no change to
a substantial increase. Prandtl (reference 1) obtained a quantitative
estimate of the first effect by considering the conservation of energy
for a perturbed longitudinal filament: if the initial stream speed

1s U, the filament speed U + u, with u<<U, and the final stream speed
1s 11U, then the final filament speed must be IU + 1-lu; that is, the
contraction reduces the longitudinal perturbation velocity u by the
factor 171, For the lateral effect, Prandtl applied conservation of
momentum to a small rotating cylinder of the fluid, with its axis

cross stream, as the fluid traversed the tunnel contraction. He con-
cluded that the lateral perturbation velocity v is increased by a

factor ~/7. )

Prandtl's considerations on the effect of a stream contraction
were limited, as has been noted, to particular idealized "eddies".
G. I. Taylor later (reference 2) attempted more realism by treating a
mathematically defined model of turbulence which amounted to vortices
in parallelepiped partitions arranged in a regular three-dimensional

lThe congiderations of this paper are not limited to & wind-tunnel
contraction: they may be applied to any stream tube of varying cross
gection large compared with the scale of the turbulence.
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array. The changes in vorticity on traversing the contraction were
determined from a theorem based on conservation of circulation for an
inviscid fluid; the corresponding altered turbulent velocity pattern

was then calculated. The final result of the analysis consisted in
expressions for the root mean square longitudinal and lateral turbulent
velocity components u' and v' downstream of the contraction expressed
ag ratios of the corresponding values upstream, '

The initial condition of isotropic turbulence (mean values unaffected
by rotation or reflection of axés) was approximated by specifying the
vortex partitions to be cubical., For this case the reduction in the
longitudinal component u' was found to vary more nearly like 1,5 1~
than the value 171 suggested by Prandtl., No explicit result was
found for the variation of the lateral component, however: the calcu-
lations contained a free parameter,

Taylor's results for the longitudinal component agreed fairly well
with the experimental data then available, but it is now considered that
the measurements were made too close behind the screens for the screen-
produced turbulence to have been isotropic. On theoretical grounds, the
objection to Taylor's theory is threefold: first, the decay processes
of turbulent mixing and viscous dissipation, which result in a reduction
of the mean intensity with axlal distance in the wind tunnel, are neg-
lected; second, the assumed model of turbulence fails to exhibit the
spatial and temporal randomness of actual turbulence; third, no choice
of the parameters in Taylor's model corresponds to 1sotr0py. In a sense
all three obJjections apply likewise to Prandtl's results: no model was
employed in his considerations, and hence no distinctions between the'
effects of isotropy and anisotropy were made.

The second and third objections can be removed by working, not with
a model of turbulence, but instead with a Fourier integral representation
of a random turbulent field. The integral represents a superposition of
plane transverse sinusoidal waves of all wave lengths and with apparently
random phases and planes of polarization. This aggregate of plane waves
constitutes the (three-dimensional) spectrum of the turbulence. Only the
statistical aspects of thisg gpectrum will be known, not, for example,
the detailed phase relationships. Mean square veloclty components may
be obtained by an integral of certain spectrum functions in which the
phase relationships are suppressed; these functions are included in
the "spectrum tensor"” (reference 3).

1Taylor's concepts may be applied to find the effect of a stream
contraction on a single plane wave. The effect under the assumptions -
is linear; therefore the superposition implied by the Fourier integral
may be employed to obtain the contraction effect on a field of turbu-
lence. In particular, if the initial spectrum tensor is known the final



4 ' ’ NACA TN 2606

gpectrum tensor 1s determined; the initial and final mean square velocity
components then result from quadratures. Indeed, from the same informa-
tion, changes due to the stream contraction in correlations of velocity
at different points may be calculated: use is made of the fact that the
correlation tensor is an inverse Fourier transform of the spectrum
tensor (reference 3).

Accordingly, the injection of the spectrum point of view into
Taylor's original concept of the contraction effect makes possible a
more realistic calculation of the changes in mean square velocity com-
ponents. In addition, it provides much more detalled information con-
cerning changes in the statistical properties of the turbulence; that
is, 1t provides the changes in the spectrum tensor and in the correla-
tion tensor.

The ideas Jjust outlined are developed in the present paper. The
first section ls devoted to an account of turbulent spectrum analysis
in a form specially adapted to the analysis of the contraction effect.
In this account, which is a generalization of a development in refer-
ence 4, the role of the spectrum tensor is subordinated to that of the
1nd1v1dual Fourier components (plane waves) in contradistinction to
the customary treatment. This approach has perhaps an auxlliary merit
in providing some better physical insight into the significance of the
spectrum tensor,

Next the effect of a stream contraction on a single plane wave is
calculated by an application of Taylor's concepts. The treatment is
slightly more general in that compressibility of the main stream is
allowed for. The density fluctuations assoclated with the turbulence
are assumed to be negligible; this would be the case 1f the turbulence
originated entirely from boundary layers and wakes in the very low
speed portion of the flow. Followlng Taylor, the problem is linearized
by postulating a sufficiently weak turbulence so that the self-distortion
of the turbulent eddies is small compared with the distortion imposed
by the contraction of the main stream; this together with the assumption
of an inviscid fluid implies neglect of the decay of the turbulence.

In succeeding sections the spectrum and correlation tensors down-
stream of the contraction are expressed in terms of the corresponding
initial tensors. For the special case of an axlsymmetric contraction
and isotropic initial turbulence the ratios of the root mean square
longitudinal and lateral velocity fluctuations downstream and upstream
are obtained explicitly in terms of the parameters defining the con-
traction. For a particular subcase where the initial isotroplc spectrum
tensor is gpecified, the corresponding ‘one-dimensional! spectrums (as
would be recorded- by stationary hot-wire probes) upstream and downstream
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of the contraction are calculated; the specification is such that the
upstream one-dimensional spectrum corresponds to experiment (refer-
ence 5) in a number of cases of isotropic turbulence.

Most of the calculated contraction effects are amenable to experi-
mental checks either directly or indirectly. The available experimental
data, however, are limited to the changes In the root mean square veloc-
ities. A comparison with these experimental data is given with an esti-

mated allowance for decay effects outside the scope of the theory. Design

curves of the changes in the root mean square velocity components neg-
lecting decay are included for engineering purposes.

SPECTRUM ANALYSIS

Representation of turbulence by superposition of plane sinusoidal
waves. - Suppose q7, d2, 43 represent the components of velocity in a

turbulent field; that is, qy, 45, and qz vary in an apparently random

manner in space and time, and the mean values d; = 33 =dz = 0. Sub-

ject to certain conditions, a snapshot of this field at any instant can
be represented as a set of three-dimensional Fourier integrals

4 i (klxl+k2x2 +k3X3 ) '
(X, %, X3) = Qq iy kg, Ig)e ak; dkpdks,

where o = 1, 2, or 3 and the significance of k,, kp, and kz will be

brought out later. A continuous representation of the turbulent field
is obtained by allowing the Qy to vary with time.

It will be convenient to abbreviate the Fourier integral to

' ikex
qa(gc_) = Qa(_lg)e - —d'f(_lg) (1a)

and to introduce the éompanion equation

Qg (k) = 80 fffqa(z)e—l—.éd’t(g) o (1v)
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where k =k, kp, kz; X = x), X3, X3; dv(x) = dx,d%,dxz. The second
equation allows, in principle at least, the coefficients Qajg) to be
calculated. Mathematically, qu(x) and Qg(k) are termed three-

dimensional Fourier transforms of each other; use will be made of this
relationship later.

The velocity components 4y &are connected by the condition of con-

tinuity. In many cases of practical interest these turbulent velocities
originate from boundary layers and the wakes of obstacles in flows of

- low subsonic speed, so that associated density fluctuations may be
ignored; this is still permissible when the turbulence so produced is
transported by a high-speed stream. Thus the incompressible form of

the continuity equation may be used ‘and the result is

Q’lkl + szz + Q5k3 =0

This relation may be written more compactly as
zngaka =0 (2)
o .

Physical interpretatlion. - The amplitude components Qa are com-

plex in general. According to equation (1b), then, the requirement that
the velocity components dy be real implies that Qa(TE) is the complex

conjugate of QOKE), If corresponding terms for k and -k 1in equa-
tion (la) are paired their sum is thus equal to the real quantity

2(Re Qy) cos (k'x) - 2(Im Q) sin (k-x) (3)

The imaginary parts.cancel in the palring, which implies that they con-
tribute nothing to the integral. Expression (3) represents a pair of
plane standing waves, a cosine wave and a sine wave, with normals in
the direction k = (kj, kp, kz), where x = (x7, xp, xz) is the radius
vector to any point., The vector k is termed the wave-number vector
and its magnitude k simply the wave number; the corresponding wave.
length is 2n divided by the wave number. Since k 1s perpendicular

to the wave front, it is sometimes referred to herein as the ‘wave
normal'. '

The cbntinuity condition, equation (2), states that both the real
part (Re Qy) and the imaginary part (Im Qy) of the amplitude vector

™) ™
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Q=Qy = (Ql, Qo QS) are perpendicular to the wave normal k; that is,
both waves of expression (3) are transverse. For each wave any one of
the parallel planes containing both the local velocity vector g and
the wave-number vector Xk (which is perpendicular to Q and hence to
q) is called the plane of polarization. The cosine wave (real part)

and sine wave (imaginary part) may be polarized in different planes in
general; the necessary and sufficient condition they be polarized in
the same plane. is that ‘

‘ Re Q) Re Qy Re Qg
e,  TmG, Wma (4)

Equations (1b) are now seen to represent a superposition of plane
sinusoidal waves (Fourier components) with all orientations of the wave-
fronts (all directions of the wave-normal k) and all wave lengths (all
wave numbers k). Each wave is transverse, “and all planes of polariza-
tion are permitted. For each value of k there exists a cosine wave
and a sine wave; thelr respective amplitudes and planes of polarization
are different in general. The complex amplitude components Qa(E)

express, in thelr real and imaginary parts, how the respective ampli-
tudes and planes of polarization vary with the wave-front orientation
and the wave number,

Mean values: the correlation tensor. - Consider the spatiall
mean value of the product of the yelocity component q, at x and the

velocity component qB' at x'=x+r as X varies but the separation

r of the two points remains fixed during the averaging process; this
mean value 1s called a veloclty correlation and is given the symbol
aﬁ(r) There are nine such correlations, corresponding to a =1, 2, 3,

=1, 2, 3. The form R ﬂ(r) has been shown to transform like a

second - order tensor and has been designated (sometimes divided by q2) .
as the "correlation tensor" (reference 6).

11f the statistical propertieg of the turbulence are independent of -
position (homogeneous turbulence) and time-independent, an average at a
given time over all space equals-an average at a given point (or pair of
correlated points) over all time; a proof is given in appendix B. If the
statistical properties vary slowly with time the space average will still
approximete a time average over an interval just long enough to smooth
out the fluctuations.
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form Faﬁ(E) defined by Batchelor (reference 3). as the Fourier transform
of Raﬁ(E)- The form FGB(E) is known as the spectrum tensor. The' .

Fourier transform relations connecting the spectrum tensor and the corre-
lation tensor are summarized as

Poplh) = L fff rep(£)0E e () (6a)
Rq,g(z) =MFUB(E)G-1£.£&T(E) (6b) |

By use of the Fourler transform relationship, Batchelor demonstrated
that Faﬁ is a second-order tensor and obtalned a number of its proper-

ties. Thus, for example, Ih@ 1s complex, in general, with TB aﬁ ’
and the diagonal elements TI,, are real; also, aﬁ('k) = rBa(k)

2378

It is of interest to observe that these same properties result immsdi-

ately from the identification of %i2,8: Qulp* with T ope Thus

QQg* 1is complex, in general; QpQy* equals [ngﬁ*j* and QQ.* 1s,

of course, real. Furthermore, since Qu(-k) = Qu*(k), Qq(- k)QB*(~k) _‘ -

equals Qaf(E)Qg(k); hence raﬁ(‘ﬁ) = FBQ‘E)

The distinction between cases where Fqﬁ is real and cases where

it is complex may be given a physical interpretation. The product
QGQB*, and correspondingly 'FGB’ is seen to be real when the condition

equation (4) is satisfied. This implies that the cosine wave and sine
wave associated with wave number k are polarized in the same plane.’
The alternative condition where QQQB*, and hence rdﬁ’ are complex

Implies polarization of corresponding cosine and sine waves in different
planes. The velocity pattern of such a pair of waves is quite inter-
esting: successive velocity .vectors along a line in the direction of
the wave normal Xk " turn progressively about this line in spiral fashion;

the tips of the vectors trace out a helical curve on & cylinder of oval
cross section. .

Energy spectral densit&. - Bach of the diagonal elements ISRY)
Fos, and Izz of the spectrum tensor Faﬁ may be interpreted as an
energy spectral density. Thus, according to equation (6b)
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311(0)'- ul kj()[\l"ll(k)d'r(k), therefore

the differential %Iildf(g) represents the contribution to the kinetic

energy component % u12 per unit mass made by waves with wave number

within the range dt(k).

One-dimensional spectrum. - The elements of the three-dimensional
spectrum tensor are not directly measurable; they may be obtained by
taking the Fourier transform of the measured correlation tensor. A hot-
wire probe placed in the moving stream will, however, develop a fluctu-
ating output voltage whose (one-dimensionals frequency spectrum (refer-
ence 7) is related to a dlagonal element of the three-dimensional spec-
trum tensor. Thus by equation (6b) the contribution to the mean square

- yelocity component a, 9.2 (= 0o(0)) from all waves with wave-number com- -

ponents in the dlrectlon of the x;-axis between lkﬂ and Ikll + ldkll

Fo(kq)dk) = 2(f ﬁmdkzdk3> dky (7).

the factor of 2 accounting for suppression of negative values of k.

is

The function Fa(kl) is the one-dimensional spectrum corresponding to

the velocity component gq.,; the values @ =1, 2, 3 correspond respec-

tively to the longitudinal and two lateral spectrums. The particular
spectrum obtained depends on the arrangement of the hot-wire probe
elements.

EFFECT OF STREAM CONTRACTION

1

Consider now that the turbulent velocity pattern qi, qz,'q3 is

carried along by an inviscid general stream with velocity U(xl) in the
xl-direction. Consider also that 47, 93, 4z 8&re 80 small that their

effect on the streamlines may be neglected as the flow traverses a wind-
tunnel contraction. The contraction will, however, distort the shape

of fluid elements. (See fig. 1l.) The vorticity distribution will be
forced to alter accordingly to conserve the circulation about each

‘element. The net result will be an altered attern of turbulence. Each

plane wave (Fourier component) Ql, Qz, Qse =X will, in fact, be
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altered independently under the linearizing assumption to be made; the
~over-all effect on a1, 92, 93 can be obtained by the summation expressed

by equation (1). It thus suffices to consider the effect of the contrac-
tion on a single representative plane wave.,

"Effect of Contraction on Representative Plane Wave.

Velocity and vorticlity at upstream station. - Designate by A a
reference station upstream of the contractlon and by B & reference
station downstream of the contraction. (See fig. 1l:) Iet a typical
Fourier component (plane wave) of the turbulent field g4 (a =1, 2, 3)

at station A be represented at time t = 0 by

Gg' = Ggletem) @

This wave, equation (8), is supposed to be carried along by the main
stream with velocity U,

The vorticity ®g, 1s obtained from the curl of equation (8) as

ﬁ;y :

. 0, if any pair of subscripts are equal
where Capy = 1, 1f apfy are in cyclic order
-1, if ofy are in anticyclic order

Distortion of a fluid element In passage through contraction. =
Suppose the contraction is such that the stream velocity U 1s increased
by a factor 1, Dbetween statlons A and B while the breadth and

height of the tunnel are reduced by factors 22 and - 23, respectiveiy.

(See fig. 1(a).) In traveling from A to B an initially cubical
element of fluid of edge D will be distorted into a parallelepiped of
edges 11D, 15D, 1zD (see fig. 1(b)); a particle in the element originally

(t = 0) a vector distance x from a corner particle will finally (t = t)
be found a distance § from the corner particle, where ¥ is related
to X by

23178
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&1 = 1x |
£y = Uxp } (10)
§3 = 13%3

o -

In this argument the modification of the streamlines due to the turbulent
velocity fluctuations has been neglected. This implies that the relative
displacement of two adjacent particles due to the superposed turbulent
motion is small compared with the displacement due to the tunnel contrac-
tion. This key assumption, due to Taylor (reference 2), linearizes and
vastly simplifies the problem. The limitations imposed by the asgsumption
are discussed later under '"Decay Considerations®. '

The velocity ratio 1; and the lateral and vertical comtraction
ratios l, and 13 are related by the continuity condition

0'21127,3 =1

where o 1is the ratio of stream densities at stations B and A; the
density is considered uniform at each station in accordance with the
initial assumption of negligible turbulent density fluctuations.

Vorticity at downstream station. - The vorticity is carried along
by the flow, the fluid elements undergoing the distortion pictured in
figure l(b), to the approximation used. During the motion the strength
changes in such_a way as to maintain the constancy of circulation of the
fluid elements.l The changes are expressed by the equations for the
transport of vorticity in the Lagrangian form, due to Cauchy (see

reference 8), 4
o B o EE:‘£ A %

o —

lmisg gtatement 1ls exact for the postulated invigcid fluid. The
modification produced by the diffusive effect of vlscosity, in the case
of a gas, becomes appreciable for the smaller eddies or higher wave
numbers; for this analysis a criterion for neglect of viscous effects is

vka<<,dU/de (See '"Decay Considerations”, equation (43).)
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where ¢ 1is the density ratio between stations B and A and the deriv-
atives o& /ax express the effect of the fluid dlstortlon.l Evaluation

by means of the distortion equations (10) yilelds simply

S = ole@e )
or, in expanded form o .
. B = o A
w” = olyay
- (11a)

~ C e~ A

B,° = o1,

~ B ~ A

w3 = 013m3

- These equations relating downstream and upstream vorticity embody the
entire dynamics of the contractlon effect. The equations are not limited
to the plane sinusoldal waves discussed earlier, but apply to any (weak)‘
vorticity distribution whatsoever.

The above derivation of the vorticity changes is substantially in
: the form given originally by G. I. Taylor (reference 2) for the case

= 1 (incompressible flow)., In order to assess the influence of the
simplifying agssumptions & more general derivation based on the Navier-
Stokes equations is glven in the section entitled "Decay Considerations”.

By virtue of equation (9) as applied to (lla) the vorticity at
gtation B 1is obtained explicitly as

aaaB = 1014 E sa,BkaQ elk'x (11b)

B,7

where, it will be remembered, x. is the radius vector to a fluid particle
at time t = 0 when the fluid “element is at station A in the moving
coordinate system of figure 1(b). The corresponding vector to the
particle at time +t = t, when the fluid element 1s at station B, is &
in that figure. When equatlons (10) are used to express x in terms

of &, the exponential. k.x becomes, in expanded form,

1These equations refer to axes moving with some fluid particle
rather than axes fixed ds in reference 8; the form of the equations is
unaffected.
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ki&y N koEo . k&3
1 17 i3

kex =

The right-hand side may be expressed as %-£, where

ky kp k3
TR

defines a new wave-number vectpr.

Velocity at downstream gtation, general case. - The velocity dis-
tribution whose curl in the &,, &5, £&; system is given by equation (11b)

and which satisfies continulty is found to be expressible in the form

io = G 6% (12)
with
- Q k ko | .
_Qo,B - Z g B o | (13)

where % 1is the magnitude of the wave-number vector x. Thié result
1s the general solution for the contraction effect on a single plane
wave.

Equations (12) and (13) admit of a simple (but not obvious)

-geometrical interpretation: traversal of the stream contraction alters

the initial plane wave, equation (8), so that its wave-number vector
| : ky kp ks
k = (li ko, k3) is transformed into X% =:7;3 353 7; and its amplitude

vector (QIA, QZA, ésA) is transformed into the projection of

.(QlA/zl, QZA/ZZ: QSA/ZS) on a plane normal to the new wave-number
vector X,

Velocity at downstream station, axisymmetric contraction. - In
cage the gtream contraction is axisymmetricl a considerable simplifica-
tion results. The condition for axisymetry I, = 1z, with use of the

continuity equation (2.2), reduces equations (13) to

lA contraction such that all cross sections of the tunnel are

- gimilar, whence 1, = 1z, 1s termed axisymmetric; the sections need not

be circular.

-~
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~ A
~ B Ql klz + kzz + k32

Q" = ’
Ll e 4 kp? 4 kgl )
. B Gqkkp (1-¢)
Q2B=z_l' 8" - %122 5 / (14)
2 B 51(1 +k2 +kf3‘ *
3B _ L [ga, Sakaks(-€)
3—22 3 ek2+k2+k2 J
- 1 2 3 _

where €= 122/112.

The considerably greater complexity of equation (13) is perhaps obscured
by the purposely expanded form of equation (14).

If the initial wave normal k 1s perpendicular to the (longitudinal)
x)-axis, the component k; vanishes and equations (14) reduce further to

cp =, ]

&P = &4y

QZB = dzA/Zz $ ‘ (15)
&P = &

The same equations result when 5,1A may be neglected in comparison with
QZA and QSA, “that is, when the amplitude vector is substantially normal

to the Scl—axis. Equations (15) state that an axisymmetric contraction

defined by 17, lp, alters these waves by a factor of +

1
1 .
in the longitudinal velocity component and a factor of 2—2 in the lateral

velocity components. These equations apply only to particular types of
waveg; yet when the contraction effect is later integrated over the random
aggregation of waves representing isotropic turbulence the over-all
results are found not to differ greatly from the simple factors

S and -.Z-l—-, respectively.
2

51

The same factors were obtained by Prandtl (reference 1) for other

gpecial disturbances: the factor Zi from energy considerations for
l .
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. 1
purely longitudinal disturbance velocities, and the factor N from momen-

2
tum considerations for a rotating cylindrical element of fluld with axis

~normal to the stream.

Effect of Contraction on Spectrum and Correlation Tensors

Effect of contraction on correlation tensor. - The analysis herein
leads first to the changes in'the spectrum tensor Tag (k)* Top (x)

Then the corresponding changes in the correlation tensor may be
obtained from the Fourier transform relationship, equation (6b):

Rog" (x) = f f ﬁaBA(k)e‘iE'Em(E) (168)
Rog® () fffr ()™ Tar (x) |
r ap (x)e ™= =dt (x) (16D)

In succeeding paragraphs TQBB(L) will be determined in terme of the

initial spectrum tensor FaﬁA(E) for various cases.

Spectrum tensors at upstream and downstream stations in terms of /
the Qqg. - In an earlier discussion the Fourier coefficients Qq, weref

chosen so as to define a field of turbulence confined to a large
paralleleplped of volume 7T, and vanishing everywhere outside; for this

cage iﬁf‘si QGQB was to be identified with the cOrrelation tensor

raﬁ' For station A upstream of the contraction it will be convenientA

to specialize this parallelepiped to a cube of edge D. Such a cube
will, however, be distorted into a parallelepiped of edges 11D, 15D,

1zD by the stream contraction by the time it reaches statlon B down~

stream. (See fig. 1(b).) The spectrum tensors for stations A and
B, respectively, are therefore ‘

Tagh(k) = Lin 8’3‘ A (K)eg (k)

(a7
Lim . 8n
11,1500 ¢

Tag® (%) Qe (0)Qg (x)
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Evaluation of spectrum tensor at downstream station, general case, =
‘I'he identifications made in the last paragraph allow the spectrum tensor
to be evaluated at station B in terms of the spectrum tensor at
station A and the parameters 1,, ls, lz defining the stream contrac-

tion between stations A and B. For a single plane wave QCLA ik x
which is transformed by the contraction into GGB = '\C‘).mBei1 §-, equa.-
tions (13) give !
2B L A E: %%éa
% =3 |
o
In the Fourier integral ﬁa 1s to be interpreted as d‘lor, » qa as
da P, QGA as Ad’l.'(k), and Q B as QPav (x). Accordingly
A
B bhilalz | a }E: Qalkgk
Q" = —5— Q- e i . (18)
a - 2 2
B Zﬁ x

since 1ylplz = d%(k)/av(x). Thus

B B* - 1%25%15° ot A% Al ikp QR QU kyke QR0 kykskakp
O R B 1 52 7 22 T 7 27 2y4
: 7,5 . 7 4 7 *®

The corresponding relation between the post-contraction and precontrac-
tion spectrum tensors is, by virtue of equations (17),

(19)
r.B(x) = hlels r A(k)b E (I“ay (k)kykp  Typ" ()kyka rysA(k)kykskzkg)
af =T dglg|Tad = T 2.2 7.2 55
a’B | 7,5 1y 1, % 1.%7-%%
where k is related to x by
ky, kp, k3 = 110, Ipxp, l3xz (20)

Special case: axisymmetric contraction but arbitrary initial
gpectrum. - When the contraction is axisymmetric (22 = 7,3) , the equation

of continuity in the form

2378
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Z kyl"ysA =0 (21)

7

7

may be used to simplify equation (19). The result may be written

’ y A2, . 2 |-
x) Tag (K) + 2 ? 7+ —
tol ek " + kp” + kg (Fklz + k7 + ksz)

where the ratio € = 122/212; for a large speed gain in the contraction
e <<1, . :

'Special cagse: axisymmetric contraction, isotropic initial spectrum. -

A further simplification occurs when the turbulence at station A is
igsotropic., In that case, the spectrum tensor TI' . sP(%x) downstream of
the contraction can be expressed explicitly to within an unknown multi-
plicative factor G(k). This results from the fact (reference 3) that

raﬁA(E) must then be an Zsotropic second-order tensor; the isotropic
property together with the continuity condition, equation (21), requires
rqu(E) to be of the form

'\F@BA(E) = G(k)(kzsaB - kcx,kﬁ). (23)
where
& . = l for a=28
af )0 for af B

The right-hand side of equation (22) may be evaluated by means of
equation (23). The diagonal terms reduce to relatively simple forms:

: 2 2 . 2).4 .
1 12 (k - k)k
r 0 = 22 a(x) 4 L ' (24)
.2 5 5 o\ 2 .
Ckl + kz +k3)

1

192,2 2k Y0 (1-0) 1Pl (8 - kpP) (1-6)2

+
2 2 2 2 2
2 ek]_ + kz + k3 (Cklz + kzz + ksz)
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and ISSB(E) is obtained from FZZB(E) by replacing k, by kz and

vice versa. The relation, equation (20), between k and x applies
here. )

One-dimensional longitudinal spectrums. - If the form of the initial
spectrum tensor T g5 (k) is known, the corresponding one-dimensional

spectrums Fa (kl) can be calculated, according to the defining equa-
tion (7) as applied at the upstream station A:

[e0]
o~
- 2
A A,
= ﬂI‘w (ky, kp, kz)dkodksz - (28)
-0
A particular case of isotropic turbulence is of special interest
(reference 4): 1in equation (23) for Tap (k) the function G(k) is
taken to be N(k2 + 92)73, where N,y are constants. Then
: N(k,2 + k
AL (12 + 152)
1" = 3
klz + k22 + k3 + 72) ' N

and after integration

A nlN
1 1 (klz + 72)

This one-dimensional longitudinal spectrum is of the same form as an
empirical relation obtained in reference 5 for that of isotropic
turbulence In the-initial period; this agreement is the special virtue
of the form assumed for G(k).

The one-dimensional lateral spectrum functions corresponding to
the same G(k) are readily evaluated; they are

2, .2
Fat() = F5i(ig) - :?E:i :2)72)

The equality of the Fp; and the Fz functions results, of course, from
the isotropy of the turbulence. '

The effect of the stream contraction on these one-dimensional
gpectrums is found by employing the post-contraction value of I‘aa:
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that 1is, the value raa? appropriate to the downstream station B.

- Since Faa? is a function of the local wave-number vector x at
. station B, the equation corresponding to (26) is

LJ
=2 | | Teld
= aa (%, %, X )an dn

which is a function of X

For performing the integration and making later comparisons of
spectrums it is convenient to transform from xq, x;, x3 to kj, kp, -

kz, where
Xy = kp/1
X2 =-?2/1z
X3 = ks/13

0

Fy (k ) = kl, EE, 5 dkodk (27)
1 111223 T3) 23

The spectrum tensor elements ran, following an axlsymmetric contraction

have been evaluated in equations (24) and (25). With these values inserted
and G(k) specified as before, the integrations of equation (25) are best
effected in polar coordinates. The results are expressed most simply in
terms of a "normalized" longitudinal wave number kl/y as incorporated

and to define qu(kl) = 11’1 Fqé, such that kz? Fap(kl)dkl =Qf? Fdexl5

thus

in the two parameters

L2
Ky
S=T+l
7
eky2 - k;?

t s ———m——— -1

72

The final result for the one-dimensional longitudinal spectrum following
an axisymmetric contraction (lp = 13) is



22 : . NACA TN 2606

FiBky) = 2213 444 442 + 5 4 (2‘+ 4s + 2t + gt + §§)1oge (—5—)

21272 t3 28 t{ 8+t
(28)

The corresponding result for the one-dimensional lateral spectrums
following an axisymmetric contraction is )
(29

_ , v
Brp ) = F.B(k ) = 0 [(38=2)t° 0 yigq)d 28t eit B , l=e[Bss5t (m)(sm)
Fpo(ky) = Fo(ky) = 2721, 542 ( Z - el S+ S log, (53p) rE | T2 s+t

and for €<<1 (large speed gain) a simple but very close approximation
is .

- e 2 /o2
F.B(x.) - 1+ 2ky“/y

R , 2
1™y (1 + k12/72)

(The corresponding approximation for F B(k ) is not gimple enough to
warrant noting.) The parameters 1y, 7,2 = 13 and €& = 222/11 are

related to the initial and final Mach numbers of the main stream by the
equations . .

+ O(e, € 1n &)

o /. 2
7'2-_MB 5+MA \
1 =\ = 2
A 5+MB
23
o My [5 +Mp

12 »= b—,g 5—:-—MA_2- ? (30a)
ua\3 (5 + mg2\*
5=(—M§) 5 + My? J
F‘or incompressible flow (MB, My - 0) these _redu.ce.to
1y = Ug/U, ]
1, = zl"l/2 3 (30b)
-3

e=u”

8LEz2
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These post-contraction spectrums, equations (28) and (29), are com-
pared with the initial spectrums in figures 2 and 3, respectively; the
comparison is based on an assumed initial stream Mach number of 0,05
(station A) followed by an axlsymmetric contraction such that the final
Mach number is 2.0 (station B); the corresponding parameters are
17 =29.8, 15 = 0.382; ¢ = 0.00016. Consider first the longitudinal

spectrums, figure 2. Normalizing factors are incorporated such that
the areas under the two curves, if replotted on a linear scale, would
be the same; this normalization serves to differentiate changes in
shape from changes in amplitude. The figure exhibits a rather striking
distortion of the spectrum after traversing the stream contraction:

the peak spectral density is shifted from zero wave number to kl/y = 1.4

along with a general shift of density to the higher wave numbers. Asso-
clated with this change In shape is a reduction in amplitude by the

2 being the respective integrals of the

spectral denslty curves. These Ilntegrals are evaluated in a later
gection.

factor ug?/up?, u,? and ug

The corresponding comparison for the lateral one-dimensional
spectrums 1s made in figure 3. In this case the axisymmetric .contrac-
tion has made very little distortion in the spectrum. There is again

uhange in magnitude (this time an increase) in the ratio

/VA °

The changes in magnitude (that is, the changes in in area under the

gpgpjxgl density curves) correspond to the changes QBZ/QA and
B /VA in the mean square .components of turbulence and are, at least

'qualitatively,vwell known. The predicted changes in the shape of the

spectrum curves are apparently nNeW.

In the above comparisons both pre-contraction and post-contraction
spectrums have been expressed in terms of the pre-contraction longi-
tudinal wave number k;, whereas the local post-contraction wave number

is %y = kl/ll., Consider, however, a representative longitudinal wave
which has the form cos kyx at statlon A and cos ;& at -station B.

"If x and & are identified with the respective distances swept in

time t by the moving waves over stationary hot-wire probes at
stations A and B respectively, then k;x = k U,t and X E = X 0pt =

k
= 1,Upt. Thus the (temporal) frequency seen by the hot wire in both
cases is ‘klUA/Bﬂ. The comparison based on ky therefore constitutes,

in effect, a comparison of the time spectrums that would be seen by
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stationary hot-wire probes, 1n contradistinction to the space spectrums
discussed in the earlier parts of the paper.

Effect of Contraction on Mean Square Veloclty Components

for Isotropic Turbulence

The mean square velocity components of the turbulent field may be
identified as the dlagonal terms of the correlation temsor Ryg(r) with
r set equal to zero. Thus

=
|

2 = Ryp(0)

a Y

R33(0)

where u, v, w have been written for 47, 43, 43, respectively. The

evaluation of these means 1s much less laborious than the evaluation
of the general correlation tensor. In particular, the evaluation of

the ratio of the means uﬁz/qu, etc., may be made when the initial

turbulence is specified to be lsotropic but no further details of its
spectrum are known. These ratios will be calculated in the following
paragraphs. o '

Evaluations of u® and vo at upstream station. - According to

equation (6)
R3A(0) = 2 = ff f M)A e (x)

For isotropic turbulence I'qg has the form specified in equation (23),

uy? = f f f 6(k) (8 - k) 2)at(k)

where G(k) is an arbitrary function. It 1s convenient to transform
to spherical polar coordinates: ‘

whence

2378
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' N
) kl = k cos 6
ko = k gin 6 cos ¢ _
| | P | (31)
kS = k sin 6 sin @
dv(k) = X% gin 6 a6 do dk

8LE2

Thén |
Jk‘lg k)dkf f sin®6 de (32)

For the present purpose the function G(k), which, together with the .
condition of isotropy, defines the turbulence, may be left unspecified;
the integral involving G(k) will cancel out in forming the ratio

uBz/uAZ. ‘Let this integral'have the value H; then

By virtue of the assumed isotropy

VAZ = WAZ = % H

Evaluation of ratio of u2 at downstream station to u.2 at

upstream,statioﬂ. - The .mean value WBZ is obtained from an integration

involving the spectrum tensor after the latter has been. transformed by
pagsage of the flow through the tunnel contraction; according to
equation (16b)

~

20) - U f P28 () (x)

For the present case, where the spectrum tensor at station A is
agsumed isotropic and the contraction 1s axisymmetric, the transformed
tensor l‘llB(x) has been determinéd‘in-equation.(24)° Thus

G(k)k . klz)d«c(_a_t)' |

, - 2\ 2
o . skl + X +k3)
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Bocause of the unspecified function G(k) it is convenient to change

the variables of integration from the components of x to the components
of k. In other words, a transformation is made from the "wave-number
gpace" of station B to the "wave-number space of station A. The trans-
formation follows from the Cartesian relations

-
at(k) = dkjdk,dks
aT(x) = dx du dng g (33)
dk; dkp dkg |
Tl 13
et

together with 1, = 1z for an axisymmatric contraction, whence

2 1 kj(}Pk4G(k)(k2 -k )dt(k)
=.,7§ -

2
ek2+k22+k3)

Again the polar-coordinate transformation (equation (31)) is made, with
the result

~

. o _ an _ kL 3
. 1 b A 5 (e cosg + sinze)

xThe first two integrals occur also in uA (equation €32)), and they
cencel in obtaining the ratio up /uA ; thus

— n

2
Ut 3 sinde do

— z - 2
@Az 41" b (¢ cos26 + sin2e)

The final result may be written

2

Up - 3 -1 2-€ -1 - ..
= + (1_5)3/2 tanh ™~ +/1 ei| . (34)

21 1-
up 4Zl €

and an asymptotic expansion for small & is
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w .

B -- 32 1+§e+(1+e)m3+o(ezlne)]
2 41 2 4 .

up© o, 1

Equation (34) gives the ratio of the mean square longitudinal
velocity fluctuation downstream of an axisymmetric tunnel contraction
to the corresponding mean square upstream of the contraction, when the
initial turbulence i1s isotropic.  The contraction is characterized by
an increase in the stream speed in the specified ratio 1, and a
decrease in the lateral dimensions in the specified ratio lo; the

parameters 1y, 1p, and ¢ = 222/112 are completely defined by the
initial and final Mach numbers of the stream according to equations (30).

The variation of «/QBE/QAE with the speed ratio 1, is plotted
in figure 4 for two examples; in the first the flow 1s assumed com~-
pressible with a Macly number 0.05 at the start of the contraction; in
the second the flow 1s assumed incompressible (M, Mg-+0). The Mach

number scale at the bottom applies only -to the compressible case, the
ll gcale to both cases., The sallent characteristic of the curve is

the marked reduction In the longitudinal component of turbulence with
Increasing speed ratio. 1.

Compressibility is seen to have but a secondary effect, which ié
appreciable only at supersonic speeds. Note (equations (305 and (34))
that with Zl as the independent variable, the effect of compressibility

appears only in the parameter €. The physical significance of ¢
follows from the definition of 1, as the speed ratio provided by the

contraction and _222 as the area ratio of the_contraction_(in the
axisymmetric case considered), with ¢ = 122/212. For‘supersonic final

speeds it is more proper to speak of a converging-diverging nozzle than
a contraction, the term "contraction" having been retained herein
primarily for reasons of past usage.

The basis of the compressibility effect may be summed up in the
following way. The influence of an axisymmetric stream contraction

 arises from distortion of the fluld elements, as described by the

parameters 17 -and 1. (See fig. 1(b).) These parameters are
related by the continuity condition 011122 = 1l,.-where o 1is the

density ratio. Thus compressibility, in allowing ¢ to deviate from.
unity, changes the relation between 1 and 1, somewhat, and con-

sequently modifies the contraction effect.
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The graph of equation'(34) in figure 4 is primarily for illustrative
purposes; a form more useful for englneering applications is given in

figure 5. The single curve provides the variation of t\/qu/qu with
both 1, and €; 17 and € may be determined from ‘the initial and

final Mach numbers by means of the simple relation (30a).
Evaluation of ratio of v°
upstream station. - The value of vgz results from an integration

involving the transformed spectrum.ténsor, according to equation (16b)

322 fffl‘zzB(l)dT(X)

For isotropic initial turbulence and an axisymmetric contraction the

at downstream station to vz at

transformed spectrum tensor TooB(x) has been evaluated in equation (25).

Thus

2k %kp2 (1-¢) Xy 2,2 (k% - k 2)(1 e)a

2 2 2+t
€ kl + kz + k3 " 2
: ekl + kz + k3

Glk)| K8 - K2 - at(x)

Again it is convenient to transform from x-space to Kk-space (equa-
tions (33)) and to introduce polar coordinates k, o, and 6 (equa-
tions (31)). The integrations with respect to k and ¢ are readily
disposed of, w1th the result

: 3 . i
— 3 2 2 ‘
VBZ - Hz o k/“ sind0 a6 - 2n(l-¢) \}“ sinzo cos2 dg + 1(1-e)? b/\ 8in>6 coa0 46

1z b 5 sin“6 + € cos®0 81n0 + & cos?e

where H = k4G(k)dk, as before. Upon carrying out the integration

0 —
and dividing by VAZ = % nH there 1s obtained finally

2

vy 3 | 2-¢ % -1

_— = —= - tanh™" +/1-¢ (35)
z 81,2 1% (1-6)3/2 |

. Va
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For small €& +this has the asymptotic expansion.

vR? .
B__ 3 E2+;+ 52111]+0(e)
Z  81,° 2

Equation (35) gives the ratio of the mean square lateral velocity
fluctuation downstream of an axisymmetric tunnel contraction to the
corresponding mean square upstream of the contraction, where the
turbulence has been assumed to be isotropic. The variation of

‘/\/sz/vAz with the speed ratio 1; is plotted in figure 4, which

already contains the graph of ‘\/uBz/qu discussed earlier; again the

two cases are incompressible flow and compressible flow with an initlal
Mach number of 0.05. For LLZJ. and incompressible flow, the lateral

component of turbulence is seen to increase steadily with 1y, in

marked contrast to the decrease exhibited by the longitudinal component.
The curve (of the lateral component) for compressible flow begins tqQ
differ sensibly from the curve for incompressible flow for downstream
Mach numbers above 0.3; above sonic speed compressibility is seen to
effect a complete reversal of the curve. The over-all effect of com-
pressibility on the contraction effect is thus much greater for the
lateral than for the longitudinal component of the turbulence.

The.graph of equation (35) in figure 4 is primarily illustrative;
a form more useful for engineering applications is given in figure 6.

The single curve provides the variation of /\AEZ/VAZ with both 14
and g; 17 and €& may be determined from the initial and final Mach
numbers by means of equations (30).

DECAY CONSIDERATIONS
Criterions for Negligibly Small Decay

The basis of the present analysis of the contraction effect is
embodied in equations (1lla) relating the pre-contraction and post-
contraction vorticity distributions. The simplicity of this result
and its derlivation arises from the neglect of the turbulent decay; by
decay is meant the viscous dissipation and all the (nonlinear) inter-
mixing processes of the eddies which together cause the mean turbulent
intensity to @iminish with time. The postulation of an inviscid fluid
eliminated the viscous dissipation, and the limitation to very weak

s
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turbulence eliminated the intermixing processes. (While there can be

no dissipation in an inviscid fluid, the Intermixing processes ordinarily
associated with decay will occur.) In order to assess the influence of

. these assumptions equations (lla) will now be derived in a more general
fashion with the Navier-Stokes equations as the starting point. For
simplicity the fluid is taken to be incompressible, since the major con-
clusions are unaffected thereby.

Genéral formulation of changes in vorticity. - By rearrangement and
cross differentiation to eliminate the pressure term (reference 8, p. 578),
the Navier-Stokes equations can be transformed into

Do = @1 SEI— + wo axz + Wz Bxs + vy wy (36)

and two similar equations, where w =w),w, wz 1s the vorticity and

a' =4q1', 92", az' 1is the resultant velocity. Now let g' be the sum
of a stream velocity U, V, W and a turbulent velocity field

4 =9y 9, 95 also, let curl U, V, W =0, so that @ 1s just curl g.

Then equation (36) becomes (in tensor notation)

D o, -
Dt—wlwa%wﬁggﬂvzwl ~(37)
LT J

Contraction Deég&

and there are two similar equations. The first set of terms on the
right-hand side is identified as the contraction effect, the second
set as the decay effect. TFlrst the decay terms will be neglected in
an attempt to recover equations (lla); then the neglected decay terms
will be examined and criterions for their neglect arrived at,

» Neglect of the decay terms. - Equation (37) minus the decay terms
reads, in expanded form, ’

Dy o(U+q;) o(U+q;) o(U+aq) '
BT TE TR sy .

"In this and the earlier equations %% is the 'Lagrangilan'’ derivative

following the fluid motion. Now consider a line segment ®x;, 8x,, 8xz
following the fluid motion: 1ts Lagranglan derivative can be shown to be
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Ddx d(U+ay) d(U+qy) o(U+ay)
1 1 1 1

and two similar equations. It can be seen that a solution of equa-

tions (38) and (39), together with their companion equations, is given by

le’ 0)2, 0)3 ~ le, 6X2, 8][3

for all time +t; this result is well known. Now complete the negléct of
the decay terms by omitting the terms in q; in equation (38) and corres-

pondingly in equation (39). By this neglect the turbulent perturbations
of the flow streamlines have been suppressed: this can be inferred from
the revised equation (39). If the particles are at station A at a time
t = 0 and reach station B at time t = t, there results

wp _ox’
A A
@ ‘ Bxl
leB SXZB
and two similar equations. But x is just 1,4, I is 12,
6)(1 SXZ -
) T is 1z. Therefore equations (1lla) have been recovered for the
5X3 . ’

incompressible case (density ratio o = 1).

Consideration of inertial decay terms. - In equations (37) to (39)
the decay terms not involving v are the inertial or intermixing terms.
These are seen to be nonlinear. The condition for their neglect is
evidently

(40)

oq ou
@g &';"« P g

and two similar conditions between q, and V, g; and W, respectively.

JIn a contraction like that of & wind tunnel the dominant velocity

gradients will be gg, g%, gg, and these will be of the same order of

absolute magnitude. A sufficient condition to replace (40) is therefore

g U '
BJ_CE << & K (41)

 that ig, all of the turbulent velocity gradients are very much less

than the axial gradient of the stream velocity. This is essentially_the

\
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assumption underlying the distortion equations (lO), which led directly
to the vorticity changes (1la) in Taylor's method. .

In statistical terms an approximate inference from equation (41)
is, for 1sotrop1c turbulence,

CR- ‘

But by definition of A\ +this may be written

2378
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The ‘microscale! A may be interpreted as a sort of average eddy diameter
weighted in favor of the smaller eddies. ZEquation (42) may be accepted

as a practical criterion for the neglect of the inertial decay terms,
equivalent to one of the two assumptions underlying equation (10). The
other assumption, neglect of viscosity, is considered next.

Congideration of viscous decay term. - The viscous decay term in
equation (37) is the term containing v. This term is linear and so will
affect individual plane waves separately without mutual interference.

The magnitude of the term may be estimated to a sufficlent approximation
by considering a wave carried along by the contracting stream and
neglecting (for this term only) the distortion of the wave imposed by
the contraction. Thus a component of the wave may be written .

1(kx - kUt
01 =Salel(_?£ k,Ut)

Then, if the inertial decay terms of equation (37) are negligible, the

: U U U
equation reads, with BEE = 5;;' << 5;;

L i
Dt =@y Xl' Vel

Coodu
“’1'5'3;5+"(k12+k22+k32) w)

U . _";Kz .
Ck)l g}q v -
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Accordingly, viscosity may be neglected for that portion of the spectrum
which satisfies the inequality

3
oxy

In the 'initial period' of decay if the inertial decay criterion (42)
is satisfied the major part of the spectrum will satisfy (43)

vkz << . (43)

Rough Estimation of Mutual Effects
of Decay and Contraction

When the decay effects are not negligible compared with the con-
traction effects (see criterion developed in the last section) the
theoretical basis of the present theory of the contraction effect is
violated. Because negligible decay is more the exception than the
rule, there 1s considerable incentive to attempt to apply the theory
out51de the valid range by means of assumptions concerning the simul-
taneous effects of decay and contraction.

" Suppose, now, the decay and contraction are considered to occur
alternatively in small steps, starting from isotropic turbulence. Each
gtream tube is considered to contract stepwise: between steps there is
decay without contraction; at each step there 1s a sudden contraction
without decay. Let the change in speed ratio per step be dl,, the
reduction in u2 due to  decay be (duz)D, -and the reduction in u2
due to contraction be (du )C' Express the effect of decay in the
absence of contractlion in the form

2
1 = D(14), - . (44)
2 .

up D

where 1, is a function of the time of travel (decay time) ~t, and

the effect of contraction in the absence of decay in the form

2} =c(y) o . (45)

The corresponding differential forms are
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¥

al)y DU(1y) | —
( _)D - D(Zﬁ a1, {46)

I~
2378

(duz) C c! ('Ll) ’
al 47)
= Jto) h (

The assumption is now made that equation (46) applies to the decay effect
per step and equation (47) to the contraction effect per step, the only

interaction being in the common uz.l The total effect per step is then

E;EA c'(1,) D'(1q)
= =l toan |th
w

whence upon integration the over-all effect is

7
[\V]

_ = ¢(1y) D(27) | (48) -

Nl

UA

That is, if the effect of contraction alone is expressed by C(ll)
(equation (45)) and the effect of decay alone by D(1,) (equation (44)),

then the joint effect under the assumption is expressed by the
product C(11) D(1;).

Equation (48) is intended to provide a very rough adjustment of
the theoretical contraction effect C(Zl) to account for decay. This

. 2 —_
It is known that in the 'initial' period of decay g%1,~ - p2 dt.

u

1

Equation (46) amounts o replacing the -u® on the right-hand side by
"(gz)decay onlys Some defepse may be made of this approximation, con-
gidering the progressive deviation from isotropy.



OLZO

NACA TN 2606 A 35

ad justment will be made in the attempt to compare the theory with experi-
mental results in which the decay effects are of the same order as the
contraction effects.

Equation (48) refers to the longitudinal velocity component u; an
equation of the same form is obtained for the lateral component v. For
both cases the function D(11) is taken to be the right-hand side of

the empirical decay law (reference 9) :

<
4
o
H

- - D(1,) (49)
uA D U.A

1+ 0.58 T t(2,)

[\V]
[\V]

for isotropic turbulence in the initial period. The decay time (1)

in the formula is the time required by a particle of the main stream to
pass through the centraction, the initial veloclty being U, - and the

‘flnal velocity ZIJA.

COMPARTSON WITH EXPERIMENT

There appear to have been no experimental investigations with which
to compare the predicted changes imposed by a stream contraction on the
spectrum of the turbulence, or on the correlation tensor of the tur-
bulence. The avallable experimental data seem to be limited to measure-
ments bearing on the changes in the root mean square velocity components.
These data apply, moreover, to conditions outside the proper scope of
the present theory in that large decay effects are present. The experi-
mental data are therefore compared with a crude extenslon of the theory
in which the decay is allowed for in first approximatlon. (See pre-
ceding section.) :

The most extensive data are those of MacPhail, (reference 10) which
in effect cover a range of contraction ratios fram 13 =1 to 1 = 9.65

inasmuch as measurements were made at various stations along the con-~
traction. Isolated points for particular contraction ratios were
obtained from investigdtions made for other purposes by Dryden and-
Schubauer (reference 11) and by Hall (reference 12). Only those points
were chosen for which the initial turbulence was indicated to be approx-
imately isotropic. In the case of reference 11, data for the case of
screens in the settling chamber were excluded because the final tur-

“bulence level was sensibly 1ndlst1ngulshable from the residual noise

level.
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In table I are listed, for the three experimental arrangements, the
parameters used in the estimation of the decay factor (equations (48)
and (49)). In reference 10 the initial stream velocity U, and integral

scale of turbulence L, were given. In reference 11 the value of Up
was given, and the value of L, was taken to be 0.05 feet, the only

scale mentioned; it was not clear, however, whether this value of scale
applied with or without screens. In reference 12 the value of U, was

inferred from collateral information and is somewhat uncertain; the
scale I, was estimated from the dimensions of the honeycomb. In all

three experimental arrangements the initial relative levels of turbulence
were specified. The decay time t of the turbulence was computed as the
time for a particle to traverse the contraction; the value arrived at
for Hall's data (reference 12) reflects the uncertainty in the

assumed Up. '

Root mean square longitudinal velocity components. - The comparison
of the theory, including estimated decay, with experiment for the longi-
tudinal component of turbulence is given in figure 7. The theoretical
curve, in each Instance, is the product of a value computed for con-
traction alone, neglecting decay, (obtainable from fig. 5) and a
value estimated for decay alone neglecting contraction. (See equa-
tions (48) and (49).) The agreement with MacPhail's data and with
Hall's single point can be considered good. The agreement with the .
Dryden-Schubauer point, on the other hand, is poor; a slight improve-
ment would result on correction for the spurious contribution of the

- noise background.

Root mean sauare lateral velocity components., - Comparison of the
theory, again including estimated decay, with experiment for the
lateral component of turbulence is given in figure 8. There is com-
plete disagreement with MacPhail's data and Hall's single point, and
on the other hand, good agreement with the Dryden-Schubauer single
point. Thus there is the curious result that MacPhail's and Hall's
data agree well with theory for the longitudinal component and disagree
entirely for the lateral component, whereas the converse is true for
the Dryden-Schubauer data. S

Digcussion. - The uncertainty both in the manner of estimating the
decay effect and in the data (table I) on which the estimate was based
is still far from sufficient to account for the discrepancies between
theory and experiment for the lateral component of turbulence. The
very large amplification found by MacPhaill is particularly hard to
explain. On the other hand, the experimental data of the several
observers show considerable disagreement, especially when differences
in decay are allowed for. This disagreement would tend to cast doubt

2378
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on the validity of some of the data; the disagreement may also be in
part a consequence, predicted by the theory, of possible differences
of the initial spectrums from each other and from isotropy.

CONCLUDING REMARKS

The original aim of this paper was to provide a quantitative
explanation of the observed changes in the root mean square velocity
components of the turbulence of a wind-tunnel stream after passing

.through the tunnel contraction. The simplifying assumption of negligible

decay was made to make the analysis tractable, although the decay and-
contraction effects are ordinarily comparable. The analysis on this
basgis disclosed, in addition to the above integrated effects, pronounced
changes in the spectrum of the turbulence. The changes in the shape of
the spectral density curves, as distinguished from over-all changes in
amplitude, would appear to be considerably less sengitive to mecdifica-
tion by decay than would the mean square velocity components. For this
reason, and because such spectral changes have not previously been dis-
cussed, the emphasis of the present paper has been placed most heavily
on these gpectral effects.

In particular, it has been found that the one-dimensional longi-
tudinal spectrum for isotropic turbulence exhibits a rather interesting
change in shape downstream of the contraction; the center of gravity of -
the curve of spectral density versus longitudinal wave number is shifted
substantially to higher wave numbers, the resulting distortion moving
the peak of the curve well to the right of its initial position above
the origin. The distortion is quite pronounced and would appear to be
readily amenable to experimental observation.

The restrictive assumption of negligible decay largely defeats the
original aim of the paper. Nevertheless, for practical reasons an
attempt has been made to provide a crude extension to the theory in
which decay is allowed for in first approximation. With this approxi-
mation the theory has been compared with experimental values of the
contraction effect on the longitudinal and lateral component root mean
square velocity fluctuations. The agreement for the longitudinal
component is good, whereas there appears to be almost complete disagree-
ment for the lateral component, the experimental data themselves being
in conflict. It 1s perhaps premature to attempt any general conclusion.
For the present, the theory as augmented by the estimated decay effect
may be useful in wind-tunnel-design applications.

It is clear that the tunnel contraction effect on the components
of turbulent intensity cannot be represented by fixed fractional changes
independent of the character of the Initial turbulence. Instead the
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separate factors for the longitudinal and lateral components depend
markedly on the spectrum of the turbulence., For initial isotropy,
however, unique factors are predicted that, when decay is neglected
are independent of the details of the spectrum.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, August 30, 1951
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APPENDIX A - SYMBOLS
The following notation 1s used in thié report:

The subscripts, 1, 2, 3, refer to a rectangular coordinate system
with the l-axis alined with the axis of the main flow and directed down-
stream, the 2-axis directed horizontally, and the 3-axis vertically.
Separate systems are used with the origins at statlons A and B, respec-
tively. (See fig. l1.) Vector and tensor notations are used inter-
changeably; for example, k = ko = (kj, kp, kz), where o =1, 2, or 3,

designates a vector wlth components k,, k;, and kz.

c(1,) function defined in equation (45)
D(14) function defined in equation (44)
D edge length of cube within which turbulent field is defined
e base of natural.logarithms
FG; = - Fl’ F2, or Fs
Fy one-dimensional longitudinal épectral density (see equa~-
tion (7))
Fp, Fx one-dimensional lateral spectral densities (see equation (7))
G(x) = function appearing in isotropic spectrum tensor
ad .
H constant f k*a(x) ak
: 0
Im imaginary part of

1= )

Ki, Kp, Kz = ky+k ', kotkot, kz+kz', respectively

amplitude of k (= .,/k12+k22+k32)

k
k = kg = (k, kp, k3) wave number vector (station A)
longitudinal macroscale
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' parameter in equation (28) [ =

NACA TN 2606

1y, 12, 13

stream velocity at station B divided by stream velocity at
station A (see fig. 1)

gtream breadth at station B divided by stream breadth at
station A (see fig. 1)

stream height at station B divided by stream height at
station A (see fig. 1)

Mach number of main stream

amplitude of specilal i1sotropic spectrum tensor (see following
equation (26))

%W

(Q;, Q, Qz) disturbance wave amélitude vector

Ay = (ql; 4o, 93) disturﬁance velocity vector

correlation tensor (reference 6)

real part of

magnitude of I = ~/riZ4rplirs?

Tq = (rl, rz,‘r3) rseparation vector of two correlated points

k2
parameter in equation (28) |[= _;E +1
(e-1)k; 2

72

time
main-stream veloclty

44, qz, q3 disturbance velbcitj components

length of wind tunnel contractlon (distance between sta- .
tions A and B) '

used occasioﬁélly in place of Xq

2378
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X = X = (xl, Xy, x3) position vector (station A)

I‘aﬁ(g) spectrum tensor (reference 3)

v4 constant in special isotropic spectrum tensor (see following
equation (26)) (y = 1/L)

€ contraction parameter (= 122/112; gsee fig. 1)

euﬁy alternating tensor defined after equation (9)

6 polar.angle (equ.é.tion (31))

x magnitude of ‘__)s (== -\/x12+x.22+x32)

X = X, = (xl', A, z) transfofmed wave number vector (station B); -
(% = koflg)

£ magnitude of § (= W)

£ = Ey = (&, éz, Ez) transformed position vector (station B)
(see equation (ZLO) and fig. 1(b)) - '

z _ summation over o for a=1,2, 3

o

o stream densityét gtation B divided by stream density at
station A

T a Volume

v viscosity

¢ azimuth angle (eguatipn (31))

® = wy = (0, @y, wg) vorticity vector

R = 2, = R, 2, 25) vector amplitude of vorticity wave

Supersci'ipts :

A measured in vicinity of station A, upstream of contraction

B measured In vicinity of station B, downstream of contraction

* complei conjuga‘_ce
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Subscripts:
A measured in vicinity of station A, upstream of contraction
. B measured in vicinify of statlon B, downstream of contraction

a,B;7,5 take on values 1, 2, or 3 and designate tensor quantities
1,2,3 specific values of a, B, 7, or d
A symbol with the mark ~ above it refers to a single plane wave.

A bar over a symbol designates an average (usually a spatial average);
a bar under a symbol designates a vector.

2378
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APPENDIX B
EQUIVALENCE OF SPACE AND TIME AVERAGES IN STATISTICALLY STEADY,
HOMOGENEOUS TURBULENCE

The definitions of statistical homogeneity and statistical time
independence will first be made precise., let F(x,y,z,t) be some
property of a turbulent fleld that varies In time and from point to
point; thus F may be the pressure, or any of the velocity components,
or a correlation of velocity components at two polnts of fixed separa-
tion, (x,y,z) being one of the two points. If, for all choices of the
property T, (a) the average of F over a time T -+« is independent of
(x,y,2), the turbulence is defined to be statistically homogeneous; 1if
(b) the average of F over a volume V - *1is independent of %, the
turbulence is defined, in the 'sense used herein, to be statistically
steady or time-independent. The respective averages are supposed to be
approached uniformly, in the mathematical sense, as T or V,
respectively, approach infinity. (A statistically steady or "stationary"
condition is defined differently in the theory of random processes. )

Tt will now be proved that if the turbulence satisfies the two .
conditions (a) and (b), the time and space averages defined therein are
equal. In this proof no resort will be made to the "ergodic hypothesis™
of statistical.meohanics, which leads to the equivalence of the time
average and the "ensemble" average. The possibility of the joint
existence of the conditions (a) and (b) probably amounts, however, to
Just as fundamental an assumption. :

The space average will be made over a parallelepiped of edges a,
b, c and the time average over a time. T, and then a limiting process
will be applied. The average of F over both space and time is thus

| T (e (b (a o
= _ Lim :
| Fo, 0 = a,b,c,T+ E%lc_ff j\ J - Fax dydz dt (1)
: 0 JO0 JO JO : _

Any order of integration is permissible, since the integration
limits are constants. If the time integratlon is performed first the
expr6551on may be written

A _ Lim
Es,t T a,b,c, T som abcT \j\ \X\ L[\ - Fdt)dx dy dz
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By virtue of the postulated uniform convergence of the time and space
averages the operation e DAY be brought under the integral sign:

(B2)
= Lim
Fs,t—abc*abcjj\X< J Fat dXdydz=abc»oachJJ Fthdb’ﬂZ

where F, 1is the time average of F. But, by condition (a), Fy 1s
independent of x, y, and =z, Therefore

Fs’t = Ft ‘ ' (Bs)

Alternatively, the space integration and limiting process may be

performed first:
J (B4)

= _ Lim 3
Fa,t'T-wT a,bc“abcjjj\ Fdxdy%dt
0

where ﬁé is the space average of F. By condition (b), fs is

l—]ll—'

independent of +t; therefore,

Fo,0=Fs ~ (5)

. Equation (B3) and (BS) together state that

Fy = Fy = Fy 4 (B6)

or the space average, the time average and the gpace-time average are
all equal.
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TABLE I - DATA FOR ESTIMATION OF DECAY

1 A B PR I I
(ft/sec) | (£t) | (sec) | (£t/sec)
MacPhail (reference 10)| 1.20 3.55 0.012 [ 0.19 0.149
1.60 3.55 012 | .34
2,55 3.55 012 | 45 |
4,90 3.55 .012 | .51
9,65 3.55 012 | .57
Dryden~Schubauer 6.6 6.86 .05 [1l.31 114
(reference 11)
Hall (reference 12) 5.2 1.54 .025 1,22 -046
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|— Contraction

(a) Tunnel geometry.

Contraction —>'*
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(b) Stream tube geometry.

Figure 1.”- Schematic representation of flow contraction parameters.
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1.0
.9
D

.8
. _ Experiment

.7 i MacPhail (reference 10)

. Dryden-Schubauer (reference 11)

Hall (reference 12)

‘Theory with estimated decay

(2]
v |

for experiment of MacPhail
~—=-— for experiment of Dryden-Schubauer
—————— for experiment of Hall.

Relative rms longltudinal velocity fluctuation
wn

2 T . T~
I~
] O yp— o)
'\'
o I e
.1

1 2 3 4 S 6 7 8 9 10
_Mean velocity ratio, 14

Figure 7. - Comparison of predicted axisymmetric contraction effect with experiment for longi-
tudinal component of turbulence, with decay allowed for in first approximation. Initial
isotropic turbulence assumed. nd
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Figure 8. - Comparison of predicted axisymmetric contraction effect Qith experiment for lateral

component of turbulence, with decay allowed for in first approximation. Initial isotropic
turbulence assumed.
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