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By Frapklin K. Moore

SUMMARY

A method is described for determining the "displacement surface”
of a known three-dimensional compressible boundary-layer flow in terms
of the mass-flow defects associated with the profiles of the two
velocity components parallel to the surface.

The height of the displecement surface above the body surface for
flow ebout & yawed infinite cylinder is shown to be equel to the height
characterizing the mags-flow defect of the chordwise veloclity profile.
The displacement surface helght is shown to differ, In general, fram
that associated with the resultant mass-flow defect, even at stagnation
points of the secondary flow. Numericel values are found for the known
three~dimensional boundary-layer flow about & cone at & small angle of
attack to a supersonic stream.

INTRODUCTION

The boundary layer established In the flow of a slightly viscous
fluid sbout a body 1s normally considered an isolated region wherein
the effects of viscosity predominste, and acutside of which the motion
of the fiuid is governed by the laws of nonviscous motion. For large
Reynolds number, the boundary leyer is assumed to be so thin that the
nonviscous portion of the flow occurs as though there were no boundary
layer. 'This assumption is strictly correct in the 1limit of infinite
Reynolds nufther. For large but finlte Reynolds numbers, the growth of
the boundary lsyer csuses the stream to be deflected away from the body
surfsce.

This displacement effect of the boundary lsyer on the nonviscous
flow mey properly be defermined fram the behavior of the boundary layer
itself, as esteblished either by experiment or by solution of the
Prandtl boundary-layer equetions for leminsr flow.
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It does not follow, however, that this revised outer flow may be
used to improve the solution for the boundary layer, still using the
Prandtl equations. A new set of equations must be used for this pur-
pose teking into account the varistion of pressure across the boundary
layer, which is neglected in the Prandtl equatioms.. (See Alden's iter-
ative solution for incompressible flat-plate flow, reference 1.)

The customary definition of displacement thickness (reference 2)
is applicable to two-dimensional flow and is expressed in the following
equation:

h

pu dy = plul(h-S*) (1)
0

where h 18 some .location well outside the boundary layer (fig. 1) 3
at which pu = pjuy, and beyond which the flow may be considered non-

viscous. (A list of symbols is provided in the sppendix.) Under the

assumption of an extremely thin boundary layer, h is so small that
pjuy may be taken as the evaluation at the body surface (y:O) of the

nonviscous flow obtained by neglecting the presence of the boundary
layer. Equation (1) equates the actuasl mass flow near the surface with
the mass flow which would be associated with a nonviscous flow that
terminates at &% rather than extending to the wall. Thus, the non-
viscous portion of the flow behaves as 1f it occurred in the presence
of a s0lid boundary given by the displacement thickness 8*(::). Equa~
tion (1) may be solved for &%: :

h
* = . =L 1
° ( p1‘11) v
0

Ordinarily, theoretical boundary-layer solutions for pu/ pju; asymp-

totlically spproach 1 for large values of Reynolds number based on Y.
Therefore, displacement thickness is often defined as follows:

-]

* = I =L
o[l

. ___Qeceo
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For three-dimensional boundary-layer flows, two lengths character-
izing mass~-flow defect may be defined in terms of the profiles of the
two velocity components tangential to the surface (fig. 2),

h h
= pu = [SLis
5, = -—1 4 5, = 1 - 2
x ( plul) y s, ( plwl) ay (2)
0 0

and it i1s not clear which, if either, defines a displacement surface
that properly describes the extent to which the nonviscous flow is
deflected by the boundary layer.

Of course, it is expected that there does exist a displacement
surface for such flows. The analysis that follows shows that such a
surface may be described, using a defining equation more fundemental
than equation (1). ,

The velocity and density profiles are assumed to be known for the
three-dimensional flows under consideration. Gases for which this is
true include: +the laminar boundary layer on yawed infinite cylinders,
treated by Prendtl (reference 3), R. T. Jones (reference 4), and by
Sears (reference 5); the leminar boundery layer on a come at a small
angle of attack to a supersonic stream (reference 6). The displacement
effect of these flows will be treated specifically.

This report may be considered as an addendum to references 6 and 7.
This investigation was conducted at.the NACA Lewis laboratory.

THEORY
Defining Relation for Displacement Surface

The boundary-layer solution (assumed known) yields a cexrtain dis-
tribution of wvelocity vbl(x,z) normal to the body surface at-the
outer edge h(x,z) of the boundary layer, where p, u, and w may be
taken essentially equal to py, uw,, and Wy (see fig. 2). Under the

assumption that the nonviscous flow is altered only slightly by dis-
Placement, the most direct way to compute this effect would be to sup-
pose that the nonviscous equations hold for y=h(x,z) end to impose
the following boundary condition on the normal velocity Vor 1n the
outer flow: .

Vor = Vp1(%,2) at y = h(x,z) : (3)
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However, since the boundary conditions usually encountered in non-
viscous flow specify an impermeable surface, it is convenient to recast
the boundary condition given in equation (35 in answer to the question:
What impermesble surface y = A(x,z) would deflect a nonviscous fluid
in such a way as to produce a normal velocity satisfying condition (3)‘2
This fictitlous surface may be called the displacement surface.

Because A(x,z) is imagined to be a stream surface, it is neces-
sary to specify that at y=A the resultant velocity vector (u,v,w)
be tangent to the surface y=A. Thus, at y=A the ratio of v +to the
magnitude of g, which is defined as the vector (u,w), must be set
equal to the slope of the surface y=A, meassured in the direction of
the vector g, or, equivalently, equal to the component in the direction
of g of the vector grad A. In vector notation, therefore, the nor-
mal velocity v which would be produced in a nonviscous fluid at an
impermegble surface y=A 1s g -grad A. The vector g may be
obtained by evaluating the velocity vector of the unrevised nonviscous
flow at the body surface y=0, under the related assumptions that the
velocity vector varies only slightly over distances of the order of
the actual boundsry-layer thickness, and that the revision required to
take account of displacement is slight. Thus, at y=A (see fig. 3),

Vor =9 ° grad A

The increment in vop between A and h is approximately (h-A)dv e/dy,

again assuming a thin boundary layer and using only the first term in a
Taylor series.

.

To the order of approximation contempleted in this analysis,
Ov,e/dy may be obtained from the unrevised nonviscous flow evaluated

at y=0. Thus, the fictitious impermesble surface A would produce,
at y=h, a normal velocity (see fig. 3)

of
Vor = 4 grad A+ (h-A) (W):,eo

Introducing this result into the boundary comdition given in equa-
tion (3) yields the defining relation for A(x,z):

ov,
(vbz)y=h = (h-4) (-%f) o + g7 * grad A (4)

The boundary-layer solution ylelds YD

_Qeez.
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Expression of A 1in Terms of Mass-Flow Defects

The displacement surface A may be related to the mass-flow
defects (equations (2)) which characterize the boundary layer as
follows: in a Cartesian coordinate system (fig. 2), the equation of
continuity for both the boundary-layer and nonviscous flow is

dpv dpu Opw - .
v "% " on (5)

Under the Prandtl boundary-layer assumptions, the Cartesian equations
of motion, and hence equation (5), may be applied in an orthogonal
curvilinear coordinate system in which the surface of the body is

given by y=0, provided the radius of curvature of the body is every-
where large as compared with the boundary-layer thickness. Integrating
equation (5) across the boundary layer yields

h .
9 )
(o), = - f (22 ) o
@]

h
= f [B%c (pqup-pu) + ‘a—a'z- (plwl—pv)] dy -
0

h
x 7oz |V

or, inasmuch as h 1s outside the boundary layer where pu = pju; and
pW = pyWy, ) .

0]

u ap u
Dl(Vbz)y=h =-h ( %xl + %;l) +'§§ (puy8y) +'§% (p1w18,)  (6)

where d, and 8, are the mass-flow defects defined in equations (2).
For the nonviscous flow, vop = O at the body surface (y=0), and equa-
tion (5) becomes

-~

or\ _ [OPpuy  dpyWy (1)
PL\ 5y 0. “\Tox YT o
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Introducing equations (6) and (7) into equation (4) yields

‘aéi plul(A-Sx):l + BBE [plwl(A—BZ):l =0 (8a)

In a Cartesian coordinate system, the displacement surface is related

to the mass-flow defects by equation (8a). Vhen cases arise for which
other coordinate systems must be used, the following generalization in
vector form of equation (8a) may be used:

h
div [ pasd - (p1g1-pg) dy| =0 (8b)
0

where y is the distance normal to the body surface and where the div-
ergence operator involves differentiation only with respect to the two
coordinates parallel to the body surface.

Examples

Plane flow. - Equation (8a) may be integrated to yield; for plane
flow z = 0):

K
A-5x+'5i-q (9)

where X is a constant of integration.

The appearasnce of this constent means, in general, that the
revised boundary condition on the nonviscous flow near the wall may be
applied at any surface in the boundary-layer region; for example,
along the wall itself. OFf course, if there is a stagnation point on
the body where wu; vanishes, then X must be taken equal to zero and

the revised boundary condition must be imposed at the location A = 3y,
at least near the stagnation point.

Stagnation point of secondary flow. - In the vertical plane of sym-
metry of the Tlow about & body of revolution at an angle of attack, the
circumferential velocity component vanishes in the boundary layer as
well as in the nonviscous outer region. ' Such stagnation of the second-
ary motion would occur in a variety of cases, in particular, wherever
an essentially three-dimensional flow has a plane of symmetry. When
wy; 1s designated as the component of secondary flow (circumferential

velocity for a body of revolution) at the outer edge of the boundary
layer, and equation (8a) is written in the form

9¢s2
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-
% plul(A-Sx):I + W 'aa; p‘l(A—SZ)] + py(2a-8,) Xz‘l =0

it is clear that A cannot equal Oy, in general, even if both Wy and

the boundary-layer profile of w vanish, unless Ow;/dz also vanishes.

Flow about yawed infinite cylinder. - In this case, there is a
spanwise boundary-layer velocity profile and an associated spanwise
mass-flow defect. (See references 3 to 5.) If x is teken in ‘the
chordwise direction (fig. 4), the entire flow depends only on x. Thus,
derivatives with respect to the spanwise coordinate =z vanish; and,
hence, from equation (8a), the plane-flow result (equation (9)) applies.
Accordingly, the spanwise mass~flow defect represented by 8, does not

enter into the determination of the displacement surface.

Supersonic flow about cone at small angle of attack. - When the
coordinate system shown in figure 5 is used, equation‘(§b) becomes

sin @ Ba—x plulx(A-Sx)] + Ba—q, E)lwl(A-6¢):l =0 (11)
where |
h h
By = O (1-%)@ /aq,: i (1—%)@ (12)

’

Because the outer flow is conical, Py Uy5 and w, are functions only
of ¢; and equation (11) may be written '

p1uy sin @ .% I:x(A-Bx)] + % Ealwl(A—Bcp)]' =0 (13)

In the case of conical outer flow, the assaciated boundary-layer
profiles show similarity of the Blasius type in meridionsl planes (see
reference 7 or 8). Thus, in a meridional plane, A4, Bx, and & are

proportional to 15; Incorporation of this information into equa-
tion (13) gives ) ‘

% p1uy sin @ (A-8,) + -aa—(p [plwl(A—B,p):l =0 (14)
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For a cone at small angle of attack a, uj; 1s nearly equal to TJ.,
the velocity on the cone surface at zero angle of attack. The quanti-
ties py, A, By, and Sp Vary only slightly with angle of attack,

whereas

W] = au Ay sin @ (15)

vhere A, depends only on the cone vertex angle and the flow Mach num-
ber and is defined in reference 6 as follows: )

Ao = - i =——%x__
2 u  usin®

The quantities 2z, x, and u are in the notation of reference 9 )

wherein they are tabulated.

To the first order in «, the substitution of equation (15) into
equation (14) yields the result

2 o
A=38; +3 e Ap(Bp-8y) cos o (16)

The analysis of reference 6 yields the values of 3y a.nd S

Clearly, A differs from &y in the plane of symmetry ¢ = 0, =,

where the circumferential velocity w +venishes. It might, however, be
noted that in the plane @ = 12‘,‘ —‘7’27", A = 8,. Figure 6 shows the pro-
portional rate of Increase of displacement thickness A with angle of
attack in the plene of symmetry @ = s at zero angle of attack. The
corresponding rate of increase of the mass-flow defect &, is shown

for comparison. These curves asre obtained from equation (16) and the
results of reference 6. The sine of the semivertex angle is introduced
as a factor primarily to permit presentation of the case ® = 0 as the
1imit of an indeterminete form. For a stresm Mach number of 2, the
change in displacement thickness appears to be of the order of 50 per-
cent larger then the change in the meridional mess-flow defect.

CONCLUDING' REMARKS

The foregoing analysis deals only with the displacement effect of
a known boundary layer on the nonviscous outer flow, and hence can be
applied only if the boundary-layer behavior has been determined either
theoretically or experimentally. The latter approach might possibly

9¢G2
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find application in the correction of nozzle contours for boundery-layer

development. In this connection, perhaps,it should be noted that the
anglysis 1s not restricted to laminar flows.

Lewls Flight Propulsion Laboratory .
National Advisory Committee for Aeronautics
Cleveland, Ohio, March 6, 1952
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APPENDIX - SYMBOIS
The following symbols are used in this report:-
Ao function of cone angle end Mach number (equation (15))

h height above wall at which p, u, W = pj, uj, W;, and beyond which
nonviscous equations apply (equation (3))

stream Mach number

q velocitj vector composed of components parallel to body surface
u,vw )

u velocity component in x-direction

u meridional velocity component at surface of cone at zero angle of
attack

v velocity component in y-direction

Vb  boundary-layer solution for velocity normal to surface, evaluated
at outer edge of boundary layer

Vof nonviscous solution for velocity normal to surface, evaluated near
the surface

W velocity component in z~direction
coordinates in body surface

v coordinate normal to surface

o angle of attack

A heigh£ ébove body of displacement surface
o* displacemeﬁt tﬁickness in plane flow

tS) length characterilzing mass-flow defect of u-profile (equa-
tions (2), (12))

. _Q¢QZ
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By, length characterizing mass-flow defect of Whprofile
(equation (2))

5¢ length characterizing mass-flow defect of w-profile
(equation (12))

@ semivertex angle of cone
P density
® angular_coordinate (fig. 5)

Subscript 1 denotes evaluation of nonviscous flow at body surface,
teken equivalent to conditions at outer edge of a boundary layer of
infinitesimal thickness.
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Figure 1. - Plane boundary-layer flow.
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Surface y = h(x,z)

h(x,z)
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- Body surface

Figure 2. - Three-dimensional boundary-layer flow (Cartesian coordinates).

\ Surface ¥y = h(x,z)

-%l' grad A

Surface
Yy = A(x: z)

Body surface

Figure 3. - Displacement surface in three-dimensional flow
(Cartesian coordinates).
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Figure 4. - Coordinate system for yawed infinite cylinder.

Figure 5. - Coordinate system for cone at angle of attack.
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Figure 6. - Proportional rate of-increase of displacement thickness with
angle of attack on a cone.
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