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SUMMARY

A general method of design is developed for two!dimensional
unbranched channels with prescribed velocities as a function of arc
length along the channel walls. The method is developed for both
incompressible and compressible, irrotational, nonviscous flow. Two
types of compressible flow are considered: the general type, with the
ratio of specific heats у equal to 1.4, for example, and the linear!
ized type in which у is equal to !1.0. The design method gives com!

^ plete information concerning the flow throughout the channel.

Five numerical examples are given including three elbow designs
with the same prescribed velocity as a function of arc length along the
channel walls but with incompressible, linearized compressible, and
compressible flow. It is concluded that if a nonviscous gas with
arbitrary у (1.4, for example) were to flow through a channel designed
for linearized compressible flow (y = !1.0)> the resulting velocity
distribution along the channel walls would be nearly the velocity dis!
tribution prescribed for the linearized compressible flow, at least if
the linearized flow were selected so that the densities are equal for
both types of flow at the maximum and minimum velocities and if the
ratio of these velocities is not too large (2:1 in the numerical
examples).

INTRODUCTION

There are two general types of theoretical problem in two!
dimensional fluid motion: (l) the direct problem, in which the distri!
bution of velocity is determined for a prescribed shape of boundary,
and (2) the inverse problem, in which the shape of boundary is determined
for a prescribed distribution of velocity along the boundary. The direct
problem is an analysis problem; the inverse problem is a design problem.
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This report is concerned with the inverse, or design, problem for two!
dimensional, irrotational flow in uribranched channels with prescribed
velocities as a function of arc length along the channel walls.

The design of channels with prescribed velocities is important
because: (l) Boundary!layer separation losses can be avoided by pre! ro
scribed velocities that do not decelerate rapidly enough to cause о
separation, (2) shock losses in compressible flow and cavitation
in incompressible flow can be avoided by prescribed velocities that do
not exceed certain maximum values dictated by these phenomena, and
(3) for compressible flow the desired flow rate can be assured by pre!
scribed velocities that do not result in "choke flow" conditions.

Several methods of channel design have been developed for particular
application (references 1 and 2, for example). In reference 1 a design
method is developed for accelerating elbows in which the velocity
increases monotonically along the channel walls. The method is developed
for incompressible and linearized (у = !1.0) compressible flow. The
velocity distribution along the channel walls is not arbitrary and the
design method applies to elbows only. In reference 2 a design method is
developed for straight, symmetrical channels with contracting or expand!
ing walls. The method is developed for incompressible flow and the !4
velocities are prescribed not as a function of arc length along the
channel walls but as a function of circle angle in the transformed circle
plane. A more general design is suggested in reference 3 but no attempt
is made to develop and apply the method.

In the present report a general method of design is developed for
two!dimensional, unbranched channels with prescribed velocities as a
function of arc length along the channel walls. The method is developed
for both compressible and incompressible, irrotational, nonviscous flow
and applies to the design of elbows, diffusers, nozzles, and so forth.
Two types of compressible flow are considered: the general type with
arbitrary value of у (1.4, for example) and the linearized type with
у equal to !1.0. In general, if the prescribed velocity along one
channel wall differs from that along the other, the channel turns so
that the downstream flow direction is different from the upstream
direction. This change in flow direction cannot be arbitrarily chosen
but depends on the prescribed velocity distribution along the walls.
Equations are developed for computing this change in flow direction for
an arbitrary prescribed velocity distribution with incompressible or
linearized compressible flow. Two methods of solution have been devel!
oped for the design method and are presented in separate reports. In
this report (part I) solutions are obtained by relaxation methods
(reference 4). This method of solution results in complete information
concerning the distribution of flow conditions throughout the channel
and, in addition, can be used to obtain nonlinear solutions for com!
pressible flow with arbitrary values of f. In reference 5 (part II)
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solutions are obtained by means of a Green's function. This method of
solution is limited to incompressible and linearized (if = !1.0) com!
pressible flow, but the method is more rapid than relaxation methods,
provided information within the channel is not required.

The design method reported herein was developed at the NACA Lewis
laboratory during 1950 and is part of a doctoral thesis conducted with
the advice of Professor Ascher H! Shapiro of the №ssachusetts Institute
of Technology.

THEORY OF DESIGN METHOD

The design method is developed for two!dimensional channels with
prescribed velocities along the channel walls. The prescribed velocity
is arbitrary except that stagnation points (zero velocity) cannot be
prescribed. This exception limits the design method to unbranched
channels.

Preliminary Considerations

Assumptions. ! The fluid is assumed to be nonviscous and either
compressible or incompressible. The flow is assumed to be two!
dimensional and irrotational.

The assumption of two!dimensional, nonviscous, irrotational motion
limits the design method in practice to channels with thin (negligible)
boundary layers, such as exist near the entrance to the channel or after
a rapid acceleration of the flow through a contraction in the channel.
Even if the boundary layer is thin, the design method is limited to (and
finds its most useful application for) prescribed velocity distributions
that, from boundary!layer theory, do not decelerate fast enough to
result in separation of the boundary layer, which separation alters the
"effective" shape of the channel and completely changes the character of

the flow.

In some channels with fully developed turbulent boundary layers the
design method might be expected to yield results that are satisfactory
(although approximate) because for this type of flow the rotational
motion occurs primarily in the regions close to the channel walls. In
channel walls with thick or fully developed laminar boundary layers the
design method cannot be used, because not only is the rotation of the
flow important in most of the channel but, if the channel bends,
important secondary flows develop that are not considered by the two!
dimensional design method.
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Flow field. ! The flow field of the two!dimensional channel is con!
sidered to lie in the physical xy!plane where x and у are Cartesian
coordinates expressed as ratios of a characteristic length equal to the
constant channel width downstream at infinity. (All symbols are defined
in appendix A.)

At each point in the channel (fig. 1) the velocity vector has a
magnitude* Q and a direction 0 where Q is the fluid velocity
expressed as the ratio of a characteristic velocity equal to the con!
stant channel velocity downstream at infinity. For convenience, the
velocity Q is related to a velocity q Ъу

q =

where q is the velocity expressed as a ratio of the stagnation speed
of sound and the subscript d refers to conditions downstream at

infinity.

The flow direction Q at each point in the channel is measured
counterclockwise from the positive x!axis. From figure 1

dx = ds cos Q (2a)

dy = ds sin 0 (2b)

where ds is a differential 'distance in the direction of Q, that is,
along a streamline.

Stream function and velocity potential. ! if the condition of con!
tinuity is satisfied a stream function^can be defined such that

d\l/ =
 P
Q dn (3)

where p is the fluid density expressed as the ratio of a characteristic
density equal to the stagnation density and where dn is a differential
distance measured normal to the direction of Q, that is, normal to a
streamline. Along a streamline, dn is zero so that from equation (3)
the stream function \|j is constant.

If the condition of irrotational fluid motion is satisfied a
velocity potential cp can be defined such that

dcp = Q ds (4)

Normal to a streamline, ds is zero so that from equation (4) the
velocity potential cp is constant. Thus lines of constant Ф and ^
are orthogonal in the physical xy!plane.
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Outline of method. ! Solutions for two!dimensional flow depend on
known conditions imposed along the boundaries of the problem. In the
inverse problem of channel design the geometry of the channel walls in
the physical xy!plane is unknown. This unknown geometry apparently
precludes the possibility of solving the problem in the physical plane
and necessitates the use of some new set of coordinates, that is, a
transformed plane, in which to solve the problem. These new coordinates
must be such that the geometric boundaries along which the velocities
are prescribed are known in the transformed plane. It is also desirable,
for mathematical simplicity, that the coordinate system in the trans!
formed plane be orthogonal in the physical plane. A set of coordinates
that satisfies these requirements is provided by cp and \}/ , which are
orthogonal in the physical xy!plane and for which the geometric bound!
aries are known constant values of \1/ in the transformed ф\1/!р!апе.
The distribution of velocity as a function of cp along these boundaries
of constant \J/ is known because, if

Q = Q(s)

is prescribed, equation (4) integrates to give

Ф = <p(s)

From which equations,

Q = Q(cp)

The technique of the proposed method of channel design is therefore
to obtain a differential equation for the distribution of velocity in
the cp\J/!plane. The velocity distribution obtained from the solution of
this equation is then used to obtain the distribution of flow direction,
from which distribution the channel walls in the physical xy!plane are
obtained directly. The differential equation for the distribution of
velocity in the cp^!plane is nonlinear (for compressible flow with f
other than !1.0) and is solved by numerical methods (relaxation methods).

Differential Equation for Distribution of Velocity

in Transformed фф!Plane

The differential equation for the distribution of velocity in the
transformed ф\|;!plane is obtained from the equations for continuity and
irrotational fluid motion expressed in terms of the transformed coordi!
nates ф and ^ .
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Continuity. ! The continuity equation expressed in terms of cp and
becomes (appendix B):

Am "*" %vi ) "*" Air
 =
 \ '

Irrotational fluid motion. ! The equation for irrotational fluid
motionj expressed in terms of cp and ty, becomes (appendix B):

to
О

Л !,
 Ю

о log» Q йд

Differential equation for distribution of velocity. ! The second
order partial differential equation for the distribution of log

e
 Q

in the transformed cpn|r!plane is obtained by differentiating equations (5)
and (6) with respect to cp and i|r, respectively, and combining to

eliminate !̂̂ . Thus,

о"
2
 log

e
 p 5

2
 log

e
 Q 9 log

e
 p /d log

e
 p 5 log

e
 Q

log
e
 Q S log

e
 p o! log

e

Equation (7), together with a relation between p, Q, and q^, determines

the distribution of log
e
 Q in the cpi|r!plane for compressible flow with

a given value of q^ and for arbitrarily prescribed variations in

l°g
e
 Q along the boundaries of constant i|r.

Density. ! The density p is related to the velocity q by
(reference 6, p. 26, for example)

p = I 1 ! !5! <T / (8a)

which, from equation (l), becomes

(8
b)
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Equation (8b) relates the density p to the velocity Q for a given
value of q^.

Incompressible flow. ! For incompressible flow p is constant and
equal to 1.0 so that equation (7) becomes

o!
2
 log Q c5

2
 log Q

— + 5— =0 (9)

Equation (9) determines the distribution of log
e
 Q in the фт)г!р1апе

for incompressible flow.

Channel Wall Geometry

After equation (7) or (9) has been solved to obtain the distribution
of log Q in the transformed cpty!plane (for arbitrary variations in

log
e
 Q with ф along the boundaries of constant i|r), the geometry of

the channel walls in the physical xy!plane can be determined from the
resulting distribution of flow direction 0.

Flow direction 0. ! The distribution of flow direction 0 along
a streamline (constant \|r) is obtained from equation (6), which inte!
grates to give

(lOa)

where the subscript i|r indicates that the integration is taken along a
line of constant \|r and where the constant of integration is selected
to give a known value of 0 at one value of CD along each streamline.
The integrand in equation (lOa) is obtained from the distribution of
l°gp Q; which is known from the solution of equation (7) or (9).

The distribution of flow direction 0 along a velocity!potential
line (constant ф) is obtained from equation (5), which integrates to
give
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where the subscript cp indicates that the integration is taken along
a line of constant cp and where the constant of integration is selected
to give a known value of 0 at one value of i|r along each velocity!
potential line. As for equation (lOa), the integrand in equation (lOb")
is known from the distribution of log Q obtained from the solution

of equation (7) or (9) .

Channel wall coordinates. ! The variation in x along a line of
constant i|r in the cpi|r!plane is given by

dx _ /dx ds

which, combined with equations (2a) and (4), integrates to give

(lla)
'ijf **

Likewise,
r\
I sin в

(lib)

У ! / ̂  dcp (lie)

(lid)

where the constants of integration are selected to give known values of
x or у at one value of cp along each streamline or at one value of
i|r along each velocity!potential line. Equations (lla) to (lid) deter!
mine the distribution of x and у in the transformed cp\|r!plane or,
which is the same thing, the shape of the streamlines and velocity!
potential lines in the physical xy!plane. In particular, equations (lla)
and (lie) when integrated along the boundaries of constant i|r in the
cp\|r!plane determine the shape of the channel walls.

Turning angle. ! In general, if the prescribed velocity distribution
along one channel wall differs from the distribution along the other
wall, the channel deflects an amount Д0, which is the difference in
flow direction far downstream and far upstream of the region in which
the prescribed velocity distribution varies. In reference 5 it is shown
that for incompressible flow the turning angle Д0 is given by
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Д0 =

(12)

where the subscript u refers to conditions upstream at infinity and
where the subscripts 0 and 1.0 refer to the channel boundaries along
which ijr equals 0 and 1.0, respectively. A similar equation will be
given later for the case of linearized compressible flow.

Linearized Compressible Flow

The nonlinear differential equation (7) for the distribution of
velocity in the cpi|r!plane with compressible flow becomes linear and is
considerably simplified if a linear variation in pressure with specific
volume (l/p) is assumed. This linear relation between pressure and
specific volume was first suggested by Chaplygin (reference 7) in order
to linearize the differential equations for two!dimensional compressible
flow in the hodograph plane.

Density. ! If a linear variation in pressure with specific volume
is assumed, the density
(appendix C)

p* is related to the velocity q* by

! (1 + q*V (13)

where

and

p* = k
lP
 (I3a)

q* = k
9
q (I3b)

where the constants k!, and k
2
 have been determined so that values

of p given by equation (13) equal the values of p given by equa!
tion (8a) for any two selected values of q (designated by q

a
 and

q
b
). Thus,
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(14а)

and <g
ю
OJ

(14Ъ)

where p and p, are determined by equation (8a) for the selected
values of q

a
 and q

b
, respectively. A discussion of the selection of

q
a
 and q is given later. It will be noted that, if у is equal to

!1.0, equation (8a) has the same form as equation (13).

Stream function and velocity potential. ! For the case of linearized
compressible flow it is convenient to define the stream function \|r* and
the velocity potential cp* by

di|r* = p*q* dn (15)

and

d<P* = q* ds (16)

Continuity. ! The continuity equation expressed in terms of cp*
and i|r* becomes (appendix D)

S log u

where

1 +\/l + q
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or, conversely

q* =
 2U

 2
 (19)

Irrotational fluid motion. ! The equation for irrotational fluid
motion, expressed in terms of Ф* and \|r* becomes (appendix D)

w
g S log u
OT
 ~, = 0 (20)

*̂ 0!Ф

Differential equation for distribution of log
e
 u. ! The partial

differential equation for the distribution of log u in the ф * i|r *!plane

is obtained by differentiating equations (17) and (20) with respect to

Ф* and \|r*, respectively, and combining to eliminate —^——. Thus
оф chl/"

и
2
 log^ u о!

2
 I

0
g
o
 u

Equation (21) determines the distribution of log
e
 u in ф*\(г*!р1апе for

linearized compressible flow with a given value of q^_ and for arbi!

trarily prescribed variations in log
e
 Q, related to log

e
 u by equa!

tions (1), (I3b), and (18), along the boundaries of constant т|г*.
Equation (21) is linear and is, like equation (9) for the case of incom!
pressible flow, the equation of Laplace. Thus an incompressible flow
solution for the distribution of log

e
 Q in the фт(г!р!апе is also a

linearized compressible flow solution for the distribution of log
e
 u

in the cp*\|r*!plane. The transformation from the фт|г!р1апе is different,
however, from the transformation from the ф*\1/*!plane so that different
channel shapes result in the xy!plane.

Flow direction 9. ! The distribution of flow direction в along
a streamline (constant i|r ) is obtained from equation (20), which inte!
grates to give

(22a)
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Likewise, the distribution of flow direction 0 along a velocity!
potential line (constant cp*) is obtained from equation (17), which
integrates to give

о! log
e
 u8

 = ! ~~
 dxr (22b)

Equations (22a) and (22b) for linearized compressible flow correspond o>
to, and are used in the same manner as, equations (lOa) and (lOb) for to
the usual type of compressible or incompressible flow.

Channel wall coordinates . ! The variation in x along a line of
constant t|r* in the ф*1|г '!plane is given by

which combined with equations (2a) and (16) integrates to give

(23a)

Likewise,

(2зъ)

У ! d** (23с)

/ • cos о ,.* /_„,
чУ = / !^г <а* (23d)

Equations (23a) to (23d) determine the distribution of x and у in the
transformed ф*т|г*!р!апе or, which is the same thing, the shape of the
streamline and velocity!potential lines in the physical xy!plane. In
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particular, equations (23a) and (23c), when integrated along the bound!
aries of constant \|r* in the cp*i|r*!plane, determine the shape of the
channel walls. Equations (23a) to (23d) for linearized compressible
flow correspond to, and are used in the same manner as, equations (lla)
to (lid) for the usual type of compressible or incompressible flow.

Turning angle. ! In reference 5 it is shown that for linearized
compressible flow the turning angle, or difference in flow direction
far downstream and far upstream of the region in which the prescribed
velocity distribution varies along the channel walls, is given by

log
p
 u\ /о! logp u\

dcp* (24)

where Д\(г * is the value of i|r* along the left boundary (channel wall)
when faced in the direction of flow if the value of ty* along the right
boundary is zero and where the subscript Ai(r* refers to the boundary
along which i|r * is equal to A\|r*.

NUMERICAL PROCEDURE

The channel design method of this report was developed for three
types of fluid flow: (l) compressible, (2) incompressible, and
(3) linearized compressible. Although the numerical procedures of the
design method are similar for each type of fluid, the procedures differ
in detail and are therefore considered separately in this section.

Compressible Flow

The numerical procedure for channel design with compressible flow
(y = 1.4, for example) is as follows:

(l) The velocity is specified as a function of arc length along
that portion of the channel walls over which the velocity varies

q = q(s)

or q!, is specified and

Q = Q<s) (25)

where s is arbitrarily equal to zero at that point along one channel
wall where the velocity first begins to vary.
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(2) The channel wall boundaries of the flow field in the transformed
cp\|f!plane are straight and parallel lines of constant \|r extending
indefinitely far upstream and downstream between CD equals ±» where
ф is arbitrarily equal to zero at that point on the channel wall at
which s is equal to zero. The value of \|r along the right channel
wall when faced in the direction of flow (direction of positive cp) is
arbitrarily set equal to zero in which case the value of \|r along the
left channel wall (Д\|г) is obtained by integrating equation (3) across
the channel at a position far downstream where flow conditions are
uniform

At = P
d
 (26)

(3) The distribution of log
e
 Q as a function of CD along the

boundaries in the cpi|r!plane is obtained by integrating equation (4)
between limits so that

cp = / Q ds =cp(s) (27)
^0

which together with equation (25) gives the distribution of log
e
 Q

along the boundaries in the cp\|r!plane

logg Q = f (Ф) (28)

The integration indicated by equation (27) is carried out numerically
for arbitrary distributions of Q as a function of s.

(4) If the velocities prescribed along one channel wall differ
from those along the other wall, the channel will, in general, turn
the flow. This turning angle cannot be determined exactly for com!
pressible flow until the channel design is completed. However, it will
be shown that this turning angle is only slightly greater than that
resulting for linearized compressible flow with the same prescribed
velocity and with a suitable selection for q

a
 and q^ in equa!

tions (I4a) and (I4b). This latter turning angle for linearized com!
pressible flow is given by equation (24), which can be integrated numer!
ically for the arbitrary distribution of log

e
 u = f(ф) corresponding

to equation (28).

(5) In order to solve equation (7) for the distribution of log
e
 Q

in the ф\|г!р!апе it is convenient to eliminate the density terms from
equation (7) by means of equation (8b). Thus, equation (7) becomes
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? 2 2 2
* q d log q / д log q\ /Ъ logp q

(29)

where

A = — r+i

В = 1.0

2!q
4C =

I
1
!

and

4D =

i '
 Г
"
1

y!1

Although equation (29) is nonlinear, it can be solved by relaxation
methods (references 4 and 8, for example). A grid of equally spaced
points, at each of which the value of log

e
 Q is to be determined, is

placed in the flow field between the channel wall boundaries. The grid
is extended upstream and downstream sufficiently far so that constant
values of log

e
 Q are obtained across the channel by the relaxation

methods. In the numerical examples to be presented six or eight grid
spaces were used across the channel. In example III the number of grid
spaces was reduced from eight to four with negligible effect upon the
resulting channel design. The values of log

e
 Q at each grid point

were relaxed to five significant figures. If the same velocity distri!
bution is prescribed along both walls, the channel is symmetrical so that
the velocity distribution in only one half of the channel need be deter!
mined by relaxation methods.
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(6) After log
e
 Q has been determined at each grid point in the

фт|г!р1апе the distribution of 0 is determined by equations (lOa) and
(lOb), which are integrated numerically. The constants of integration
in equations (lOa) and (lOb) are determined to give a specified value
of в at one point in the channel (far upstream, for example). The
integrands in equations (lOa) and (lOb) are determined by numerical
methods (tables I to VII, reference 4, for example) from the known
values of p and log

e
 Q at each of the grid points. If it is desired

to know the flow direction along the channel walls only, equation (lOa)
can be solved along the channel wall boundaries i|r = 0 and !ty = Д\|г
only. If it is desired to know 0 everywhere in the channel, the
recommended procedure is to determine the variation in 0 along the
mean streamline (ty = (Д\|г)/2) by equation (lOa) and to determine the
variation in 0 along each velocity!potential line from the previously
determined values on the mean streamline by equation (lOb).

(7) After the distribution of log
e
 Q and 0 are known in the

фд|г!р!апе, the shapes of the streamlines and the velocity!potential lines
in the physical xy!plane or, which is the same thing, the distributions
of x and у in the transformed фф!plane are determined by the
numerical integration of equations (lla) to (lid). The constants of
integration in these equations are determined so that specified values
of x and у occur at one point in the flow field. The recommended
procedure is to determine the variation in x and у along the mean
streamline by equations (lla) and (lie) and to determine the variation
in x and у along each velocity!potential line for the previously
determined values on the mean streamline by equations (lib) and (lid).
If it is desired to know the x and у coordinates from the channel
walls only, equations' (lla) and (lie) can be solved along the channel
wall boundaries i|r = 0 and i|r = Д\(г only.

Incompressible Flow

The numerical procedure for channel design with incompressible flow
(p = 1) is similar to that just outlined for compressible flow, but
with the following differences:

(1) The velocity is specified as a function of arc length by
equation (25) alone. The constant q, is not considered, because it

does not exist.

(2) The value of \|r along the left channel wall (Д\|г) is equal to
1.0 instead of the value given by equation (26).

(3) The distribution of log
e
 Q as a function of ф along the

channel wall boundaries in the фт|г!р!апе is the same as that obtained
from equations (25) and (27) and given by equation (28).
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(4) The turning angle Д0 of the channel is given by equation (12).

(5) The distribution of log
e
 Q in the cpty!plane is obtained from

the solution of equation (9) by relaxation methods.

(6) After log
e
 Q has been determined at each grid point between

the channel wall boundaries in the 03\|r!plane, the distribution of 0 is

0
 determined by equations (lOa) and (lOb) as indicated previously for
5 compressible flow, but with p equal to unity.
r>

(7) After the distribution of log
e
 Q and 9 are known in the

Gp\|r!plane, the shapes of the streamlines and velocity!potential lines
in the physical xy!plane are determined by equations (lla) to (lid) as
indicated previously for compressible flow, but with p equal to unity.

Linearized Compressible Flow

The numerical procedure for channel design with linearized compres!
sible flow (y = !1.0) is similar to that previously outlined for com!
pressible flow, but with the following differences:

(l) The velocity q is specified as a function of arc length along
the channel walls by q(s) or by q^ and equation (25). For each pre!

scribed velocity there are an infinite number of linearized compressible
flow solutions depending on the selected values of q and q, in

a b
equations (I4a) and (I4b). However, for values of q and q, within

a b
the range of q prescribed along the channel walls (and therefore
everywhere in the channel), the solutions, that is, channel shapes,
probably differ only in small detail. The best solution is that most
nearly like the nonlinear compressible solution with arbitrary value of
у (1.4, for example). In the numerical examples of this report it is
shown that if q

a
 and q^ are equal to the maximum and minimum values

of q a good solution results, at least if the ratio of these prescribed
velocities is not too large (2:1 in the numerical examples). On the
other hand, if continuity is to be satisfied for a gas with the correct
value of у (1!4, for example) upstream and downstream of the region
of the channel in which the prescribed velocities vary, then q

a
 and

q, must equal q
u
 and q

d
.

After q and q!^ have been selected the velocity distribution

q(s) is expressed as q*(s) by equation (I3b) where ko is given by

equation (l4b) so that
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q* = q*!(s) (30)

The velocity q* is then expressed as u by equation (18) so that

u = u(s) (31)

In the particular case where the selected value of q
a
 is equal to

q!^ the value of ko is given by equation (С4Ъ) in appendix С where

the significance of this particular case is also discussed.
УЭ

(2) The solution is obtained in the transformed co*\|r*!plane where ю
ф* and \jr* are defined by equations (16) and (15), respectively. If
the value of i[r* along the raght channel wall when faced in the
direction of q* is zero, the value of \|r* along the left wall (Д\|г *)
is obtained by integrating equation (15) across the channel at a
position far downstream where flow conditions are uniform

Л
** = Pd

 q
d (32)

(3) The distribution of log
e
 u as a function of CD* along the

channel wall boundaries in the cD*\}r*!plane is obtained by integrating
equation (16) between limits similar to those discussed previously for
compressible flow so that

q* ds = cp*(s) (33)

which together with equation (31) determines the distribution of log
e
 u

along the channel wall boundaries in the cp*\|r*!plane

log
e
 u = f(cp*) (34)

(4) The turning angle Д0 of the channel is given by equation (24).

(5) The distribution of log
e
 u in the co*i|r*!plane is obtained

from the solution of equation (21) by relaxation methods.

(6) After log
e

 u nas
 been determined at each grid point between

the channel wall boundaries in the cp*i|r*!plane, the distribution of 0
is determined by equations (22a) and (22b) in a manner similar to that
outlined previously for compressible flow.

(7) After, the distribution of log
e
 u and 0 are known in the

cp*\|r*!plane, the shapes of the streamlines and the velocity!potential
lines in the physical xy!plane are determined by equations (23a) to (23d)
in a manner similar to that outlined previously for compressible flow.
The velocities q* in equations (23) are obtained from the known values
of u and the densities p* are given by equation (13).
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NUMERICAL EXAMPLES

The channel design method has been applied to five examples listed
below;

Examples

I

II

III

IV

V

Type of channel

Reducing section

Converging section

Elbow

Elbow

Elbow

Type of flow

Incompressible

Incompressible

Incompr e s s ible

Linearized compressible

Compressible (y = 1.4)

Example I

The first numerical example is the design of a reducing section in
a straight channel such that the upstream velocity is half the downstream
velocity. The solution is for incompressible flow.

Prescribed velocity distribution. ! The prescribed velocity as a
function of arc length s along both channel walls is given by

Q = 0.5 (s <

1 ъ s
5
 (0 < s < 3.0)

2 Т " 27
(35)

Q = 1.0 (s < 3.0)

The prescribed velocity given by equation (35) is plotted in figure 2.

Equation (35) together with equation (27) results in

Ф = 0.5 s (s < 0)

.
~ 2 18 " 108

ф = !0.75 + s

(О < s < 3.0)

(s < 3.0)

(36)

From equations (35) and (36), log
e
 Q is a known function of ф, which

function is plotted in figure 3.
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Results. ! The results of example I are presented in figures 4 to 7.

In figure 4 lines of constant velocity Q and flow direction в
are plotted in the transformed cp\(r!plane. The flow direction В is
constant and equal to zero along the mean streamline (i|r = 0.5) indi!
cating that the center line of the channel is straight. The maximum
absolute values of 0 occur along the channel walls. The solution is
symmetrical about the mean streamline. The lines of constant Q and
Q are orthogonal (see appendix E) . If (SS)

Q
 is the spacing of lines

of constant в measured along lines of constant Q and if (SS)
Q
 is
у

the 'spacing of lines of constant Q measured along lines of constant
в, equation (F5) in appendix F gives

0.03 I "• 2.7 "

In figure 5 lines of constant x and у are plotted on the trans!
formed cpty!plane. Along the mean streamline (ty = 0.5) the value of
у is constant and equal to zero indicating, as before, that the center
line of the channel is straight. The lines of constant x and у are
orthogonal (appendix E). The solution is symmetrical. The ratio of
the spacing of lines of constant x and у is given by equation (F6)
of appendix F

_ 5У . 0.2 .
 1
 „

(6S) 6x 0.2

so that the system of curves forms a square network.

In figure 6 lines of constant tt> and \|r (velocity potential and
streamlines, respectively) are plotted in the physical xy!plane. .The
shape of the channel walls is that required to result in the prescribed
velocity distribution given by equation (35) and plotted in figure 2.
The downstream channel width is 1.0 by definition. The upstream channel
width is 2.0 in order that the upstream velocity be half the downstream
velocity. As usual the streamlines and velocity potential lines are
orthogonal (appendix E) and, for equal increments of cp and \(r, form'
a square network (equation (F7), appendix F, with p equal to 1.0).

In figure 7 lines of constant Q and в are plotted in the
physical xy!plane. The lines of constant Q and 0 are orthogonal
(appendix E). The ratio of the spacing of lines of constant Q and 0
is given by equation (F8) of appendix F

CD
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which is the same as that for the same lines of constant Q and 0 in
the cpijr!plane (see equation (37)).

Example II

The second numerical example is the design of a converging section
that funnels the fluid from an infinite expanse into a straight channel
of unit width. Far upstream the channel walls are straight and converge
at a 90° angle. The solution is for incompressible flow.

Prescribed velocity. ! The prescribed velocity as a function of
arc length s along both channel walls is given by

я 2я 8 \2я 2/ 32 ̂  я

Q = 1!0 (s >4)

The prescribed velocity given by equation (38) is plotted in figure 8.

Equation (38) together with equation (27) results in

2 / ч\
cp= ^ log_ 1 ! I (s < 0)

32

From equations (38) and (39), log
e
 Q is a known function of Ф, which

function is plotted in figure 9.

Results. ! The results of example II are presented in figures 10
to 12.
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In figure 10 lines of constant velocity Q and flow direction 0
are plotted in the transformed cpi|r!plane. The flow direction в is
constant and equal to zero along the mean streamline (\|r = 0.5) indi!
cating that the center line of the channel is straight. The solution
is symmetrical about the mean streamline. As for example I the lines
of constant Q and 0 are orthogonal. The ratio of the spacing of
lines of constant Q and 0 is given by equation (F5) in appendix F

(5S)
Q (Ьв\ _ /4

Л
/180\ 4л

"
 =
 ! ! = !

_
щ
 Q
 ! ГоЖ!у!

 Q
 = 9!

 Q
 (

40)

In figure 11 lines of constant cp and i(r are plotted in the
physical xy!plane. The shape of the channel walls is that required to
result in the prescribed velocity distribution given by equation (38)
and plotted in figure 8. As usual the streamlines and velocity poten!
tial lines are orthogonal (appendix E) and, for incompressible flow
with equal increments of cp and !fy, form a square network (appendix F) .

In figure 12 lines of constant Q and 0 are plotted in the
physical xy!plane. The lines of constant Q and Q are orthogonal
(appendix E) , and the ratio of the spacing of

c
lines of constant Q and

0 is the same as that given for the same lines of constant Q and 0
in the cpijr!plane (equation (40)).

Example III

The third numerical example is the design of an elbow for which
the upstream velocity is half the downstream velocity. The prescribed
velocities are such that no deceleration occurs anywhere along the
channel walls. The solution is for incompressible flow.

Prescribed velocity distribution. ! Along both walls upstream of
the elbow the velocityQis equal to 0.5, and along both walls
downstream of the elbow Q is equal to 1.0. The transition from Q
equals 0.5 to 1.0 along both walls of the elbow will be the prescribed
velocity distribution as a function of arc length given by equation (35)
for example I and plotted in figure 2. In terms of log

e
 Q as a

function of cp this prescribed velocity distribution is given by equa!
tion (36) and is plotted in figure 3. Although this velocity distri!
bution is the same for both walls, the distribution on the outer wall
(wall with larger radii of curvature) is shifted in the positive cp
direction an amount equal to 2.25 relative to the distribution on the
inner wall. Thus, a velocity difference exists on the two walls at
equal values of cp, as shown in figure 13. The greater this difference
in velocity and the greater the range in cp over which velocity differ!
ences exist, the greater is the elbow turning angle. For the prescribed
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velocity distribution given in figure 13 the elbow turning angle given
by equation (12) was 89.37 degrees compared with a value of 89.36 degrees
obtained from the relaxation solution.

Results. - The results of example III are presented in figures 14
to 16 and in tables I and II. (The numerical results for examples III,
IV, and V axe tabulated in tables I to VI to enable a detailed comparison
of the three elbow designs with the same prescribed velocity Q distri-
bution as a function of arc length but with incompressible (example III),
linearized compressible (example IV), and compressible (example V) flow.)

In figure 14 lines of constant Q and 9 are plotted in the
cpi|r-plane. The flow direction 9 varies along the mean streamline
(i|r = 0.5) indicating that the channel is curved. The solution is
unsymmetrical. As for examples I and II, the lines of constant Q and
Q are orthogonal (appendix E) . The ratio of the spacing of lines of
constant Q and 9 is given by equation (F5) in appendix F

2.7

In figure 15 lines of constant cp and \|r are plotted in the
physical xy-plane. The shape of the channel walls is that required to
result in the prescribed velocity distribution given by equations (35)
and (36) and plotted in figures 2 and 13. The upstream channel width
is twice the downstream width in order that the upstream velocity be
half the downstream velocity. It is interesting to note that, before
curving in the direction of the elbow turning angle, the inner wall
first curves in the opposite direction. This behavior of the inner wall
geometry is necessary in order to maintain the prescribed constant
velocity along the outer wall where the velocity would otherwise
decelerate because of the necessary curvature in the direction of elbow
turning. This feature of the elbow geometry will also be noted in
examples IV and V. As usual the streamlines and velocity-potential lines
are orthogonal (appendix E) , and, for equal increments of cp and -ty ,
form a square network (equation (F7), appendix F, with p equal to 1.0).

In figure 16 lines of constant Q and 9 are plotted in the
physical xy-plane. The lines of constant Q and 9 are orthogonal
(appendix E) , and the ratio of the spacing of lines of constant Q and
9 is the same as that given for the same lines of constant Q and 9
in the cp\|r-plane (equation (41) ) .
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Example IV

The fourth numerical example is the design of an elbow with the
same prescribed velocity Q, as a function of arc length, used in
example Щ but for linearized compressible flow (y = !1.0) .

Prescribed velocity distribution. ! The prescribed velocity distri!
bution Q is the same as that for example III and with q^ equal

to 0.80176. The variation in Q with s along one channel wall is
plotted in figure 2. The values of q

a
 and q^ in equations (I4a) and

(I4b) are equal to q and q,, or 0.40088 and 0.80176, respectively.

For these values of q
a
 and q^ and for the prescribed velocity

distribution with linearized compressible flow, the elbow turning angle
given by equation (24) was 104.08° compared with a value of 104.07°
obtained from the relaxation solution and a value of 89.36° obtained
for incompressible flow (example III) .

Results . ! The results of example IV are presented in figures 17

to 19 and in tables III and IV.

In figure 17 lines of constant q and 0 are plotted in the
transformed cp*\|f* !plane. The solution is unsymmetrical. The lines of
constant q and 0 are orthogonal (appendix E) , and the ratio of the
spacing of lines of constant q and 0 is given by equation (F9) in
appendix F.

50 \ _q_ _ /4л/180\ q л q
p* ~ \ 0.02 ) p* ~ 0.9 p*

where p* is related to q by equations (13) and (l3b) .

In figure 18 lines of constant ф*/Ат|г* and \|r*/Ai|r* are plotted in
the physical xy!plane (where the constant A\|r* is given by equation (32)
and is equal to 0.73782 for q

d
 equal to 0.80176). The shape of the

channel walls is that required to result in the prescribed velocity
distribution used in example III but with linearized compressible flow
and for cu equal to 0.80176. From continuity considerations the

upstream channel width is 1.5385 times the downstream width. As in
example III the inner wall of the elbow first turns in the opposite
direction to the elbow turning angle. As usual the streamlines and
velocity!potential lines are orthogonal (appendix E) . The ratio of the
spacing of the lines of constant cp*/A\|r* and \lr*/̂ t*

 1S
 given by equa!

tion (F10) in appendix F
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вуЛ _i_ _ 1/6 _i i_
р* ~ т/6 р* ~ р*

Thus the ratio of the spacing of lines of constant Ф*/Д\|г* and т)г*/Д\|г*
in figure 18 is a measure of the density p*.

In figure 19 lines of constant q and 0 are plotted in the
physical xy!plane. The lines of constant q and 0 are not in general
orthogonal (appendix E) .

Example V

The fifth numerical example is the design of an elbow with the same
prescribed velocity Q, as a function of arc length, used in examples Щ
and IV but for compressible flow (y = 1.4).

Prescribed velocity distribution. ! The prescribed velocity distri!
bution Q is the same as that for examples III ctnd IV but with q^

equal to 0.79927. The variation in Q with s along one channel wall
is plotted in figure 2.

Results ! The results of example V are presented in figures 20 and
21 and in tables V and VI.

In figure 20 lines of constant ф/Дф and /̂Дф are plotted in
the physical xy!plane (where the constant Д\|г is given by equation (26)
and is equal to 0.71054 for q

d
 equal to 0.79927). The shape of the

channel walls is that required to result in the prescribed velocity
distribution used in examples III and IV but with compressible flow
(у = 1!4) and for q^ equal to 0.79927 The upstream channel width

is 1.5412 times the downstream width, and the turning angle is 105.31°
compared wi'ch 104.07° for linearized compressible flow (example IV) and
89.36° for incompressible flow (example III) The streamlines and
velocity!potential lines are orthogonal, and from equation (F7) of
appendix F the ratio of the spacing of the lines of constant ф/Дт|г and
т|//Д1|; is given by
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Thus, as for linearized compressible flow (example IV) , the ratio of the
spacing of lines of constant 0)/Д\|г and i|f/Aijf in figure 20 for equal
increments of cp/Av|r and \)r/A\|r is a measure of the density p.

The shape of the elbow for compressible flow (example V, fig. 20)
is nearly the same as the shape of the elbow for linearized compressible
flow (example IV, fig. 18). Therefore, in figure 21 the contours of the
walls for both examples are compared. The difference in contours is
very small and it is concluded that, if a nonviscous gas with arbitrary
у (1.4, for example) were to flow through a channel designed for linear!
ized compressible flow (y = !1.0), the resulting velocity distribution
along the channel walls would be nearly the velocity distribution pre!
scribed for the linearized compressible flow, at least if the linearized
flow were selected (by the choice of q

a
 and q^) so that the densities

were equal for both types of flow at the maximum and minimum velocities
and if the ratio of these prescribed velocities is not too large (2:1 in
the numerical examples) . This conclusion is important because the design
method for linearized compressible flow is considerably faster than the •
design method for compressible flow with у other than !1.0.

SUMMARY OF RESULTS AND CONCLUSIONS

A general method of design is developed for two!dimensional
unbranched channels with prescribed velocities as a function of arc
length along the channel walls . The method is developed for both com!
pressible and incompressible, irrotational, nonviscous flow and applies
to the design of elbows, diffusers, nozzles, and so forth. Two types
of compressible flow are considered: the general type with arbitrary
value for the ratio of specific heats у (1.4, for example) and the
linearized type in which у is equal to !1.0. In this report (part I)
solutions are obtained by relaxation methods on a transformed plane the
coordinates of which are the streamlines and velocity!potential lines

in the physical plane; in part II solutions are obtained by a Green's
function. The present method of solution gives complete information
concerning the flow throughout the channel.

Five numerical examples are given ana the results presented in
plots of lines of constant velocity and flow direction or lines of
constant physical coordinates in the transformed plane and streamlines
and velocity!potential lines or lines of constant velocity and flow
direction in the physical plane. Among the five examples are three
elbow designs for the same prescribed velocity as a function of arc
length along the channel walls but with incompressible, linearized
compressible, and compressible flow. The numerical results of these
three elbow designs are tabulated to enable a detailed comparison of
the three designs.
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The shapes of the elbows for compressible flow and for linearized
compressible flow are very nearly the same and it is concluded that, if
a nonviscous gas with arbitrary у (l!4

;
 for example) were to flow

through a channel designed for linearized compressible flow (y = !1.0),
the resulting velocity distribution along the channel walls would be
nearly the velocity distribution prescribed for the linearized com!
pressible flow, at least if the linearized flow were selected so that
the densities are equal for both types of flow at the maximum and

о minimum velocities and if the ratio of these velocities is not too large
N (2:1 in the numerical examples). This conclusion is important because

the design method for linearized compressible flow is considerably
faster than that for compressible flow.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics

Cleveland, Ohio, July 25, 1951
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APPENDIX A

Symbols

The following symbols are used in this report:

A,B,C,D coefficients, equation (29)
CO

А,В arbitrary constants, equation (Cla) g

k!i coefficient, equation (l4a)

ko coefficient, equation (I4b)

n distance in xy!plane measured normal to direction of flow
(expressed as ratio of characteristic length equal to
channel width downstream at infinity)

p static pressure (expressed as ratio of stagnation density
multiplied by stagnation speed of sound squared)

Q velocity ̂ (expressed as ratio of characteristic velocity
equal to constant channel velocity downstream at infinity)

q velocity (expressed as ratio of stagnation speed of sound)

q* velocity used in linearized compressible flow and related
to q by equation (l3b)

S spacing between lines in xy! or cp\jr!plane

s distance in xy!plane measured along direction of flow (ex!
pressed as ratio of characteristic length equal to channel
width downstream at infinity)

u velocity parameter related to q* by equation (18)

x,y Cartesian coordinates in physical plane (expressed as ratios
of characteristic length equal to channel width downstream
at infinity)

у ratio of specific heats

5 increment of

0 flow direction щ physical xy!plane (measured in counter!
clockwise direction from positive x!axis).
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A0 channel turning angle, equation (12)

p density (expressed as ratio of stagnation density)

p* density used in linearized compressible flow and related to
p Ъу equation (l3a)

cp,\(r velocity potential and stream function, respectively, used
as Cartesian coordinates in transformed plane, defined Ъу

equations (3) and (4)

A\|r boundary value of i|r along left channel wall when faced in
the direction of flow, equation (26)

ср*,ф* velocity potential and stream function, respectively, for
linearized compressible flow and used as Cartesian

coordinates in the transformed cp*\(r*!plane, defined by
equations (15) and (16)

Ai|r* boundary value of \|r*, for linearized compressible flow,
along, left channel wall when faced in the direction of
flow, equation (32)

Subscripts:

a,b quantities related to two velocities (q
a
 and q!,, respec!

tively) for which density given by equation (8a) is equal

to density p given by equations (13), (13а)
}
 and (l3b)

d о conditions downstream at infinity

Q,q along lines of constant Q and q, respectively

u conditions upstream at infinity

x,y along lines of constant x and y, respectively

Аф* left channel wall, when faced in direction of flow, along
which \|r* is equal to Aijr*

9 along lines of constant в

co,i|;,CD*,ty* along lines of constant cp, \(r,
 r
o*, and ф*, respectively

0 right channel wall, when faced in direction of flow, along
which ty or ty* is equal to 0

1.0 left channel wall, when faced in direction of flow, along
which ty is equal to 1.0
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APPENDIX В

EQUATIONS OF CONTINUITY AND IRROTATIONAL FLUID MOTION IN TERMS

OF TRANSFORMED cp,ty COORDINATES

Consider the two!dimensional irrotational motion of a fluid particle
in the physical xy!plane. The fluid particle is defined Ъу adjacent
streamlines (constant ty) and velocity!potential lines (constant CD)
spaced 5n and 6s apart as indicated in figure 22. The velocity Q
is parallel to the streamlines and normal to the velocity!potential lines.

Continuity. ! From continuity considerations of the fluid particle
in figure 22

|! (pQ 6n) = 0
OS

or

a io
Se
 p

 +
 a io

6e
 Q i ам„

 (В1)
OS OS ОП OS ^ '

But, from geometrical considerations (reference &, p. 167, for example)

?T6n

and
0

! , _
 (B2b)

6s on ds
 ч

 '

so that equation (Bl) becomes

OS OS ОП

or

= 0

1ове P dф ^ lo&e Q dco
o ds 5cp ds chjr dn

which, combined with equations (3) and (4), becomes
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a iog
e
 p a iog

Equation (5) is the continuity equation expressed in terms of
co,\|r coordinates.

Irrotational fluid motion. ! For irrotational motion of the fluid
particle in figure 22

(QBs) = 0

or

a iog
c

R
 A =0 (B3)6s an

 ч
 '

But, from equations (В2Ъ) and (B3)

Q

or

5 log
e at ae dcp

5\jr dn ф̂ ds,

which, combined with equations (3) and (4), becomes

5 lQ
g
e
 Q o!e .

Equation (6) is the equation for irrotational fluid motion expressed in
terms of the <p,\|r coordinates. Equations (5) and (6) were originally
derived m modified forms by Chaplygin (reference 7) and are given in
reference 6, page 169.
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APPENDIX С

RELATION BETWEEN VELOCITY AND DENSITY ASSUMING LINEAR VARIATION

IN PRESSURE WITH SPECIFIC VOLUME

The approximate, linear relation between pressure p and specific
volume 1/p first suggested Ъу Chaplygin (reference 7) is given Ъу

p = A ! ! (Cla)

from which

I ! 7
where A and В are arbitrary constants.

If p denotes the static pressure expressed as a ratio of the
stagnation density multiplied Ъу the stagnation speed of sound squared,
Bernoulli's equation is

5E + q dq = 0

which combined with equation (Gib) integrates to give the approximate
relation between velocity and density

В а
2

—5! ! !|! = constant (C2)
2p

d <L

For convenience equation (C2) can be written as

or

p* = (1+ q*^) ' (13)

where

p* = k
lP
 (13a)
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CD
О
ю
N

and

q* = k
2
q (13Ъ)

The constants k!. and ko replace the two arbitrary constants

in equation (C2) and their values are determined so that for any two
arbitrary values of q (designated by q

a
 and q^) the values of p

given by equation (13) equal the values of p given by equation (8&).
Thus the values of p given by equation (13) for q equal to q or

q, are correct; for all other values of q the values of p are

approximate.

ditions

The constants k!, and ko are determined from the con!

Pa =
 k
lPa

=

=

(сз)

From equation (13) and the conditions given Ъу equation (C3)

k^ =

and

(I4a)

(14Ъ)

where p
a
 and p, are determined by equation (8a) for the selected

values of q and q, , respectively.



i X±i
 21 !

 2
 q

This latter case, in which q
a
 = q^ = q, corresponds to the method

used by Chaplygin (reference 7) and Karman!Tsien (reference 9) in which

the correct relation between p and — is replaced by a straight line

(equation (Cla)) that is tangent to the correct relation at one point
(where q^ = q

b
).

о
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The values of q^ and q^ might, for example, be selected to equal

the maximum and minimum values of q (which values of q must occur on
the channel walls and are therefore known). Also, the values of q

a
 and

q!u might be selected to equal the upstream and downstream velocities

q and q,. In this case the upstream and downstream channel widths

would then satisfy continuity for a gas with the correct value of f
(1.4, for example). If the upstream and downstream velocities are equal,
their value and the value of some other velocity (the maximum or minimum
velocity, for example) can be selected for q

a
 and q^ or, if desired, от

q
a
 can be equal to q^ in which case if

q
a
 = q + e where e

it can be shown' from equations (I4a) and (I4b) that

(C4a)

and
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APPENDIX D

EQUATIONS OF CONTINUITY AND IRROTATIONAL FLUID MOTION IN

TERMS OF TRANSFORMED cp*,t* COORDINATES

Consider the two!dimensional irrotational motion of a fluid particle
in the physical xy!plane. The fluid particle is defined by adjacent
streamlines (constant i|r*) and velocity!potential lines (constant cp*)
spaced Sn and 6s apart as indicated in figure 22. The velocity q*
is parallel to the streamlines and normal to the velocity!potential lines.

Continuity. ! From continuity considerations of the fluid particle
in figure 22

^ (p*q*6n) = 0

or

5 log
p
 p* d log

p
 q* i

as os 5

which combined with equation (B2a) becomes

P*
 d
cp* <

dcp* ds дер* ds chlr * dn

or, from equations (15) and (16)

'd loge p* d logfi q*N

Р'И
se

i* V ^C

But, from equation (13)

log
e
 p* _

 q
*2 Э log

e
 q*

so that equation (Dl) becomes

1 &
 lo
S
e
 <1* 50

r! î + •£—£ = 0 f"D2̂? ^ф* 3\f* ^ '
+ q*^
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Finally, if

u = ,q + (18)
1+/ 1 + q*

then

3 loge q*

во that equation (D2) becomes

3 log u
* = 0 (17)

Equation (17) is the continuity equation expressed in terms of Cff,i|r*
coordinates and log u.

Irrotational fluid motion. ! For irrotational motion of the fluid
particle in figure 22

= 0

or

d log
•e* + A M 5 s l _ Q

on Ss on

which combined with equation (B2b) becomes

и log
e
 q*

 dl[f
* ^9 (

5 dn c^p ds

or, from equations (13), (15) , and (16)

_

,_
(D4)

Finally, from equations (D3) and (D4)

S log
Q
 u !

Equation (20) is the equation for irrotational fluid motion expressed in
terms of cp*,ty* coordinates and log

e
 u.

ю
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APPENDIX E

ORTHOGONAL CURVES IN cp\|r! AND xy! PLANES

If, for example, lines of constant Q and Q are orthogonal in
the cpty!plane the product of their tangents equals !1.0. This condition
is satisfied if

o!Qo!б

But, from equations (5) and (6)

O!Q 0!0
 A
 BQ de

 Q
 17 1 \ ae 0!0

 5 1о
§е Р 0!0] ,_,_,,

З ф З ф + с Ч о ?~ а [ \ Р ~ Pj^o^> (( 5Ф~ c^J (E2)

so that for compressible flow equation (El) is not, in general, satisfied
and therefore lines of constant Q (or q) and 0 are not orthogonal
in the cpty!plane. For incompressible flow p is equal to 1.0 and the
right side of equation (E2) is zero so that equation (El) is satisfied
and therefore lines of constant Q and 0 are orthogonal щ the
cpT[r!plane .

From equations (lla) to (lid) in differential form

3x _ cos 0 _ Sy
сГф" Q ~

 p
 chjr

so that

Ъу Ч
"

For compressible flow the right side of equation (E3) is not, in general,
zero so that lines of constant x and у are not orthogonal in the
cp\|r!plane. For incompressible flow the right side of equation (E3)
becomes zero so that lines of constant x and у are orthogonal in the
ф\|с!р1апе .
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From the usual definitions of ф and i(r

дФ
 л
 .1

= Q, cos 0 = —!V! = cos = — !j!!
dx

 ч
 р dy

л
 а !!г— = Q sin 0 = — !s!

1
!dy

 ч
 р dx

so that

dtp d\lr
die cix <5y dy

Thus, for both compressible and incompressible flov lines of constant
ф and \(r are orthogonal in the xy!plane.

In terms of Q and 0 the equations for continuity and irrota!
tional motion in the xy!plane reduce to

d log
e

 Q
 d9

 0
 *

 log
e P 2

 a

 d log
e P

— + = ! sin 0 cos 0 ! cos 0

d log
e
 Q

 de
 d log

g
 p d log

g
 p

г ! !г— = ! Sin 0 COS 0 з ! Sin 0 \
dy ox ox dy

so that

dQ d0
 +
 dQ d0

 =

die die d"y d̂ !

d 1о
§е P 9 °

 lo
Ssin 0 cos e

 !!
 + cos e

 —

d0 /
 d log

e P 9
 d log

esin e cos в
 — —

 + sin в
 — —

 (E4)

For compressible flow the right side of equation (E4) is not, in general,
zero so that lines of constant Q (or q) and 0 are not orthogonal
in the xy!plane. For incompressible flow the right side of equation (E4)
becomes zero so that lines of constant Q and 0 are orthogonal in the
cp\|r!plane .
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Likewise for linearized compressible flow it can be shown that

! 0*0 3q 0!0 , .

°
 (E5)

+ = 0 (E7)
dx dx dy dy

and

dq 50 dq 50 _
d"x d"x d"y "Sy

P 2
q ip sin 0 cos 0 ! 3! ! + cos 0

! 3! ! ! ~!x I dy dx

d0 /
 d los

e P* ?
 d

(sin 0 cos 0 ! ! + sin^ 0

Thus
;
 from equation (E5) lines of constant q and 0 are orthogonal

in the cp*\|r*!plane and from equation (E7) lines of constant cp* and
i|f* are orthogonal in the xy!plane. But from equation (E6) lines of
constant x and у are not orthogonal in the ф*!ф*!р!апе and from
equation (E8) lines of constant q and 0 are not orthogonal in the
xy!plane .
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APPENDIX F

RATIO OF CURVE SPACING FOR SETS OF ORTHOGONAL CURVES

IN cp\|r! AND xy!PLANES

Consider for example the case of orthogonal lines of constant Q
and в in the cp\|r!plane (incompressible flow, appendix E) . If (dS)n

is the differential distance along a line of constant 0 between two
curves of constant Q

(FI)

where the subscripts в indicate that the changes are made along a line
of constant 0. The change in Q along (dS)

0
 is

(F2)

о
Ю
(M

Also, because d0 is zero along (dS),

(F3)

From equations (Fl) to (F3)

(as)

1
0!0 S0

(F4a)

Likewise, if (dS)
0
 is the differential distance along a line of

constant Q between two curves of constant 0

(as) * = (d0)'
0!0 \

2 (F4b)
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Thus, from equations (F4a) and (F4b) the ratio of curve spacing for
orthogonal lines of constant Q and 0 in the cpi(r!plane becomes

(BS)_Q _ 60

'0 ~
 5Q

"5Ф,
0!0

1/2

which, from equations (5) and (&) with p equal to 1.0, becomes

(
&S
)Q /50 \

/кс\ ~ \ RH I°(oS)
a
 \ 04 /
О
 N
 '

Likewise it can be shown that for incompressible flow in the
cp\|r!plane with lines of constant x and у

(F5)

(
&S
) x by (F6)

For both compressible and incompressible flow in the xy!plane with lines
of constant cp and \|r

(F7)

(
&S
^

For incompressible flow in the xy!plane with lines of constant Q and 0

60
(F8)

For linearized compressible flow in the co*\|r*!plane with lines of
constant q and в

(F9)

And for linearized compressible flow in the xy!plane with lines of
constant Ф* and \[r*

(F10)



42 NACA TN 2593

REFERENCES

1. Carrier, G. F.: Elbows for Accelerated Flow. Jour. Appl. Mech.,
vol. 14, no. 2, June 1947, pp. A!108!A!112.

2. Lighthill, M. J.: A New Method of Two!Dimensional Aerodynamic Design.
R. & M. No. 2112, British A.R.C., 1945.

3. Clauser, Francis H.: Two!Dimensional Compressible Flows Having
Arbitrarily Specified Pressure Distributions for Gases with Gamma <o
Equal to Minus One. Rep. NOLR 1132, Symposium on Theoretical ю
Compressible Flow, U. S. Naval Ordnance Lab., June 28, 1949,

 N

pp. 1!33.

4. Southwell, R. V.: Relaxation Methods in Theoretical Physics.
Clarendon Press (Oxford), 194Б.

5. Stanitz, John D.: Design of Two!Dimensional Channels with Prescribed
Velocity Distributions along the Channel Walls. II ! Solution by
Green's Function. NACA TN 2595, 1952.

6. Liepmann, Hans Wolfgang, and Puckett, Allen E.: Introduction to
Aerodynamics of a Compressible Fluid. John Wiley & Sons, Inc.,
1947.

7. Chaplygin, S.: Gas Jets. NACA TM 1063, 1944.

8. Emmons, Howard W.: The Numerical Solution of Partial Differential
Equations. Quart. Appl. Math., vol. II, no. 3, Oct. 1944,
pp. 173!195.

9. Tsien, Hsue!Shen; Two!Dimensional Subsonic Flow of Compressible
Fluids. Jour. Aero. Sci., vol. 6, no. 10, Aug. 1939, pp. 399!407.



WACA TN 2593 43

TABLE I + DISTRIBUTION OF VELOCITY <t AHD FLOW DIRECTION 8 Ш THAJSFOHMED cp^ +PLANE FOR EXAMPLE III (ELBOW WITH IHCOMPHESSIBLE FLOW)

[Prescribe! variation In Q with arc length s along channel valla plotted in fig 2, 0 = 0 5 , Ч = 1 0, u9 . 89 35° ]

ч
!' 000
!1 875
!1 75U
!1 625
!1 500
!1 375
!1 250
!1 125
!1 000
! 875
! 750
! 625
! 500
! 375
! 250
! 125
0
1?5
?50
375
•500
625
750
875

1 000
1 135
1 250
1 375
1 500
1 625
1 150
1 875
2 000
2 1?5
2 250
2 375
2 500
2 625
' 750
2 875
3 000
3 125
3 250
3 375
3 500
3 825
3 750
3 875
4 000
4 125
4 250
4 375
4 500
4 625
4 750
4 875
5 000
5 125
5 250
5 375
5 500
5 525
5 750
5 875
6 000

0

Ч

0 5000
5000
5СОО
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5097
5354
5715
6134
6576
701S
7448
8̂55
S235
8583
8898
9177
9418
9620
9782
9901
9975

1 0000
1 0000
1 0000
1 0000
1 0000
1 0000
1 0000
1 0000
1 0000
1 0000
1 0000
1 0000
1 0000
1 0000
1 0000
1 0000
1 0000
1 0000
1 0000
1 0000
1 0000
1 0000
1 0000
1 0000
1 ОООО
1 0000
1 0000
1 0000
1 ОООО
1 ОООО
1 ОООО

в
0
01
01
01
02
03
04
06
09
14
20
30
45
69

1 04
1 63
2 73
5 06
6 83
7 36
6 69
4 95
2 40
! 81

!4 52
!в 64
!13 08
!17 77
!22 67
!?7 72
!32 88
!38 10
!43 30
!48 43
!53 34
!57 83
!62 00
!65 84
!69 39
!72 57
!75 43
!77 93
!80 11
!81 97
!83 54
!84 84
!85 90
!86 75
!87 43
!87 95
!88 34
!88 64
!88 85
!89 01
!89 11
!89 19
!89 24
!89 2В
!89 31
!89 32
!89 34
!89 34
!89 35
!39 35
!89 36

0 125

Q

0 5000
5000
5000
5000
5001
5001
5001
5002
5003
5005
5007
5011
5016
5025
5039
5065
5115
5226
5424
5692
6006
6344
6690
7030
7356
7662
7945
8202
8432
8633
8806
8949
9065
9153
9218
9271
9321
9374
9429
9487
9544
9601
9656
9708
9755
9798
9837
9870
9898
9922
9942
9957
9969
9978
9984
9989
9993
9995
9997
9998
9999
9999
9999

1 ОООО
1 ОООО

$

0
01
01
01
02
03
04
06
08
12
18
27
40
60
89

1 34
2 04
3 21
4 02
4 02
3 19
1 52
! 82

!3 76
!7 18
!11 01
!15 16
!19 59

!24 22
!29 03
!33 95
!38 94
!43 91
!48 83
!53 57
!58 01
!62 16
!66 01
!69 55
!72 74
!75 59
!78 10
!60 27
!82 11
!83 67
!84 96
!86 01
!86 84
!87 50
!88 01
!66 39
!88 68
!88 88
!89 03
!89 13
!89 21
!89 25
!89 29
!89 31
!69 33
!89 34
!89 35
!89 35
!89 35
!89 36

0 250

Q

0 5000
5000
5000
5001
5001
5002
5002
5004
5006
5009
5013
5019
5029
5044
5068
5107
5171
5276
5433
5637
5874
6132
6399
6663
6919
7162
7387
7593
7778
7944
8089
8215
8325
8422
8510
8596
8687
8785
8890
8999
9111
9221
9327
9427
9521
9605
9680
9746
9802
9S49
9887
9917
9941
9958
9971
9980
9986
9991
9994
9996
9997
9998
9999

1 ОООО
1 ОООО

в
0
00
01
01
01
02
03
04
07
10
14
21
30
45
65
94

1 30
1 64
1 73
1 32
33

!1 31
!3 52
!6 26
!9 46
!13 05
!16 97
!21 17
!25 60
!30 20
!34 94
!39 75
!44 58
!49 36
!54 00
!58 44
!62 63
!66 51
!70 07
!73 27
!76 12
!78 60
!80 75
!82 56
!84 07
!85 32
!66 32
!67 11
!87 73
!88 20
!88 54
!88 79
!88 97
!89 09
!89 18
!89 24
!69 28
!69 30
!89 32
!89 33
!89 34
!89 35
!89 35
!89 36
!89 36

0 375

«

0 5000
5000
5000
5001
5001
5002
5003
5005
5007
5011
5016
5025
5037
5055
5082
5124
5187
5276
5402
5557
5736
5930
6132
6334
6530
6717
6891
7052
7199
7331
7450
7558
7659
7757
7858
7968
8091
8228
8378
8537
8699
6860
9016
9164
9301
9426
9537
9634
9717
9786
9842
9885
9919
9943
9961
9973
9982
9988
9992
9995
9997
9998
9999
9999

1 ОООО

в
0
00
00
01
01
01
02
03
04
05
08
11
16
24
32
44
50
34

! 03
! 75

!1 89
!3 55
!5 69
!6 31
!11 34
!14 76
!18 51
!22 53
!26 79
!31 25
!35 84
!40 54
!45 28
!50 02
!54 65
!59 14
!63 40
!67 35
!70 96
!74 17
!77 02
!79 46
!81 55
!83 30
!84 74
!85 91
!86 84
!87 56
!68 10
!88 50
!88 78
!88 98
!89 10
!89 19
!89 25
!89 29
!89 31
!89 33
!89 34
!89 35
!89 35
!89 35
!89 36
!89 36
!89 36

0 500

Ч

0 5000
5000
5000
5001
5001
5002
5003
5005
5008
5012
5017
5026
5038
5056
5083
5121
5175
5249
5344
5460
5592
5735
5883
6032
6177
6316
6446
6567
6678
6779
6873
6962
7050
7143
7249
7374
'524
7697
7691
8097
8309
8521
8726
8920
9100
9264
9410
9538
9646
J736
9808
9864
9905
9935
9956
9970
9980
9X6
9991
9994
9996
9998
9999
9999

1 ОООО

е
0
00
00
00
00
оо
00
00
00
00

! 01
! 01
! 02
! 04
! 09
! 17
! 36
! 70

!1 27
!2 18
!3 46
!5 19
!7 33
!9 89
!12 84
!16 14
!19 76
!23 66
!27 81
!32 16
!36 67
!41 32
!46 04
!50 80
!55 51
!60 11
!64 48
!68 52
!72 20
!75 44
!78 27
!80 67
!82 69
!84 35
!85 69
!86 75
!87 57
!88 18
!88 62
!88 92

0 625

Q

0 5000
5000
5000
5001
5001
5002
5003
5005
5007
5011
5016
5023
5034
5050
5072
5103
5145
5200
5269
5351
5444
5544
5647
5751
5852
5949
6041
6126
6204
6278
6347
6415
6486
6569
6671
6805
6977
7186
7424
7680
7943
8205
8460
8700
8923
9125
9305
9462
9596
9705

!89 lli 9792
!89 23
!89 29

9857
9904

!89 33 9935
!89 34 9957
!89 35' 9971
!89 36
!89 36
!89 36
!89 36
!89 36
!89 36
!89 36
!89 36
!89 36

9981
9987
9992
9995
9996
9996
9999
9999

1 ОООО

в
0
00
00

! 01
! 01
! 01
! 02
! 03
! 04
! 06
! 09
! 13
! 19
! 28
! 43
! 64
! 99

!1 50
!2 24
!3 29
!4 66
!6 43
!8 57
!11 09
!13 98
!17 20
!20 74
!24 56
!28 62
!32 90
!37 37
!42 01
!46 78
!51 66
!56 56
!61 28
!65 82
!70 02
!73 82
!77 11
!79 92
!82 26
!84 17
!85 71
!86 92
!87 83
!8В 51
!88 96
!69 28
!89 45
!89 53

!89 55
!89 53
!89 49
!89 45
!89 43
!89 41
!89 39
!89 38
!89 38
!89 37
!69 37
!89 37
!89 37
!89 36

0 750

4

0 5000
5000
5000
5001
5001
5002
5002
5004
5005
5008
5012
5018
5026
5037
5053
5074
5103
5139
5184
5236
5295
5357
5422
5487
5550
5611
5668
5721
5771
5817
5862
590В
5959
6023
6112
6246
6442
6689
6975
7285
7603
7918
8222
В508
8773
9014
9228
9414
9571
9698
9798
9869
9917
9946
9965
9977
9985
9990
9994
9996
9997
9998
9999

1 ОООО
1 ОООО

в

0
00

! 01
! 01
! 01
! 02
! 03
! 05
! 07
! 10
! 14
! 21
! 31
! 45
! 67
! 98

!1 44
!2 07
!2 93
!4 07
!5 51
!7 31
!9 45
!11 95
!14 79
!17 96
!21 44
!25 19
!29 20
!33 44
!37 89
!42 53
!47 35
!52 35
!51 49
!62 66
!67 65
!72 14
!76 07
!79 37
!82 10
!84 30
!86 05
!87 41
!88 43
!89 16
!89 65
!89 94
!90 07
!90 07
!89 99
!89 87
!89 73
!89 62
!89 54
!89 48
!89 44
!89 42
!89 40
!89 39
!89 38
!89 37
!89 37
!69 37
!89 37

0 875

Ч

0 5000
5000
5000
5000
5001
5001
5001
5002
5003
5004
5006
5009
5014
5019
5028
5039
5053
5071
5093
5118
5146
5176
5207
5237
5267
5296
5323
5348
5371
5393
5414
5437
5463
5499
5560
5686
5905
6200
6544
6915
7292
7663
8018
8351
8658
8936
9183
9397
9577
9722
9831

9905
9948
9969
9980
9987
9992
9995
9997
9998
9999
9999
9999

1 ОООО
1 ОООО

в
0
! 01
! 01
! 01
! 02
! 03
! 04
! 06
! 08
! 12
! 18
! 27
! 39
! 56
! 63

!1 19
!1 71
!2 41
!3 34
!4 54
!6 01
!7 83
!9 97
!12 46
!15 27
!18 41
!21 86
!25 58
!29 56
!33 77
!38 21
!42 86
!47 73
!52 86
!58 32
!64 31
!69 98
!74 88
!78 95
!82 21
!84 80
!86 80
!88 32
!89 44
!90 22
!90 72
!90 99
!91 06
!90 96
!90 78
!90 50
!90 19
!89 90
!89 72
!89 60
!89 52
!89 47
!89 43
!89 41
!69 39
!89 38
!89 38
!89 37
!89 37
!89 37

1 000

Ч

0 5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5097
5354
5715
6134
6576
7018
7448
7855
8235
8583
8898
9177
9416
9620
9782
9901
9975

1 ОООО
1 ОООО
1 ОООО
1 ОООО
1 ОООО
1 ОООО
1 ОООО
1 ОООО
1 ОООО
1 ОООО
1 оооо
1 ОООО
1 оооо

в
0
! 01
! 01
! 01
! 02
! 03
! 04
! 06
! 09
! 14
! 20
! 29
! 42
! 61
! 89

!1 26
!1 80
!2 52
!3 46
!4 68
!6 16
!7 99
!10 13
!12 62
!15 43
!18 56
!22 00
!25 71
!29 66
!33 90
!38 34
!43 02
!47 94
!53 19
!59 О4
!66 18
!72 61
!78 23
!82 46
!85 65
!68 03
!69 76
!90 99
!91 81
!92 30
!92 52
!92 52
!92 34
!92 01
!91 57
!91 06
!90 52
!90 03
!89 7В
!69 64
!89 54
!89 48
!89 44
!89 42
!89 40
!89 39
!89 38
!89 37
!89 37
!89 37



44 WACA TN 2593

TABLE II + DISTRIBUTION OF PHYSICAL COORDINATES i AND у IN TRANSFORMED cpi|r+PLAflE FOB EXAMPLE III (ELBOW WITH INCOMPRESSIBLE FLOW)

[Prescribed variation In Q vith arc length a along channel valle plotted in fig 2, 0 + 0 5, 0 = 1 0 , U0 = 39 36° ]

о
от

\*
*\

!2 000
!1 875
!1 750
!1 625
!1 500
!1 375
!1 250
!1 125
!1 000
! 875
! 750
! 625
! 500
! 375
! 250
! 125
0
125
250
375
500
625
750
875

1 000
1 125
1 250
1 375
1 500
1 625
1 750
1 875
2 000
2 125
2 250
2 375
2 500
2 625
2 750
2 875
3 000
3 125
3 250
3 375
3 500
3 625
3 750
3 875
4 000
4 125
4 250
4 375
4 500
4 625
4 750
4 875
5 000
5 125
5 250
5 375
5 500
5 625
5 750
5 875
6 000

!3.978
!3.727
!3 477
!3 227
!2 977
!2.727
!2 477
!2 227
!1 977
!1 727
!1 477
!1 227
! 977
! 727
! 478
! 228
022
270
510
754
942

1 139
1 322
1 495
1 6S8
1 812
1 958
2 096
2 226
2 347
2 461
2 566
2 662
2 749
2 828
2 899
2 961
3 016
3 064
3 105
3 139
3 168
3 191
3 211
3 227
3 259
3 249
3 257
3 2И
3 269
3 273
3 276
3 279
3 281
3 283
3 285
3 287
3 288
3 290
3 291
3 293
3 294
3 295
3 297
3 298

0

!0 998
!.998
! 998
! 998
! 998
! 998
! 997
!.997
! 997
! 996
! 996
! 995
! 993
! 990
! 987
! 981
! 972
! 955
! 930
! 901
! 875
! 855
! 843
! 840
! 848
! 866
! 893
! 931
. 979
!1 036
!1 102
!1 177
!1 260
!1 350
!1 447
!1 550
!1 659
!1 771
!1 886
!2.005
!2 125
!2.246
!2 369
!2 493
!2 617
!2 741
!2 865
!2 990
!3 115
!3 240
!3 365
!3 490
!3 615
!3 740
!3 865
!3 990
!4 115
!4 240
!4 365
!4 490
!4 615
!4 740
!4 865
!4 990
!5.11S

0

!3 978
!3 728
!3 478
!3 228
!2 977
!2 728
!2 478
!2 228
!1 978
!1 728
!1 478
!1 229
! 979
! 730
! 482
! 235
Oil
254
489
713
925

1 129
1 321
1 502
1 675
1 840
1 995
2 143
2 282
2 413
2 535
2 649
2 753
2 847
2.932
3 008
3 075
3 134
3 184
3 227
3 263
3 292
3 317
3 337
3 352
3 365
3 375
3 383
3.389
3 394
3 398
3 401
3 404
3 406
3 408
3 410
3 412
3 413
3 415
3 416
3 418
3 419
3 420
3 422
3 423

125

!0 748
! 748
! 748
! 748
! 748
! 748
! 747
! 747
! 747
! 747
! 746
! 745
! 743
! 741
! 738
! 733
! 726
! 715
! 700
! 634
! 670
! 662
! 660
! 668
! 684
! 710
! 747
! 793
! 849
! 914
! 989
!1 073
!1 164
!1 264
!1 369
!1 481
!1 598
!1 718
!1 841
!1 966
!2 092
!2 219
!2 347
!2 475
!2 602
!2 739
!2 856
!2 983
!3 109
!3 235
!3 361
!3 487
!3 612
!3 738
!3 863
!3 988
!4 113
!4 238
!4 363
!4 488
!4 613
!4 738
!4 863
!4 988
!5 133

0

!3 978
!3 728
!3 478
!3 228
!2 978
!2 728
!2 478
!2 328
!1 978
!1 728
!1 479
!1 230
! 981
! 733
! 485
! 239
OO4
243
477
702
918

1 128
1 327
1 518
1 701
1 875
2 041
2 198
2 348
2 488
2 621
2 741
2 853
2 955
3 047
3 128
3 199
3 260
3 313
3 357
3 393
3 423
3 447
3 466
3 481
3 493
3 503
3 510
3 516
3 520
3 524
3 527
3 529
3 531
3 533
3 535
3 537
3 538
3 540
3 541
3 543
3 544
3 545
3 547
3 548

250

!0 498
! 498
! 498
! 498
! 498
! 498
! 498
! 497
! 497
! 497
! 496
! 496
! 495
! 493
! 491
! 487
! 482
! 476
! 469
! 463
! 460
. 461
! 470
! 486
! 511
! 545
! 590
! 644
. 709
! 783
! 867
! 960

!1.061
!1 170
!1 286
!1 407
!1 533
!1 663
!1 794
!1 927
!2 060
!2 193
!2 326
!2 457
!2 588
!2 719
!2 848
!2 976
!3 104
!3 231
!3 358
!3 434
!3 610
!3 736
!3 861
!3 986
!4 111
!4 237
!4 362
!4 487
!4 612
!4 737
!4 862
!4 987
!5 112

0

!3 978
!3 728
!3 478
!3 228
!2 978
!2 728
!2 478
!2 228
!1 978
!1 729
!1 479
!1 230
! 982
! 734
! 487
! 242
000
239
472
700
921

1 136
1 343
1 542
1 734
1 918
2 094
2 262
2 422
2 572
2 713
2 844
2 964
3 074
3 172
3 258
3 332
3 396
3 450
3 494
3.530
3 559
3.582
3.600
3 614
3 624
3 633
3 639
3 644
3 646
3 651
3 653
3 655
3 657
3 659
3 660
3 662
3 663
3 665
3 666
3 668
3 669
3 670
3 672
3 673

375

!0 248
! 248
! 248
! 248
! 248
! 248
! 248
! 248
! 247
! 247
! 247
! 247
! 246
! 245
! 244
! 242
! 240
! 239
! 238
! 239
! 244
! 254
! 271
! 295
! 328
! 370
! 423
! 485
! 558
! 642
! 735
! 838
! 950

!1 070
!1 197
!1 329
!1 466
!1 605
!1 746
!1 887
!2 028
!2 167
!2 305
!2 411
!2 576
!2 709
!2 340
!2 971
!3 100
!3 223
!3 355
!3 482
!3 608
!3 734
!3 859
!3 985
!4 110
!4 235
!4 360
!4 485
!4 610
!4 735
!4 860
!4 985
!5 110

0

!3 978
!3 728
!3 478
!3 228
!2 978
!2 728
!2 478
!2 228
!1 978
!1.729
!1 480
!1 231
! 982
! 735
! 488
! 243
000
240
476
707
933

1 153
1 367
1 575
1 776
1 969
2 156
2 334
2 504
2 665
2 816
2 957
3 086
3 202
3 307
3 398
3 476
3 541
3 595
3 638
3 673
3 700
3 721
3 737
3 749
3 758
3 764
3 769

(3 773
'3 776
3 778
3 780
3 781
3 783
3 784
3 786
3 787
3 788
3 790
3 791
3 793
3 794
3 795
3 797
3 798

500

0 002
002
002
оог
002
002
002
002
002
002
002
002
002
002
002
001
000

! 002
! 006
! 013
! 024
! 041
! 064
! 095
! 135
! 185
!.245
! 316
! 398
! 491
! 594
! 708
! 831
! 963

!1 102
!1 247
!1 395
!1 546
!1 697
!1 847
!1 996
!2 142
!2 285
!2 426
!2 564
!2 700
!2 834
!2 965
!3 096
!3 225
!3 352
!3 480
!3 606
!3 732
!3 858
!3 983
!4 108
!4 234
!4 359
!4 484
!4 609
!4 734
!4 859
!4 984
!5 109

0

!3 978
!3 728
!3 478
!3 228
!2 978
!2 728
!2 478
!2 228
!1 978
!1 729
!1 479
!1 230
! 982
! 734
! 487
! 241
003
245
484
719
950

1 177
1 398
1 614
1 824
2 028
2 225
2 415
2 596
2 768
2 930
3 081
3 219
3 344
3 455
3 550
3 631
3 697
3 751
3 792
3 824
3 848
3 866
3 879
3 888
3 894
3 898
3 901
3 903
3 905
3 906
3 907
3 90S
3 909
3 910
3 911
3 912
3 914
3 915
3 916
3 918
3 919
3 920
3 922
3 923

625

0 252
252
252
252
252
252
252
252
252
252
251
251
250
249
248
245
242
237
229
218
202
180
151
113
067
010

! 058
! 137
! 228
! 330
! 444
! 569
! 705
! 850

!1 002
!1 160
!1 322
!1 485
!1 648
!1 808
!1 965
!2 119
!2 267
!2 413
!2 555
!2 693
!2 829
!2 962
!3 093
!3 223
!3 351
!3 478
!3 605
!3 731
!3 856
!3 982
!4 107
!4 232
! 356
! 462
! 607
! 733
! 858
!4 983
!5 108

0

!3 978
!3 728
!3 478
!3 228
!2 978
!2 728
!2 478
!2 228
!1 973
!1 728
!1 479
!1 230
! 9S1
! 732
! 484
! 238
008
252
494
734
970

1 204
1 433
1 658
1 879
2 094
2 302
2 504
2 697
2 882
3 055
3 218
3 367
3 501
3 620
3 721
3 803
3 869
3 919
3 956
3 983
4 002
4 015
4 024
4 029
4 032
4 033
4 033
4 033
4 033
4 033
4 033
4 034
4 034
4 035
4 О36
4 038
4 039
4 040
4 041
4 043
4 044
4 045
4 047
4 043

750

0 502
502
502
502
502
502
502
502
501
501
501
500
499
497
495
491
486
479
468
454
434
408
375
332
279
216
142
055

! 044
! 156
! 281
! 418
! 567
! 727
! 895

!1 070
!1 249
!1 423
!1 604
!1 775
!1 941
!2 101
!2 256
!2 405
!2 549
!2 690
!2 827
!2 961
!3 093
!3 222
!3 350
!3 478
!3 604
!3 730
!3 855
!3 981
!4 106
!4 231
!4 356
!4 481
!4 606
!4 731
!4 356
!4 981
!5 106

0

!3 978
!3 728
!3 478
!3 228
!2 973
!2 728
!2 478
!2 228
!1 978
!1 728
!1 478
!1 229
! 979
! 730
! 481
! 233
015
261
507
751
994

1 234
1 472
1 707
1 938
2 165
2 336
2 601
2 807
3 005
3 192
3 368
3 529
3 675
3 803
3 910
3 994
4 056
4 100
4 130
4 150
4 162
4 168
4 171
4 172
4 171
4 169
4 166
4 164
162
160
160
159
160
161
162
163
164
165
166
168
169
170
172

4 173

875

0 752
752
752
752
752
752
752
752
751
751
750
749
748
746
743
739
732
724
711
695
672
643
607
560
503
435
354
260
152
030

! 106
! 255
! 418
! 594
! 780
! 977
!1 177
!1 374
!1 565
!1 748
!1 923
!2 089
!2 249
!2 401
!2 548
!2 690
!2 828
!2 962
!3 094
!3 223
!3 351
!3 478
!3 603
!3 729
!3 854
!3 979
!4 105
!4 230
!4 355
!4 480
!4 605
!4 730
!4 855
!4 980
!5 105

1

!3 978
!3 727
!3 477
!3 227
!2 977
!2 727
!2 477
!2 227
!1 977
!1 727
!1 477
!1 227
! 977
! 727
! 477
! 227
023
273
522
772

1 021
1 269
1 516
1 761
2 003
2 242
2 477
2 705
2 927
3 139
3 341
3 531
3 706
3 865
4 004
4 119
4 203
4 259
294
314
324
328
326
323

4 317
4 311
4 305
4 299
4 294
4 290
4 287
4 286
4 285
4 285
4 286
4 287
4 288
4 289
4 290
4 292
4 293
4 294
4 295
4 297
4 298

000

1 002
1 002
1 002
1 002
1 002
1 002
1 002
1 002
1 001
1 001
1 000
999
997
995
992
987
981
971
958
941
917
886
848
798
738
665
578
477
361
229
082

! 081
! 259
! 451
! 653
! 880

!1 105
!1 324
!1 532
!1 727
!1 911
!2 084
!2 247
!2 402
!2 551
!2 693
!2 832
!2 966
!3 097
!3 226
!3 353
!3 478
!3 603
!3 729
!3 853
!3 978
! 103
! 229
! 353
! 478
! 603
! 728
! 853
!4 978
!5 103
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TABLE III + DISTKIBUTIOH OF VELOCITY q AHD FLOW DIHECTIOH 8 IN TRAIISFOIMED tp*\J/*+PLANE

FOS EXAMPLE IV (ELBOW WITH LINEARIZED COMPRESSIBLE FLOW)

[Prescribed variation in Q with arc length s along channel walls plotted in fig 2,
0 = 0 5 , Q = 1 0, q = 0 80176, Д^г* = 0 73782, ДВ = 104 07° ]

irw \
!и/б
!10/6
!9/6
!8/6
!7/6
!6/6
!S/6
!4/6
!3/6
!2/6
!1/6
0

1/6
2/6
3/6
4/6
S/6
6/6
7/6
8/6
9/6
10/6
11/6
12/6
13/E>
14/6
IS /6
16/6
17/6
18/6
19/6
20/6
23/6
'2/6
23/6
24/6
25/6
26/6
27/6
28/6
E9/6
30/6
31/6
32/6
33/6
34/6
35/6
36/6
37/6
38/6
39/6
40/6
41/6
42/6
43/6
44/6
45/6
46/6
47/6
48/6
49/6
50/6

0

q
0 4009
4009
4009
4009
4009
4009
4009
4009
4009
4009
4009
4009
4072
4243
4489
4780
5094
5415
5732
6036
63?;
6602
6855
7086
.7293
7477
7636
7769
7875
7953
8001
8018
8018
8018
8018
8018
8018
8018
8018
.8018
.6018
8018
8018
8018
8018
8018
8018
8018
8018
8018
8018
8018
8018
8018
8018
8018
.8018
8018
8018
8018
8018
8018

e
0
01
01
02
03
05
08
14
24
.40
70

1 31
2 82
3.88
4 00
3 17
1.44
! 98
!4 00
!7.48
!11 35
!15 52
!19 96
!24 62
!29 46
!34 45
!39 56
!44 /6
!SO 02
!55 27
!60.49
!65 55
!70 32
!74 81
!78 97
!82.82
!86 28
!89 37
!92 07
!94.40
!9b 39
!98 05
!99 44
!100.56
!101 47
!102 18
!102 7?
!103.14
!103 45
!103 66
!103 81
!103 90
!103 97
!104 00
!104 03
!104 04
!104 OS
!104 06
!104 06
!104 06
!104 06
!104.06

1/6
q

0 4009
4009
4009
4010
.4010
4011
4012
4015
4019
4026
4041
4070
4141
4268
4444
4654
4882
5118
5352
5578
5793
5994
61/8
6346
6496
.6629
6744
6842
.6924
6991
7045
7091
7135
7186
7245
7311
7381
7452
7523
7591
7654
7713
•'766
7813
.7855
7890
7921
7946
7966
7982
7 "94
8002
8008
8011
8014
8015
8016
8017
8017
8017
8017
8018

e
0
01
01
02
03
04
.07
12
20
.33
57
96

1 49
1 77
1 46
50

!1 17
!3 43
!6 23
!9 48
!IS 12
!17 09
!21 33
!25 80
!30 47
!35 31
!40 27
!45 34
!50 47
!55 61
!60 72
!65 68
!70 45
!74 96
!79 15
!83 01
!86.48
!89 56
!92 25
!94 57
!96 54
!98 20
!99 56
!100 67
!101 57
!102 26
!102.80
!103 20
!103 49
!103 69
!103 83
!103 92
!103 98
!104 01
!104 03
!104 OS
!104 05
!104 06
!104.06
!104 06
!104 06
!104 06

1/3

q
0 4009
4009
4010
4010
4011
4012
4015
4019
4025
4037
4057
4093
4155
4251
4377
4526
4689
4857
5024
5186
5340
5482
5613
5732
5837
5931
6013
6084
6146
6202
6257
6315
6385
6471
3573
5690
6816
6947
7077
7203
7321
7432
7532
7623
7702
7772
7831
7880
7920
7950
7973
7989
BOOO
8006
8011
8013
.8015
8016
8017
8017
8017
8018

в

0
.00
01
01
01
02
04
07
11
17
27
36
43
24

! 38
!1 49
!3 16
!5 34
!8 01
!11 10
!14 57
!18 37
!22 46
!26 79
!31 32
!36 03
!40 89
!45 86
!50 90
!55 98
!61 06
!66 03
!70 85
!75 43
!79 68
!83 59
!87 07
!90 15
!92 81
!95 09
!97 02
!98 62
!99 94
!101 01
!101 85
!102 51
!103 00
!103 37
!103 62
!103 79
!103 90
!103 97
!104 01
!104 03
!104 05
!104 05
!104 06
!104 06
!104 06
!104 06
!104 06
!104 06

1/2

q
0 4009
4009
4010
4010
4011
4013
4015
4020
4027
4039
405C
4090
4139
4207
4295
4396
4506
4621
4734
4844
4947
5043
5131
5210
5281
5343
5398
5447
5492
5537
.5586
5647
5730
5840
5978
.6138
.6313
6494
6676
6852
7020
7177
7321
7451
7566
7667
7753
7825
7883
.7927
7960
7982
7996
8004
8009
8013
8015
8016
8016
8017
8017
8018

в

0
00
OO
00
00
00
00
00

! 01
! 03
! 05
! 17
! 40
! 87
!1 70
!2 92
!4 62
!6 76
!9 35
!12 34
!15 70
!19 38
!23.34
!27 56
!32 00
!36 62
!41 39
!46 30
!51 30
!56 36
!61 47
!66 53
!71 49
!76 22
!80 59
!84 57
!88 08
!91 14
!93 75
!95 97
!97 82
!99 34
!100 58
!101 56
!102 33
!102 91
!103 34
!103 64
!103 83
!103 95
!104 02
!104 05
!104 06
!104 06
!104 06
!104 06
!104 07
!104 07
!104 07
!104 07
!104 07
!104 07

2/3

q
0 4009
4009
4010
4010
4011
4012
4014
4018
4024
4033
4048
4071
4104
4148
4202
4265
4333
4403
4472
4539
4601
4659
4712
4759
4801
4838
4872
4902
4931
4961
4999
5055
5142
5272
5441
5641
5860
6089
6310
6540
6753
6952
7135
7301
7449
7580
7691
7785
7860

7917
7957
7982
7997
8005
8010
8013
8015
8016
8017
8017
8017
8018

в

0
00

! 01
! 01
! 01
! 02
! 04
! 07
! 11
! 20
! 33
! 58
! 99
!1 63
!2 59
!3 90
!5 63
!7 75
!10 29
!13 22
!Ib 49
!20 09
!23 98
!28 12
!32 49
!37 05
!41 77
!46 64
!51 63
!56 72
!61 91
!67 13
!72 37
!77 36
!81 93
!86 02
!89 55
!92 57
!95 10
!97.21
!98 94
!100 34
!101 46
!102 33
!102 99
!103 47
!103 80
!104 01
!104 12
!104 16
!104 16
!104 14
!104 11
!104 09
!104 08
!104 08
!104 07
!104 07
!104 07
!104 07
!104 07
!104 07

5/6

q
0 4009
4009
4009
4010
.4010
4011
4012
4014
4017
.4022
4030
4042
4058
4080
4106
4135
41fi7
4200
4232
4262
4291
4317
4341
4362
4381
4398
4413
4427
4440
.4456
4477
.4515
4598
4745
.4948
5190
5455
5729
6002
.6268
6522
6759
6978
7178
7357
7515
7651
7764
7855
7923
7968
7993
8004
8010
8013
8015
8016
8017
8017
8017
8017
8018

e
О
! 01
! 01
! 02
!.02
! 04
! 07
! 11
! 18
! 31
! 50
! 84
!1 34
!2 07
!3 11
!4 46
!6 21
!8 33
!10 85
!13 74
!16 97
!20 52
!24 37
!28 46
!32 79
!37 31
!42 00
!46 85
!51 85
!56 98
!62 28
!67 79
!73 46
!78 91
!83 79
!88 01
!91 55
!94 48
!96 88
!98 83
!100 39
!101 63
!102 59
!103 31
!103 83
!104 18
!104 39
!104 48
!104 49
!104 42
!104 33
!104 23
!104 16
!104 12
!104 10
!104 08
!104 08
!104 07
!104 07
!104 07
!104 07
!104.O7

1 0

ч
0 4OO9
4009
4009
4009
4009
4009
4009
4009
4009
4009
4009
4009
4009
4009
4009
4009
4009
4004
4009
4009
4009
4009
4009
4009
4009
4009
4009
4009
.4009
4009
4009
4009
4072
4243
4489
4780
5094
.5415
5732
6038
6329
6602
6855
7086
7293
7477
7636
7769
7875
7953
8001
8018
8018
8018
8018
8018
8018
8018
8018
8018
8018
8018

a
0
! 01
! 01
! 02
! 03
! 05
! 08
! 13
! 21
! 35
! 56
! 92
!1 45
!2 22
!3 28
!4 65
!6 41
!8 52
!11 04
!13 91
!17 13
!20 67
!24 49
!28 58
!32 89
!37 40
!42 08
!46 93
!51 93
!57 08
!62 44
!68 16
!74 80
!81 03
!86 33
!90 69
!94 16
!96 93
!99 11
!100 83
!102 17
!103 19
!103 95
!104 49
!104 84
!105 03
!105 10
!105 05
!104 91
!104 71
!104 49
!104 28
!104 18
!104 13
!104 10
!104 09
!104 08
!104 07
!104 07
!104 07
!104 07
!104 07
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TABLE IV + DISTRIBUTION 0? PHYSICAL СОСЩИШАТЕЗ х AHD у Ш ТЕАНЗТОЖЕО

EXAMPLE IV (ELBOW WITH LINEARIZED COMPEESSIBLE FLOW)

+PLANE FOB

[Prescribed variation in Q with arc length s along channel walls plotted in fig 2,
Q = 0 5 , Q = 1 0 , я =0 80176, u\l/* = 0 73782, i6 = 104 07° ]
u ' d ' d

ĉД** \
!11/6
!10/6
!8/6
!8/6
!7/6
!6/6
!S/6
!4/6
!3/6
!2/6

!1/6
0

1/6
2/6
3/6
4/6
5/6
6/6
7/6
8/6
9/6
10/6
11/Б
if /6
13/6
14/6
15/6
16/6
17/6
18/6
1Э/6
20/6
21/6
22/6
ЭТ/6
21/6

2<5/6
26/6

27̂ 6
28/6
28/6
30/6
31/6

•52/b

33/6
34/6

35 /G

36/6

37/6

38/6
39/6
40/6
41/6
42/6
43/6
44/6
45/6
46/6
47/6
4B/6
49/6
50/6

0

X

!2 466
!2.241
!2 016
!1 791
!1 566
!1 341
!1.116
! 891
! 666
! 441
!.?16
008
233
.450
656
.851
1 033
1 205
1 366
1 519
1 663
1 798
1 926
2 046
2 157
2 261
2 356
2 443
2 521
2 590
2 650
2 701
2.743
2 777
г 803
2 820
2 831
2.835
2 834
2.827
2 817
P.803
2.786
2.766
2.744
2.7?!
2 697
2 672
2 646
2.620
2 593
2 566
2 539
2 512
2 484
2 457
2.430
2 402
2 375
2.348
2.320
2.293

У

!0.769
!.769
!.769
!.769
!.768
! 768
! 768
! 768
!.767
! 766
!.763
!.760
!.752
! 739
! 72*
!.712
! 704
! 703
!.710
!.725
!.749
! 781
! 822
!.871
! 928
! S93
!1 064
!1.143
!1 228
!1 318
!1 414
!1 514
!1 619
!1.726
!1 836
!1 947
!2 059
!2.171
!2 283
!2 396
!2 508
!2.61°
!2 731
!2 841
!2 952
!3.062
!3.172
!3.281
!3.391
!3.500
!3.600
!3.719
!3.828
!3 937
!4.046
!4 155
!4 264
!4 374
!4 483
!4.592
!4.701
!4 810

1/6

X

!2 466
!2 241
!2 016
!1.791
!1 566
!1.341
!1 116
!.892
!.667
! 443
! 219
003
223
.438
645
844

1 033
1.213
1.385
1 548
1.704
1 852
1 392
2 124
2 247
2 363
2 469
2 567
Р.655
2 732
2 800
2 858
2 905
2 942
2 °70
2 °90
3.001
3 005
3 003
2 996
2 984
2 969
2.951
2 931
2.908
2 885
2 860
2 834
2 808
2 782
2 755
2.728
2 701
2 673
2 646
2 619
2 591
2.564
2.537
2.509
2.482
2 455

У

!0 512
! 512
!.512
! 512
!.512
! 512
! 512
! 511
! 511
! 510
!.508
! 505
! 500
! 494
! 488
! 485
! 485
! 492
! 507
! 529
! 560
! 600
! 649
! 706
! 772
! 847
! 930
!1 020
!1 117
!1 220
!1 330
!1 443
!1 561
!1 681
!1 803
!1 926
!2 048
!2 169
!2 290
!2.409
!2.527
!2 643
!2 758
!2 872
!2 985
!3 097
!3.20S
!3 319
!3.430
!3.540
!3 64 Е
!3 759
!3 868
!3 977
!4 087
!4 196
!4 305
!4 414
!4 523
!4 632
!4 741
!4 851

1/3

X

!2 466
!2 241
!2 016
!1 791
!1 566
!1 341
!1.117
! 892
! 668
! 444
! 221
000
219
434
643
846

1 042
1 230
1 411
1 586
1 753
1.913
2 065
? 209
2 346
2 473
2 591
2 700
2.798
2 885
2 960
3 024
3.076
3 117
3 147
3 1P7
3 177
3 181
3 177
3 168
3.155
3 139
3 119
3 097
3 074
3 049
3 024
2 998
2 971
2 944
2 917
2 890
2 862
2 835
2 808
2.780
2.753
2 726
2 698
2 671
2 644
2 616

У

!0.256
! 256
!.256
!.256
! 256
!.256
!.256
!.255
! 255
!.254
! 254
! 252
! 251
!.249
! 250
!.253
!.261
!.274
!.295
!.325
! 363
! 410
! 466
! 532
! 608
! 693
! 787
! 8В9
!1 000
!1 117
!1 240
!1 369
!1 501
!1 635
!1 770
!1.905
!2 038
!2 169
!2.297
!2.423
!2 547
!2.668
!2 787
!2.904
!3.019
!3 133
!3.246
!3 358
!3.469
!3 579
!3 689
!3.799
!3 908
!4 018
!4.127
!4 236
!4 345
!4 455
!4 564
!4 673
!4.782
!4 891

1/2

X

!2 466
!2 241
!2 016
!1 791
!1 566
!1 341
!1.117
! 892
!.668
!.444
!.221
.000
.213
.436
.648
.855

1.057
1 254
1 445
1 630
1 809
1 981
2 146
2 304
2 453
2 593
2 723
2 843
2 952
3.049
3 132
3 203
3 259
3 303
3 333
3 353
3.362
3 363
3.357
3 345
3 330
3 311
3 289
3 266
3 241
3 215
3.188
3 161
3 134
3 107
3 079
3 052
3 024
2 997
2 970
2 942
2 915
2.887
2.860
2.833
2.805
2 778

У

0.001
001
001
001
001
001
001
001
001
001
.000
000

! 001
! 003
! 008
!.016
! 029
! 049
! 076
! Ill
! 156
! 210
! 274
! 349
! 435
! 530
! 636
! 751
! 875
!1 007
!1 146
!1 290
!1 438
!1 588
!1 737
!1 885
!2 030
!2 171
!2 308
!2.440
!2 570
!2 695
!2 818
!2 938
!3 055
!3 171
!3 284
!3 397
!3.509
!3 619
!3 730
!3 839
!3 949
!4 058
!4 168
!4 277
!4 386
!4 495
!4 604
!4.713
!4 822
!4 932

2/3

X

!2 466
!2 241
!2,016
!1 791
!1.566
!1 341
!1 117
! 892
! 668
! 444
! 220
002
222
441
657
370

1 079
1 284
1 485
1 681
1 871
2 056
2 235
2 406
2 569
2 723
2 866
2 999
3.118
3 225
3 317
3 395
3 456
3 501
3 531
3 548
3 554
3.552
3 542
3.527
3 508
3 485
3 461
3 435
3 409
3 381
3 353
3.325
3 297
3 269
3 241
3 214
3.186
3 159
3 131
3 104
3 077
3 049
3 022
2 994
2 967
2 940

У

0 257
257
257
257
257
257
257
256
256
256
255
253
250
245
237
225
208
184
152
112
061
000

! 072
! 156
! 251
! 357
! 475
! 604
! 743
! 890

!1 046
!1 208
!1 374
!1 541
!1 707
!1 869
!2.026
!2 177
!2 322
!2 461
!2 596
!2 725
!2 851
!2 973
!3 093
!3 209
!3 324
!3 437
!3 549
!3 660
!3 770
!3 880
!3 990
!4 099
!4 208
!4 317
!4 426
!4 536
!4 645
!4 754
!4 863
!4 972

5/6

X

!2.466
!2 241
!2 016
!1 791
!1 566
!1 341
!1.116
!.892
! 667
!.443
!.219
.005
.228
449
.670
888

1 104
1 318
1.529
1 737
1 940
2 138
2 331
2 517
2 694
2 862
3 020
3 166
3 298
3 416
3 518
3 603
3 669
3.715
3 743
3 755
3 756
3.747
3 732
3 712
3.688
3.662
3 635
3 606
3.577
3.548
3.518
3.489
3 460
3 432
3 403
3 376
3 348
3.320
3 293
3 266
3 238
3 211
3 183
3 156
3.129
3 101

У

0.513
.513
.513
.513
.513
.513
.513
.513
.512
.511
.510
.507
.503
.496
.486
.472
.452
.425
.389
344
.288
.221
.142
.050

! 055
! 173
! 304
!.447
!.601
!.766
! 940
!1.122
!1 309
!1 496
!1.680
!1.858
!2.027
!2 189
!2 342
!2.487
!2.626
!2.760
!2.888
!3.012
!3.133
!3 250
!3.366
!3 479
!3 591
!3.701
!3.811
!3 921
!4.030
!4.139
!4 249
!4 358
!4 467
!4 576
!4.685
!4 794
!4.903
!5.013

1.0

X

!2 466
!2 241
!2 016
!1 791
!1.566
!1 341
!1 116
! 891
!.666
! 441
! 216
009
234
459
684
908

1 132
1.355
1 577
1 797
2 013
2 226
2 434
2 635
2 829
3 013
3 186
3 346
3 492
3 623
3 736
3.830
3 901
3 947
3 969
3 974
3 966
3 950
3.927
3 900
3.871
3 841
3 809
3 777
3 746
3 714
3 683
3 653
3 623
3 594
3 565
3 537
3 510
3 482
3 455
3 427
3 400
3.372
3.345
3.318
3.290
3.263

У

0 770
770
770
.770
770
.769
.769
.769
.768
767
.765
763
758
751
740
725
703
.674
636
587
527
455
368
.268
153
024

! 120
! 278
! 449
! 632
!.826
!1.030
!1 242
!1 455
!1 661
!1.856
!2 038
!2 209
!2 369
!2 520
!2.663
!2 799
!2 929
!3.055
!3 176
!3 294
!3.409
!3 522
!3 633
!3 744
!3 853
!3 962
!4.071
!4 180
!4 289
!4.398
!4 507
!4 617
!4 726
!4 635
!4 . 944
!5 053
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TABLE V + DISTRIBUTION OF VELOCITY q AND FLOW DIRECTION в Ш TRANSFORMED cpljr +PLANE FOR

EXAMPLE V (ELBOW WITH COMPRESSIBLE FLOW (7=1 4))

[ Prescribed variation In Q vlth arc length в
fig 2, Q = 0 5, Q = 1 0,

u d
0 79927,

along channel «alia plotted in
<t/ = 0 71054, Д9 = 105 31° 1J

\ !*!
JJNf
Ы/ \

!12/6
!11/6
!10/6
!9/6
!8/6
!7/6
!6/6
!5/6
!4/6
!3/6
!2/6
!1/6
0

1/6
2/6
3/6
4/6
5/6
6/6
7/6
8/6
9/6
10/6
11/6
12/6
13/6
14/6
15/6
16/6
17/6
18/6
19/6
20/6
21/6
22/6
23/6
24/6
25/6
26/6
27/6
28/6
29/6
30/6
31/6
32/6
33/6
34/6
35/6
36/6
37/6
38/6
39/6
40/6
41/6
42/6
43/6
44/6

0

q

0 3996
3996
3996
3996
3996
3996
3996
3996
3996
3996
3996
3996
3996
4066
4253
4519
4830
.5162
5499
5828
6144
.5441
6717
6970
7197
7399
7573
7719
7836
7922
7975
7993
7993
.7993
7993
7993
7993
7993
.7993
7993
7993
7993
7993
7993
7993
7993
7993
7993
7993
7993
7993
7993
7993
7993
7993
7993
7993

G

0
00
01
.01
02
03
05
09
15
25
43
77

1 45
3 13
4 28
4 31
3 26
1 21
!1 61
!5 05
!8 99
!13 32
!17 98
!22 89
!28.02
!33 31
!38 74
!44 26
!49 64
!55 44
!60 96
!66 35
!71 43
!76 19
!80 67
!84 69
!88 32
!91 55
!94 33
!96 70
!98 68
!100 31
!101 64
!102 68
!103 48
!104 09
!104 53
!104.83
!105 04
!105.16
!105 22
!105 26
!105 29
!105 30
!105 31
!105 31
!105 31

1/6

q
0 3996
3997
3997
3997
3997
3998
.3998
4000
4002
4007
4015
4030
4062
.4137
.4275
4464
4687
4928
5175
5419
5652
5871
6074
6258
6424
6569
6696
6803
6891
.6963
7019
7066
7110
7163
7224
7292
7366
7442
7516
7587
.7653
7714
.7769
7817
.7858
7893
7922
7945
7962
7975
7983
7987
7990
7991
.7992
7993
7993

в
0
00
01
01
02
03
О4
08
13
22
.36
62

1 06
1 64
1 93
1 54
40

!1 S3
!4 11
!7 27
!10 92
!14 98
!19 38
!24 06
!28 98
!34 09
!39 35
!44 74
!SO 20
!55 70
!61 13
!66 45
!71.53
!76 31
!80 80
!84 83
!88 47
!91 69
!94.46
!96 81
!98 78
!100 40
!101 72
!102 75
!103 54
!104 14
!104 56
!104 86
!105 05
!105 17
!105.24
!105 27
!105 29
!105 30
!105 31
!105 31
!105 31

1/3

q
0 3996
3997
3997
3997
3998
3999
4000
4002
4006
4014
4026
4047
4086
4152
4255
4389
4547
4719
4895
5069
5236
5393
5538
5669
5786
5889
5978
6056
6123
6182
6238
6297
6367
6456
6562
6684
6816
6952
7087
7219
7342
7456
7559
7651
7731
7800
7856
7901
7935
7959
7974
7983
7988
7990
7992
7992
7993

в

0
00
00
01
01
02
03
04
07
12
18
30
39
46
.24

! 48
!1 74
!3 64
!6 10
!9 09
!12 55
!16 40
!20 61
!25 12
!29 87
!34 84
!39 98
!45 25
!50 62
!56 04
!61 44
!66 76
!71 88
!76 73
!81 27
!85 33
!88 97
!92 17
!94 90
!97 21
!99 14
!100 71
!101 97
!102 97
!103 72
!104 28
!104 67
!104 95
!105 11
!105 21
!105.26
!105 28
!105 30
!105 30
!105 31
!105 31
!105.31

1/2

q
0 3996
3997
3997
3997
3998
3999
4000
.4003
4008
4015
4028
4049
.4082
.4134
4207
4300
4408
4524
4643
4762
4875
4981
5078
5166
5245
.5314
5375
5428
5476
.5522
5573
5635
5720
5835
S979
6145
6327
,6516
6705
.6888
7062
7223
.7370
7502
7617
7716
7799
7865
7914
7948
.7969
.7981
.7987
.7990
7991
7992
7993

a
0
00
00
00
00
00
00
00
00

! 01
! 03
! 06
! 19
! 45
! 98
!1 92
!3 30
!5 21
!7 61
!10 50
!13 82
!17 54
!21 61
!25 98
!30 62
!35 48
!40 52
!45 72
!51 03
!56 43
!61 85
!67 25
!72.51
!77.50
!82 14
!86 27
!89 92
!93 06
!95 72
!97 94
!99 77
!101 25
!102 43
!103 34
!104 03
!104 53
!104.87
!105 09
!105 21
!105 28
!105 30
!105 31
!105 31
!105 31
!105 31
!105 31
!105 31

2/3

q
0 3996
3997
3997
3997
3998
3998
4000
4002
4006
4012
4022
4038
4062
4097
4144
4202
4268
4340
4413
4485
4554
4618
4677
4730
4777
4818
4855
4888
4918
4951
4990
5047
5138
5274
.5453
5662
5892
6129
6366
6597
6815
7019
7205
7373
7520
7648
7754
7839
7903
7945
7970
7982
7987
7990
7992
7992
7993

e
0
00
00

! 01
! 01
! 02
! 03
! 04
! 07
! 12
! 22
! 36
! 64
!1 09
!1 81
!2 89
!4 35
!6 29
!8 66
!11 49
!14 74
!18 37
!22 34
!26 62
!31.18
!35 96
!40 94
!46 09
!51 37
!56 80
!62 30
!67 87
!73 42
!78 69
!83 48
!87 72
!91 38
!94 41
!96 96
!99 04
!100 72
!102 06
!103 10
!103 89
!104 47
!104.88
!105 14
!105 29
!105 35
!105 36
!105 34
!105 33
!105 32
!105 31
!105 31
!105 31
!105 31

5/6

q
0 3996
3997
3997
.3997
3997
3998
3998
4000
4002
4005
4011
4019
4031
4049
4072
4099
4131
4164
4198
4231
4263
4292
4319
4343
4364
4383
4400
4415
.4429
4446
.4468
4507
4595
4753
4969
5225
.5503
5789
.6073
.6347
.6607
6849
7070
.7270
7446
7599
.7726
.7828
7904
7953
7977
7986
7990
.7991
.7992
7993
.7993

в
0
00

! 01
!.01
! 02
! 03
! 04
! 07
! 12
! 20
! 34
! 55
! 92
!1 48
!2 30
!3 46
!4 97
!6 92
!9 28
!12 08
!15 29
!18.86
!22.79
!27 02
!31 52
!36 26
!41 20
!46 33
!51 61
!57 07
!62 69
!68 57
!74 59
!80 35
!85 45
!89 79
!93.41
!96 29
!98 65
!100 52
!101 99
!103 13
!103 99
!104 61
!105 05
!105.33
!105.49
!105 54
!105.52
!105 46
!105 39
!105.35
!105 33
!105 32
!105 31
!105 31
!105 31

I 0

q
0 3996
3996
3996
3996
3996
3996

3996
3996
3996
3996
3996
3996
3996
3996
3996
3996
3996
3996
3996
3996
3996
3996
3996
3996
3996
3996
3996
3996
3996
3996
3996
3996
4066
4253
4519
4830
.5162
5499
5828
.6144
6441
6717
.6970
7197
7399
7573
7719
7836
7922
7975
.7993
7993
7993
7993
.7993
7993
7993

В

0
00

! Ol
! 01
! 02
! 03
! 05
! 08
! 14
! 23
! 38
! 62
!1 02
!1 61
!2 46
!3 64
!5 17
!7 13
!9 49
!12 28
!15 47
!19 03
!22 94
!27 15
!31 63
!36 36
!41 30
!46 41
!51 70
!57 18
!62.86
!68 97
!76 09
!82 69
!88 20
!92 62
!96 11
!98 75
!100 82
!102 39
!103 57
!104.45
!105 07
!105 49
!105 75
!105.87
!105 89
!105 84
!105 71
!105 56
!105 41
!105 35
!105 33
!105 32
!105.31
!105 31
!105 31
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TABLE vi + DISTRIBUTION OF PHYSICAL COORDINATES x АНН у IN TRANSFORMED Ф^+PLAHE FOR

EXAMPLE V (ELBOW WITH COMPRESSIBLE FLOW (7=1 4))

(•prescribed variation in Q with arc length a along channel walls plotted in fig 2,
0 = 0 5 , 0 = 1 0 , q, =0 79927, A\|( = 0 71054, Д8 = 105 31° ]
11 d d

\»
!12/6
!11/6
!10/6
!9/6
!8/6
!7/6
!6/6
!5/6
!4/6

!2/6
!1/6
0

1/6
2/6
3/Ь
4/6
5/6
6/6
7/6
8/6
9/6
10/6
11/6
12/6
13/6
14/6
15/6
16/6
17/6
18/6
19/6
20/6
21/6
22/6
23/6
24/6
25/6
26/6
27/6
28/6
29/6
30/6
31/6
32/6
33/6
34/6
35/6
36/6
37/6
38/6
39/6
40/6
41/6
42/6
43/6
44/6

•0

X

!2.832
!2 595
!2 358
!2 1?2
!1.885
!1.648
!1 411
!1 174
! 937
! 701
!.464
! 227
009
245
473
688
891

1.080
1 257
1 424
1.581
1 729
1 867
1.997
2 117
2 229
2 331
2 424
2 506
2 579
2 642
2.694
2.737
2 770
2 794
2 809
2.816
2 816
2 810
2.799
2.783
2.763
2.740
2.715
2.689
2 S60
2 631
2.601
2 570
2.540
2.509
2.477
2.446
2.415
2.384
2 352
2 321

У

!0 770
! 770
! 770
! 770
! 770
! 770
! 769
!.763
! 769
!.768
!.767
!.764
! 760
!.750
! 735
!.719
!.705
!.697
!.698
!.707
! 726
!.755
! 794
!.842
! 899
! 966
!1.040
!1 122
!1 211
!1.306
!1 407
!1 513
!1 624
!1 738
!1 854
!1 971
!2 089
!2 208
!2 326
!2.444
!2.561
!2.678
!2.794
!2.910
!3.025
!3 140
!3 255
!3.369
!3 484
!3.598
!3.712
!3.827
!3.941
!4.055
!4.169
!4.284
!4 398

1/6

X

!2 832
!2 595
!2.358
!2.122
!1.885
!1 648
!1 411
!1.175
!.936
! 702
! 466
! 230
004
235
460
677
.884
1 081
1 268
1 446
1 615
1.775
1 P26
2 069
2 202
2 326
2 441
2 545
2 638
2 720
2 791
2 850
2 898
2 935
2 961
2.977
2 985
2.985
2.978
2.965
2.948
2.928
2.904
2.879
2.851
2.822
2.793
2.762
2 731
2.701
2.669
2.638
2 607
2.576
2.544
2.513
2.482

У

!0 513
! 513
! 513
! 513
! 513
! 513
! 513
! 512
! 512
!.511
! 510
! 508
! 505
! 499
! 492
! 485
!.482
!.483
! 492
!.510
!.537
! 574
! 620
! 677
!.743
! 820
!.905
!.999
!1 100
!1 209
!1 325
!1 445
!1 570
!1 697
!1 826
!1 956
!2 085
!2 212
!2 339
!2 463
!2 586
!2 708
!2.828
!2 947
!3 064
!3.181
!3 297
!3 412
!3.527
!3.642
!3 756
!3 871
!3 985
!4 099
!4 213
!4 328
!4 442

1/3
X

!2 832
!2 595
!2 358
!2 122
!1 885
!1 648
!1 411
!1 175
! 939
! 702
! 467
! 232
000
230
456
675
887

1 091
1 287
1 475
1 656
1 828
1 992
2 148
2 295
2 432
2 558
2 674
2 778
2 870
2 949
3 015
3 068
3 107
3 135
3 152
3 159
3 157
3 149
3 135
3 116
3.094
3.069
3.043
3 014
2.985
2 954
2 924
2 893
2.862
2.830
2 799
2 768
2 736
2 705
2.674
2.643

У

!0 256
! 256
!.256
! 256
! 256
! 256
! 256
!.256
!.256
! 255
! 255
! 254
! 252
!.250
! 249
!.249
!.253
! 263
! 270
!.304
!.338
!.383
!.438
! 503
! 579
!.666
! 763
!.869
!.984
!1.108
!1 238
!1 374
!1 514
!1 656
!1 799
!1 940
!2 081
!2 218
!2.353
!2.484
!2 613
!2 739
!2 862
!2 984
!3 104
!3 222
!3.339
!3.455
!3.571
!3.685
!3.800
!3 915
!4.029
!4 143
!4 257
!4.372
!4 486

1/2

X

!2 832
!2.595
!2 358
!2 122
!1.885
!1 648
!1.412
!1 175
! 939
!.703
! 467
! 233
.000
230
.458
680
.897

1 109
1 314
1 513
1.705
1.890
2 067
2 236
2 396
2 546
2.686
2 814
2 929
3.031
3.118
3.191
3.248
3.290
3 319
3 334
3.339
3.336
3.325
3 308
3.287
3 263
3 236
3.208
3 178
3 148
3 117
3 085
3.054
3.023
2.991
2.960
2 929
2.897
2 866
2.835
2.803

У

о ooi
ooi
001
001
001
001
001
001
001
001
001
.001
000

! 001
! 004
! 009
! 019
! 035
! 058
! 089
! 130
! 182
! 245
! 320
! 406
! 503
! 612
!.732
! 862
!1 000
!1 147
!1 299
!1 455
!1 614
!1 772
!1 927
!2 079
!2 226
!2 369
!2 507
!2 S41
!2 771
!2 898
!3 022
!3 144
!3 264
!3 382
!3 498
!3 614
!3 729
!3 844
!3 959
!4 073
!4 187
!4 301
!4 416
!4 530

2/3

X

!2 832
!2.595
!2 358
!2 122
!1 885
!1 648
!1.411
!1 175
! 938
! 702
! 467
! 232
002
234
463
690
913

1 132
1 347
1.556
1 760
1 958
2 149
2 332
2.507
2 671
' 824
2 965
3.092
3 205
3 301
3 381
3 443
3.486
3.513
3.527
3 528
3 520
3 505
3.484
3 460
3.433
3 404
3 374
3 342
3.311
3.279
3.247
3 215
3.184
3 152
3.121
3 089
3.058
3.027
2 995
2 964

У

0 258
258
258
258
258
257
257
257
.257
257
256
255
253
250
244
235
220
200
172
135
088
0?9

! 042
! 125
! 2'1
! 330
! 452
! 585
! 730
! 886
!1 050
!1 221
!1 396
!1 572
!1 747
!1 917
!? 081
!2 238
!2 389
!2 533
!2 672
!2 807
!2 936
!3 063
!3 186
!3.307
!3 425
!3 542
!3 658
!3 773
!3 888
!4 003
!4 117
!4 232
!4 345
!4.460
!4 574

5/6

X

!2.832
!2 595
!2.358
!2.122
!1.885
!1 648
!1.411
!1.175
!.938
!.702
!.465
! 230
.005
.240
.473
704
934

1 161
1.385
1.605
1.822
2 033
2 239
2.437
2.627
2 806
2.974
3 129
3 270
3.394
3.501
3 588
3.654
3 698
3.722
3.729
3.724
3 710
3 689
3.664
3.635
3 604
3 573
3 540
3.507
3 474
3 441
3 409
3 376
3.344
3.313
3 281
3.250
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3.187
3.156
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У

0 514
514
.514
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.513
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411
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174
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!.420
!.589
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!1.138
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!1.727
!1 912
!2 089
!2 256
!2.414
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!2.708
!2.845
!2 977
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!3.229
!3 351
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!3.587
!3.703
!3.818
!3.932
!4.047
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!4 275
!4.389
!4.504
!4.618

1 0

X

!2.832
!2 595
!2 358
!2 122
!1 885
!1 648
!1.411
!1 174
! 937
!.701
!.464
! 227
010
247
484
720
956

1 192
1 426
1 659
1 888
2 115
2 336
2.550
2 757
2 953
3 137
3 308
3.463
3.601
3.719
3 816
3.887
3.928
3 945
3 944
3.929
3.906
3.878
3.846
3 812
3.777
3.742
3 707
3.672
3.637
3 603
3.570
3 537
3 505
3.474
3.442
3.411
3.380
3.348
3.317
3.286

У

0 771
771
771
771
.771
.771
771
771
770
769
768
766
763
758
749
737
719
693
659
615
558
488
403
303
187
055

! 094
! 258
! 436
!.629
!.834
!1 050
!1 274
!1 499
!1.714
!1 916
!2 106
!2 281
!2 446
!2.601
!2.748
!2.887
!3.021
!3 150
!3.274
!3 396
!3 515
!3 632
!3 748
!3 862
!3.977
!4 091
!4 205
!4.319
!4 433
!4.548
!4 662
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Figure 1. ! Magnitude and direction of velocity at point

in xy!plane.
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Figure 3. ! Prescribed distribution of log
e
 Q as function of Ф along

channel walls for example I.
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Figure 9. ! Prescribed distribution of log
e
 Q as function of cp along

channel walls for example II.
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Figure 11. + Streamlines and velocity+potential lines in physical xy+plane for example II.
Incompressible flow, prescribed velocity given in figure 8.
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Figure 12 ! Lines of constant velocity Q and flow direction в in physical xy!plane for
example II. Incompressible flow, prescribed velocity given in figure 8.
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Figure 15. - Streamlines and velocity-potential lines in physical xy-plane for example III
Incompressible flow; prescribed velocity given in figures 2 and 13
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!12 . e

Figure 16. ! Lines of constant velocity Q and ±lov direction в in physical xy!plane for
example III. Incompressible flow, prescribed velocity given in figures 2 and 13
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25 30 55 40

Figure 18. - Streamlines and velocity-potential lines in physical xy-plane for example IV
Linearized compressible flow, prescribed velocity as function of arc length along channel
walls same as for example III (fig. 2) and with q, equal to 0.80176.
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Figure 19. ! Lines of constant velocity q and flow direction в in physical xy!plane for
example IV. Linearized compressible flow, prescribed velocity as function of arc length
along channel walls same as for example III (fig. 2) and with q

d
 equal to 0 80176.
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Figure 20 - Streamlines and velocity-potential lines in physical xy-plane for example V
Compressible flow (y = 1.4), preserved velocity as function of arc length along
channel walls same as for examples III and IV (fig. 2) hut with qd equal to 0.79927.



NACA TN 2593 69

о U

+1 Oh

(a oh

+2 5h

+3 Oh

.5 1.0 1.5 2.0 2 5 3.0 S.S 4.0
1 I I 1 1 1 1 i

Compressible flow (v ! 1
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Figure 21 + Comparison of channel wall shapes for compressible flow (example V) with у equal to 1 4
and for linearized compreeeible flow (example IV) for same prescribed velocity as function of arc
length along channel walls (fig. 2)

NACA+Langle y + 1+28+52 + 1000






