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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 2595 

DESIGN OF TWO-DIMENSIONAL CHANNELS WITH PRESCRIBED 

VELOCITY DISTRIBUTIONS ALONG THE CHANNEL WALLS 

'II - SOLUTION BY GREEN'S FUNCTION 

By John D. Stanitz 

SUMMARY 

Methods of solution by Green's-function-are developed for the design 
of two-dimensional unbranched channels with prescribed, velocities as a 
function of arc length along the channel walls. The methods apply to 
incompressible and linearized compressible, nonviscous irrotational flow. 
One numerical example is presented for an accelerating elbow with 
linearized compressible flow. The elbow shape obtained from the solution 
by Green's function is the same as that obtained from a solution by 
relaxation methods for the same prescribed conditions. The time required 
for the calculations is considerably less for solutions by Green's 
function.	 .	 .. 

INTRODUCTION 

In this report a general method of design is developed for two-
dimensional, compresible or incompressible, nonviscous irrotational 
flow in unbranched channels with prescribed velocities as a function of 
arc length along the channel walls. The design of channels with pre-
scribed velocities is important because: (i) boundary-layer :sepafation 
losses can be avoided. by prescribed velocities that do not decelerate 
rapidly enough to cause separation, (2) shock losses in compressible 
flow and cavitation in incompressible flow can be avoided by prescribed 
velocities that do not exceed certain-maximum values dictated by these 
phenomena, and (3), for compressible flow the desired flow rate can be 
assured by prescribed velocities that d not result in "chôké flow 
conditions.	 . .	 . 

In Part I of this report (reference 1) solutions were obtained by - 
relaxation methods. This method of solution results in complete infor-
mation concerning the distribution of flow conditions throughout the 
channel and can be used to obtain solutions for incompressible flow and

r.
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for two types of compressible flow: the general type with arbitrary 
value for the ratio of specific heats i (1.4, for example) and the 
linearized type with r equal to -1.0. 

In the present report solutions are obtained by Green's function. 
This method of solution is limited to incompressible and linearized 
(y = -1.0) compressible flow, but the method is more rapid than relax- 
ation methods, provided information within the channel is not required. 
The method of solution is developed for the channel walls only although 
the method can be extended to determine the shape of streamlines within 
the channel. 

The design method reported herein was developed at the NACA Lewis 
laboratory during 1950 and is part of a doctoral thesis conducted with 
the advice of Professor Ascher H. Shapiro of the Massachusetts Institute 
of Technology.

METHOD OF SOLUTION 

The design method is developed for two-dimensional channels with 
prescribed velocities along the channel walls. The prescribed velocity 
is arbitrary except that stagnation points (zero velocity) cannot be 
prescribed. This exception limits the design method to unbranched 
channels. In the present report the method of solution is by Green's 
function in conjunction with a formula derived (elsewhere) from Green's 
theorem.

Preliminary Considerations 

Assumptions. - The fluid is assumed to be nonviscous and either 
compressible or incompressible. If the fluid is compressible, the 
ratio of specific heats y is assumed to be -1.0, so that the differ-
ential equations describing the flow are linear. The flow is assumed to 
be two-dimensional and irrotational. 

Physical plane. - The flow field of the two-dimensional channel is 
considered to lie in the physical xy-plane where x and y are 
Cartesian coordinates expressed as ratios of a characteristic length 
equal to the constant channel width downstream at infinity. (All symbols 
are defined in appendix A.) 

At each point in the channel the velocity vector (fig. 1) has a 
magnitude Q and a direction 9 where Q is the fluid velocity 
expressed as the ratio of a characteristic velocity equal to the constant 
channel velocity downstream at infinity. For compressible flow, the 
velocity Q is related to the velocity q by
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(1) 

where qis the velocity expressed as a ratio of the stagnation speed 
of sound and, the subscript d refers to conditions downstream at 
infinity.	 - 

•	 Stream function 111 . - If the condition of continuity is satisfied,, 
a stream function iir can be defined such that for incompressible flow 

d141 = . d4s
	

(2a) 

where, from Part I,

•dr	 Q dn	 (2b) 

where n is distance in the xy-plane measured normal to the streamline 
and expressed as a ratio of the channel, width downstream at infinity. 
For linearized compressible flow (y = -1.0) 

* 
= ,	 (2c) 

-	 where, from Part I,

= p*q* cia	 (3d.) 

and where L	 is the value of	 * along the left channel wall when 
faced in the direction of flow if the value of 4r* along the right wall 
is arbitrarily equal to zero. The value of Lf is obtained by inte-
grating equation (2d) across the channel at a position far downstream 
where flow conditions are uniform

Pa 
Lf*	 (2e) 

From Part I, • p* is related to the density p., expressed as the ratio 
of a characteristic density equal to the stagnation density, by 

p*_kp	 (2f)
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where
2 

-	 (paqa

b% 
-	 2	

(2g)

Pa l-(— 
qb 

in which

Pa= (1 -	
qa2)	

(2h) 

arid

	

Pb 2b)	 (2i) 

where the subscripts a and b refer to quantities related to any two 
selected values of velocity 	 andqb, respectively) for which veloc-



ities the densities given by equations (2h) and (2i) are equal to the 
densities p given by equations (2f) and (2g). Also, from Part I, 
q* is related. to q by

(2) q* = k2q 

where	

(P)21
	

(2k) 
2 k2 =	 fPaa 

Pbqb) 

For each prescribed velocity distribution along the channel walls there 
are an infinite number of linearized compressible flow solutions, 
depending on the selected values o± q and qb in equations (2g) and 

(2k). However, for values of qa and qb within the range of q pre-
scribed along the channel walls (and therefore everywhere in the channel), 
the solutions, that is, channel shapes, probably differ only in small 
detail (Part I).

Ik
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The values of qa and qb might, for example, be selected to equal 
the maximum and minimum values of q (which values of q must occur on 
the channel walls and are therefore known). Also, the values of qa 
and qb might be selected to equal the upstream and downstream veloc-
ities	 and q. In this case the upstream and downstream channel 
widths would then satisfy continuity for a gas with the correct 
(arbitrary) value of y (1.4, for example). If the upstream and down-
stream velocities are equal, their value and the value of some other 
velocity (the maximum or minimum velocity, for example) can be selected 
for qa and qb or, if desired, qa can be equal to qb so that 

=qb = q 

and

P 

and, from Part I,

/1 1+1 2

	

1	 -2q 

ki	 Li!: 2	
(21) 

-2q 

and

	

I	 . 

	

k2=j
I± 2	

(2m) 
-2q 

Equations (2a) and (2c) define the stream function 4 1 for incom-
pressible and linearized compressible flow, respectively. For both 
types of flow Lt varies from zero along the right side of the channel, 

when faced in the direction of flow, to 	 along the left side of the 

channel. 

Velocity potential . - If. the condition of irrotational fluid 
motion is satisfied, a velocity potential ci' can be defined such that 
for incompressible flow

d=dCp	 (3a)
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where, from Part I,

dcP=Qds	 (3b) 

where s is distance in the xy-plane measured along the streamlines 
and expressed as the ratio of channel width downstream at infinity. 
For linearized compressible flow

11
	

(3c) 

where, from Part I,

dcp*= q* ds	 (3d) 

Equations (3a) and (3c) define the velocity potential 	 for incom-
pressible and linearized compressible flow, respectively. 

Outline of design method. - Solutions for two-dimensional flow are 
boundary-value problems. That is, the solutions depend on known con-
ditions imposed along the boundaries of the problem. In the inverse 
problem of channel design the geometry of the channel walls in the 
physical xy-plane is unknown. This unknown geometry apparently precludes 
the possibility of solving the problem in the physical plane and neces-
sitates the 'use of some new set of coordinates, that s, a transformed 
plane, in which to solve the problem. These new coordinates must be 
such that the geometric boundaries along which the velocities are pre-
scribed are known in the transformed plane. It is also necessary, for 
the method of solution employed in this report, that the coordinate 
system of the transformed plane be orthogonal in the physical plane. 
A set of coordinates that satisfies these requirements is provided by 

and , which are orthogonal in the physical xy-plane and for which 
the geometric boundaries are known constant values of Lt (equal to 0 

and	 in the transformed flt-plane. The distribution of velocity as 

a function of	 along these boundaries of constant 1f is known because, 
if

Q = Q(s) 

or

q = q(s) 

is prescribed, equation (3a) or (3c) integrates to give 

= c(s)
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from which

Q = Q@) 

or

q=q() 
The technique of the proposed channel-design method is therefore to 
solve for the physical x,y-coordinates of the channel walls in the 
transformed ar-plane where the prescribed boundary conditions for the 
two-dimensional flow problem are known. 

Channel wall coordinates. - From Part I the distribution of channel 
wall coordinates x and y along the boundaries of constant T equal - 

to 0 and	 in the transformed any-plane is given by 

*fcose d	 (4a) 

and

y =	 *f sine d	 (4b) 

for linearized compressible flow, and for incompressible flow 

cose,	 (5a) 

and

y=	 sined	 (5b) 

where the constants of integration are selected to give known (dpecified) 
values of x or y at one value of	 along each boundary. Because 
q* and Q are known functions of 	 from the prescribed velocity as a 
function of arc length along the channel walls, the shape of the channel 
walls in the physical xy-plane is given by equation (4) or (5) if e is 
determined as a function of 0 along the channel walls (r equals 0 and 

In this report ,the solution for 8 as a function of cI along the 
channel walls in the 0 19 -plane is obtained by Green's function.
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Solution by Green's Function 

Continuity. - From Part I the continuity equation becomes in the 
transformed (r-plane

logV
(6a) 

where for incompressible flow

= Q .	 (6b) 

and for linearized compressible flow

(6c) 
1 + Ji + q*2 

Irrotational motion. - From Part 'I the equation for irrotational 
motion becomes in the transformed (DT-plane 

loge V	 e 
ir	 =°	 (7) 

Integral equation for e( 0 , 0 ). - From equations (6a and (7) 

 --i------=o	 (8) 2	 :2: 

so that from appendix B the value of e at a point within, 

or on, the channel walls in the transformed q-plane is given by the 
integral equation

CO

loge 	 7.	 log 
19	 IT= j
	

e	 -	 e	
d	 (9)
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where the subscripts 0 and 	 refer to the channel wall bounaaries 

alongwhich W is 0 and , respectively, and G is the Green's 

function of the second kind, for the channel, which is an infinite strip 

of width	 extending in the -direction to ±co. 

Green's function G. - The Green's function of the second kind G 
for the infinite channel in the 1f-plane is given along the channel 

wall boundaries (' equals 0 and ) by (appendix c) 

G0 or	 = -loge [cosh2 (-o) - cos2 (-t1_ 'o)]	 -	 (10) 

where (cut) is any point on the channel wall boundary and	 is 

the point in the channel or on the boundary at which e is-to be deter-
mined. 

Numerical integration for 	 ((,11). - From equations (9) and (10) 

e(,) =f	
loge V	

[co'sh2.	 - sin2 
O1) d(- ) 

-6(D	 e

rCO

log e V	 2	 2	 1 
j.	

lo [cosh (-)	 cos OJJ d( 0 )	 ( U) 

in which the independent variable of integration has been changed from 
d to d(- 0) so that the origin, for purposes of integration, lies 
at 00 rather than	 = 0. If for small changes in ( . (I), that is 

loge V 
for small	 I?, the term	 may be considered constant and equal 
to its average value over the interval AO, then 

loge V L loge V 

a (D
 

and equation (ii) becomes 

/
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iog V 
2e ( 0 ,'1r ) = - J	

loge[cosh2(o) -sin2 'VO] d(a)- 
0 )It

0 co
	 ^

Oge V	 a-,

	

f 	

1oge[cosh2o)	 o] d() 

(12) 

where the summation sign is understood to mean that the quantity within 
the braces is sunmied over the entire range of (_) between ±. 

Equation (12) determines 0 at any point in the flow field 
(channel). For a point 	 on the channel walls IY	 is equal 

to 0 or !L and the integrands in equation (12) become 
2

2log coshI(_o)I 

or

2 loge sinhI(c_(I0)I 

so that equation (12) becomes

r, _ loge V	 \	 /t loge V	 1 e( 0 , l1r0) =	 I(L 
LI' I	 (13a) 

where

	

=	
- I()	 (13b)
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I,cL	 if	 To	 0 

2

if

(l3c) 

10	 M if	 To 

10 if 

where

M=

0

	

loge coshl(O-450 )1 dI(-40 )I (13d) 

=	
log	 sinh I(-)I d I(-)I (13e) 

0 

where the + signs apply for positive valuesof (-)	 and, the -. signs 
apply for negative values of 	 (-)•	 Ithods of evaluating	 a and	 3 
are given in appendix D and, tabulated values are given for a wide range 
of	 I(-)I	 in table I.	 Equation (13a) determines 	 e( 0 , 1F0 ) at any 
point on the channel wall boundaries. 	 Thus from equations (4a) and. (4b) 
or (5a) and (5b) the coordinates for the channel wall shape in the 
physical xy-plane can be determined.

NUMERICAL PROCEDURE 

The numerical procedure for the channel design solution by Green's 
function is the same, except for minor d,etails, for incompressible and 
linearized compressible flow. The stepwise procedure is outlined as 
follows: 

(1) For incompressible flow the velocity Q and for linearized 
compressible flow the velocity q, or which is the same thing the 
velocity Q and the constant downstream velocity g, are specified 
as functions of arc length along the channel walls 

Q =. Q(s)	 (14a) 
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or	 - 

	

q = .q(s)	 (14b) 

where s is arbitrarily equal to 0 at that point along one channel 
wall where the velocity first begins to vary. 

(2) Compute v as a function of s from equations (6b) and (14a) 
for incompressible flow or from equations (2j), (2k), (6c), and (14b) 
for linearized compressible flow. 

	

V = V(s)
	

(15) 

(3) Compute	 as a function of s from equations (3a) and (3b) 
for incompressible flow or from equations (2e), (3c),- (3d), and (14b) 
for linearized compressible flow. In equation (2e) pd* is obtained 

from equations (2f) to (2i). For arbitrary distributions of Q or q 
equation (3a) or (3c) is integrated numerically using, for example, 
Simpson's one-third rule. Thus

	

= (s)
	

(i) 

(4) From equations (15) and (16) V and 0 are known functions of 
s so that

	

v=v(c1)	 .	 (17) 

Thus V is a known function of cp along the channel wall boundaries in 
the transformed (t-plane. 

(5) If the prescribed velocity distribution along one wall is 
different from that along the other, the channel will, in general, turn 
the flow. This turning angle ie is given by equation (E5) in 
appendix E. If the turning angle is unsatisfactory a new distribution 
of velocity as a function of s (equations (14a) and (14b)) is pre-
scribed and steps (1) to (5) repeated until the desired value of AO is 
obtained. Equation (E5) is integrated numerically using Simpson's one-
third rule, for example, and equation (17). 

(6) The channel wall boundaries are straight parallel lines of 

constant W equal to 0 and , and extending to ±cc in the 

-direction. Along these boundaries of constant 	 a series of equally
spaced points are located at each of which, the flow direction e and the 
physical x,y-coordinates will be determined by numerical integration. 
In order to use the tables of a and 1 3 presented in thireport, the 
point spacing M must be an even multiple of it/24. Thus the smallest 
point spacing g/24 is equal to 1/12 of the channel width (1(/2). For
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a particular prescribed velocity distribution along the channel walls 
the accuracy of the solution increases, and so does the amount of com-
puting, as the point spacing is reduced. The error for a given point 
spacing depends on the prescribed velocity distribution and its order 
of magnitude is given by the leading term of the error series of the 
formula used for numerical integration (table VIII, reference 2, for 
example). For the numerical example presented in this report the point 
spacing M was i/12. From equation (17) 

CA 
N)

log V	 (log	 - (loge v) 

	

A (D
=	 -	 (18) 

where the subscripts	 and	 refer to adjacent points along the
channel boundaries. 

(7) The value of 9 at each point 	 on the channel wall 
-	 -	 logV 

boundaries is obtained from equation (13a) in which 	 is given 

by equation (18) and I is given by equations .(13b), (13c), and table I.. 
Note that in equation (13a) the origin has been moved to cI by changing 

A loge V 
from cI to	 Thus the value of	 for a given value of

varies-with 

(8) The physical x,y-coordinates at each point on the channel wall 
boundaries are obtained by the numerical integration of equations (5a) 
and (5b) for incompressible flow, or equations (4a) and (4b) for linear-
ized compressible flow where Lc' is given by equation (2e). The con-
stants of integration in equations (4) and (5) are selected to give known 
values of x and y at upstream or downstream positions where flow 
conditions can be considered uniform. 

-	 NUI4ERICAL EXAMPLE 

The channel design method of this report has been applied to the 
design of an elbow for the same conditions as example IV of Part I. - 
The design is for an accelerating elbow with no local decelerations of 
the prescribed velocities along the channel walls and with linearized 
compressible flow. 

Prescribed velocity distribution. - The prescribed velocity dis-
tribution along the channel walls is. given by q , downstream of the 
elbow and by Q as a function of s along the elbow walls. The down-
stream velocity. qd is 0.80176. Along the inner wall (with smaller 
radii) of the elbow the arbitrarily prescribed velocity Q as a function 
of arc length s is given by
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(19) 

Q = 0.5

2	 3 

This velocity distribution is plotted in figure 2. 

From equations (1), (2j), (3c), and (3d) 

it k
2 q. 

	

d=	 Qds 

which together with equation (19) integrates to give 

ii: k2q
(s.o) ,(°•s) 

	

k 2qd /	 3	
4\ 

	

s	 s 	 s4 	 \ 
2 A**+	 (O s	 3.0) -) 

, kq 
=	 (-0.75+s)	 (s	 3.0) 

where from equations (2h), (2i), and (2k) the constant k 2 is equal to 
1.36332 and from equations (2e) to (2k) the constant 	 is equal to
0.73782. From equations (1), (2j), (6c),.(19), and (20) the variation 
in loge V with (D was obtained and is plotted in figure 3. 

The distribution of velocity as a function of arc length is the 
same for both channel walls, but, as indicated in figure 3, the dis-
tribution on the outer wall (larger radii in xy-plane) is shifted in the 

positive(D-direction an amount equal to 	 it relative to the distri- 

bution on the inner wall. Thus, a velocity difference exists on the two 
walls at equal values of 0 in the interval 0. Il 3.333it, as shown 
in figure 3. The greater this difference in velocity or the greater the 
range in	 over which velocity differences exist, the greater is the 
elbow turning angle. For the prescribed velocity distribution given in 
figures 2 and 3 the elbow turning angle given by equation (E5) is 
-104.080 . -

(20)
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Results. - The elbow design resulting from the prescribed velocities 
given in figures 2 and 3 is plotted in figure 4. As indicated in 
table II the contour of this elbow is very nearly the same as that 
obtained by relaxation methods for linearized compressible flow with the 
same prescribed conditions (example Iv, Part I). 

The solution obtained by Green's function (Part II) required one 
experienced computer 3 days whereas the solution by relaxation methods 
(Part I) required. about 10 days. The relaxation solutions provide 
additional information, such as the distribution of velocity across the 
chahnel, but for the most part this additional information is of second-
ary importance and the design of channels by Green's function is more 
rapid and therefore to be preferred over the design by relaxation 
methods.

SUMMARY OF RESULTS 

Methods of solution by Green's function are developed for the design 
of two-dimensional unbranched channels with prescribed velocities , as a 
function of arc length along the channel walls. The methods apply to 
incompressible and linearized-compressible, nonviscous irrotational flow. 
One numerical example is presented for an accelerating elbow with 
linearized compressible flow. The elbow shape obtained from the solution 
by Green's function is the same as that obtained from a solution by 
relaxation methods for the same prescribed conditions. The time required 
for the calculations was considerably less for the solution by Green's 
function.

e 
Lewis Flight Propulsion Laboratory 

National Advisory Committee for Aeronautics 
Cleveland, Ohio, September 6, 1951
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APPENDIX A 

SYMBOLS 

The following symbols are used in this report: 0 
B1,B3 ,	 Bernoulli's numbers 

c constant, equation (B3) 

G Green's function of the second kind, equations (B2) 
and (10) 

I integral (a	 or	 i3) 

ki coefficient, equation (2g) 

k2 coefficient, equation (2k) 

1 length of closed boundary 

n distance in xy-plane measured normal to direction of flow 
(expressed as ratio of characteristic length equal to 
channel width downstream at infinity) 

Q velocity (expressed as ratio of characteristic velocity 
equal to constant channel velocity downstream at 
infinity) 

q velocity (expressed as ratio of stagnation speed of 
sound) 

q* velocity used in linearized compressible flow and related 
to	 q	 by equation (2j) 

r distance from any point in(DT-plane to point	 (0,1V0) 
at which logarithmic singularity exists' 

s distance in xy-plane measured along direction of flow 
(expressed as ratio of characteristic length equal to 
channel width downstream at infinity) 

• V velocity parameter defined by equations (6b) and (6c) for 
incompressible and linearized compressible flow, 
respectively
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w,w11 w2	 complex functions defined by equations (0), (Cla), and 
(C2a), respectively 

x,y	 Cartesian coordinates in physical plane (expressed as 
ratios of characteristic length equal to channel width 
downstream at infinity) 

z	 complex coordinate, equation (clb) 

z	 conjugate of z 

CL	 integral, equation (13d) 

13 	 integral, equation (13e) 

T

	

	 ratio of specific heats 

finite increment 

e	 flow direction in physical xy-plane (measured in counter-
clockwise direction from positive x-axis) 

Ae	 channel turning angle, equation (El) 

P	 density (expressed as ratio of stagnation density) 

P*	 density 'used in linearized compressible flow and related 
to p by equation (2f) 

velocity potential 'used as Cartesian coordinate in trans-
formed 11T-plane and related to Cp or cp" by equa-
tion (3a) or (3c), respectively 

cp and Cp	
velocity potential for incompressible and linearized 

compressible flow,respectively, equations (3b) and (3d). 

1J[ , stream function used as Cartesian coordinate intrans-
formed I'-plane and related to ii, or ijr* by equa-
tion (2a) 'or (2c), respectively 

i and r*	 stream function for incompressible and linearized com-
pressible flow, respectively, equations (2b) and (2d) 

boundary value of Ic*, for linearized compressible flow, 
along left channel wall when faced in the direction of 
flow, equation (2e)
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any harmonic function in 1f-plane 

Subscripts,: 

a,b	 quantities related to any two selected values of velocity 
(q and qb, respectively) for which densities given 
by equations (2h) and (2i) are equal to densities given 
by equations (21) and (2g) 

d.	 conditions downstream at infinity 

o	 point in 1'-plane at which e is determined 

U	 conditions upstream at infinity 	 S 

(- ) 	

point at (_cI0). on either channel wall boundary 

+ cI	 point at [(-o) +	 on either channel wall boLindary 

0	 •	 boundary along which 111 equals 0 

boundary along which li' equals 

.4
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APPEDDC B 

INTEGRAL EQUATION FOR 

If the distribution of the angle 0(,i) in the transformed 
IT-plane is harmonic, that is, satisfies equation (8) within and on the 

channel walls (t equals 0 and i.), then from Green's theorem and 

the theorem of mean value it can be shown that the value of 0 at 
Point ( 0 ,Y0 ) within (or on) the channel walls is given by (refer-

ence 3, p. 204, f or example) 

	

1 r 
(e LG  - G Le 

d -/	 ( 
e	 + G !) dl (Bi) 

	

CoJ 	 J 
where the two integrals on the right side of equation (Bl) represent 
the line integral around the channel walls in the counterclockwise 

direction with the signs adjusted so that	 represents the inner 
normal to the path of integration. 

The function G((f) in equation (Bi) is of the form (refer-
ence 3, p. 204).

G(,	 loge I + ( cI, 1V) 	 (B2) 

where r is the distance from any point (c,ijr) to the point 

and where w(,7) is an arbitrary function that is harmonic within and 
on the channel walls. (Thus from equation (B2), G(0 ,i r) is harmonic 
within and on the channel walls except at the point (o,o) where a 
logarithmic singularity exists.) Because the harmonic function 	 ,iji)
is arbitrary, the function G( c , 11!) can be selected so that along the 

G i channel wall boundaries (r equals . 0 and it .)
	 s a constant c 

given by the following equation (obtained from notes presented by 
Tamarkin and Feller in the 1941 Summer Session for Advanced Instruc-
tion and Research in Mechanics at Brown Univ.): 

-	 2it 
C 

where 7. is the length of the path along which the line integral is 
taken. For the path under consideration 7, is infinite and therefore 

(B3)
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can be selected so that LG is zero along the channel walls. 

A function with this property is called a Green's function of the sec-
ond kind. equation (Bl) becomes 

CO

( 
=-[[ Le - (G)1d. 0 

J-L	 oj 

or, combined with equation (6a) 

=	 I (	 loge v) - (G loge v) 
1 d	 (9) 

2/ 
J—L	 oj 

loge Along the channel walls 	 e	 is known from the prescribed veloc-

ity distribution so that, after the proper Green's function G has 
been determined (appendix C), equation (9) determines the value of e 
at any point (, ,V) . The value of e( 0 , r0) given by equation (9) 
can be adjusted by an arbitrary constant of integration to give a spec-
cified. value of 0 at one point in the flow field..
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APPENDIX C 

GREEN'S FUNCTION OF SECOND KIND 

From appendix B Green's function of the second kind G satisfies 
the condition 

along the channel walls, which are straight and parallel boundaries 

(r equals 0 and	 extending to ±- co in the ('-direction, and 

satisfies the equation 

everywhere in the channel except t the point ( 0 ,70 ) where G has 

a logarithmic pole. For these conditions the Green's function G can 
be obtained by analogy from the velocity potential for incompressible 
flow into a point sink at ( 0 ,70 ) between straight parallel bound-

aries at T equal to 0 and . The logarithmic pole for G at 

corresponds to the point sink and the condition	 0 at 

the boundaries corresponds to zero velocity, that is, no flow normal 
to the boundaries. 

The velocity potential for fluid flow with the boundary conditions 
just described is obtained from two infinite series of point sinks with 
the sinks of each series spaced it distance apart in the r-direction 
and the two series arranged by the method of images in such a manner 

that no flow crosses the boundaries, that is LG = 0. This arrangement 
of point sinks is shown in figure 5. 

The complex function w1 for the first infinite series of point 
sinks is given by (reference 4, P. 112, for example) 

wl= -loge sink (z-z0 )	 ( Cia) 

where

(cib)
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The complex function w2 for the second infinite series of point sinks 
(mirror image of the first series in order to prevent flow across the 

boundaries V equals 0 and	 is given by 

	

= _log sirth (z- 0)	 (C2a) CA 

where

z=- i1	 (c2b) 

The complex function w for the combined flow becomes from equa-
tions (cla) to (C2b) 

w = w1 + w2 = -log 
e sinh [('-%) + i (-)] - 

loge sinh [(-c) + i (ir±r)]	 (c3) 

The Green's function of the second kind G corresponds to the 
velocity potential for the incompressible flQw and is therefore given by 
the real part of equation (c3)  

G = - loge [cosh2

 

((D_J) - cos 2 (1L1r)] 1cosh2 () - cos2 (T+To 

(C4) 

But along the channel walls ir is equal to 0 or	 so that 

cos2 (1P-i 1I(0 ) = cos 2 (1T.1r) 

and equation (C4) becomes 

G0 or	 = -loge [cosh2 	 cos2 (1i)]	 (10) 
2 

Equation (10) gives the Green's function of the second kind along the 
channel walls ( 'straight parallel lines of constant it equal to 0 and 

and extending to ±co in the 'b-direction).
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APPENDIX D

EVALUATION OF a AND 3 

Several techniques, depending on the magnitude of the upper limit 
I(-)I , were used to evaluate the integrals a and 3 given by 

equations (13d.) and (13e). Each integral is treated separately in this 
appendix and the values of (-) for the upper limit 	 are 
considered positive. For negative values of (-) the magnitudes 
of I that is, of a or 3) are. equal for corresponding values of 

but opposite in sign As a result the values of AI have the 
same sign.

Integral a 

Small and medium values of (-o) . - For small and medium values 
of the upper limit of integration (-o) in equation (13d), that is, 
for 0 (-) 60 g/24, the integral a is evaluated by Simpson 's 
one-third rule using increments of (_'I)) equal to t/48. 

Large values of (-). - For large values of (0_ 0) that is 
for (-) > 60 it/24, the integrand in equation (13d) becomes 

loge cosh (cI)	 (-() - loge 2	 (Dl) 

so that equation (13d) becomes 

f

Wic/24
a	 logecosh (o)d('0) + 

- log 2] d(0-0 
f6Oit/24

(	 )2 
25.809782 + 1 	 - 0.693147 ((D- (DO) - 25.398552] 

-	 0.411230 - 0.693147	 +	 ()2	 (D2)
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Equation (D2) gives values of a for values of (-) equal to or 

greater than 60it/24. Values of the integral a are tabulated in table I 
for a range of	 between 0 and 100i/24 in increments of it/24. 

For negative values of	 the sign of a is negative. 

Integral f3 

Small values of (-). - For (-) equal to zero the integrand 

of equation (13e) becomes minus infinity so that Simpson's one-third 
rule cannot be used to evaluate 3 in this region of (-), as was 
done for a. However, equation (13e) integrates by parts to give 

1,- () 

J
loge sinh (o) d(-00) 

0 

=	 loge sinh (0.4) - 

	

ctnh (0-0 ) d(-)	 (3) fo 
where the integrand. (-V ctnh (_4) on the right side of equa- 
tion D3) can be expanded in the following series form: 

22B1 ()2	 24B3 (0 _ 0 )4	 26B5 (_)6 
(-o) ctnh (-) =	 +	 2!	 -	 4!	 +	 St	 - 

28B7 ()8	 21°B9 (_)lO 212B11	 I,(_c)l2. 

8!	 +	 10!	 -	 12!	 + . . .	 (D4) 

where B1, B3 , and so forth, are called Bernoulli's numbers (refer-

ence 5, P . 90, for example). From equations 03) and (D4)

c.o 
0
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(cI -) 
13 = ()-(I))	 sinh (-') - (-o) -	 9	 +	 225

	
-	 6615	 + 

(_)9	 2(_(I')-	 1382 (_)l3 

42,525 - 1,029,105 + 8,300,667,375 -
	 (D5) 

to
Equation 05) was used to obtain 13 as a function of (-) for 
0 . ((D- (DO )	 8n/24. 

Ivbdiwn values of 	 - For medium values of the upper limit 
of integration (-) in equation (13e), that is, for 8it/24<(_'0) 
. 60n/24, the integral 13 is evaluated by.Simpson t s one-third rule as 

was done for a.. 

Large values of	 - For large values of (0-0 
0 

that is,
for (_o) > 60ic/24, the integranxi in equation (13e) becomes 

loge siflh	 (_CI) - loge 2	 (D6) 

so that equation (13e) becomes 

P607t/24 
13	 log sinh (I)-) d((-) + 

0	 0 

I	 [(-) - loge a] d(040) 

24.57608;) 

6Ot/244 

24.576082 + L 2	 - 0.693147 (40) - 25.398552] 

- 0.822470 - 0.693147 (-) +	 (

EqCiation (D7) gives values of 13 for values of 
greater than 60ir/24. Values of the integral 
for a range of	 between 0 and 100i/24
For negative values of (40) the sign of 13

(D7) 

(-) equal to or 
are tabulated in table I 

in increments of it/24. 
changes.
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APPENDIX E 

CHANNEL TURNING ANGLE 

If the prescribed velocity distribution along one channel wall 
differs from the distribution along the other wall, then in general the 
channel deflects an amount AG, which is the difference in flow direc-
tion far downstream and far upstream of the region in which the pre-
scribed velocity distribution varies. Thus,

(El) 

For large values of I(-)I such as occur far upstream and far 

downstream of the region in which the prescribed velocity varies along 
the channel walls

cosh2 (-) >.> . cos 2 (llr.lIr) 

so that from equation (10) 

	

G0 =G = 2 [I-)I -loge 2j 	 (E2) 

Far upstream	 so that

)I =(-) 
and because v is harmonic 

P-CO	

^ok loge v\ / loge V\ 

1 d = 0 
)0J 

so that equation (E2) substituted in equation (9) gives 

e	
CO	 loge V\	 loge  

) - (

	

)0dO
(E3) 

f-co 2
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Likewise, far downstream	 so that 

= - 

and equation (E2) substituted in equation (9) gives 

loge v\	 / lose V\ 

j 
1 

	

_co=	 [(	 - (	 ) d	 (E4) 

2 

From equations (El), (E3), and (E4) 

iog V\	 / loge v\

	

0] L9 

=	

d	 (E5) 
) -ç 

Equation (E5) determines the channel turning angle Lie. 
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TABLE I - TABULATED VALUES OF TEE flflEGRALS a. AND A FOR A RANGE OF I ( 0 - ) I
[Computational methods given in appendix D3 

I=2LL
(1) 

('=/24)('=2s/24) (n/24) (8se/24) 

0 0
0.000373

0.002970

0
-0.396937

-0.611660 1(a/24) 0.000373 -0.396937 
.002597 -.214723

 2(e/24) .002970 -.611660 
.006972

.020331
-.144746

-.242791 3(s/24) .009942 -.756406 
.013359 -.098045 4(e/24) .023301 -.854451 

5(n/24) .044875 .021574 .052976 -.916486 -.062035 - .094079 

6(a/24) .076277 031402 -.948530 - . 032044 

7(s/24) .118897 .042620 .097632 -.954346 -.005816 .012092 

8(9/24) .173909 .055012 -.936438 .017908  

9(n/24) .242283 .068374 .150903 -.896542 .039896 .100542 

10(n/24) .324812 .082529 -.835696 .060646 - 

11(g /24) .422136 .097324 .209951 -.755399 .080497 .180181

__ 12(a/24) .534763 .112627 -.655715 __ .099684

13(a /24) .663098
.128335 .272697 -.537338 .118377 .255075 

14(n/24) .807460 .144362 -.400640 .136698  

15(n/24) .968096 . 160636 .337741 -.245901 .154739 .327305 
.177105 .172566 16(/24) 1.145201 -.073335 

17(a/24) 1.338926 .193725 .404188 
_________

.116897 .190232 .398006 

18(n/24) 1.549389 .210463 .324671 .207774 

19(n /24) 1.776679 .227290 .471478 .549892 .225221 .467817 

e/24) 20( .244188 2.020867 .792488 .242596  

21(a/24) 2.282008 .261141 .539276 1.052403 . 259915 .537106 

22(/24) 2.560143 .278135 1.329594 .277191 

23( g/24) 2.855304 .295161 _______ .607373 1.624029 .294435 _________ .606089 

24(e/24) 3.167516 .312212 1.935683 .311654 

25(n/24) 3.496799 .329283 .675652 
_________

2.264536 .328853 .674890 

26(n/24) 3.843168 .346369 2.610573 .346037  

27(e/24) 4.206633 .363465 .744035 
________

2.973783 .363210 .743585 

28(/24) 4.587203 .380570 3.354158 .380375  

29(n/24) 4.984885 .397682 .812482 3.751689 .397531 .812215 

n/24) 0( .414800 5.399685 4.166373 .414684  

31(e/24) 5.831607 431922 .880967 
_________

4.598205 .431832 .880808 
.449045 .448976 32(s/24) 6.280652 5.047181 

33(n/24) 6.746825 .466173 .949474 5.513301 .466120 .949380 

34(e /24) 7.230126 .483301 5.996561 .483260 

35(n/24) 7.730557 .500431 1.017993 6.496961 .500400 __________ 1.017938 

36(n/24) 8.248119 .517562 7.014499 .517538 

37(/24) 8.782813 .534694 1.086521 
_________

7.549175 . 534676 1.086488 

38(n/24) 9.334640 .551827 8.100987 .551812 

39(o/24) 9.903600 .568960 1.155053 8.669936 .568949 1.155034 

40(e/24) 10.489693 .586093 9.256021 .586085

41(n/24) 11.092920 .603227 1.223588 9.859241 .603220 1.223576 

42(e/24) 11.713281 .620361  10.479597 .620356 

43(e/24) 12.350777 .637496 1.292125 11.117089 .637492 1.292118 

44(/24) 13.005406 .654629 11.77171.5 .654626  

.671764

__ 

1.360662 .671762 1.360658 45(n/24) 13.677170 12.443477 

46(s/24) 14.366068 .688898  13.132373 .688896  

47(a/24) 15.072101 .706033 1.429200 13.838405 .706032 1.429198 
___ 

48(/24) 15.795268 .723167  14.561511 .723166 

49(/24) 16.535571 .740303 1.497739 15.301873 .740302 1.497738 
.757436 .757436

(1)For negative values of (o) the signs of a and 0 change, but the signs 
of Sa. and 58 remain unchanged. 
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TABLE I - TABULATED VALUES OF THE INTEGRALS a. AND B FOR A RANGE OF I (' 'o ) I - Concluded
[Computational methods given in appendix D.] 

0 

C3

( 
a

1)  
1a. 

(66e/24)
A,. 

(A2a/24)
Alp 

(fe/24) (=2a/24) 

50(s/24) 17.293007 16.059309 
.774572 1.566278 

_________
.774571 1.566276 51(e /24) 18.067579 16.833880 

52(e/24) 18.859285 .791706 17.625585 .791705  

53(a/24) 19.668125 .808840 1.634816 
___

18.434426 .808841 1.634816 
54(a/24) 20.494101 .825976 19.260401 .825975  

55(e/24) 21.337211 .843110 1.703355 20.103511 .843110 1.703354 
56(5/24) 22.197456 .860245 20.963755 .860244 __________  
57(e/24) 23.074835 .877379 1.771893 21.841135 .877380 1.771894 
58(e/24) 23.969349 .894514  22.735649 .894514 

59(/24) 24.880998 .911649 1.840433 23.647298 .911649 1.840433 
60(e/24) 25.809782 .928784 ________ 24.576082 .928784 

61(s/24) 26.755694 .945912 1.908968 
___

25.521994 .945912 1.908968 
62(/24) 27.718750 .963056 26.485050 .963056 

63(e/24) 28.698940 .980190 1.977507 27.465240 .980190 1.977507 
64(5/24) 29.696257 .997317 28.462557 .997317  

65( g/24) 30.710717 1.014460 2.046044 29.477017 1.014460 2.046044 
66(9/24) 31.742311 1.031594  30.508611 1.031594 

67(e/24) 32.791033 1.048722 2.114585 
__________

31.557333 1.048722 2.114585 
68(e/24) 33.856896 1.065863 32.623196 1.065863  

69(n/24) 34.939895 1.082999 2.18 123 
_________

33.706195 1.082999 2.183123 
70(5/24) 36.040029 1.100134 34.806329 1.100134 

71(e/24) 37.157289 1.117260 2.251663 35.923589 1.117260 2.251663 
72(5/24) 38.291692 1.134403  37.057992 1.134403 

73(s/24) 39.443230 1.151538 2.320201 
___

38.209530 1.151538 2.320201 
74(s/24) 40.611893 1 . 168663 39.378193 1.168663  

75(e/24) 41.797701 1.185808 2.388740 40.564001 1.185808 2.388740 
76(e/24) 43.000643 1.202942 41.766943 1.202942 

77(s /24) 44.220710 1.220067 2.457279 
__________

42.987010 1.220067 2.457279 
78(s/24) 45.457922 1.237212 44.224222 1.237212 

79(e/24) 46.712269 1.254347 2.525818 
___

45.478569 1.254347 2.525818 
80(5/24) 47.983750 1.271481 46.750050 1.271481 

81(s/24) 49.272356 1.288606 
1.305751

2.594357 48.038656 1.288606
2.594357 

82(s/24) 50 .578107 49.344407 1.305751 

83(e/24) 51.900992 1.322885
2.662895 
_________

50.667292 1.322885
2.662895 

84(/24) 53.241002 1.340010 52.007302 1.340010 

85(s/24) 54.598158 1.357156
2.731435 53.364458 1.357156 2.731435 1.374289 1.374289 86(/24) 55.972447
2.799974 
_________

54.738747
1.391414 2.799973 87(e/24) 571.391414 .363861 56.130161 

88(e/24) 58.772421 1.408560 57.538720 1.408560 

89(a/24) 60.198115 1.425694 2.868512 58.964415 1.425694
2.868513 1.442818 1.442818 90(n/24) 61.640933 60.407233 

91(/24) 63.100897 1.459964
2.937052 61.867197 1.459964

2.937052 1.477098 1.477098 92(e/24) 64.577995 63.34-4295  
93(a/24) 66.072228 1.494233

3.005590 64.838528 1.494233
3.005590 

94(a/24) 67.583585 1.511357
66.349885

1.511357 

95(n/24) 69.112088 1.528503 
1.545637

3.074130 67.878386 1.528503 3074130 
96( g/24) 70.657725 69.424025 1.545637 

97(e/24) 72.220486 1.562761 3.142668 
__________

70.986786 1.562761 3.142668 
98(a/24)	 173.800393 1.579907 72.566693 1.579907 

99(n/24) 75.397435 1.597042
3.211206 74.163735 1.597042

3.211206 1.614164 100(e/24)(2) 77.011599 75.777899
1.614164

(1)For negative values of ('-) the signs of a and B change, but the signs 
of 6a and AA remain unchanged. 

(2) Forvalues of I(-)I >100(s/24) use equation (02) for a and equation (07) 
for B.
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TABLE II - COMPARISON OF ELBOW DESIGNS OBTAINED FROM SOLUTIONS BY RELAXATION METHODS AND BY GREEN'S FUNCTION

(Linearized compressible flow; prescribed velocity distribution given in figs. 2 and 3.] 

(Inner veil) (Outer veil) 

Solution by Solution by Solution by Solution by 
•

relaxation methods Green's function relaxatIon methods Green's function 
(Pert I) (Pert Ill (Pert I) (Pert II) 

q -;- _-;- -i- -;- 9 -; - --- -;- - -i-- 
(deg) (deg) (d%) (5mg) 

-22(o/24) 0.5000 0.4009 -2.466 -0.769 0 -2.466 -0.769 0 0.5000 0.4009 -2.466 .770 0 -2.466 .770 0 
-20(s/24) .5000 .4009 -2.241 -.769 .01 -2.241 -.769 .01 .5000 .4009 -2.241 .770 -.01 -2.241 .770 -.01 
-18(0/24) .5000 .4009 -2.016 -.769 .01 -2.016 -.769 .01 .5000 .4009 -2.016 .770 -.01 -2.016 .770 -.01 
-16(0/24) .5000 .4009 -1.791 -.769 .02 -1.791 -.769 .02 .5000 .4009 -1.791 .770 -.02 -1.791 .770 -.02 
-14 "/24) .5000 .4009 -1.566 -.768 .03 -1.566 -.768 .03 .5000 .4009 -1.566 .770 -.03 -1.566 .770 -.03 -12(0/24) .5000 .4009 -1.341 -.768 .05 -1.341 -.768 .05 .5000 .4009 -l..341 .769 -.05 -1.341 .770 -.05 
-10(0/24) .5000 .4009 -1.116 -.768 .08 -1.116 -.768 .08 .5000 .4009 -1.116 .769 -.08 -1.116 .769 -.08 
_8(e/S4) .5000 .4009 -.991 - .768 .14 -.891 - .768 .14 .5000 .4009 -.891 .769 -.13 -.891 .769 -.13 
-6(e/24) .5000 .4009 -.666 -.767 .24 -.666 -.767 .24 .5000 .4009 -.666 .768 -.21 -.666 .768 -.22 
-4(n/24) .5000 .4009 -.441 -.766 .40 -.441 -.766 .41 .5000 .4009 -.441 .767 -.35 -.441 .767 -.36 
_2(e/24) -	 .5003 .4009 -.216 -.763 .70 -.216 -.763 .74 .3000 .4009 -.216 .765 -.56 -.216 .765 -.59 
O .5000 .4009 .008 -.760 1.31 .010 -.759 1.52 .5000 .4009 .009 .763 -.92 .009 .762 -.94 
2(0/24) .5079 .4072 .233 -.752 2.82 .233 -.751 2.76 .5000 .4009 .234 .758 -1.45 .234 .758 -1.48 
4(n/24) .5293 .4243 .450 -.739 3.86 .449 -.738 3.76 .5000 .4009 .459 .751 -2.22 .459 .750 -2.24 6(0/24) .5599 .4489 .656 -.724 4.00 .656 -.724 3.89 .5000 .4009 .684 .740 -3.28 .684 .740 -3.29 
8)n/24) .5962 .4780 .851 -.712 3.17 .850 -.713 3.07 .5000 .4009 .908 .725 .4.65 .908 .724 -4.68 

10(0/24) .6354 .5094 1.033 -.704 1.44 1.033 -.705 1.38 .5000 .4009 1.132 .703 -6.41 1.132 .702 -6.43 
22(0/24) .6754 .5415 1.205 -.703 -.99 1.205 -.704 -1.04 .5000 .4009 1.355 .674 -8.52 1.355 .673 -9.56 
14)0/24) .7149 .5732 1.366 -.710 -400 1.367 -.711 -4.04 .5000 .4009 1.577 .636 -11.04 1.577 .635 -11.06 
16(o/24) .7531 .6038 1.519 -.725 -7.49 1.519 -.727 -7.51 .5000 .4009 1.797 .567 -13.91. 1.797 .586 -13.94 
18(0/24) .7894 .6329 1.663 -.749 -11.35 1.663 -.750 -11.37 .5000 .4009 2.013 .527 -17.13 2.013 .526 -17.16 
20(0/24) .8235 .6602 1.798 -.781 -15.52 1.799 -.783 -55.54 .5000 .4009 2.226 .455 -20.67 2.226 .453 -20.69 22(n/24) .8550 .6855 1.926 -.822 -15.96 1.926 -.823 -19.98 .5000 .4009 2.434 .368 -24.49 2.434 .367 -24.52 
24(a/24) .8838 .7086 2.046 -.871 -24.62 . 2.046 -.871 -24.63 .5000 .4009 2.635 .268 -28.58 2.635 .266 -28.59 
26(0/24) .9097 .7293 2.157 -.928 -29.46 2.158 -.929 -29.47 .5000 .4009 2.829 .253 -32.89 2.828 .152 -32.90 
28(0/24) .9326 .7477 2.261 -.993 -34.45 2.261 -.994 -34.46 .5000 .4-009 3.013 .024 -37.40 3.012 .022 -37.41 
30(0/24) .9524 .7636 2.356 -1.064 -39.56 2.356 -1.066 -39.57 .5000 .4009 3.186 -.120 -42.08 3.185 -.122 -42.09 
32(0/24) .9690 .7769 2.443 -1.143 -44.76 2.443 -1.144 -44.77 .5000 .4009 3.346 -.278 -46.93 3.346 -.279 -46.94 
34(0/24) .9822 .7875 2.521 -1.228 -50.02 2.521 -1.229 -50.01 .5000 .4009 3.492 -.449 -51.93 3.492 -.450 -51.94 
36(0/24) .9919 .7953 2.590 -1.318 -55.27 2.590 -1.320 -55.27 .5000 .4009 3.623 -.632 -57.08 3.623 -.633 -57.10 
38(e/24) .9979 .8001 .2.650 -1.414 -60.49 2.650 -1.415 -60.47 .5000 .4009 3.736 -.826 -62.44 3.736 -.828 -62.49 
40(0/24) 1.0000 .8018 2.701 -1.514 -65.55 2.701 -1.516 -65.11 .5000 .4009 3.830 -1.030 -68.16 3.829 -1.034 -68.37 
42(0/24) 1.0000 .8018 2.743 -1.619 -70.32 2.744 -1.620 -70.29 .5079 .4072 3.901 -1.242 -74.80 3.901 -1.244 -74.75 
44(o/24) 1.0000 .8018 2.777 -1.726 -74.81 2.777 -1.727 -74.78 .5293 .4243 3.947 -1.455 -81.03 3.945 -1.456 -80.91 
46(n/24) 1.0000 .8018 2.803 -1.836 -78.97 2.803 -1.837 -78.96 .5599 .4489 3.969 -1.661 -86.33 3.969 -1.662 -86.23 
48(0/24) 1.0000 .8018 2.820 -1.947 -82.82 2.821 -1.948 -82.80 .5962 .4780 3.974 -1.856 -90.69 3.975 -1.856 -90.59 
50(0/24) 1.0000 .8018 2.831 -2.059 -96.28 2.831 -2.059 -86.26 .6354 .5094 3.966 -2.038 -94.16 3.967 -2.040 -94.09 
52(0/24) 1.0000 .8018 2.835 -2.171 -89.37 2.836 -2.172 -89.34 .6754 .5415 3.950 -2.209 -96.93 3.951 -2.210 -96.88 
54(e/24) 1.0000 .8518 2.834 -2.293 -92.07 2.834 -2.295 -92.04 .7149 .5732 3.927 -2.369 -99.11 3.928 -2.371 -99.07 
56(e/24) 1.0000 .8018 2.827 -2.396 -94.40 2.828 -2.397 -94.37 .7531 .6038 3.900 -2.520 -100.83 3.901 -2.522 -100.80 58(0/24) 1.0000 .8018 2.817 -2.508 -96.39 2.817 -2.509 -96.36 .7894 .6329 3.871 -2.663 -102.17 3.872 -2.665 -102.14 
60(0/24) 1.0000 .8018 2.803 -2.619 -98.05 2.803 -2.620 -98.03 .8235 .6602 3.841 -2.799 -103.19 3.842 -2.801 -103.17 
62(c/24) 1.0000 .8018 2.786 -2.731 -99.44 2.786 -2.732 -99.42 .8550 .6855 3.809 -2.929 -103.95 3.810 -2.931 -103.94 
64(0/24) 1.0000 .8018 2.766 -2.841 -100.56 2.767 -2.942 -100.55 .8838 .7086 3.777 -3.055 -104.49 3.778 -3.056 -104.49 
66(0/24) 1.0000 .8018 2.744 -2.952 -101.47 2.745 -2.953 -101.45 .9097 .7293 3.746 -3.176 -104.84 3.746 -3.178 -104.63 
68(0/24) 1.0000 .8018 2.721 -3.062 -102.18 2.722 -3.063 -102.17 .9326 .7477 3.714 -3.294 -105.03 3.715 -3.296 -105.03 
70(0/24) 1.0000 .8018 2.697 -3.172 -102.73 2.698 -3.173 -102.72 .9524 .7636 3.663 -3.409 -105.10 3.684 -3.411 -105.09. 
72(0/24) 1.0000 .8018 2.672 -3.281 -103.14 2.672 -3.283 -103.14 .9690 .7769 3.653 -3.522 -105.05 3.654 -3.524 -105.04 
74(0/24) 1.0000 .8018 2.646 -3.391 -103.45 2.647 -3.392 -103.44 .9822 .7875 3.623 -3.633 -104.91 3.624 -3.635 -104.91 
76(0/24) 1.0000 .8018 2.620 -3.500 -103.66 2.620 -3.501 -103.66 .9919 .7953 3.594 -3.744 -104.71 3.595 -3.746 -104.72 
78(0/24) 1.0000 .8019 2.593 -3.609 -103.81 2.594 -3.611 -103.79 .9979 .8001 3.565 -3.853 -104.49 3.566 -3.855 -104.49 
80(0/24) 1.0000 .8018 2.566 -3.719 -103.90 2.567 -3.720 -103.90 1.0000 .8019 3.537 -3.962 -104.29 3.538 -3.964 -104.30 
82(o/24) L0000 508 329 28 .97 2.540 29 -5097 LOODS 8 3.510 71 .18 3.510 73 .19
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Figure 1. - Magnitude and direction of velocity at point 
In xiy-plane.
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Figure 4. - Elbow design for prescribed velocity along channel walls given in figures 2 and 3.
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• Figure 5. - Two infinite series of point sinks required in the 
development of Green's function of the second kind G. 
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