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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECENICAL NOTE 2595 | .

DESIGN OF TWO-DIMENSIONAL CHANNELS WITH PRESCRIBED
VELOCITY DISTRIBUTIONS ALONG THE CHANNEL WALLS
II - SOLUTION BY GREEN'S FUNCTION

By John.Dl Stanitz

. SUMMARY

Methods of solution by Green's~fuhction‘are developed for the design
of two-dimensional unbranched channels with prescribed velocities as a-

function of arc length along the channel walls. The methods apply to

incompressible and linearized compressible, nonviscous irrotational flow.
One numerical example is presented for an accelerating elbow with
linearized compressible flow. The elbow shape obtained from the solution
by Green's function is the same as that .obtained from a solution by
relaxation methods for the same prescribed conditions. The time required
for the calculations is considerably less for solutions by Green's
function. :

INTRODUCTION

In this report a general method of design is developed for two-
dimensional, compressible or incompressible, nonviscous irrotational
flow in unbranched channels with prescribed velocities as a function .of
arc length along the chapnel walls. The design of channels with pre-
scribed velocities is important because: (1) boundary-layer sepafation
losses can be avoided by prescribed velocities that do not decelerate
rapidly enough to cause separation, (2)-shock losses in compressible
flow and cavitation in incompressible flow can be avoided by prescribed
velocities that do not exceed certain maximum values dictated by these
phenomena, and (3) for compressible flow. the desired flow rate can be
assured by prescribed velocities that do not result in "choke flow" .
conditions. : .

In Part I of this report (reference 1) solutions were obtained by -
relaxation methods. This method of solution results in complete infor-
mation concerning the distribution of flow conditions throughout the
channel and can be used to obtain solutions for .incompressible flow and
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for two types of compressible flow: the general type with arbitrary
value for the ratio of specific heats y (1.4, for example) and the
linearized type with 7y equal to -1.0.

In the present report solutions are obtained by Green's function.
This method of solution is limited to incompressible and linearized
(y = -1.0) compressible flow, but the method is more rapid than relax-
ation methods, provided information within the channel is not required.
The method of solution is developed for the channel walls only although
the method can be extended to determine the shape of streamlines within
the channel.

The design method reported herein was developed at the NACA Lewis
laboratory during 1950 and is part of a doctoral thesis conducted with
the advice of Professor Ascher H. Shaplro of the Massachusetts Institute
of Technology.

METHOD OF SOLUTION

The design method is developed for two- dimensional channels with
prescribed velocities along the channel walls. The prescribed velocity
is arbitrary except that stagnation points (zero velocity) cannot be
prescribed. This exception limits the design method to unbranched
channels. In the present report the method of solution is by Green's
function in conjunction with a formula derived (elsewhere) from Green's
theorem. '

Preliminary Considerations

Assumptions. - The fluid is assumed to be nonviscous and either
compressible or incompressible. ,If the fluid is compressible, the
ratio of specific heats -y 1is assumed to be -1.0, so that the differ-
ential equations describing the flow are linear. The flow is assumed to
be two-dimensional and irrotational.

Physical plane. - The flow field of the two-dimensional channel is
considered to lie in the physical xy-plane where x and y are
Cartesian coordinates expressed as ratios of a characteristic length
equal to the constant channel width downstream at infinity. (All symbols
are defined in appendix A.) ‘

At each point in the channel the velocity vector (fig. 1) has a
magnitude Q and a direction 6 where Q 1is the fluid velocity
expressed as the ratio of a characteristic velocity equal to the constant
channel velocity downstredm at infinity. For compressible flow, the
velocity Q 1is related to the velocity gq by
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q = Q44 ' (1)

where q 1is the velocity expressed as a ratio of the stagnation speed
of sound and the subscript d refers to conditions downstream at
infinity. :

Stream function V. - If the condition of continuity is satisfied,

‘a stream function ¥ can be defined such that for incompressible flow

v = 7 ay (2a)
where, from Part I,

ay = Q dn (Zb)

where n is distance in the xy-plane measured normal to the streamline
and expressed as a ratio of the channel width downstream at infinity.

For linearized compressible flow (y = -1.0)
n ay* ‘
av¥ = EA_‘QI’F : (ZC)
where, from Part I,
dy* = p*g* dn (2d)

1}

and where Ay* is the value of W* along the left channel wall when
faced in the direction of flow if the value of ¢* along the right wall
is arbitrarily equal to zero. The value of Ay* is obtained by inte-
grating equation (2d) across the channel at a position far downstream
where flow conditions are uniform ' '

&Y = pg*ag® (2e)

From Part I, p* 1is related to the dénsity' p; expressed as the ratio
of a characteristic density equal to the stagnation density, by .

Pt = k1o B <2
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where the subscripts a and b refer to quantities related to any two
selected values of velocity {q,

ities the densities given by equations (2h) and (2i) are equal to the .
densities p given by equations (2f) and (2g). Also, from Part I,

'q* is related to q by

where

and ' gq, respectively) for which veloc-

= kéq ’ (24)

(2Kk)

For each prescribed velocity distribution along the channel walls there
are an infinite number of linearized compressible flow solutions, :
depending on the selected values of q, and % in equations (Zg) and

(2k) . However, for values of gq

scribed along the channel walls (and therefore everywhere in the channel),

and - q, within the range of q pre-

the solutions, that is, channel shapes, probably differ only in small

detail (Part I).

ohAE2
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The values of q, and g, might, for example, be selected to equal
the maximum and minimum values of q (which values of q must occur on
the channel walls and are therefore known). Also, the values of dg
and gy might be selected to equal the upstream and downstream veloc-
ities q, and gg. In this case the upstream and downstream channel
widths would then satisfy continuity for a gas with the correct
(arbitrary) value of y (1.4, for example). If the upstream and down-
stream velocities are equal, their value and the value of some other
velocity (the maximum or minimum velocity, for example) can be selected
for q, and gqp or, if desired, gy can be equal to g, so that

9 = 9 =4
and *
Py =P, =P

and, from Part I,

(21)

and

(2m)

Equations (2a) and (2c) define the stream function V¥ for incom-
pressible and linearized compressible flow, respectively. For both
types of flow V¥ varies from zero along the right side of the channel,

when faced in the direction of flow, to % along the left side of the
channel.
Velocity potential & . - If the condition of irrotational fluid

motion is satisfied, a velocity potential ® can be defined such that
for incompressible flow

ad = Z ao (3a)

1
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where, from Part I,

P = Q ds : (3b)

where s 1is distance in the Xy-plane measured along the streamlines
and expressed as the ratio of channel width downstream at 1nf1n1ty
For linearized compressible flow

aop*

ad = T (3c)

[NeT R

where, from Part I,

d9* = g* as : (3d)
‘Equations (3a) and (3c) define the velocity potential & for incom-
pressible and linearized compréssible flow, respectively.

Outline of design method. - Solutions for two-dimensional flow are
boundary-value problems. That is, the solutions depend on known con-
ditions imposed along the boundaries of the problem. In the inverse
problem of channel design the geometry of the channel walls in the
physical xy-plane is unknown. This unknown geometry apparently precludes
the possibility of solving the problem in the physical plane and neces-
sitates the use of some new set of coordinates, that is, a transformed
plane, in which to solve the problem. These new coordinates must be
such that the geometric boundaries along which the velocities are pre-
scribed are known in the transformed plane. It is also necessary, for
the method of solution employed in this report, that the coordinate
system of the transformed plane be orthogonal in the physical plane.

A set of coordinates that satisfies these requirements is provided by
® and V¥, which are orthogonal in the physical xy-plane and for which
the geometric boundaries are known constant values of ¥ (equal to O

and %) in the transformed @ Y-plane. The distribution of velocity as

a function of ® along these boundaries of constant V¥ is known because,

if

a(s)

O
Il

or

1]

q = q(s)
is prescribed, equation (3a) or (3c) integrates to give

= &(s)

2390
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from which
Q = a(®)

or
q = a(®) '

The technique of the proposed channel-design method is therefore to
solve for the physical x,y-coordinates of the channel walls in the
transformed O&Wy-plane where the prescribed boundary conditions for the
two-dimensional. flow problem are known.

Chanhel wall coordinates. - From Part I the distribution of channel
wall coordinates x and y along the boundaries of constant ¥ equal -

to 0 and % in the transformed @whplane is given by

x = 2 Ayt %Q ad (4a)
and
y = -?[-A\y* —rSIS'e aod -~ (4v)
for lineérized compressible flow, and for incompressible‘flow
2| cos 6
x =2 ad 5a
2 <o | (52)
and
2|sin 0
== a 5b
y=217% o A (5b)

where the constants of integration are selected to give known (specified)
values of x or y at one value of ¢ along each boundary. Because

q* and Q are known functions of.d from the prescribed velocity as a
function of arc length along the channel walls, the shape of the channel
walls in the physical xy-plane is given by equation (4) or (5) if 6 is
determined as a function of ¢ 4dlong the channel walls (¥ equals O and

%). In this report ,the solution for 8 as a‘fuhction of ® along the
channel walls in the &V -plane is obtained by Green's function.
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Solution by Green's Function

Continuity. - From Part I_the continuity equation becomes in the
transformed ¢QyY-plane

0 log, V. 5, . 3
—% t3uT - (6a)

where for ihcompressible flow

vea o o)

and for linearized compressible flow

-q* . .
V= (6c)
1+ Jl + g*@ _

Irrotational motion. - From Part' I the equation for irrotational
motion becomes in the transformed O&Y-plane

0 logg V 36
v "%~ 0 (7

Integral equation for 6(®,,¥,). - From equations (6a) and (7)

% %— | (@

so that from appendix B the value of 6 at a point (¢b,Wb) within,
or on, the channel walls in the transformed QW¥-plane is given by the

integral equation

o©

R B e e ‘
9(@0,11!'0) = 5 ¢ —35 — < ¢T3 — 0 ad . (9)
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~

where the subscripts O and % refer to the channel wall bounaaries

along which ¥ is 0O and %, respectively, and G is the Green's
function of the second kind for the channel, which is an infinite strip

of width g extending in the p-direction to es.

Green's function G. - The Green's function of the second kind @
for the infinite channel in the ¢V¥-plane is given along ‘the channel

wall boundaries (¥ equals O and %) by (appendix C)

= -loge [cosh2 (9-95) - cos? (W-Wb)] : (10)

where (®,¥) is any point on the channel wall ﬁoundary and (4%,@%) is

the point in the channel or on the boundary at which 6 1is to be deter-
mined.

Numerical integration for e(¢b{ug). - From equations (9) and (10)
o .
' d loge V oy 2
25 6(@0,Q5) = S5 log, (cosh ‘(¢*¢g) - sin® ¥ d(¢-¢6) -
- U | s T
0 log V o, . 2" . v
———53?—— log, [cosh (®-8)) = cos”™ ¥ | 2 a(&-0) (11)
, o4,

~

in which the independent variable of integration has been changed from
a® to d(P-%,) so that the origin, for purposes of integration, lies’
at @, rather than & = 0. If for small changes in ($-&)), that is

o0 log. V S
for small AQ, the term -——EE;L—-may be considered constant and equal

to its average value over the interval AQ, then
0 logg V _ A logg V
o0 N

and equation (11) becomes
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A log, V (0-35)+0d | 2, 2
2::9(@0,\1!0). = (¢_¢§=_m{T (0-0,) loge [cosh (¢-9,) - sin Wo] a(d- <I>o) x -
. - 2
] {A——qs—loge i [ .2(6 0,) - cos? w] ©-0 )}
- log, [cosh - - cos a®-
(@-4’;-@ A . (q)-@o) : e . o o | o 0

- (12)

where the summation sign is understood to mean that the quantity within
the braces is summed over the entire range of (<I>—<1>o) between =,

- Fquation (12) determines O at any point in the flow field

(channel). For a point ((DO,\P'O) on the channel walls ¥ _ is equal
to O or’ % and the integrands in equation (12) become

2 log, cosh |(¢-®o)|
or
2 log, sinh|(<1>—<1>o)l

so that equation (12) becomes

' ' ® A 1 .
wrg e S [ a) ()]
S 0 .

where

2390
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b
5 h
. .
IE =B if Wb =3
5 :
) (13c)
. T .
Ip=o if ¥ = 5
In=8 if ¥, =0 )
where
l@-2) :
@ = a:o | log, cosh|@®-8,)| al@-¢) (134)
l(®'¢o)l i
B = & log, sinh|(<I>-<I>o)| a1(¢-0)l (13e)
0
where the + signs apply'for positive values of (®-¢6) and the -'signs
apply for negative values of (0- @ Methods of evaluating o and B
are given in appendix D and tabulated values are given for a wide range
- [®-%)| in table I. Equation (13a) determines 6(%o,¥%) at any

p01nt on the channel wall boundaries. Thus from equations (4a) and (4b)
or (5a) and (5b) the coordinates for the channel wall shape in the
phy51ca1 Xy-plane can be determlned

NUMERICAL PROCEDURE

The numerical procedure for the channel design solution by Green's
function is the same, except for minor details,.for incompressible and
linearized compressible flow. The stepwise procedure is outlined as
follows: '

(1) For incompressible flow the velocity Q and for linearized
compressible flow the velocity q, or which is thevéame thing the
velocity Q and the constant downstream velocity q4, are specified

as functions of arc length along the channel walls

- a(s) | S (1)
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or
a=a(s) ~ (140)

where s is arbitrarily equal to O at that point along one .channel
wall where the velocity first begins to vary. '

(2) Compute V as a function of s from equations (6b) and (14a)
for incompressible flow or from equations (2j]), (2k), (6¢), and (14b)
for linearized compressible flow.

V= u(s) (15)

(3) Compute & as a function of s from equations (3a) and (3b)
for incompressible flow or from equations (2e), (3c), (3d), and (14b)
for linearized compressible flow. In equation (2e) pd* is ‘obtained

from equations (2f) to (2i). For arbitrary distributions of Q or gq
equation (3a) or (3c) is integrated numerically using, for example,
Simpson's one-third rule. Thus -

o= &) (16)
(4) From equations (15) and (16) V and @ are known functions of
s so that '

Vv an

Thus V is a known function of ¢ along the channel wall boundaries in
the transformed ¢V¥-plane. .
(5) If the prescribed velocity distribution along one wall is
different from that along the other, the channel will, in general, turn

the flow. This turning angle A6 1is given by equation (E5) in
appendix E. If the turning angle is unsatisfactory a new distribution
of velocity as a function of s (equations (14a) and (14b)) is pre-
scribed and steps (1) to (5) repeated until the desired value of A8 is
obtained. Equation (E5) is integrated numerically using Simpson's one-
third rule, for example; and equation (17). :

(6) The channel wall boundaries are straight parallel lines of

constant ¥ equal to O and —%, and extending to +® in the

®-direction. Along these boundaries of constant V¥ a series of equally
spaced points are located at each of which the flow direction 6 and the
physical x,y-coordinates will be determined by numerical integration.

In order to use the tables of a and P presented in this-report, the
point spacing AQ® must be an even multiple of ﬁ/24. Thus the smallest
- point spacing =n/24 is equal to 1/12 of the channel width (x/2). For

2390
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a particular prescribed velocity distribution along the channel walls
the accuracy of the solution increases, and so does the amount of com-
puting, as the point spacing is reduced. The error for a given point
spacing depends on the prescribed velocity distribution and its order
of magnitude is given by the leading term of the error series of the
formula used for numerical integration (table VIII, reference 2, for
example) . For the numerical example presented in this report the point
spacing AP was n/l12. From equation (17)

‘ Aloge v (loge V)QﬁA¢ - (loge V)® |
AT T A0 - (18)

where the subseripts & and &+Ad refer to adjacent points along the
channel boundaries.

(7) The value of 6 at each point (®o’q5) on the channel’wail
. A log v .
boundaries is obtained from equation (13a in whlch —————15- is given
by equation (18) and AI is given by equations .(13b), (13c), and table I..
Note that in equatlon (13a) the origin has been moved to ¢6 by changing
’ ‘ A log, V
from & to ($-&). Thus the value of —xd for a given value of

(0-8)) varies-with &,.

(8) The physical x,y-coordinates at each point on the channel wall
boundaries are obtained by the numerical integration of equations (5a)
and (5b) for incompressible flow, or equations (4a) and (4b) for linear-
ized compressible flow where Ay* is given by equation (2e). The con-

. stants of integration in equations (4) and (5) are selected to give known

values of x and y at upstream or downstream positions where flow
conditions can be considered uniform.

NUMERICAL EXAMPLE

The channel design method of this report has been applied to the
design of an elbow for the same conditions as example IV of Part I.
The design is for an accelerating elbow with no local decelerations of
the prescribed velocities along the channel walls and with linedrized

-compress1ble flow.

Prescribed velocity distribution. - The prescribed velocity dis-
tribution along the channel walls is. given by qq downstream of the
elbow and by Q@ as a function of s along the elbow walls. The down-
stream velocity: qq 1is 0.80176. Along the inner wall (with smaller
radii) of the elbow the arbitrarily prescrlbed velocity @ as a function
of arc length s 1is given by

1
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Q = 0.5 (s < 0)

. 2 3

a=7+% -2 (0<s<3.0) (19)
Q= 1.0 (s > 3.0)

This velocity distribution is plotted in figure 2.

From equations (1), (2Jj), (3c), and (3d)

k
d@:%—g%st

which togethér with equation (19) integrates to give

(S
1
jR

g
Py
)
151
&
P
n
A
®)
g
_/

*E'ﬁ) (oss’53.0)~ > (20) -

©

]
A
g

@ = % W (-0.75+S) (S _>_ 3-0)

J
where from equations (2h), (21i), and (2k) the constant k, 1is equal to
1.36332 and from equations (2e) to (2k) the constant Ay* is equal to

0.73782. From equations (1), (2J), (6c),.(19), and (20) the variation
in log, V with ® was obtained and is plotted in figure 3.

The distribution of velocity as a function of arc length is the
shme for both channel walls, but, as indicated in figure 3, the dis-
tribution on the outer wall (larger radii in xy-plane) is shifted in the

positive @-direction an amount equal to %‘“ relative to the distri-

bution on the inner wall. Thus, a velocity difference exists on the two
walls at equal values of @ in the interval 0< ® < 3.333x, as shown
in figure 3. The greater this difference in velocity or the greater the
range in ® over which velocity differences exist, the greater is the
elbow turning angle. For the prescribed velocity distribution given in
figuresoz and 3 the elbow turning angle given by equation (ES) is
-104.08°. -
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Results. - The elbow design resulting from the prescribed velocities
given in figures 2 and 3 is plotted in figure 4. As indicated in
table II the contour of this elbow is very nearly the same as that
obtained by relaxation methods for linearized compressible flow with the
same prescribed conditions (example IV, Part I).

The solution obtained by Green's function (Part II) required one
experienced computer 3 days whereas the solution by relaxation methods
(Part I) required about 10 days. The relaxation solutions provide
additional information, such as the distribution of veloc1ty across the
channel, but for the most part this additional information is of second-
ary importance and the design of channels by Green's function is more
rapid and therefore to be preferred over the design by relaxation
methods.

SUMMARY OF RESULTS

Methods of solution by Green's function are developed for the design
of two-dimensional unbranched channels with prescribed velocities as a
function of arc length along the channel walls. The methods apply to
incompressible and linearized—compressible, nonviscous irrotational flow.
One numerical example is presented for an accelerating elbow with
linearized compressible flow. The elbow shape obtained from the solution
by Green's function is the same as that obtained from a solution by
relaxation methods for the same prescribed conditions. The time required
for the calculations was considerably less for the solution by Green's
function.

(]
Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, September 6, 1951
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APPENDIX A

SYMBOLS

The following symbols are used in this report:

Bernoulli's numbers

constant, equation (B3)

Green's function of the second kind, equations (B2)
and (10)

integral (@ or B)

coefficient, equation (2g)

coefficient, equation (2k)

length of closed boundary

distance in xy-plane measured normal to direction of flow
(expressed as ratio of characteristic length equal to
channel width downstream at infinity)

velocity (expressed as ratio of characteristic velocity '
equal to constant channel velocity downstream at
infinity)

velocity (expressed as ratio of stagnatlon speed of
sound)

velocity used in linearized compressible flow and related
to q by equation (2])

distance from any point in QV¥-plane to point (¢, %)
at which logarithmic singularity exists

dlstance in xy-plane measured along dlrectlon of flow
(expressed as ratio of characteristic length equal to
channel width downstream at infinity)

velocity parameter defined by equations (6b) and (6c) for
incompressible and linearized compressible flow,
respectively

2390
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W, W, Vg

x,y'

SE

® and o*

¥y and y*

Ay*

17

complex functions defined by equations (CS), (Cla), and
(c2a), respectively

. 3

Cartesian coordinates in physical plane (expressed as
ratios of characteristic length equal to channel width
downstream at infinity)

complex coerdinate, equation (Clb) .

conjugate of =z

integral, equation (13d)

integral, equation (13e)

ratio of specific heats

finite increment

flow direction in physical Xy-plane (measured in counter-
clockwise direction from positive x-axis)

channel turning angle, equation (E1)

density (expressed as ratio of stagnation density)

density used in linearized compressible flow and related
to p by equation (2f)

velocity potential used as Cartesian coordinate in trans-
formed OV¥-plane and related to ® or o* by equa-~
tion (3a) or (3c), respectively

velocity potential for incompressible and linearized
compressible flow, respectively, equations (3b) and (34).

stream function used as Cartesian coordinate in trans-
formed OQ¥-plane and related to ¢ or v* by equa-
tion (2a) or (2c), respectively

stream function for incompressible and linearized com-
pressible flow, respectively, equations (2b) and (2d)

boundary value of V*, for linearized compressible flow,
along left channel wall when faced in the direction of
flow, equation (2e)
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any harmonic function in &¥-plane

quantities related to any two selected values of velécity
(ag and q, respectively) for which densities given

by equations (2h) and (2i) are equal to densities given
by equations (2f) and (2g)

conditions downstream at infinity

point in QW¥-plane at which 6 is determined

conditions upstream at infinity

point at ($-%)). on either channel wall boundary
point at [(®-%) + A8|] on either channel wall boundary
boundary along which ¥ equals O

boundary along which V¥ equals %

ORC2
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APPENDIX B

INTEGRAL EQUATION FOR 6(&,,V,)

If the distribution of the angle 9(¢,W) in the transformed
M-plane is harmonic, that is, satisfies equation (8) within and on the

channel walls (W’ equals O and %), then from Green's theorem and

the fheorem of mean value it can be shown that the value of 6 at a
point (®,,¥,) within (or on) the channel walls is given by (refer-

ence 3, p. 204, for example)

6(0,,¥,) = 511; (9 S—E -G %) aod - (- 6 g—%+ G %%) ad| (B1)
T
o VA z

where the two integrals on the right side of'equation (B1) represent
the line integral around the channel walls in the counterclockwise

direction with the signs adjusted so that S@' represents the inner
normal to the path of integration.

The function G(®,¥) in equation (Bl) is of the form (refer-
ence 3, p. 204).

G(P, V) = loge % + (V) . (B2)

where r 1is the distance from any point (®,¥) +to the point (055¥,)

and where w(@,WO is an arbitrary function that is harmonic within and
on the channel walls. (Thus from equation (B2), G(®,¥) is harmonic
within and on the channel walls except at the point (80,¥) where a
logarithmic singularity exists.) Because the harmonic function w(®,W)
is arbitrary, the function G(@,HO can be selected so that along the
channel wall boundaries (¥ equals O and %) %% is a constant ¢
given by the following equation (obtained from notes presented by
Tamarkin and Feller in the 1941 Summer Session for Advanced Instruc-

tion and Research in Mechanics at Brown Univ.):

C = — . | (Bs)

where 1 1is the length of the path along which the line integral is
taken. For the path under consideration 1 is infinite and therefore
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G(%,¥) can be selected so that g%; is zero along the channel walls.

A function with this property is called a Green's function of the sec-
ond kind. Equation (Bl) becomes

oo

1 [~ 06 38
2n (G B‘F)ﬂ ) <G g‘_lf ¢

oo 5

e(¢o)Wo) =

or, combined with equation (6a)

o .
' - o log. V ) lo
6(9,,¥,) = = ( ge ) ge ao (9)
2n T
=z 0
d log, V| - .
Along the channel walls ———Sjgl—— is known from the prescribed veloc-

ity distribution so that, after the proper Green's function G has
been determined (appendlx C), equation (9) determines the value of 6
at any point (d,,¥,). The value of G(QO,Wb given by equation (9)

can be adjusted by an arbltrary constant of integration to give a spec-
cified value of 8 at one point in the flow field.

ORrCY
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APPENDIX C

GREEN'S FUNCTION OF SECOND KIND

From appendix B Green's function of the second kind G satisfies
the condition

% _ o
"

along the channel walls, which are straight and parallel boundaries
(¥ equals O and %) gxtending to +o in the &-direction, and
satisfies the equation

82

——E =2 .0

au?

everywhere in the channel except at the point (®,,¥)) where G has

a logarithmic pole. For these conditions the Green's function G can
be obtained by analogy from the velocity potential for incompressible
flow into a point sink at- (QO,WO) between straight parallel bound-

C.')

aries at ¥ equal to O and %. The logarithmic pole for G. at
Qbo,wo) .corresponds to the point sink and the condition g%,: 0 at

the boundaries corresponds to zero velocity, that is, no flow normal
to the boundaries. '

The velocity potential for fluid flow with the boundary conditions
Jjust described is obtained from two infinite series of point sinks with
the sinks of each series spaced = distance apart in the VY¥-direction

and the two series arranged by the method of images in such a manner
that no flow crosses the boundaries, that is %% = 0. This arrangement

of point sinks is shown in figure 5.

The complex functlon w1 for the first infinite series of point
sinks is given by (reference 4, p. 112, for example)

W, = -log, sinh (z-z,) (Cla)

1

where
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The complex function wp for the second infinite series of point sinks
(mirror image of the first series in order to prevent flow across the
boundaries ¥ equals O and %) is given by

vy = -log, sinh (z-z) | (c2a)
where
z=0- iy (c2p)

The complex function w for the combined flow becomes from equa-
tions (Cla) to (C2b) ~ : , .

W =W + W, = -log_ sinh [(CD-CDO) +1 (W-Wo)] -

loge sinh [(®-@5) + 1 (U+¥)] (c3)

N

The Green's function of the second kind G corresponds to the
velocity potential for the 1ncompre531ble flow and is therefore given by
the real part of equation (C3)

G = - % logelgosh2'(®-¢6) - coszb(W—H%ﬂ .[coshz (®-2) - cos? (W+W6ﬂ

(ca)
But along the channel wélls‘ ¥ is equal to O or % so that
esz (V+1) - cos? (V-1
and equation (C4) becomes
Go or X = -loge [cosh2 (®;¢b) - cosé OF-EBﬂ ~ (10)
. 2 - . :

Equation (10) gives the Green's function of the second kind along the
channel walls (straight parallel lines of constant ¥ equal to O and
n

5 and extending to *® in the ®-direction).

06g2
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APPENDIX D

EVALUATION OF a -AND B

Several techniques, depending on the magnitude of the upper limit
I(@-@o)l » were used to evaluate the integrals o and B given by
equations (13d) and (13e). Each integral is treated separately in this
appendix and the values of (®-&) for the upper limit |(¢-¢o)‘ are
considered positive. TFor negative values of (P-®)) the magnitudes

of I (that is, of « or B) are equal for corresponding values of
|(2-®,)| but opposite in sign. As a result the values of AI have the

same sign.

Integral a

Small and medium values of (P-@,). - For small and medium values
of the upper limit of integration (®-®,) in equation (lSd), that is,
for 0 < (®-®) <60 n/24, the integral o is evaluated by Simpson's
one-third rule using increments of (‘P-@O) equal to It/4:8.

Large values of (®-&)). - For large values of (®- @o) that is
for (®-@) > 60 /24, the integrand in equation (13d) becomes

loge cosh (-0) = (<1>-<I>o) - logg 2 (p1)

so that equation (13d) becomes

60m /24 .
' = ~ log, cosh (9-9,) a(®-®)) +
S 0
(@-¢)
[@-2.) - 108, 2] a@-¢)
60m /24
(@_@o)z .
® 25.809782 + | —%—— - 0.693147 (®-9,) - 25.398552J

* 0.411230 - 0.693147 (2-0) +% (<I>-<I>o)2 (D2)
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Equation (D2) gives values of a for values of ($-9)) equal to or

greater than 60n/24. Values of the integral o are tabulated in table I

for a range of l(®—¢bﬂ between O and 100x/24 in increments of n/24.
For negative values of (®-%)) the sign of « is negative.

Integral B

Small values of (§-3,). - For (®-&,) equal to zero the integrand

of equation (13e) becomes minus infinity so that Simpson's one-third
rule cannot be used to evaluate B in this region of (®-&,), as was

done for «. However, equation (13e) integrates by parts to give

(®-35)
log, sinh (9-0,) d(®-¢b)

= (®-0,) log, sinh (9-9,) -

.0$"¢6)
A (¢-2)) ctnh (cI>_-<I>O) a(e-2) (03)
where the integrand (®-®,) ctnh (®-8)) on the right side of equa-
tion (DS) can be expanded in the following series form:
22p. (0-0 )% 24p, (2-0)%* 26m. (0-0 )6
(©-00) ctmb (®-8g) = 14 —= O S O 5 0
: . 41! 6!
8 8 1 10 12 12
2%, (©-9,) 2 0}39 ©-0)%0 2%, (2-0)
8T * 1o - 21 e (D4)

where Bj, Bz, and so forth, are called Bernoulli's numbers (refer-
ence 5, p. 90, for example). From equations (D3) and (D4)

06¢Z
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©®-0,)° (#-2)% 2(-0)7
9 t 7225 "~ T 6615

B=@-9) log, sinh (9-0)) - (9-9)) - +

9 11 13
(0-0)°  2(0-0) 1382 (2-0)

12,525 ~ 1,029,105 ' 8,300,667,375 " (05)

Equation (D5) was used to obtain B .as a function of (<I>-<I>o) . for
0 2 (9-2) < 8nf24.

Medium values of (®-%)). - For medium values of the upper limit

of integration (0-§)) in equation (13e), that is, for 8n/24<.(¢>-<1>0)
< 60::/24 the 1ntegral B 1is evaluated by Simpson's one-third rule as

was done for «.

Large values of (@-QO) . - For large values of (<I>-(I>o) , that is,
for (®-9,) > 60x/24, the integrand in equation (13e) becomes

log, sinh (®-@)) ® (6-3,) - log, 2 (D6)

so that equation (13e) becomes

60m /24
B = log, sinh (<I>-<I>O) d(dD_(I)o) +
0]

@-2,)

60n /24

[(-&,) - log. 2-] 4(d-%

' | [(qa-@c,)z
™ 24.576082 + |———

5 - 0.693147 (0-%5) - 25.398552]

~- 0:822470 - 0.695147 (3-0.) + 2 (8-0,)° | (D7)

Equation (D7) gives values of B for values of (®- Q) equal to or

greater than 601(/24 Values of the 1ntegral B are tabu.lated in table I
for a range of |(®-®,)| between O and 100n/24 in increments of n/24.

For negative values of (®-®,) the sign of B changes.
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APPENDIX E

CHANNEL TURNING ANGLE

"If the prescribed velocity distribution along one channel wall

" differs from the distribution along the other wall, then in general the

channel deflects an amount A6, which is the difference in flow direc-
tion far downstream and far upstream of the region in which the pre-
scribed velocity distribution varies. Thus, '

NG =6g -6y (E1)

For large values of’ |(¢-¢O)|_such as occur far upstream and far

déwnstream of the region in which the prescribed velocity varies along .

the channel walls

cosh® ®-3,) >> cos? (¥-¥,)
so that from equation (10)

G0=G

oA

Far upstream ¢ <P so that

@0, = (0-6.)

~

and because V 1is harmonic

®1 /0 loge V d loge V .
-—Yq)—_-.-<——5—6——>o ad =0
2

-0

so that equation (E2) substituted in equation (9) gives

d loge V O loge V

Lot o e e
. 2 o :

~2 [I00,)] - 208, 9 @

nee 7
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Likewise, far downstream ®,>® so that

[e-8,)l = - (@-3,)

and equation (E2) substituted in equation (9) gives

' 0 loge V d lo V v
-1 Ee ge
%a = - ¢ [ T)E B (T o] a® (B<)
-C0 2
From equations (E1), (E3), and (E4)
. d log. v\ 0 log. V
-2 e €e
N9 = — o [ ,TL - <—5®——>0] ad (E5)
-0 —

2

Equation (ES) determines the channel turning angle AS.
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TABLE I - TABULATED VALUES OF TEE INTEGRALS o AND § FOR A RANGE oF |(0-&)|

: [Computational methods given in appendix D.]
-

|
j (0-0,)| S AL = o (1) At
? & a0 48 28
j (ob=n/24)(a0=22/24) (ab=nf24) | (A®=2r[24)
‘ 0 0 4]
| 1{n/24) 0.000373 0.000575 0.002970 -0.396937 -0. 596957 -0.611660
| .002597 -.214723
‘ 2(n/24) .002970 -.611660
| 3(x/24) _oos9az —821 o03s1 -.756406 ,"144745 -.242791
| 4(n/28) _ozaz0r | 015559 C.85das) | 71098045
| 5(x/24) .004875 | 02574} 452976 | -.s16486 |-20520%5 | _ 0sao79
i 6(x/24) Lo76277 | 931402 - 948530 | —+052044
i 7(n/24) .118397 - 042620 .087632 -.954346 ~-005816 .012092
i 8(x/24) .173909 055012 -.936438 | 017908
f 9(x/24) 242283 | 9885741 150903 -.896542 | +0398% .100542
| 10(x/24) .324812 | -082529 - 835806 | 000646
: 11(x/24) .422136 |—=0%7524[ 509951 _ 755399 | +080497 .180161
| 12(n/24) 534763 | 112627 _.655715 | 1099684
13(n/24) .663098 - 128355 .272697 -.537338 -118377 .255075
i 14(x/24) .807460 124562 - 400640 |—+236698
% ' 15(x/24) .968098 |—2606361 557743 -.245901 | 124759 .327305
‘ 16(n/24) 1.145201 |—=277105 -.073335 | 172566
17(x/ea) | 1.338928 2237221 404168 116897 | 190232 398006
18(n/24) 1.549389 | 210463 324671 | +20TTT4
| 19(nf2e) | 1.776679 |—Z812%01 471478 .5e089z | :EE522L 467817
i 20(n/24) | 2.czoge7 | 224168 .79248p | 242596
; 21(n/28) | e.262008 |—2OM4Ll 539976 | 1.0sze03 | 229915 .537106
1 - 22(n/24) 2.560143 -278155 1.329594 -277191
| ‘ 25(n/24) | 2.855304 | _Z%O1611 07375 I 1.e2a020 | 234455 606089
1 24(nf24) | 3.167518 | 312212 1.935683 | -o-1654
| 25(nf24) | 3.496799 | 329283 75652 | 2.264536 | 12000 674890
: 26(n/24) 3.843168 | 226569 2.610573 |->%6057
27(nf24) | 4.206635 — 20851 44035 | 2.973783 2383210 .743585
28(n/24) | ‘4.587203 2300570 3.354158 |——00375
i 29(nj24) | 4.984885 |—337%82 g1o4g2 | 3.751688 |52 100L .812215
: 30(x/24) 5.399685 -414800 | 4.166373 |-414684
| 31(n/24) 5.851607 |—231928 | agogg7 | a.598205 231852 | ggosos
i 52(x/2¢) | 6.280852 | 429045 5.04718) | 446976
| 35(x/24) 6.746825 | 255273} 949474 | s5.513301 | 466120 .949380
: 34(x/24) 7.230126 | +285%0% 5.996561 | . -+85260
% 35(n/24) | 7.730557 |.-5%%3Lh 017993 | e.498961 | 502400 | 1 017938
| 36(n/24) | s.248110 | 317562 7.014495 | 517538
37(x/24) 8.782815 |_"0o%0%% 1) ogesa1 | 7.540175 | 534676 | 1 opesss
38(x/24) 9.334640 | oo1827) 8.100987 | ->51812
39(x/24) | 9.903600 |—2%8%60h 155053 | 8.660936 |-5%%%4% | ) 155034
: 40(x/24) | 10.489893 | 586093 9.256021 |_586085
| 41(n/2s) | 11.092920 | 8932271 ao35e8 | 9.859241 |—O03220 | 3 2oss7e
| . 42(x/24) | 11.713281 L -620%61 10.479597 | 620356
43(x/24) | 12.350777 837496} 292125 [ 11.117089 |—2E37492 1.292118 .
44(x/24) | 13.005406 854629 11.771715 |.-554626
45(x/24) | 13.677170 |—S8TR784 Y agoce2 | 12.443477 |—072762 1.360658
46(n/24) | 14.366068 |—-088898 13.1352373 508896
| 47(x/24) | 15.072101 }—T9605%h 420200 | 13.838405 |—T106052 1.429198
| 48(nf24) | 15.795268 |—725167 14.561571 |— (25166
| 49(x/24) | 16.536571 |—120505h 497739 | 15.301873 229302 | ) 497738
.757436 .757436

For negative values of (@-00) the signs of « and B change, but the signs

\
| (1)
; of & and AP remain unchanged.

0OB6¢2
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TABLE 1 - TABULATED VALUES QF THE INTEGRALS o AND B FOR A RANGE OF [(0-0,)| - Concludea
[Computational methods given in appendix D.]

o= oo AT = 09
1
f@-0,) oV p(1)
Ha AZG' A]_B Az B
(ab=n/24) (ad=2x/24) (A=n/24) | (a®=2r/24)
50(x/24) 17.293007 16.059309
51(x/24) | 18.067579—"745721 1 seee7s | 16.833880 |- 17457E | 1 sg6276
52(x/24) | 18.859285 |- 91706 17.625585 191705
s3(n/2¢) | 19.6681251=808840 1 ) gx4g16 | 18.430426 | 898841 | 5 qayaig
54(x/24) | 20.494101| 825976 19.260401 825975
s5(x/24) | 21.337201] 843110 |y 963355 | 20.103511 | #3110 | 1 703354
s6(x/24) | 22.197456| 880245 20.963755 | +860244
57(n/24) | 23.074835 877579 | 1 771003 [ 21.8a1135 | 2877380 | 4 771804
58(nf2¢) | 23.969349] 894514 22.735649 | 994514
59(x/24) | 24.880998] 511649 | 1 a40azz | 23.647298 |-—91264° | ) s043s
60(n/24) | 25.809782] 928784 24.576082 | 928784
61(n/24) | 26.755694 245912 | ) o0s9e8 | 25.521094 |—<9%5912 | 1 g0p9es
62(nf24) | 27.718750 |-—283056 26.485050 | +963056 :
63(n/24) | 28.698940 | —3801® | ) 999507 [ 27.465240 L. =980190 | 979507
64(n/24) | 29.696257 |—227317 28.462557 |—297517
65(n/24) | 50.710717 |- 2014460 | 5 0460as  [29.477017 |- 1014460 | 5 Gug0as
66(n/24) | 31.742311 | 2031594 30.508611 | 1031594
67(nf24) | 32.791033 | 2948722 | 5 114585 | 31.557333 | 1-048722 2.114585
68(n/24) | 33.856896 |-L-085865 | 32.623196 | L:065865
69(n/24) | 54.939895 [ 1:9829%9 15 192105 | 33.706195 | 1:082999 |, yg510n
70(n/24) | 36.040029 |-L:100134 34806329 —-:1001%4
71(x/24) | 37.157289 |- 2-117260 | » 251663 | 35.923589 |- 1117260 | 5 aoiges
72(n/24) | 38.291692 | L:134403 37.057992 | L:154403
73(n/24) | 39.443230 2233558 15 2p0201 [ 38.200530 L1 1515%8 | 5 sp0p01
74(n/24) | 40.611805 |-~ 188663 39.378193 |- 168663
75(x/24) | 41.797701 | 2:285898 | 2 548740 | 20.562001 |- 2185808 [ 5 zgg940
76(n/24) | 43.000643 | L:202942 41.766943 | 1:202942
77(n/24) | 44.220710 | 2220067 15 457279 | 4z.987010 | L:220067 | 5 4op7g
78(n/24) | 45.457922 | 1-237212 44.224222 | 1-237212
79(n/24) | 46.712260 [ 1244 |5 socg1n [ as.a78569 |27 | 5 sasare
80(r/24) | 47.983750 | 2-271481 46.750050 1‘2;;48:
.28 1.2886
81(n/28) | 29.272356 |~ :505 2.594357 | 48.038656 570 2.594357
82(x/24) | 50.578107 1'32 851 49.344407 1'322621
1.322885 1.322685
83(x/24) | 51.900992 2.662895 | 50.667292 2.662895
84(nf24) | 53.241002 | L-340010 52.007302 |_L:340010
357156 1.357
85(nf24) | 54.598158 |~ 5? —oo(2-751435 [ 55.364458 :34;2; 2.731435
86(x/24) | 55.972447 |ort 54.738747 |~
87(n/24) | 57.363861 | 150114 |5 799974 56, 130161 |L:39414 | 5 799073
88(n/24) 58.772421 i'iggizz 57.538720 i'iggzgz
89(x/24) 60.198115 '1.442818 2.868512 | 58.964415 1.442513 2.868513
90(n/24) | 61.640933 |— 60.407233
1.459964 1.459964
S1(x/24) | 63.100857 |- = "m 2 957052 [ 61 merier i o 2957052
92(n/24) 64.577995 1'494:33 63.344295 1'494233
93(n/24) 66,072228 1. 25e7 3.005590 | 64.838528 1'511357 3.005590 | -
94(n/24) |67.583585 -5113 66.349885
95(n/24) | 69.112088 12228503 i 5 474130 [67.878368 1':285°3 3.074130
96(x/24) | 70.657725 |-L245657 69.424025 | 2563
97(n/24) | 72.220486 | 2-562761 | 5 142668 | 70.986786 | 1-562761 | 51,0668
98(n/24) | 75.800393 1'5;9907 72.566695 i':;jzoz
.597082 .59704
99(n/24) | 75.397435 042 | 5.211206 | 74.163735 3.211206
- o) 1.614164 1.614162
100(n/24) 77.011599 75.777899
(1)

For negative values of (&-®,)

the signs of a and B

of Ao and AB remain unchanged.

(2)

for

change, but the signs

For values of |(0—0°)| >100(n/24) wuse equation (D2) for a and equation (D7)
B.

29
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TABLE II - COMPARISON OF ELBOW DESIGNS OBTAINED FROM SOLUTIORS BY RELAXATION METHODS AND BY GREEN'S FUNCTION

fLinearized compressible flow; prescribed velocity distribution given in figs. 2 and 3]

¥ =0 ¥ = n/f2
(Inner wall) (Outer wall)
Solution by Solution by Solution by Solution by
. relaxation methods Green's function relaxation methods Green's function
¢ (Part I) (Part IT) (Part I) (Part II)

Q 2 x y [} x Yy [} Q 1 x Yy 2] x Yy ]
(geg) (deg) (deg) (deg)

-22(x/24)| 0.5000| 0.4009 | -2.466( -0.769 0 -2.466 | -0.769 4 0.5000 | 0.4009 | -2.466 770 [ -2.466 .770 o
-20(x/24)| .5000] .4009| -2.241! -.789 .01 | -2.241 | -.769 .01 | .5000 | .4009 |-2.241 770 -.01| -2.241 .770 -.01
-18(x/24)| .5000} .4009 | -2.016{ -.769 .01 [-2.016 | -.769 .01 | .5000 { .4009 -2.016 170 -.01| -2.016 770 -.01
-16(n/24)| .5000] .4009| -1.791}{ -.769 .02 | -1.791 | -.769 .02 | .5000 | .4009 |-1.791 770 -.02f-2,791 770 -.02
-14(n/24)] .50001 .4009 | -1.566| -.768 .03 | -1.566 | -.768 .03 | .5000 | .4009 |-1.566 .770 -.03| -1.566 .770 -.03
-12(n/24)} .5000}{ .4009| -1.341| -.768 <05 [-1.341 | -.768 .05 | .5000 | .4009 |~1.341 769 -.05| -1.341 770 -.05
-10(n/24)] .5000] .4009| -1.116{ -.768 .08 | -1.116 | -.768 .08 [ .5000 | .4008 |-1.116} .769 -.08 | -1.116 .769 -.08
-8(n/24)| .5000[ .4009( -.891| -,7e8 L4 -.891 | -.768 .14 | .5000 | .4009 | -.891 .769 -.13{ -.891 .769 -.13
-8(nf24)| .5000| .4009| -.666| -.767 24| -.666 | -.767 .24 | .5000 { .4009 | -.666 .768 -.21| -.666 .768 -.22
-4(n/24)| .5000| .4009 | -.441| -.768 .40 | -.441 | -.766 .41 | .5000 | .4009 | -.441 767 -.35 | -.441 .767 -.36
-2(n/24)]{" .5000| .4009| -.216| -.783 J70°| -.216 | -.763 .74 | 5000 | .4009 | -.216 .765 -.56 | -.216 .765 -.59
0 .5000 | .4009 .008| -.760 1.31 .010 | -.759 1.52 | .5000 | .4009 .009 783 -.92 .009 .762 -.94
2(n/24)| .5079| .4072 .233) . -.752 2.82 .233 | -.751 2.76 | .5000 | .4009 234 .758 |  -1.45 .234 758 | -1:48
4(nfe4)| .5293| .4243 .450 ] -.739 3.88 449 | -.738 3.76 | .5000 | .4009 459 L7511 -2.22 .459 .750 -2.24
6(n/24)| .5599| .4489 .656 | -.724 4.00 | .656 | -.724 3.89 | .5000 | .4009 684 740 -3.28 .684 .740 | -3.29
8(x/24)( .5962| .4780| .851| -.712 3.17 .850 | -.713 3.07 | .5000 | .4009 .908 725 -4.65 .908 724 | -4.68
10(x/24)| .6354( .5094| 1.033| -.704 1.44 ] 1,033 | -.705 1.38 | .5000 | .4009 | 1.132 .703 -6.41| 1.132 .702 -6.43
12(n/24)| .6754| .s415| 1.205| -.703 -.98 1 1.205 | -.704 -1.04 | .5000 | .4008 | 1.355 .674 | -8.52| 1.355 673 | -8.56
14(n/24) .7149| .5732| 1.366| -.710| -4:00 | 1.367 [ -.711 | -4.04 | .5000 | .4008 | 1.577 .636 | -21.04 | 1.577 635 | -11.06
16(n/24)| .7531| .6038| 1.519| -.725 | -7.48 | 1.519 | -.727 -7.51 | .5000 | .4009 | 1.797 587 | -13.91) 1.797 .586 | -13.92
18(n/24) .7894 .6329| 1.663| -.749 | -11.35] 1.663 | -.750 | -11.37 | .5000 | .4009 | 2.013 527 | -17.13| 2.013 .526 | -17.16
20(n/24)| .8235| .6602 | 1.798| -.781 | -15.52 | 1.799 | -.783 | -15.54 | .5000 | .4009 | 2.226 .455 | -20.67 | 2.226 .453.| -20.69
22(n/24)| .8550) .6855| 1.926| -.822 | -19.96 | 1.926 | -.823 | -19.98 | .5000 | .4009 | 2.434 368 | -24.49 | 2.434 .387 | -24.52
24(nf24)| .6838| 7086 | 2.046| -.871 | -24.62 | 2.046 | -.871 | -24.63 | .5000 | .4009 | 2.635 .268 | -28.58 | 2.635 .266 | -28.59
26(x/24)| .9097| .7293| 2.157| -.928 | -29.46 | 2.158 | -.929 | -29.47 | .5000 | .4009 | 2.829 .153 | -32.89 | 2.828 152 | -32.90
28(n/24) | .9326| .7477 | 2.261| -.993 | -34.45 | 2.261 | -.994 | -34.46 | .5000 | .4009 | 3.013 .084 | -37.40 ( 3.012 .022 | -37.41
, 30(n/e4)| .9524| .7636 | 2.356 | -1.064 | -39.56 | 2.356 |-1.086 | -39.57 | .5000 | .4008 | 3.186| -.120 | -42.08 | 3.185( -.122 | -42.09
32(n/24) | .9690 | .7769 | 2.443 | -1.143 | -44.76 | 2.443 |-1.144 | -44.77 | .5000 | .4009 | 3.346| -.278 | -46.93 | 3.346| -.270 | _s6.94
34(x/24) | .9822 | .7875] 2.521|-1.228 | -50.02 | 2.521 |-1.229 | -50.01 | .5000 | .4009 | 3.492| -.449 | -51.93 | 3.492| -.450 | -51.94
36(x/24) | .9919 | .7953 | 2.590 | -1.318 | -55.27 | 2.590 |-1.320 | -55.27 5000 | .4009 | 3.623| -.632 | -57.08 | 3.623| -.633 | -57.10
38(x/24) | .9979 | .8001.2.850 | -1.414 | -60.49 | 2.650 |-1.415 | -60.47 | .5000 | .4009 | 3.736| -.826 | -62.44 | 3.736| -.s28 | -62.49
40(x/24) | 1.0000 | .8018 | 2.701 | -1.514 | -65.55 | 2.701 |-1.516 | -65.51 | .5000 | .4009 | 3.830 | -1.030 | -68.16 | 3.829| -1.034 | -68.37
42(x/24)| 1.0000 | .8018 | 2.743 {-1.619 | -70.32 | 2.744 [-1.620 | -70.29 | .5079 | .4072 | 3.901 -1.242 | -74.80 | 3.901| -1.244 | -74.75
44(x/24) | 1.0000 | .8018 | 2.777 | -1.726 | -74.81 | 2.777 [-1.727 | -74.78 | .5293 | .4243 | 3.947( -1.455 | -81.03 | 3.945) -1.456 | -80.91
46(x/24)| 1.0000| .8018| 2.803 | -1.835 | -78.97 | 2.803 [-1.837 | -78.96 | .5599 | .4489 | 3.969 | -1.661 | -86.33 | 3.969| -1.662 | -86.23
48(x/24) | 1.0000 | .8018 | 2.820 | -1.947 | -82.82 | 2.821 {-1.948 | -82.80 | .5962 | .4780 | 3.974| -1.856 | -90.69 | 3.975| -1.856 | -90.59
50(x/24) 1 1.0000 | .8018 | 2.831 | -2.059 | -85.28 | 2.831 (-2.059 | -86.26 | .6354 | .5094 | 3.966 | -2.038 | -94.16 | 3.967| -2.040 | -94.03
52(x/24) | 1.0000 | .8018 | 2.835{-2.171 | -89.37 | 2.836 |-2.172 | -89.34 | .6754 | .5415 | 3.950 | -2.209 | -96.93 | 3.951| -2.210 | -96.88
S4(x/24) | 1.0000 | .8018 | 2.834 | -2.283 | -92.07 | 2.834 [-2.285 | -92.04 | .7248 | .5732 | 3.927| -2.369 | -99.11 | 3.028] -2.371 | -99.07
56(x/24) | 1.0000 [ .8018| 2.827 | -2.396 | -94.40 | 2.828 [-2.397 | -94.37 | .7531 | .6038 | 3.900 -2.520 | -100.83 | 3.901| -2.522 |-100.80
58(n/24)| 1.0000 | .8018 | 2.817 [ -2.508 | -96.39 | 2.817 |-2.509 | -96.36 | .7894 | .6329 | 3.871 -2.663 | -102.17 | 3.872| -2.665 |-102.14
60(x/24) | 1.0000 | .8018 | 2.803 | -2.619 | -98.05 | 2.803 {-2.620 | -98.03 | .8235 | .6602 | 3.841| -2.799 | -103.19 | 3.842| -2.801 |-103.17
62(n/24) 1 1.0000 | .8018 | 2.786 | -2.731 | -99.44 | 2.786 {-2.732 | -99.42 | .8550 | .6855 | 3.809 | -2.929 | -103.95 | 3.810| -2.931 |-103.94
64(n/24) | 1.0000 | .8018| 2.766 | -2.841 }-100.56 | 2.767 |-2.842 {-100.55 | .8838 | .7086 | 3.777| -3.055 | -104.49 | 3.778| -3.056 |-104.48
66(x/24) | 1.0000 | .8018 | 2.744 | -2.952 |-101.47 | 2.745 |-2.953 |-101.45 | .9097 | .7295 | 3.746] -3.176 | -104.84 | 3.746| -3.178 | -104.83
68(x/24) | 1.0000 | .8018| 2.721 |-3.062 {-102.18 | 2.722 |-3.063 |-102.17 | .9326 | .7477 | 3.714| -3.294 |-105.03 | 3.715| -3.296 |-105.03
70(x/24) | 1.0000 | .8018 | 2.697 |-3.172 |-102.73 | 2.698 |-3.173 |-102.72 | .9524 | .7636 | 3.683 | -3.409 |-105.10 | 3.684| -3.411 |-105.09 -
72(x/24)| 1.0000 | .8018| 2.672 | -3.281 |-103.14 | 2.672 |-3.283 |-103.14 | .9690 | .7769 | 3.653 | <3.522 | -105.05 3.654 | -3.524 |-105.04
74(x/24) [ 1.0000 | .6018 | 2.646 | -3.391 |-103.45 | 2.647 |-3.392 |-103.44 | .9822 | .7875 | 3.623| -3.633 |-104.91 | 3.624| -3.635°|-104.91
76(n/24) [ 1.0000 | .8018 | 2.620 [-3.500 |-103.66 | 2.620 |-3.501 [-103.66 | .9919 | .7953 | 3.594 | -3.744 [-104.71 | 3.595 -3.745 |-104.72
78(x/24) | 1.0000 [ .8018 [ 2.593 [ -3.609 {-103.81 | 2.594 |-3.611 |-103.79 | .9979 | .8001 | 3.565] -3.853 |-104.43 | 3.566| -3.855 |-104.49
80(x/24) | 1.0000 | .8018 | 2.566 | -3.719 |-103.90 | 2.567 |-3.720 |-103.90 |1.0000 | .8018 | 3.537 | -3.962 |-104.28 | 3.538 | -3.964 | -104.30
82(x/24) | 1.0000 | .8018 | 2.539 |-3.828 |-103.97 | 2.540 |-3.829 |-103.97 |1.0000 | .8018 | 3.510] -4.071 |-104.18 | 3.510| -4.073 |-104.19
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Figure 1. - Magnitude and direction of velocity at point
in xy-plane. -
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| . Flgure 4. - Elbow design for prescribed velocity along channel walls given in figures 2 and 3.
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