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IK NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2601

COMPRESSIVE BUCKLING OF SIMPLY SUPPORTED CURVED PLATES

AND CYLINDERS OF SANDWICH CONSTRUCTION

By Manuel Stein and J. Mayers

SUMMARY

Theoretical solutions are presented for the buckling in uniform

axial compression of two types of simply supported curved sandwich

plates: the corrugated-core type and the isotropic-core type. The

solutions are obtained from a theo_: for orthotropic curved plates in
which deflections due to shear are taken into account. Results are

given in the form of equations and curves.

INTRODUCTION

The use of sandwich construction for compression-carrying compo-

w nents of aircraft will often require the calculation of the compressive
buckling strength of curved sandwich plates.

In the present paper, therefore, a theoretical solution is given

for the elastic buckling load, in uniform axial compression, of simply
supported, cylindrically curved, rectangular plates and circular cylin-

ders of two types of sandwich construction: the corrugated-core type

and the isotropic type (e.g. Metalite).

The analysis is based on the small-deflection buckling theory of

reference 1 which differs from ordinary curved-plate theory principally
by the inclusion of the effects of deflections due to transverse shear.

The curvature is assumed constant and the thickness small compared with
the radius and axial and circumferential dimensions. The core modulus

in the transverse direction is ass_ued to be infinite; thus, considera-

tion of types of local buckling in which corresponding points on the
upper and lower faces do not remain equidistant is eliminated. The

corrugated-core sandwich is assumed to be symmetrical, on the average,
about the middle surface, so that the force distortion relations are

relatively simple (see reference 2), and is assumed to have infinite

transverse shear stiffness in planes parallel to the corrugations. The
core of the isotropic sandwich (flexural properties identical in axial

and circumferential directions) is assttmed to carry no face-parallel
stresses.
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The results of the solution are presented in nondimensional form
through equations and graphs. The details of the analysis are given in
two appendixes.

The results of the present investigation are comparedwith previous
work on the subject of compressive buckling of curved sandwich plates
and cylinders (references 3, 4, and 5). This previous work is confined
to sandwich construction of the isotropic type only. The present paper
includes results for the isotropic sandwich covering a larger curvature
range and gives the same, or more conservative, results.

SYMBOLS

i

AC

DS

Dx'Dy

Dxy

DQx,DQy

DQ

EC

ES

Ex,Ey

cross-sectional area of corrugation per inch of width,

inches

cross-sectional area of faces per inch of width, inches

(2ts)

flexural stiffness of isotropic sandwich plate, inch-

pounds (2(1 - _S2)]

beam flexural stiffnesses of orthotropic plate in axial

and circumferential directions, respectively, inch-

pounds

twisting stiffness of orthotropic plate in xy-plane,

inch-pounds

transverse shear stiffnesses of orthotropic plate in

axial and circumferential directions, respectively,

pounds per inch (DQx assumed infinite for corrugated-

core sandwich)

transverse shear stiffness of isotropic sandwich plate,

pounds per inch

Young Ws modulus for corrugated-core material, psi

Young's modulus for face material, psi

extensional stiffnesses of orthotropic plate in axial and

circumferential directions, respectively, pounds per
inch
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GC

IC

V2,vh,G-4

Nx

.R

Za,Zb

a

b

shear modulus of core material for isotropic sandwich

plate, psi

shear stiffness of orthotropic plate in xy-plane, pounds
per inch

moment of inertia of corrugation cross section per inch

of width, inches3

moment of inertia of faces per inch of width about middle

of surface of plate, inches 3 (ts h_)

mathematical operators

middle-surface compressive force, pounds per inch

transverse shearing forces in yz- and xz-planes,

respectively, pounds per inch

constant.radius of curvature of plate or cylinder, inches

2tsb _curvature parameters a2 = Z- ; zb2 = _ for
R IS R2_ S

sandwich plat_ CZa2 = 2tsa4(1- _$2).corrugated-core
7T R2_S

- h
Zb2 = R2[S for isotropic sandwich pla

axial length of plate or c_linder, inches

circumference of cylinder or circumferential width of

plate, inches

depth of sandwich plate measured between middle surfaces

of faces, inches
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kxa, kxb

m,n

2p

ra,rb

NACA TN 2601

_Xa = Nxa_--_2 ;compressive load coefficients ES_SW2

Nxb 2

kxb ESTS_2
for corrugated-core sandwich plate_

_Xa= Nxa2. Nxb2--, kx b =
DS,2 DS.2

h
for isotropic sandwich plate)

Y

number of half-waves into which plate or cylinder buckles

in axial and circumferential directions, respectively

pitch of corrugation, inches

developed length of one corrugation leg, inches

transverse shear stiffness parameters
ES_Sn2a = -------_;

DQ?

rb for corrugated-core sandwich plate_

_a DS"2" DSn2= DQa---_, rb - DQb--_ for isotropic sandwich plate_

Z

tc

ts

W

x,y

_C

#S

thickness of corrugation material, inches

thickness of face material, inches

radial displacement of point on middle surface of plate

or cylinder, inches

axial and circumferential coordinates, respectively

PoissonTs ratio fo# corrugated-core material

Poisson'g ratio for face material

J

J
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_x,_y Poisson's ratios for orthotropic plate, defined in terms
of curvatures

Poisson's ratios for orthotropic plate, defined in terms
of middle-surface strains

RESULTS

Corrugated-Core Sandwich

The theoretical compressive buckling load for a curved rectangular

corrugated-core sandwich plate of axial length a and circumferential

width b can be obtained from the following equation:

E'I £ 82 1
kxb = l{a__2 + l/a_2 n2 +

_,,D Z_,_j 1 - _s2 ÷
_i+ m2 (b)2
% 2(1+ _s)_

Zb 2 m2\b /
(1)

where

Nxb2

kxb- EYs_2

m,n number of half-waves into which plate buckles in axial and
circumferential directions
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rb

EgsW2

D_ is the transverse shear stiffness, obtainable from reference 2, and

i

m

_l =

I b 2hEcAG
i+ - SJET_s

EC_C
1 + _

EsA S

l+b S

EC_ C

I +

The details in the derivation of equation (i) are presented in appendix A.

In using equation (1), in general, different combinations of integral

values of m and n must be substituted until a minimum value of kxb
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is obtained for given values of the other parameters. This minimum

value of kxb determines the buckling load.

For the special case of an infinitely long curved plate (a,m-@_),

kxb must be minimized with respect to the axial wave lengt_ a/m and

integral values of n.

For the special case of a cylinder, the width b is equal to 2_R.

Thus, R becomes involved in the parameters kxb , rb, Zb, and a/b.

Equation (1), therefore, is not well-adapted to studying the effect of

changes in R on the buckling strength of the cylinder. It is more

convenient, for the special case of a cylinder, to consider equation (1)

rewritten in terms of slightly different parameters as follows:

i - _S

1

2 +
n2(_) 2

__i + m2

ra 2(i + _S)

+

Za2 1

_h m2

n2a

(2)

.where

Nxa2

kxa E#S.2

ES_S .2

ra =

2
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Za2 - 2tsah

R2Is

This equation, unlike equation (i), can yield the limiting results for

an infinitely wide flat plate (R-->_) compressed in the short direction.

For cylinders, different combinations of integral values of m and

even integral values of n must be substituted until a minimum value for

kxa is obtained. The values considered for n for the range of practical

dimensions are: n = 0 for short cylinders (axisymmetrical buckling) and

n = 4, 6, 8 . . . for medium or long cylinders. The case n = 2, which

is not considered here, corresponds to column buckling. For medium or

long cylinders, the same results or slightly conservative results are

obtained if, instead of minimizing kxa with respect to even integral

values of n, kxa is minimized with respect to the circumferential wave

length b/n. The latter procedure is used in this paper.

Because of the large number of elastic and geometric parameters

appearing in equations (1) and (2), the critical load coefficients can

be readily obtained only for individual corrugated-core sandwich sections.
For purposes of illustrating the application of equations (1) and (2) to

a particular corrugated-core sandwich, the section shown in figure 1 has
been selected. The required physical constants calculated for this sec-

tion are also shown in figure 1. The value of D_ is computed from the

formulas and charts presented in reference 2.

The process of minimization is carried out for this particular sec-
tion and buckling loads are obtained for infinitely long curved plates

and cylinders of arbitrary over-all width and length, respectively, and
of arbitrary radius. Nondimensional curves presenting these results are

shown in figures 2 and 3 giving the load coefficients kxa and kxb and

therefore the load as a function of the over-all dimensions. The dashed

curves give the results obtained if transverse shear deformations are

neglected. The equations for this case are presented in appendix A. It
should be noted that the b/R and a/R curves are cut off where the

dimensions of the plate or cylinder would no longer be consistent with

the requirements of small-deflection theory.

Isotropic-Core Sandwich

The theoretical compressive buckling load for a curved, rectangular,

isotropic-core sandwich plate of axial length a and circumferential
width b can be obtained from the following equation:
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kxb=
+

I a +r b n2a 2

Zb 2 lfa_ 2

(3)

where

kxb DS_2

DS_2

rb DQb2

and

h2

DQ = OC h - tS
(see reference 6)

The details of the derivation of equation (3) are presented in appendix B.
The values of m and n to be used in equation (3) are obtained in the

same manner as discussed in the previous section for the corrugated-core
sandwich.

For the special case of an infinitely long curved plate (a,m---_),

kxb can be minimized with respect to the axial wave length a/m and

the number of circumferential half-waves n. The results are plotted in

figure h. The equations for the theoretical buckling load coefficients

of infinitely long curved plates and the ranges in which they hold are
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kx b _
(z + rb)2

+ Zb2 l-rb (_)

when
_dl - rbZb

(l + _o)2'

(5)

when < _ <

(]. + rb)2 .2 = r b '

1 (6)
kx b r b

Zb V± - rb
when -- > -. Equations (2) and (5) are not exact but are quite

_2 = rb

accurate for the curvature-parameter ranges indicated.

For the special case of a cylinder (b = 2.R), it is convenient to

rewrite equation (3) with parameters in terms of a rather than b as

done in the preceding section; the resulting equation is

+ m _ ._ m2
kxa = + (7)

1 _ n)2(a)_ E n,2/a,2-1 2m-_ + ra + (m "_ + (m/_,_].J
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where

kxa= 
DS_2

DS_2
ra =

D_ 2

Za2 =
2tsa4(l - _S2)

R2&

As is true of equation (2). equation (7) when applied to a cylinder must

be restricted to values of n equal to 0 and even integers greater than

2. The minimization is again performed analytically so that m and n
are eliminated. The results, which are plotted in figure 5. are given

by the following equations:

when Za< 1
= m,

,2 i + ra

l + Za-_2 (8)
kxa = I + ra .4

z)
kxa = ,2 - ,2 r

(9)

when
1

l+ ra

<z_a <!
_2 ra'

when
Z a
__>__1.

.n.2 = ra

I (i0)
kxa : ra
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In addition to the results presented for infinitely long curved

plates and cylinders, calculations have been carried out for rectangular

curved plates of dimensions such that the axial length is equal to the

circumferential length and the axial length is equal to one-half the

circumferential length. The theoretical buckling load coefficients for

rectangular curved plates of these dimensions and, for comparison, the

theoretical buckling load coefficient for cylinders enoted by _ =

are presented in figure 6.

DISCUSSION

Effect of Transverse Shear Stiffness

The results of the investigation of the compressive buckling of

corrugated-core, curved, sandwich plates having the particular cross

section shown in figure I and isotropic curved sandwich plates indicate

the following effects with regard to finite transverse shear stiffness:

For the infinitely long, corrugated-core, curved sandwich plates

(see fig. 2), the effect of the finite transverse shear stiffness can

be neglected for plates of high cuI_ature (Zb > I00) but should be con-

sidered for plates of lower curvature. For the corrugated-core cylinders

(see fig. 3), the effect of transverse shear stiffness can be neglected

is either very short (_ < 0.I) or extremely long (_ > I0).when the cylinder

Equations are given in appendix A for the critical compressive load coef-

ficients of infinitely long plates and cylinders when transverse shear

stiffness is neglected. In the intermediate range, which corresponds to

the range of practical dimensions, shearing deformations must be taken

into account at least for lower values of Za (for _r = I, Za < 103;

for _ = I0, Za < I0 h)"r

For isotropic curved sandwich plates and cylinders (figs. h, 5,

and 6) the results indicate that transverse shearing deformations have

the greatest effect when

rb >_b +
--  Zb2

ra > _2
= Za

(12)
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For these values, the critical compressive load coefficient kxb or

kxa is given directly by the reciprocal of the shear stiffness param-

eter rb or ra, respectively, or in terms of the compressive load Nx

and transverse shear stiffness DQ,

Nx = DQ

This equation represents the horizontal portion of the curves in figures h,

5, and 6.

The results indicate that the effect of shear stiffness can be

neglected when rb and ra are much smaller than the right-hand members

of relations (ll) and (12), respectively. Equations are given in

appendix B for the critical compressive load coefficients of infinmtely

long plates and cylinders when transverse shear stiffness is neglected.

In the intermediate range (the range of practical dimensions), the

effect of transverse shear deformation is always important.

Comparison with Previous Results

For the corrugated-core curved sandwich plate, no previous results

are available for comparison with the present paper. The equations of

the present paper, however, do reduce to the equation for the corrugated-

core flat sandwich plate given in reference 7.

For the isotropic curved sandwich plate, previous results are avail-

able only for the infinitely long plate of small curvature and for the

cylinder of medium or large curvature. Comparison of the present results

with this previous work shows that the present results are the same or
conservative.

Equation (4), which gives the theoretical buckling load coefficient

for plates of small curvature, is similar to equation (16) of reference 3

and equation (48) of reference 4. Since the theory of reference 3 allows

the core to carry compressive load and imposes the additional boundary

condition of zero circumferential displacement along the unloaded edges,

the results of the present paper are more conservative than those of
reference 3. When the curvature is zero, equation (4) gives the same

results as equation (48) of reference 4 but is increasingly more conserva-

tive as the curvature increases because of the approximate manner in which

the theory of reference 4 takes the effects of curvature into account.

Equation (9) is equivalent to equation (49) of reference 4 and to

equation (20) of reference 3, if the compressive load carried by the core
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is neglected, and can be shownto be the result of minimizing with respect
to the wave length the buckling coefficient appearing in equations (15)
and (16) of reference 5.

Equation (I0), which gives the buckling coefficient for zero-wave-
length shear buckling of the core, is equivalent to equation (18) of
reference 5. It is of interest to note here that, in reference 5, tests
conducted on thin isotropic-core sandwich cylinders (cellular-cellulose-
acetate cores) indicate apparent correlation with equation (18) of refer-
ence 5 and equation (I0) of the present paper.

Empirical Reduction Factors

It is well-known that the small-deflection buckling solutions for
cylinders and curved plates of ordinary homogeneousconstruction give
compressive buckling stresses that maybe muchhigher than the experi-
mentally observed values; empirical "knockdown" or reduction factors
have therefore been proposed for ordinary curved plates in compression
(see, for example, reference 8). The sameshortcoming maybe expected
of the present buckling solution for curved sandwich plates; the reduc-
tions required, however, will probably not be so severe as in the case
of homogeneouscylinders, partly because the greater thickness of the
sandwich plate reduces, relatively, the importance of initial irregu-
larities (see discussion in reference 3). Someexperimental data (refer-
ence 5) seemto indicate that no reduction is required for the isotropic
sandwich with a core of sufficiently low shear stiffness. Further inves-
tigations are required, however, before this conclusion maybe taken as
generally valid for all curved sandwich plates.

CONCLUDINGREMARKS

A theoretical solution is presented for the elastic buckling load
in uniform axial compression, of simply supported, cylindrically curved,
rectangular plates and circular cylinders of two types of sandwich con-
struction: the corrugated-core type and the isotropic type.

Like the results for flat sandwich plates, the results for curved
sandwich plates show, in general, that the effect of finite transverse
shear stiffness is to lower the buckling load. For given cross-sectional
dimensions and properties, this effect diminishes as curvature increases.
In the range of practical dimensions, however, the effect of transverse
shear deformations on %hebuckling load is always important.

For isotropic, sandwich, curved plates and cylinders of low trans-
verse shear stiffness (weak cores), the critical compressive load Nx
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becomesindependent of curvature and equal to the transverse shear
stiffness DQ, a result found also for flat sandwich plates of low
shear stiffness.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics

Langley Field, Va., September5, 1951

P
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APPENDIX A

ANALYSIS OF CORRUGATED-CORE SANDWICH PLATE

A corrugated-core sandwich plate with the corrugations oriented

parallel to the x-axis _my be considered to be an orthotropic plate

having infinite transverse shear stiffness in the axial direction; that

is, DQx--_. For such a plate loaded in axial compression (Nx posi-

tive in compression), the general equations of equilibrium for ortho-

tropic plates developed in reference 1 reduce to

Gxy 8_w 82w
LDW + _ LE -1 _ + Nx _ _

R2 2

8x28y3

and

(A2)

where LD is the linear differential operator defined by

LD=
Dx 84 _x __x2___ 84 Dy 8_1- t..I,x4Xy_x 4+ -- _'l..i,y + 2D:_d + ! - I..i,xl.i,y/Sx28y2 + i -" "_¢1_
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LE is the linear differential operator defined by

and LE -I is the inverse operator defined by

W " m W

For a simply supported orthotropic sandwich plate, since deflections
due to transverse shear are considered, three boundary conditions must

be imposed at a plate edge. Two of these are the usual boundary condi-

tions specified on the displacement w and the bending moment Mx (if

edge is parallel to the y-axis), that is,

w=O

Mx=O

The third condition is imposed on the transverse shearing force Qy,
which requires that the transverse shear strain in the plane of the

boundary be zero; hence,

A similar set of conditions exists along an edge parallel to the x-axis.

For a corrugated-core sandwich plate, the boundary conditions are

satisfied if the displacement and transverse shear functions are taken
as

w = A sin m____xsin _ |
a b

= B sin cos
a b

(A3)
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since the assumption that DQx--_ for the corrugated-core plate auto-
Qx

matically satisfies the boundary condition - O.
DQx

Substitution of relations (A3) into equations (A1) and (A2) leads to

two linear homogeneous equations in the arbitrary constants A and B.

If nonzero solutions of these equations are to exist, the determinant of

the coefficients of A and B must vanish. This condition is represented

by

x  >Ix  lli l•: + -- + + ---- , +

Dy (n_h{a_q L--a!-_ _-'P'xP'y_____ k _) k_)J +D '

1 "-" _lxliy\m/ \_]J- D-(4.y.+ _"_")/tarry2FE ---DY'_:_--Yim)tn\2ta\2_} + 51Dxy] +

EX_y ,,

, E _/n_2/a_ 2

+ x Vk )

where the reciprocal relationship _xDy = _D x (see reference 9) has been

used to simplify the numerator of the second term.

By replacing the physical constants Dx, Dy, Dxy , Ex, Ey, Gxy , #x,

_y, #'x, and #ly with their respective formulas, as developed in refer-

ence 2 for the symmetrical corrugated-core sandwich plate, and defining

Nxb 2

kxb - E#S_ 2
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Zb2 - 2tsb4
R2ys

ES_S_2
rb -

OQyba

equation (A4) becomes

kxb =

+ n2a 2

1 t'a'_2 1/'a _2

1

n2

1
-- +

rb

÷

(A5)

where

Ejc
ESI S

_i =

i

]. + (z . 2'_EcAc
- _S ,/E---_S

D

EcA c
1 + --

ES_S
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i +

1 + _s
p

1+ _s(p_2s___!c

I

EcA C
+

I ES_S

Equation (AS) is applicable to infinitely long curved plates, to

finite rectangular curved plates, and to cylinders. For the special case
of a cylinder (b = 2_R), however, it is more convenient, for reasons dis-

cussed in the section entitled "Results," to consider this equation

written in terms of slightly different parameters as follows:

2

kxa = qm2 + m2 + m B
I

2 +I - _S
1 m2

ra 2(1 + _S)

÷

Za2 1

_ m2

n2a 2 +
(A6)

where

Nxa2

kxa ES_-S_2
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ESYS.2
ra- 2

The process of minimization of kxb and kxa with respect to the

arbitrary parameters m and n is discussed in the section entitled
"Results."

When the shear-stiffness parameters rb and ra are zero (deforma-

tions due to transverse shear neglected), the minimum values of kxb

and kxa are found to be as follows: For an infinitely long curged plate

h zb2/_h
kxb _ D + + (AT)

1 - _S 2 _l + 2_2 + _3

when _l +2q+
I P-S

+ 1
Zb i - _s2

kxb = 2 _2 [I
(AS)

i +2_i +
i - _S

_); for a cylinder
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kxa =T]+
1

2
I - _S

+ Za2/"h

NACA TN 2601

(A9)

when

.2 = I - _S

kxa

+ 1
-2

I - PS
(Al0)

when

n2 = i I - _S
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APPENDIX B

ANALYSIS OF ISOTROPIC SANDWICH PLATE

The equation of equilibrium for an isotropic sandwich plate loaded

in axial compression (Nx positive in compression) obtained from refer-

ence I is

i Dsv2_2tgsv-___s_%+ -_ J\7 _x-_+ Nx _--Z"I= 0 (BI)
ax2/

The boundary conditions for sir_ly supported edges can be satisfied
if the deflection function is taken as

w = A sin m_x sin n_y (B2)
a b

Substitution of equation (B2) into equation (BI), defining

Nxb2

kxb - DS_r2

Zb2
2tsb_(l - _S2)

R2h

DS_2
rb -

0@ 2

and simplifying yields the theoretical load coefficient of an isotropic
curved sandwich plate or cylinder,
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n2 a 2

kx b = + (B3)

lfa__2 + rb F n.2.a.2- ] 2
m2\b, _ + (m)(_)J _-1+ (-nm)2(b)_

For the reason mentioned in the section entitled _IResults," it is

convenient to obtain a separate equation for cylinders. By defining

Nxa2

kxa DS_2

Za 2 =

2tsah(l - _S 2)

DS_2
r a =

D@ 2

the equation becomes

[- n_2/a_q 2 Za2 1

I (mj__ _ m 2

:_a + (3b.)

a)_ n_2/a_ 2

The process of minimization of these equations with respect to the

arbitrary parameters is the same as that for the corrugated-core plates

and is discussed in the section entitled itResults." For infinitely long

isotropic-core sandwich plates and cylinders, since the equations are

relatively simple, the results can be presented in more advanced form.

The following equations give the minimum load coefficients: For infi-

nitely long plates,
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kxb

h Zb2 1 - rb

(I + rb )2 I_4 h

(BS)

when Zb-- <
_2

kxb _
(B6)

when
h{f - rb < _<Zb _ - rb,

(1 + _)2 _7-

i

kxb =
(BT)

when
Zb _ - rb

$ rb ; for cylinders,

i Za 2

kxa I + ra _4
(B8)

when Z_A< I

_2 = l+r a
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when i <Za<1
i + ra n2 ra'

= ! (BIO)
kxa ra

when

Equations (BS) and (B6) are very accurate for the curvature ranges

indicated and give exact minimums for Z = O. The remaining equations

give the exact minimums for all values of Z. These results and results

for a rectangular, curved, isotropic-core, sandwich plate are presented

in figures h, 5, and 6.

When the shear-stiffness parameters rb and ra are zero (deforma-

tions due to transverse shear neglected) the minimum values of kxb and

kxa in equations (B3) and (B4) are found to be: For infinitely long

plates,

(Bll)

when Z-h< 4,
n2 =

when Zb> h; for cylinders,

,2 =

ZD (B12)
kxb = 2 _2

when

Za

kxa = I + n2
(BI3)
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Za
kxa = 2 _2 (Bib)

Z a
when w> I.

n2 -
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Ts = 0.050 in.4/in. T c --0.015 in4/in.

_S--0.128 in.2/in. AC = 0.094 in2/in.

ES=10.5 x 10 6 Ib/in2 EC= 10.5 x 106 Ib/in. 2

I DQy = 8500 Ib/in./zs

Figure i.- Corrugated-core sandwich section.
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Figure 2.- Critical axial compressive-load coefficients for simply

supported infinitely long curved plates with corrugated-core
sandwich section sho_rn in figure 1.
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Figure 3.- Critical axial compressive-load coefficients for simply

supported cylinders with corrugated-core sandwich section shown

in figure 1.
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Figure _.- Critical axial Compressive-load coefficients for simply

supported infinitely long curved isotropic sandwich plates.



5K NACA TN 2601 33

104

103

102

kx o

I0

I I I | I I i I J J I I I , ,l,lJ I i I I I lllJ ! I I I l I llJ I l ! I l SlI.

ro

.01

.I

.5

I.O

I I i I I III| I I i I llili

I0 102
I I I I I I Ill I I J J I I I

• I03 105
Z a _ NAC_,/_

I 1 I I I IIIJ

104

Figure _.- Critical axial compressive-load coefficients for simply

supported isotropic sandwich cylinders.
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Figure 6.- Critical axial compressivelload coefficients for simply

supported rectangular curved isotropic sandwich plates.

NACA-Langley - 1-18-52 . IflO0


