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By H. G. Lew

SUMMARY

An analysis is presented for the deformation of a doubly curved
thin plate under edge loads or surface loads for small deflections.
This problem is approached from thin-shell theory so that the plate is
to form part of a shell of revolution. The methcd developed is particu-
larly useful for a plate whose radius of curvature in one direction is
large compared with its length and width dimensions. The solution con-
sists of an expansion about a parameter which depends on this fact.

P An analytical solution is presented completely for a plate with an
arbitrary meridian curve of small curvature and loaded by normal edge
loads on one pair of opposite edges. Numerical calculations-forthe

& deflection and moment distrib~tion are presented for a particular
meridian curve. For the meridian curve chosen for the numerical example,
part of the surface had a negative Gaussian curvature. Results show that
the deflections and bending moment are largest at the part of the plate
with negative Gaussian curvature.

The method is developed to the point that it may be applied readily
to other problems of the deformations of doubly curved thin plates under
edge or surface loads. The theory, however, is limited to small deflec-
tions of the plate or shell considered.

JXTRODUCTION

This report is concerned with the behavior of a doubly curved thin ..
plate under edge loads or surface loads. This probkm is considered in
the following way. The doubly curved plate is to form a part of a shell
of revolution bounded by two meridians and two parallels. The meridian
curve is assumed to have a radius of curvature much larger than the
radius of curvature of a parallel. This situation is clearly presented in
most airplane fuselage panels. The introduction of a small parameter

@
dependent on this fact allows the equations for equilibrium of the shell
of revolution to reduce to ones with constant coefficients. The solution
of this sequence of problems then leads to a complete solution of the

•! problem. It may be noted that the method so developed is equally valid,
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for analysis of the deformation of a shell of revolution with a meridian
curve of small curvature and loaded in any tinner whatsoever.

The thin-shell equations valid for small deforinationof an arbitrary
shell of revolution are first presented. These, in general, lead to a
set of differential equations with variable.~oefficients. The pertur-
bation method is then applied to reduce the~e”equations to ones with
constant coefficients. An analytic solution is presented completely for
a plate with arbitrary meridian of small cufiature loaded by normal edge
loads on--onepair of opposite edges and stress free on the other pair.
In addition, all edges sre free from shearing stresses. For this type of
condition two infinite families of algebraic equations are obtained which
are solved by retaining a finite,number. Finally, numerical calculations
for the deflection and moment distribution are given for a particular
meridian curve.

The author is indebted to Dr. D. J. X’eery,Head of the Department
of Aeronautical Engineering, for his work in the formulation of the
proposal for this project and to Dr. J. A. Sauer, head of the Department
of Engineering Mechanics, for his understanding cooperation. The author
is also grateful to Miss A. Koo who checked the major portion of the ana-
lytical work and to Mr. T. Khammash who performed the numerical
calculations.

This work was conducted in the Department.of Aeronautical Engineering
of The Pennsylvania State College under the sponsorship and with the
financial assistance of the Naticmal Advisory Committee for Aeronautics.

SYMBOLS

A =Gh3/12

a

B=Gh

‘J= ~/(1 - ~’)

D =Eh3/12(1 - @

E’

F(o), F(l), . . .

f(z)

constant defined by equation (10)

Young!s mcdulus

stress functions

equation of meridian curve

●
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a
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shear modulusG-

G, H, K

u, v, w
*

%-l = nYt/2

13m= mfi/2

7m = rob/2

b~ = nfi2/2b

‘e) ‘E’ T
b

P,

known functions given from solution of each
approximti on

thickness of shell

define length snd width of plate

moment resultants defined by equations (3)

force resultants defined by equations (3)

surface load in direction normal to middle ”surface

principal radii of curvature of middle surface of
shell

displacements in L9, ~, and ~ directions,
respectively

rectangular Cartesian coordinates

fundamental magnitudes of first order of middle
surface

extensional strains snd shear strain given by
equations (8)

coordinate nomal to middle surface

curvilinear coordinates on middle surface of shell

change-of-curvature functions given by equations (8)

small parsmeter defiti by equation (10)

*.. pm = mfi/2Z
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v

v= = nfi/2b

Poissonss ratio

●
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●

shear stresses

normal stresses

function defined by equations (22)

“equivalent’!potential function

BENDING OF SHELLS OF REVOLUTION

The differential equations governing the small deflection of shells
of revolution are considered herein. In this section the equations
pertinent to the later investigations are outlined.

Coordinate System on Shell

Consider a shell of revolution located as shown
addition to the x, y, and z Cartesian coordinate

.

—

e

●

in figure 1; in
system a set of

—

orthogonal curvilinear”coordinates 19, ~, and~ is chosen on the
middle surface or the shell such that the e and ~ lines are lines
of curvature of the middle surface and ~ is the distance normal to
the middle surface. In addition, the e and ~ lines are the parallels
and meridians of the middle surface (for a shell of revolution). Note
that ~ is a parameter along the meridian plane and L9 is the polar
angle measured from the xz-plane. The element of arc leqgth will be: .

(1)

(J+(*Yand‘~ and‘e are‘he‘rincipal‘dii ‘fwhere a2 = ‘z

curvature of the middle surface. It is noted that instead of ~ one can
use z as the independent variable. Then the element of arc length in
the ~ direction becomes

(2) 4

One also notes that r = r(z) is the equation of the meridian curve. J.
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The sign convention as given, for example, by Sokolnikoff and
Specht (reference 1) is used. ThUS if T~J is the stress tensor, then

the subscript i indicates direction of normal to plane under consider-
ation and j, the direction of the component of stress. Tensile stresses
and compressive stresses are positive and negative, respectively. Shear
stresses on a particular plane are positive if the normal forces are
positive on that plane and if they are acting in the direction of posi-
tive coordinate axes; otherwise, they are negative.

The stress resultants and moments, as defined later, have the fol-
lowing sign convention (see fig. 2). The resultant bending moments are
positive if they cause positive stress on the positive side (~) of the
middle surface. Resultant forces have the same sign convention as the
stresses.

Assumptions in Analysis

The assumptions inherent in this analysis are the usual’ones for
thin-shell theory. They are amply presented in reference 2. Summa-
rizing, they are:

(1) Material is isotropic and follows Hooke’s law

(2) Thiclmess of shell is small compared with smallest radius of
curvature of middle surface

(3) Displaca=ts are small compared with thickness

(4) Straight lines normal to undeformed middle surface remain
straight and normal to deformed middle surface

In addition, two other assumptions are made here. These are:
First, the effect of transverse shear in the resultant force equations
is small and can be neglected and, secondly, the effect of the displace-
ments tangential to the middle surface of the shell in the changes of
curvature is of higher order than that of the displacement normal to
the surface. These assumptions are discussed more fully later in the
text.

Differential Equations of Equilibrium

Force and moment resultants.- The stress resultants and moments are
defined on the coordinate curves on the middle surface of the shell.

a They are given in units of force or moment per unit length of the middle
surface. Thus the following definitions are made:

*
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.

with the integrals evaluated between the limits -h/2 to h/2.

The differential equations of equilibrium for the force and moment
resultants may be obtained from physical considerations (e.g., refer-
ence 2) or by integmtion across the thickness of the shell of the
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differential equations for the stresses (reference 3]. Thus the
differential equations for the stress resultants are;

where

In these equations it has been stipulated that there are
forces applied to the middle surface of the shell and no
are presented. The equations for moment equilibrium are

a(W.) a
a~ ‘~(Wg)-@E-*Me’o

o

7

(4a)

- (hb)

(4C)

no tangential
bmly forces

(>)

(5b)

(5C)

.

— —
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Equation (5c) is not obtained from integration of the stress-
equilibrium equation in the ~ direction. It is implied by the rela-
tion of equality of cross shears

.

(6)

that is, if equation (6) is rewritten in the form -

‘4+)-‘4‘+’)’+’ql+*)+&E(l+i)

and integrated across the thickness of the shell, equation (5c) results.

Relations between force and moment resul.t.antsand strains of middle
surface.- The relations between the stress resultants and the strains of
the middle surface are obtained from stress-strain relations and defi-

nitions (3) utilizing the assumption that
()
l+L.1

%
in equations (3). (See references 3, 4, ands.) These

and
()

il+q xl?

relations are:

.

where A = #, B = hG, c=fi~and’= ~,”
Z?%

(7)

.*

.
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s
The extensional strains

terms of the displacement of
. the shell. Let u, v, and

9

and changes of curvature may be given in
an arbitrary point in the middle surface of
w be the components of

a point on the middle surface where u is along the
circle, v, along the tangent to the meridian curve~
normal to the surface. Thus the extensional strains
ture of the middle surface are

,

. .,=+l-l-.b+

In the latter part of

the displacement of
tangent to a parallel
and w, along the
and changes of curva-

7

> (8)

this report the above set of equations will.. ..
be applied to doubly curved plates which have been “cut” from a nearly
circular cylindrical shell. Thus the principal radius of curvature R~

will be quite large. Moreover, the assumption (h/R) <<1 (R is the

smaller of Rs and Re) implies that in these problems u and v are

second order small in ~, lc~,and T. Finally, if terms of higher

order than h3 in the values of ~, ~~, and T are rejected one

obtains in place of the last three relations in equations (8) the
following equations:t
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One notes that in equation (~c)

the order of h3/R~ and h3i~

agreeing with equations (7). A
rejecting the transverse shears

since they are of the order of

d

(9)

the term ~gO/REand M@+J are of

and can be rejected, thus leading to

further simplification can be made by
Qe and Qg in the force equations

h3/~ and h3/RE, respectively,while

the remainder of the terms are at most of

ANALYSIS OF CURVED

the “o~er of h/R~ /and h Re.

PLATEs

In the follow-ingsections the equations will be applied to the
bending of doubly curved plates which fom a part of a shell of revo-
lution. The equations as given above are, in general, intractable to
the problem at hind. However, in the application, for exmple, to

curved panels of an airplane fuselage the r&7iiusof curvature of the
meridian curve is many times the length and width of the panel. Hence a

solution to the problem can be obtained by an expansion in terms of a
parameter which will be small when the radils of curvature of the meridim ““
curve is large. Then the solution will appear, for example, in w as

—

—

—

where p is the parameter concerned.
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To this purpose the equation of the meridian curve is represented
by the relation

r=a

where a is a constant, p is the

+ Vf(z)

small parameter

(lo)

dependent on the
maximum deviation of the meridian curve from the straight line r=a.
and f(z) is the equation of the meridian curve.

— /

It is-more convenient in the following sections to use the coordi-
nate z instead of ~. Thus one replaces ~ by z in all equations
above.

The radii of curvature R~ and ~ are given

I_ 1—— -
Re a 1/2

r~ + (dr/dz)]

In accordance with the first paragraph of this

(11)

by the relations

section all dependent— —
variables will be expanded in power series of the parameter V. Then
solutions of the different approximations are obtained. For small values
of the parameter W, probably two approximations are sufficient to lead
to a ccmplete solution of the problem.

The expansions required are:

66 = + + w;’)+ LL%$)+ ● . .

tce= Jo) + f-me(l)+P2K$2)+ . . . 1 (12)

u = I@ ~+ vu(l) + p%(a) + . . . (13)
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N, = N&) +@& +p%e(z)+ . . . (14)

M,= Me(”)+PM$’)+P2MJ2)+. . ● (15)

and similar expansions are obtained for ~z, Gezj ~zj T) Nzj %2)
Mz) and Mez.

The expansions
dixes A and B. The
approximation.

of the various terms have been summarized in appen-
superscripts correspond to the order of the .

Equations for First Approximation

The first approximation yields essentially the same equations as
that of a circular cylinde,r,as would be expect d

?)
One can obtain two

simultsmeous equations for a stress function F 0 end the normal displace-
ment w(”) from the pertinent equations in appendix B as follows: Let

~$o) a2F(0)=- .-

az2
‘1

~z(o) ~ #~(”)
=——
a2 aez

}

(16)

where the superscript corresponds to the first approximation. Then it
is seen that equations (B13) for force equilibrium are automatically
satisfied. Moreover, a compatibility equation can be constructed from
the strains (equation (B7)) and is

.

,-

●

b

.

.
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The resultant force and strain relations give

(18)

The substitution of equations (18) and (16) into equation (17) leads to

. where

. ~4_a4, +2 a4 +ak

az4 as2az2 aS4

(19)

s=ae

The moment-equilibrium equation together with its relation tG the changes
in curvature (equations (B&, (B~), and (B1O)) gives the second equation

for w(o):

(20)

Equations (19) snd (20) sre a pair of simultaneous equations for @

~d F(o) subjected to appropriate boundary conditions. The effect of
curvature in the 19 direction is evident frcrnthe terms multiplied by
l/a. Thus one obtains the flat-plate equations if (l/a) ~ 0, that is,
coupling of the two equations disappears. It is noted that these equa-
tions are exact for bending of a circular cylindrical shell with small
deflections.
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Equations (19) and (20) can be combined into one equation for one
complex function (cf. Reissner, reference .5). If equation (20) is
multiplied by a constant k and added to equation (19) one obtains
first

then

.
—

if k = i= where i = fi. Equation (2~~-is a differential equation

for one complex function
[ 1F(o) +i@jj&) . Furthermore, if one desires,

equations (19) and (20) may be reduced to one eighth-order differential
for a function v such that

,

.

(22)

However, for practical calculation F(o) and w(o) maybe representedby
double Fourier series and equations (19) and (20) are used directly.

Equations for Second Approximation

The second approximation involves now the known functions of the
first approximation on the right side of each equation. Let

~)) = a2F(1)

57--
+ f-l(e,z)

1
2 (1)~g(l) .& F2

+ .Q(e,z)
a ae

(1)_ 1 a2#)
‘eg ‘-Ziae az

-/

(23)

.

.

—
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. where the superscript corresponds to this approximation. With equa-
tions (23) force-equilibrium equations (B13)”are satisfied if

b

~i-1

[

a df
~ %Z

(o)
—= — 1+my
ae

ail
[

~Nz(o)
ldfNz(o)+f_ -~Ne

I

(0)—= -——
az a dz az

(24)

The relevant compatibility equation for this approximation is

##) 2 (1) (1)
Iacz 1 327ze ~ 32W(1)

-!-G(o)(e,z)
‘~ ae2 - K

(25)
dz2 ae az ‘-= az2

\
where G(0)(e,z) is a function determined by the first approximation.
With the aid of the resultant force-strain relations

<e(l)
[ 1]=&Ne(l) - WJz(l)

~ze(l) _ 1——
hG

and equations (23), compatibility

~ze(u J
equation (17) gives

. ~ a2w(l)V%(Z) + Hwe,z)
a az2

(26)

(27)

where H(0)(f3,z) is a known function from the first approximation. The
mcnnent-equilibriumequation with equation (23) and the relations between.
resultant mcment and change of curvature lead to

.
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~4W(l) _ .1 b2F(1) +K(o)(9,z)
‘K 3Z2

(28) “

.

where K(0)(O,z) is also aknown function. The solution of equations (27) .
and (28) would give the second approximation: The effect of double
curvature comes in at this stage. The “methcdof solution follows the
ones suggested previously. It is evident that the form of the equations
for higher approximations will be similar in structure. Thus for the
(n + 1)th approximation one has .

,

++d . + f#!# +$n-l)(@,z)

~4w(d = II_
Da*

+ K(n-l)(O,z)

1

(29)

where H(n-l) and K(n-’) contain all of the known (n - l)th func-

tions w~n-l) ~d F(n-l). The functions H(0)(@,z), G(0)(8,z),

and K(O}(e,z) are not given explicitly here but may be formulated
readily from the expansions given in appendixes A and B.

.

*

.
Solution of Specific Problem

The developed differential equations will now be applied to a
particular problem. The problem at hand is that of bending of a curved
plate with two meridian curves and two parallel circles as boundaries.
This plate is loaded along the edges z = Constant in compression
(i.e., the load is along the direction of the z-axis). The boundaries
of the plate are given by z=~z and e = tee. (See fig. 3.)

Boundary conditions.- Four boundary conditions are needed on each
edge, and with four edges there are sixteen conditions for w and F
together.

.—

The plate is supported at all edges and hinged at the edges so that
bending moments are zero there. Thus,

at z = ~z: W=o, MZ=O

1

.

at @ = tee: w=O, Me=O
(3oa)
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Furthermore, for applied load at edges. z = Constant it is required
that at z = tl

.

1
00

Nza de = Applied load
-80

(In most cases Nz = Constant and the condition

constant.) In addition, it is required that the
at all edges, that is,

+2:atz=- Nze = O.1

(3ob)

becomes equal to a

shear resultant be zero

( 3@)

.
There are two more conditions needed and these are suppli~ at the
edges (3= -Wo. They may be formulated in either of two ways. If the

plate has stiffeners attached
rigidity in the ~ direction
is

at the edges which have infinite bending
then the boundary condition at e = ~eo

u = o (30d)

and if the stiffeners have zero bending rigidity in the (3 direction
the condition at (3. ~eo is ,

Ne=O (30e)

Of course, the actual condition would be between these two. It may be
noted that condition (26c) may be modified to have zero tangential
displacements at the edges (then Nze # O at”edges). With the help of

expansions (12), (13), (14), and (15) the above boundary conditions
imply the following conditions for the different approximations:

.

.



NACATN 2782

v = O gives ~(n) =Oforn = 0,1,2,...

Mz = O gives ~(n) = O for n=O, ”l,2, . . .

At e = ?eo:

w . 0 gives ~(n) =0

Nz =

I@

At 6’=-ieo:

Ogives~(n) =Oforn = 0,1,2,...

Constant gives Nz(0) =-Constsnt

=Oforn=l,2, . . .

If Ne = O then Ne
(n) =Oforn=0,1,2, . . .

Ifu=Othenu (n)= Oforn = 0,1,2,...

At z = il, e = ieo:

Nze = O gives Nze
(n)

=Oforn=0,1,2, ..o

L

Solution to first approximation.- For further application, consider-
ation is given to stress-free edges at ‘-;o~ = ‘+e (i.e., equation (30e)).
A possible solution to equations (23) and (27) is that

~(o)e () (32) -

.
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and

F(o) =Bs2 (33)

Equations (32) and (33) satisfy all boundary conditions given above
and furthermore dif~erential equations (19) and (20) are satisfied

( )
with paO.

c
The constant B is determined by the load at the

edges z = ?2. If the loads at these edges are:

Nz =k = Constant 1
then

B = k/2
J

by equation (16). The displacement components ~(o)

by
.

must

Jo) ..% s

1
>

md ~(d

(34)

are given

(35)

Solution to second approximation.-
first be determined from the first

The functions Q, H(o), ad K(o)

approximateon. Thus, one has

2Q=0
ae

an 1 df—= ..—
az a dz

or

n kf=-—

k

1

a

(36a)
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(2 - v)k d2f d3f kzH(o)(e, Z) = ~
~+-dz3 a

—.

d2f kK(o)(e,z) =.~~

dz

Differential equations (27) and (28) become now

and

E

(36c)

(37)

+#) =-~a2#) ~ (2 - V)kd2f ~ d3f kz——

a az2 a
dz2

(38) .
dZ3 a -.

.

Solution of equations (37) and (38).- To satisfy the condition of
)-N

simply supported edges assume absolution for ~\l) in the form

.(l), = .= s w~ cosr~‘) ‘Os(%‘) (39)
m=l,3... ‘n=l,3...

where b = aQo. Insertion of equation (39) into equation (38) leads to, -.

~4F(1)+ s ~ Pm%~cos~Z.OSVnS+

m=l,3... n=l,3...

where ~m .

solution of

(2- V)kd2f , d3fkz
~’

(40)
a dz3~

mfi/2Z and Vn = nn/2b for ablmeviation. The particular

equation (40) is
e
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F,(’)= 5 s %2 Cos &z cog~.z + J(z)
xn=l,3. . . n=l,s...

where

ym2b2
Fm = ‘~

(
2 ‘m

7m2 + %2)
1

}

d4J(z) (2- V)kd2f ~d3fkz—= ——
dzk a dz2 dz3 a

J

and

Ym = ~mb

A complementary

F(l)=_ kf ~2
c 2a

m

21

(41a)

(klb)

% = vnb

solution that c= satis~ the boundary conditions is

m

+ q (cos I-LmZA
n

m cosh ~mS + CmVmEISiIlh ~mS +

m=l,3...

q
COS Vns(Bn cosh VnZ + DnVnz Si?lhVnZ

y (42)
n=l,3...

To recapitulate,
are, at z = 22,

the boundary conditions which remain to be satisfied

2 (1) kfN(l)=aF _=()
z —.

as2 a

Ifze(l) =-a2F(1)so

az aB

(43a)

(43b)
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n

(43C) ‘–

(h3d)

Assertion of conditions (43a) and (43c) leads, respectively, to rela-
tions between the constants of .-

~=p2fm2 - ym tanh ymcm

m cosh 7m
(44a)

.
q =-5ntanh5nDn”

where fm is the coefficient of the Fourier

given by

JZ d2J(z) ~os %x
fm= —

-z dz2

and

Pm = P~2

?)n=~nz.

cosine expansion of
d2J(z)
~z2

dz (45)

*

The details of this calculation are given in appendix C. The remaining
conditions, equations (43.b)and (43d), give two infinite families of
algebraic equations for the constants Dn arid Cm. They are:
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m

z ~fwn2 sin ~ sin ~ cosh 5nDn =
n=l,3...

( )
22

Z5nz-I-&

co
hE x ~ sin%

.lZfmtati7m -~ ym3b2
n=l,3.\..

( )
72+a22w~ ~
m n

(~by~m 7m i-Sinh 7m
)

form= l,3,’j . . .
cosh 7m

and

(46)

< ~27m2!3m
sin ~ sin & cosh 7mCm =

m=l,3...
(%

2 2.
+ 7m )2 .

m

E
[ 1

2fmZym2 sin ~ sin Pm

m=l,3... ~(~2 + 7m2) +

‘m=~..~m~~~~~-a#n(c~;5n+ %sifi5nJ

forn=l,3 . . . (47)

The details of the above calculation are also given in appendix C. At
this point all boundary conditions are satisfied and it remains to

satis~ differential equation (37). Ifthe value of F(’) is inserted
into equation (37), then this equation is satisfied if

[

(‘mn 7m2 + %2 )

4ym2an2
cm

( )
22

%2 + 7m

hb% 7m4 I
+—
I)a2 ( )

2

7m2 + %2

~fmz

$=2 cosh 7m

@ D Bn%np
cosh 7m sin ~ + —

1

cosh 5n sin 13m
22DaZ2 ‘(bn2 + pm
)

for any m and n (48)
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*

where ~ is the coefficient of the Fourier double cosine expansion .

of the function

~ d2J(z) d2f k.— —
D dz2 dz D

and is given by

The complete solution of the problem lies in,the solution of the infinite
families of algebraic equations for Cm and Dn and then Wm from

equations (44). An approximate numerical solution for Cm and Dn may

be obtained as follows. It is assumed that coefficients with suffixes
greater than some fixed number can be neglected. Then it is verified
that increasing this number does not affect the coefficients with small

,

suffixes.
—

Illustrative example.- As an example the following meridian curve
?

is considered:
.

(50)

It is easily verified that the slope dr/dz is zero at z = 11. Thus
the load Nz =kat z=?Z is normal to the edges. In addition, con- ..-

sider a plate such that Z = b. The sign of the constant k determines .
compression or tension; that is, k <O indicates compression and
k >0, tension. The procedure in the numerical calculations is outlined
in appendix D. The results of the calculations are summarized in table”l
and figure 4. It may be noted that all the calculations can be carried-

---

through with the sign of k arbitrary. Thus the sign of k which
determines either compression or tension can be assigned at the last
stage of the calculations.

DISCUSSION-OF RESULTS

The nuiuericalresults for the example are
is seen from this figure that maximum value of

given in figure
the deflection

4. It
w

,
.
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. (normal to undefomed plate surface) is notat the center of the plate.
This deflection appears to have a maximum value near the loaded edge.
This is due probably to the choice of the form of the meridian curve

.
which gives a negative

Gaussian curvature for

part of the plate with
bution curve shows the
of the deflections and

Gaussian curvature for z > ~ 1 and a positive
C.

z<~l. The deflections are largest at the
G

negative Gaussian curvature. The moment distri-
same trend. It is noted that the actual values
moments are multiplied by the paraueter V. The

order of magnitude of the parameter v is about 0.01 to 0.02. Thus
the order of magnitude of the normal deflection w is about 0.04 to 0.08
of the thickness of the shell. This indicates that the first two approxi-
mation of most problems (i.e., V“ aad V1) will be sufficient to give
a complete solution.

The convergence of the approximate solution of the infinite families
of algebraic equations is quite rapid. These results are given in
table I. A total of six coefficients was used; the dominant coefficients

. were the first two, c1 and ~l.

.
CONCLUDING REMARKS

A method has been developed for.the analysis of the deformation of
doubly curved thin plates under edge and surface loads. only small
deflections (small compared with the thickness of the plate) are con-
sidered here. This methai is particularly suited to the analysis of a
plate with a large radius of curvature in one direction. This is clearly
the situation existing in airplane fuselages.

For the problem of a doubly curved plate in edgewise compression
two infinite families of algebraic equations were obtained in order to
satisfy the boundary conditions that would exist in most airplane ‘
coverings. Results were obtained by replacing these infinite sets by
ftnite ones (neglecting all coefficients
vergence of this approximate solution of
quite rapid.

Since the order of magnitude of the
hundredths) the first two approximations

beyond a certain suffix). Con-
the algebraic equations was

parameter p is small (in the
are usually sufficient to give

the complete solution to similar problems. Moreover, the convergence
of most expansion methcds about a parameter is difficult to prove mathe-

. Matically. However, in most practical applications the parameter I.Lwill
be small and only a few terms in the expansion will suffice for the solu-
tion. Of course, the solution so obtained will indicate the number of

. terms required in the expansion.
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It should be noted again that the equations are valid only for A

deflections that are small compared with the thickness of the plate or
shell considered. If, in the application of the method, large magnitudes
,of the deflection are obtained one must resort to a nonlinear theory. r—

A specific example is presented which can be immediately applied
to the bending of thin plates with compound curvature for small deflec-
tions when loaded in edgewise compression or-tension. The basic equa- _.
tions given are equally valid for a curved plate loaded by any other
edge loads or by surface loadaj but the form of the specific example
as presented will change slightly. Moreover, any shell of revolution
with a meridian of small curvature may be analyzed by this method.

The Pennsylvania State College
State College, Pa., August 28, 1951

.

.
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APPENDIX A

EXPANSIONS OF TERMS IN POWERS OF PARAMETER v

To facilitate computation the following expansion are particularly
useful. All terms are expanded up to and including second powers in the
parameter I-L.With

r = a + Vf(z)

The following expansions can be immediately

L

(Al)

written:

A fza
2 ]

1— = I..Lfz
‘E .

Differentiation with respect to z is indicated by the subscript z.
.

.
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APPENDIX B R

EXPANSIONS OF EQUATIONS ●

Expansions of Equations for Strains .

The strains have the following expansions up to and including the”
second powers of ..p:

.

,6(0) _ 1 do) w(o).—— .—

aae a 1
~e(l) = : au(l) W(l)_—__. J&+fz ~ J“) +-jW(o)

ae a a2 be

-—- f @

:

(Bl)
(2) W(2)

~e(2) = 1 au ~ ~(1)

a2 ae + .a
+.$ T.@) +

a ae a
.

# ~um ‘fz v(o)
—— -—
a3 be az -($-$f~)~

.

,2(0) a+)=—
dz

,2(1) W)
‘z- + *ZZJO) (B2)
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7.$0)
au(o) ~ 1 av(o).—

‘ra~

~ ~(1) = au(l) ~ : a:J# 2 U(0) ~ av(o)
z az a -~F

au(p) ~ I av(2) f& ~(l)

1

f av(l) ~ ‘7ze(2) = az —— . _.—
a a9 ~2 be

~ a2w(0)
.JO) - —_-— /

.2 &2

2 (o) fz &(o)
Ke(lJ = -@&&-&---

a a az

Kc(2)..* a~j2) + 2fa%(~) - ~ & -~~

()

2 (o)
1 Pf+fk—
~2 *2 a *2

~z(o) = %@_—
3Z2

a+(l)J@) . - —
●

az2

~z(2) _ ajf) ,; fz2 a?+)
&(o)

_-— + fzfzz ~ +
azp

fz2 b%(o)
.—

2 azz

J

(B4)

(B5)
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~(o) 2 #w(d=-- —
aaeaz

.

+ fz &(o) + f“ y+”)

2. T 2 az ae

fz2a~(o)
‘IX az ae

,

,

(B6)

.

Compatibility Equations ._

The following compatibility equations can be constructeilfrom the
values of the Btrains given above:

--

(B7) ‘

fz a%(o) f a&(o) ‘2fZz a~(”) + ‘z a2~(0)— + —— .
- Z be aza

+
a2 ae az ~a az . a az2

f
222 @ + ~fa%(o) +ga%(o)
a a3 8# a= a3 aez :

-—

--

.
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The compatibility equations for the next and succeeding approximations
are constructed similar to equations (B7) and (B~) obtaining in each case

~ ~2w(n-1)
terms as - ~—

&2
and so forth where n denotes the nth approximation.

Expansion of Equations for Moment Equilibrium

The last three equilibrium equations (equations (~c), (~), and
(5b)) can be combined into the single equation

a%zQ (va ear—-——— -=N - =Nz + a
ae az az a az %eRg ?=O

(B9)

The expansions in powers of p of equations (B6) lead to the following
equations for each power of I.L:

For I.Lo:

For pl:

~ aa~(l) b.2Mez(1) + a nfz(l) %462(1)+ I@ +pcf -
g ae2 + ae az az2 + ae az

a%(O) .&e(o)
f+- fz~- fz*(o) - afzzNz(;) = O (Bll)
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For p2:
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Ne(2) - af2zN:’) - * a2M’(1) + f a2MJ1) + 2 ~ “J’) +
ae2 az2 be

Zf aMz(l) + fzz~z(l) - -fZ%:) - fz~e(l) - ffzzNz(o) +-
!Z b-z

.

.

Expansion of Equations for Force Equilibrium

The remaining force-equilibriumequatiogs may be expanded in a

similar way and then if each factor of V“, V1, and V2 is equated to
zero the following equations result:

.—.

For VO:

aNe(0) a~ze(0)
—+—= o
ab9 az

bNz(o)
1 aNze

(o)
=0

2Z ‘~ ae
}

(B13)

For IJ.l:“-”

aNe(l) ~ a~ze(l) bNz$O)fqe(o) +:+27 =0
ab9 3Z az

1

(B14)

bNz(l) ~ ~Nz@(l) f “ bNz(o)
—— &Nz(0)+~—- fz~e(o) . 0

az ‘a ae + a az
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For P*:

33

2 bNze(0) so1 fz.—
28, ae

.

.

.
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APPENDIX C ,

EVALUATION OF CONSTANTS OF INTEGRATION .
.

The expression for the stress function F chosen to satisfy the
differential equation for F and the boundAry conditions is

J’)’2 S ‘mncOshzc0svns+J(z)+~s2+ - ‘
m=l,3 n=l,3

m w

x cos ~zFm(s) + z cos VnsFn(z) (cl)

m=l,3... n=l,3..o

where

Fn(z) = Bn cosh Vnz + DnVnz SiIlh~n’
.

—

and ~ =

tion (Cl)

mfi/2Z, Vn = nfi/2bj and s = ao for abbreviation. Equa-

satisfies differential equation (21) if

kz d3fd4J(z) _ (v - 2)@f+_—

dzh a dz2 2a dz3

The boundary conditions which must be satisfied by F (equa-
tion Cl) are, at z =27:

(C2)

(C3a)

N (1) _ b2F(1) o_.— =
Ze az as

(C3b)
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and, at s = -b:

~ $lj =3%(1)=*
z azas

35

(C3C)

(C3d)

Conditions (C3a) and (C3C) above lead to relations between the sets
of co~stants ~ and Cm and Bn and Dn. Assertion of these condi-

tions leads to

and

~ ~2Fm(b) cos Wz-d2J(z)m-
m=l,3... dz2

co

x Vn2Fn(Z) COS VnS = O
n=l,3...

Equation (C5) immediately gives

Bn = -Dnbn tanh bn

where bn = Vnl.

Equation (C4) is a Fourier cosine expansion of the function

d2J(z)/dz2 and its coefficients lead to

(C4)

(C5)

(c6)

(C7)

— -—
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.

(c8)

To satisfi conditions (C3b) and (C3d) the following relations from
equations (Cl)-and (C3) are obtained:

5 “-b sin tit Fro’(S)‘“ “~
m=~ 3 n=l,3... (

co

E )FmVmVm sin ~1 -
111=1,3...

7

.1VnFnl(t) sin Vns

.

(C9) -

and

m

x Vn sin Vnb Fnl(z) = m=~ (n_~ ‘~v~~ ‘in ~nb) -
n=l,3... ... ...

L

1~Fm’(b) sinPmz (Clo)

where the prime indicates differentiation-withrespect to either z
or s. Equations (C9) and (C1O) are Fourier sine expansions of func-
tions Fmf(s) and Fn’(z), respectively. The coefficients of these

series with the help of equations (c6) and (C7) reduce to the following
sets of infinite-algebraicequations:

.—

.

.
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m

x
[

4PmaJ7m2

(
m=l,3. . . 2an

)

.22
+ 7m

cosh ym

1

sin~sinpmcm =

-1

m 2fmzym2-sin ~ sin ~m m

E + x F~Bman sin 13m-
m=l,3... Pm(an2 + 7m2)

m=l,3...

(52

)
% n ‘%lsitibn Dncosh 5n

for n = 1,3,5...

and

.

.
m

z
[.

~~n2Pm2

( 1cosh ~ sin pm sin ~ Dn =
n=l,3...

)

22
& + pm

02

x Fm7m~ sin ~ -
n=l,3...

Wmh ( 7~

)
+ Sinh 7m cm

cosh 7m

b7mfmtanh 7m -

?m

for m= 1,3,5...

(Cll)

(c12)

where Bm = Pml, ~ = Ynb, bn = Vnz, and ym = Vmb. There exist also

two relations given in the text whereby Fm may be eliminated so that

the two sets of equations contain only the unknowns Cm and Dn. These
two infinite families of algebraic equations may then be solved
approximately.
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APPENDIX D

PROCEDURE IN NUMERICAL CALCULATIONS

The procedure in the numerical calculation follows here. First,
equations-(k2), (43), and (44) - ‘“ “ - - “ “-
quantities

are made dimensionless by using the

cm
Fm=—

~z2

Dn
&=-

kZ2 1

Then equations (42), (43), and (44) beccme

%ul%l . ‘~ i- Sm + ~mTn + ~nvm for any m,n

m

E (EmWm -
m=l,3...

‘~~) = ~ &
(

%1+ g ‘m-h,
=* ,0 m=l,3... %ln

)(~- m

%m+rln&+ x )‘m‘a for .n = 1,3,5...
m=l,3...

(Dl)

(D2)

(D3)

.

.

(D4) -

,-
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These functions are tabulated at the end of this section. The physical
parameters which appear can be combined into three groups:

As a numerical example, assume that

(D6)

kb2 _ lo
D J

.

These values correspond, for example, to a fuselage panel with these
dimensions:.

h = 0.03 in. 1
a=60in.

}
(D7)

b=Z=18in. J
The procedure in the numerical example is as follows:

(1) The particular solution J(z) is given by

k Z6

(

24 =6
J(z) =——-(V)k$k$ —

)

+—
X4 30 6Z2 3024

(2) The Fourier coefficients fm are:

fm = -2k(2 -

[

4(2v - 1) I“+l_ V 24

1

v)wn Pm-(2 :v)~+ (2_v) p GQ “
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(3) The Fourier coefficients ~ are:
●

b
2 d2J(z)

JI[ 1-fik COS P~z COS VnS dS dz&=&
-b -1 dz2 dz2

.

.

(4) The functions as defined by equations (D2), (D3), and (D4) are
tabulated and summed where required. Values of these functions are
given in table II.

(5) The two famWes of algebraic equat~ons are then set UP fora
finite number of unknown coefficients Dn and Cm neglecting all coef-

ficients beyond a certain suffix. (In the numerical example a total of
six coefficients was used.) These equations are then solved by Croutls
method. The results are given in table I.

The functions‘usedin the numerical example are defined as follows:

%nn=
(Y: + %2)2+$~ 72

7m2 +C+2
kb4/haD

& = K&@/k

2~man sin an
sm=-

2
an + Ym2

.

.

—

,-- —.—

-.
.-

.

.
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.

.

.

.

4Ym2a#mcosh y= sin an
Tm =

(anp + 7m2)2

4pm3&
Vm = a cosh an sin pm

(b2+Pm2n )

4ym3a#
Wm =

2
Sin ~m cosh ~m Sin ~

(%2 + 7m2)

~2Eb2
Ym=—

7m3%

kl*&
(
72

)

2
m+~a

( 5n3
zn=-

)
+ 5n2 aim 5n

cosh bn

4pm%n3

(C& -i-&2)2

h2Eb2
Jm=—

k12a

sin ~ sin ~m cosh bn

(72m+% )
22

.

.
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%=
-Tm tanh 7m

(
% = ‘7m2 *m+ ‘i* 7“)

.
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TABLE I

RESULTS OF NUMERICAL EXAMFLE

(a) Deflection coefficients and values of
moments at center line

E.Upper sign for compression and lower sign for tension

z/1

o
.2

.5

.8
1.0

when two signs are presen~

M$1)b2/Dh

T2.4191
*1O. 374
+30.767
k 71.944

0

w(l)/h I s/b
1

k3. oo997 o
&2.6122
*3* 4933 :;
k3.85909 .8

0 1.0

M$)b2/Dh

k25.432
T17.892
*3.6157

~~14.2ko

o

(b) Values of unknowns for different
approximations of algebraic equations

Number of unknowns

2 4 6

El -60.384 -52,232 -51.464

D~ -------- -.00265 -.005040

D5 -------- ---------- .000100

El -1.6976 -1.70914 -1.7547

F3 -------- .049589 .049369

E5 -------- --------*- -.000300

L /1w(l);
center

2.9934 3*00997

.

.

—

.
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.

.

.

.

TABLE II

VALUESOF COEFFICIENTSOF ALGEBRAICEQUATIONS

wm-Ym.= L
\lnn

1 3 5

1 1.43331 -74.4314 1306.93
3 -I.16204 244.1042 -;;%.;
5 .57467 -197.423 .

vmJm
Im-—

%n

n

1 o.oo1370b -0.00351 0.00368
3 -u.8618 5.19863 -6. 1W28
5 1327.~ 2520.25 1484.91

1 -36.~13 6.64842 0.56935
3 11.5704 290.41846
5 -5.36824

.05352
7*. 30616 -.0$1273

1 -7.99246 3.32264
55.24575 118.67377

; -25.21255 3174.274

.

.

m % %

1.2g746 -7.~918
: .44046 -1237.68
5 -.2&30g -79439.15

~

.
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z

Figure 2.- Sign convention of resultant forces and moments.
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Figure 3.- Doubly curved plate loaded in compression.
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