
*

FORAERONAUTICS

TECHNICAL NOTE 2787

== s..

AIRFOIL PROFILES FOR MINIMUM PRESSURE DRAG AT SUPE~SONIC

VELOCITIES - APPLICATION OF SHOCK-EXPANSION THEORY, .

INCLUDING CONSIDERATION OF HYPERSONIC RANGE

By Dean R. Chapman

Ames Aeronautical Laboratory

Moff ettField, Calif.

Washington

Septemker 17, 1952

https://ntrs.nasa.gov/search.jsp?R=19930083462 2020-06-17T20:28:53+00:00Z



TECHLIBRARYKAFB,NM

iV
1:11111111111

NATIONAL ADVISORY COMMI’I”TEEFOR AERONAUTICS lxlLs%2i

mCID?ICAL Nom 2787

-i! AIRFOIL PROFILES FOR MINIMUM PRESSURE DRAG AT SUPERSONIC

VELOCITIES - APPLICATION OF SHOCK-EXPANSION.THEORY,
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suMMARY

A theoretical investigation is made of airfoil profiles at supersonic
velocities to determine the shapes having minimum pressure drag at zero
lift for various given auxiliary conditions. Shock-expansion theory is
emplo~d, thereby extending the applicability of the results through the
hypersonic range. curves are presented for Mach numbers of l.~, 2, 3,
4, 6, 8, and mwhich.enable the shape and the drag of an optimum profile
to be determined readily if the base pressure is known from experiments.

*_. Examples are presented of optimum profiles determined with the aid of
experimental base pressure data. Variations in profile shape are inves-
tigated to provide information on the degree to which deviations in

s
shape from the optimum can be made without resulting in a significant
drag incre~e.

A comparison of optimum profiles determined by the shock-expansion
method of this report with corresponding profiles determined by the
linearized-theorymethod of a previous report shows only small differ-
ences in shape at Mach n~bers up to infinity even though the linearized
theory at high supersonic Mach numbers breaks down completely insofar as
the drag of the profile is concerned. The experimentally observed
dependence of base pressure on trailing-edge thickness is found to have
a significant effect on the shape and drag of opthum profiles of small
thickness ratio. Curves are presented which show that for thin airfoils
the use of a trailing-edge thickness considerably greater than the theo-
retical opttium can result in an excessive drag penalty at moderate
supersonic Mach numbers, though not at hypersonic Mach numbers.

In 1933 Saenger
infinite Mach number

INTRODUCTION

observed that for the extreme case of flow at
an airfoil designed to have minimum pressure drag
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would have its maxbmm thickness at the trailing edge. (See refer- . , *-–
ence 1.) A related result can be inferred-from the numerical calcula- -,

tions of Ivey (reference 2) which indicate that the drag of a 10-percent-
thick-wedge airfoil at a Mach number of 8 is less than that of a double-

“*—
wedge airfoil having the ssme thickness ratio. In both of these cases . ,
the desirability of employing a thick trailing edge in conjunction with
a small surface slope may be attributed to the fact that at hypersonic ““”-

—

Mach numbers the suction forces (forces due”to pressures below embient)
.-

are small compared to the positive pressure-forces, even when the suction
force corresponds-to a vacuum. Recently, Snielt(reference 3) has dis-
cussed this latter characteristic of hypersonic flow and its possible
application to the determination of efficient airfoil shapes for use at

-L

very high Mach numbers. ‘Theinvestigations.~fSaenger, Ivey, and Smelt,
however, do not provide general quantitative information on the airfoil
profile having minimum pressure ,dragin hypersonic .flowbecause of two
limitations of their 8nalyses: Airfoils having a trailing-edge thickness
less than the maximum airfoil thickness were.not considered, and the

.-

airfoil structural ch&racteristicswere not-~considered(comparisonswere
made on the basis of a given airfoil thickne~s). .—

At low and moderate supersonic Mach numbers the suction forces on
an airfoil csm amount to several times the positive pressure forces,
particularly if an excessively thick trailing edge is employed. As a 5

result, the oltimum trailing-edge thiclmessLin this lower Mach number
range depends to a great extent on the base pressure.

.=
By presuming that

the base pressure is known from experiments and that the airfoil Profile ‘*”’_
must satisfy a given structural requirement (such as a given section
modulus or a given section moment of inertia), a method of calculating
the profile of minimum pressure drag at zero lift has been developed by
the present writer in reference 4. Although-the basic equations devel-
oped in reference 4 for calculating such profiles are.applicable to “-
higher-order theories, a detailed solution was given only for the case
of linearized supersonic flow.

Because of the well-known shortcomings of linearized theory, it was
thought worthwhile to conduct an investigati~nparallel to that of .-
reference 4 in which the shape Smd drag of optinnqnairfoils are determined” . _
from shock-expansion theory instead of linearized theory. Shock-ewansion
theory appears adequate for this purpose, particularly in view of the
recent investigation of Eggers and 6yvertson (reference 5) which indicates
that shock-eqansion calculations accurately determine surface pressures
on thin airfoils in inviscid flow at Mach numbers from just above that
for bow-wave attachment to infinity. From the viewpoint of the engineer
who always has to make desi~ compromises, it was thought desirable in
the present study also to determine how much the optimum-profile shape
can be altered, especially near the trailing edge> ~d still not increase
the drag excessively. The purposes of the present investigation, there-

A

fore, were (1) to develop a usable method for determining the shape and
drag of optimum prgfiles in the Mach number .rsngebeyond that covered

.-

adequately by linearized theory (step-by-step details involved in applying
*
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s the method developed &re-given.in an appendix), and
curves showing the rate at which the total pressure
the profile shape deviates from the optimum.
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(2) to determine
drag increases as

NOMENCLATURE
●

airfoil chord

pressure drag coefficient

constant depending on y

trailing-edge thickness

(hdimensionless trailing-edge thickness
[z )

, iol[&]$}given value of auxiliary integral “~

-r
- dtiensionless value of I

l-j

no~liZiW3 factor for E(Y), defined by

length of surface of constant thickness

equation (10)

{z ‘)dtiensionless length of surface of constant thickness ‘-
(s

Mach number

parmneter appearing Jn definition of I

pressure

total pressure

()pressure coefficient ~ - ‘~
pJ&

Reynolds number

chordwise distance from leading edge to first downstream position
of msx- thiclmess

maximum thickness of airfoil

velocity

chordwise distance from leading edge to point on airfoil surface

L
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Y ordinate of upper surface of airfoil

NACA TN 2787

x dimensionless distance
()
x
z

,Y
W

dimensionless distance ~y2

7 ratio of specific heats (1.40 for air) ●

k arbitrary constant

P mass density

5 local angle of inclination of airfoil surface with respect to
chord iine (tan-~~)

E(Y) characteristic function determining optimum-profile
by equation (9)

q(Y) characteristic function kiefinedby equation (12)

o airfoil surface

1 airfoil surface

m free stresm

Subscripts

at leading edge

at trailing edge

b base, or trailing edge, o~ airfcil ..”.

ca circular-arc biconvex airfoil having sharp trailing

Superscripts

shape, defined

.-

. .=

edge

1 differentiation with respect to x “,

ANALYSIS

Solution for Arbitrary Structural Requ~rement .

“

As in reference 4, it is assuaed throughout this analysis that the
optimum airfoil has a sharp Ieading”edge, a fixed.chord length, and is.
set.at the zero-lift ~gle. It also 5.sass~ed that the flow is a ‘ t
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.
purely supersonic two-dimensional flow of an inviscid, nonconducting,
perfect gas. Since the surface pressures on the top and bottom of an ‘

? airfoil can be calculated independently in a supersonic flow> it fo~ows .
that at zero lift the opttium profile will be symmetrical about the
chord line. The mathematical problem formulated is to find the airfoil
ordinate function y(x) which rnintiizesthe

, 2C
cd=~ &m ‘dx -a

for a given value of the auxiliary integral

I
lc~dx
s—‘F o (t/2)u

pressure drag,

h
z (1)

(2)

By selecting various values of the parameters n and u, a wide variety
of structural requirements can be represented for both-thin-skin and
solid-section structures. Some of the different structural criteria
represented by equation (2) are:

n 0 Structural criteria

1 0 given torsional stiffness, or torsional strength, of
thin-skin structure (given cross-section area)

2 0 given bending stiffness of thin-skin structure

3 0 given bending stiffness or given torsional stiffness of
solid-section structure

2 1 given bending strength of thin-skin structure

3 1 given bending strength of solid-section structure

.

Basic equations.- The equations which the optimum-airfoil ordinate
function y(xj must satisfy can be obtained by considering an infinitesi-
mal variation in profile shape by(x) that is arbitrary except for the
requirement that 51 = O. By also requiring that bcd = O the fo~o~u
three equations result (see reference 4):

2 :T-=.
c

(~ = I/(t/2)n-a) (5)

.
In the derivation of these equations it was assumed that P = P(y’, ye’, M=),
but no particular functional form was assumed. Equation (3) is the differ-

* ential equation which the airfoil ordinate function y(x) must satisfy along
the curved surfaces, for example, OA and BC in figure 1. A first integral
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of this differential equation, satisfying the condition y’ = O at

Y= t/2, can be obtained by”multiplying both.sides by y’ and integrating.

2 aP
Y’ ~ = x [(t/2)n - yn] (3a)

Equations (3) and (Sa) involving the arbitrary constant x do not apply
to the straight midsection (AB in fig. 1) along which the airfoil thick-
ness is constant. Equation (4), termed an end condition, represents the
relation which must be satisfied between the base pressure coeffi-
cient m, the surface pressure coefficient PI Just upstrean of the
trailing edge, and the corresponding surface slope yl’. As will be
seen this equation determines the optimum trailing-edge thickness.
Equation (5) relates the optimum length of straight midsection 1 to
the dimensionless value of the structural integral ~. This latter
equation”shows that the length of straight midsection is always zero
when the auxiliary condition represents a given stiffness (a = O), but
for the values of n considered is a sizable fraction of the chord
when the auxiliary condition represents a given strength (a = 1).

#

*

—

—

—

Solution for Y, H, and X.- ltrcmequation (Sa) the constant x is
readily evaluated in terms of yo~. There results

(jx(t/2)n = yof2 +

By employing the dimensionless variables Y =
equations (Sa) and (3b) yield

F=l-
yf2(aP/ayf)

Yo’2(W~Y’)o

A

(3b)

Y/(’t/Z) and H = h/t,
A

(6)

and hence

(7)

It is to be noted”that the structure of these equations, and all sub-
sequent ones, is such that the quantities Pb, I, tid Mm which are pre-
sumed to be given do not appear as independent variables. Instead, they
are related parametrically to the shape and drag of the optimum profile
through the parsmeter y’. For exsmple, equation (7) gives

) and equation 4 gives Pb(yli, ye’, M~, hence by select-H(Y1’S yOtj Mm >
ing arbitrary values of ylt the function H(%, yet, Mm) cam be deter-
mined. Moreover, as will be seen later, I depends on ye’, M@ and H,
so that the parametric structure of the equa~ions ultimately yields the
desired function Il(Pb,I, Mm).

The differential equation (3a) and the appropriate boundary condi-
tions. y(o),= O, y(s)=t/2, and y(s + Z) = t/2 determine x as a
function of y by a single quadrature. “-: —

.

r
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JTx=f

IJ- I(S +2)+
y mm dYJ~,,J (t/2)n - f-’

7

on
upstremn ,
surface

on
downstream

surface

The algebraic sign to be sel~cted for each radical is determined by the
requirement that x increases as y increases on the upstream surface,
and as v decreases on the downstream surface. The above relation is.
more conveniently expressed in terms of the dimensionless cwantities
Y ~ Y/(t/P), x =x/s,
the above integral at
shape

x=

/

and L ~1/s.
x = s, there

3(Y) on

L+

where 5(Y) is defined as

The
for

E(Y) on

After eliminating fi- by evaluating
is obtained for the

upstreem surface

downstream surface

the quotient of two integrals

dimensionlesss

(9)

definite integral which normalizes ~(Y), such that !%(1) = 1, will
sake of brevity be designated by jn. Thus

If
1 aP dY

Jn-o F J~
(lo)

Actually, for completeness the function E(Y) should be written as
E(Y; I&, n, Ye’) because it depends on the three quantities Mm, n, and
Yor as well as the variable Y. For brevity, though, it is written
simply as E(Y).

Since x is a double-valued function of y over the chord length, -
5(Y) is also a double-valued function of Y. A sketch of a typical
curve of Y versus g is shown in figure 2. For a given dimensionless
ordinate Y, one of the two values of ~ represents the dimensionless
chordwise distance from the leading edge to a point on the upstream
surface, whereas the other value represents (apart from an additive
term L) the dimensionless chordwise distance from the leading edge to
the point on the downstream surface which has the same ordinate Y. It
is to be understood that in determining X from equation (8) the appro-
priate value of g(Y) must be used for each surface; thus, for a given Y

%3ince the integrands are singular at the point Y = 1, numerical compu-
tations of the function E(Y) must allow for this singularity. A
simple method of doing this is outlined in appendix A.
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the value of E(Y) appropriate to the downstream”surface always is
greater than for the upstream surface.

From the foregoing and the fact that E(Y) is independent of Pb
and u, it follows that a curve of Y versus ~(Y), such as is illus-
trated in figure 2, determines the curved portions of an infinite number
of optimum profiles, all having the ssme valuresof YO1, &, and n. It
may be noted that a (equation (5)) essentially determines the length
of straight midsection which is to be placed between the two curved
portions after separating them at the point where ~ =
fig. 2); whereas

1 (point A.B in
Pb (equations (4) smd (7)) essentially detetines H,

the value of Y beyond which the downstream portion of the curve ts not
used in a given case. It is noted that although the chord is fixed,
the value of ~ corresponding to the trailing edge is not. This is
because ~ s x/s changes whenever s changes.

As maybe deduced from equation (7’),yl’ determines H for a
given n, ~,and YO1. Moreover, ylf determines ~ from equation (~).
Hence, for any given value of base pressure the point on the downstream
surface which corresponds to the trailing-edge position can be indicated
on each E(Y) curve. (See fig. 2 where the point corresponding to zero
base pressure is indicated.)

Solution for L,’~, t/c, and s/c.- Turning now to the determination
of the optimum length of straight midsection 1, one sees from equa-
tion (~) that such a determination will also give ~. Since Z is a
function of yor and the given quantities n, a, n, and L, this
enables ye’,
to be related
if I is the
the following

— ..- . —,

—

—

—

A

the quantity used as a parsneter in the present analysis,
to the quantity ~, which is a more convenient one to use
actual quantity given. Starting with the definition of ~
equations result:

—

~ = I/(t/2)n-a

. ;$ocbynd~ = ;f/s [1 - (1 - Yn)] m

[

Sc
=- - -/oH(1 - Yn) + dY
CB 1

or, by using the relation

dxl raP/3y’
(11) .- –

==X 1-Y”:
.

which follows from equations (8), (9), and (10), there results
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. For convenience
as 7(H).

.

the right-hand member of this equation is defined

v(H) .~-]- d,

9

(12)

From equations (8) and (5),

~=L+~(H)

‘::~+~(H)

Combining this with the above relation between ~ and s/c gives

s n-a

c!- = n~(H) - cTq(H)

and

~ .(13)

(14)

●

RecaJling that H is
M- n> Yo’)j one sees

. of IQ, n, u, ~, and

determined by ~ for a given _!i(Y)curve (given
that equation (14) determines I as a function

Ye’= A convenient determination of ~, of course,
can only be made if the function q(H) in addition to ~(Y) has been
computed. The function 7(H), which for completeness sho~d be written
as ?(H; Ma n, ye’), is somewhat easier to compute thsn E(Y) since it
is not singular at Y = 1. Attention is called to the fact that all.the
above integrals with limits ranging from Y = O to Y = E, as in equa-
tion (12), for example, really correspond to integration over both
curved surfaces, first from Y = O to Y =1, andthenfromY=lto Y= H.

With the position ofmaximmun thickness determinedly equation (13),
the maxhuun thickness ratio can be determined in terms of the surface
slope at the leading edge.

(%)=?(s)O
t ()-=2:
c (dY~i)o

or, from equation (n), in an alternate form

(15)

(15a)

Calculation of ureseure drag of an ODtimunlDrofile.- In reference 4
it was shown that for linearized supersonic airfoil theory the pressure
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drag coefficient of an optimum profile was a stiple algebraic function
of certain qusmkities such as H and S/C. Since these quantities are
known once the shape of the optimum profile is determined, a separate
integration is not required in order to calS_ulate.thepressure drag.
Fortunately, a similar algebraic relation csn.also be developed for the
present case. In so doing, integration.byparts is employed starting
with the defining equation for pressure drag.

(16)
.—

In these equations, and subsequent ones, the integration is carried out .
only over the two curved portions since the straight midsection can con-
tribute no drag. From equation (3a),

aP
dJ?=—

()

~“ aP dx

a(l/y’) d y’
= -Y’2 —

()by’ d ~

= -k [(t/2)n - #] d(~)

hence, substituting into equation (16) and again integrating by parts
gives

:C=2d

The first
tion (4).

U;z [(t/2)n - (n + I)yn] dx

bracketed term on the right side v.snishesby vir~e of equa-
The remaining integrals csm be simplified by noting that

There results
.

()3Pcd =2Y:2 ~ [(n+ l-u)T -11
o

(17)

This equation enables the pressure drag to be readily calculated if the
base pressure is given, since pb determines H for a given yoi and
Mm, and H determines ~ in accordance with equation (14). Thus,
equation (17) involves the base drag tiplicitly, but not explicitly.
For the special case of linearized supersonic flow,

aP—=
by’

2/J~

and the above equation for cd can be shown to reduce to the correspond-
ing equation for pressure drag developed in.reference 4.

*
.—

.-

.——
—

.=

e-

—

r.

/J

*-
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Closed-Form Solution for the Special Case of Given
Cross-Section Area n = 1, a = O ●

the cross-section area of a profile is prescribed (n = 1,

11

a = O), corresponding to a given wing ~olume, torsional stiffiess,-or
torsional strength of a thin-skin structure, then the differential
equation (3) can be integrated immediately with respect to x to yield
a solution in

The constants
andx=sto

Here P(0) is

closed form for the airfoil shape. There results

aP
-lx= P+y~

F
+ constant (18)

can be eliminated by evaluating this e~ressfon at x = O
obtain

;sx=g(y)=l- P+ yqap/ayq - P(0)

po + yo’(bpny’)o - ‘(O)

the pressure coefficient at y! . 0, and P. is the

(19)

pressure coefficient at x = O. For practical p@poses F(O) usually
can be taken as zero, although strictly speaking it should be regarded

a as a small quantity compared to P. + yo’(8P/ay’)o. The parametric
equations for Y and H in terms of yl sre the same as before, only
with n = 1.

.

The
and

H=l- .y1f2(ap/ayqL

Yo’2(ap/ayt )0

(20)

(21)

general equation for the base pressure coefficient does not involve n,
hence is the same as before.

(4)

The constant in equation (18) csn be evaluated at x = c instead
ofatx=s. Combining such & evaluation with the
yields the alternate e~-ression

x P + Yqaqayt) - m
● -41-

C PO + Yo’(&/ay’)0 ‘pb
.

which involves Pb instead of P(0). The equations
can be derived easily from the preceding equations.

. details, the following results are obtained:

above equation for ~

(22)

fOr t/C, S/C, and cd
Onitting algebraic
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BY evaluating equation (1.8)at x = c, and combining with equations (3b)

t 2yot2(aP/ay’)o
c!‘=po + yo@/by?)o - pb

by evaluating equation (22) at x = s~ —

B
1-

P(o) -PtJ-=
c po + y~f(~p/ayt)O - ~

and by substituting n = 1 and a = O into equation (17),

Solution for the Special
n=~,

In reference 4 it was shown

Case of Given
a = finite

1)

Thickness Ratio

that the limiting values n =oo,

(23)

(24)

(25)

a = finite, represent the auxiliary condition of a given airfoil thick-
ness ratio. The mathematical simplification inherent in the use of
approximate theories such as linearized flow enables the solution for
a given thickness ratio to be obtained directly by passing the general
solution to the limit as n-. For shock-expansion theory, though,
a general-solution in closed explicit form cannot be obtained, and
recourse to the alternate method tndicated in reference 4 is required.
This alternate method deals directly with the appropriate differential
equation, which, for the ‘caseof given airfoil thickness, becomes stiply

2 ap
Y’ —=by’

constit (26)

which is satisfied by a profile composed of any number of straight seg-
ments. As shown in reference 4, the constant in the above equation does
not change over the entire chord, with the result that the upper half
of the profile forward of the ‘trailingedge is composed of-two straight
lines, one extending from x = O = y to x = s, y = t/2, and the other

extending from x = s, y = t/2 .to the trailing edge x = c, y = h/2.
The slope is discontinuous at the point where y = t/2. To obtain a
solution using any given airfoil theory, it is necessary to satisfy the
differential equation (26), the end condition (4), and the boundary
condition of a fixed thickness ratio.

Equation (17) for cd becomes indeterminate as n~m becaus~
T*O. For this case, however, the shape is known and the pressure drag

.

-.
.—

n,

can be determined from simple

‘Cd)given t/c =

physical considerations:

~[Po -Fl(l -H) -~H] .

—
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APPLICATION OF

Flow at Infinite

ANALYSIS

Mach Nwnber

Prior to considering shock-expansion theory, the relatively simple
case of flow at infinite Mach number over slender airfoils with small
surface curvature will be considered. For such conditions the pressure
coefficient on a surface facing upstream is proportional to the square
of the local surface slope, that is, P = Cy’2. Since the pressu~e coef-
ficient is zero on any surface facing downstream it follows from physical
considerations that H = 1. Equation (4) is satisfied by requiring that

Y1’ = o- By consideration of the differential equation (Sa) as special-
ized to the present case it follows that

f [01
1/6

$= J57=(2C)1’3 ~ y’ (1 - Ynp=

By substitution into equation (9), snd employment of gama functions to
evaluate the intkgral in the denominator, there results

()2nr —++
E(Y) = 3

001

(1 - Yn)-l’=dY
.

r~r+
(27)

The function Yversus E(Y) is plotted in figure 3 for n = 1, 2, 3, and=.
The infinite value of n corresponds to the auxiliary condition of a
given thickness ratio, and the optimum profile in this case is a wedge,

since
()

+r : +1 and ~(Y)*Y as n+=. It is seen that there is

little difference between the three curves for finite n.

The other characteristic function needed for the complete determina-
tion of an optimum profile is 7(H). ‘By substituting H = 1 in equa-
tions (I-2),(13), (14), and (17), and employing equations (5), (10), and
(28), the following expressions are obtained:

q(l) = +
2n+3

s—=
c!

T=

2-=
c

(n - a)(2n + 3)

n(2n+ 3 - 20)

Q

ti+3-2c

3CT

n(2n + 3 - 2Cf)

(28)

(29)

(30)

(31)

.’
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.
.

(32)

If desired, this last equation for the pressure drag coefficient can be
written in terms of 1 inetead of t/c, inasmuch as I is related to
the thickness ratio through equation (32). lt should be noted that the
above equations relate in closed form all pertinent properties of the
optimum profile to the given quantities 1, n, and a. Exmnples of opti-
mum profiles determined with the aid of these equations are presented
subsequently.

Shock-E~ansion Theory

When the oblique shock-wave and Prandtl-Meyer equations are combined
to calculate the pressure on an airfoil surface in supersonic flow, the
resulting equations for P are quite involved. The appropriate equa-
tion for ~PPyl, however, maybe obtained-by starting with the local
differential relation

(35)

This point relation is formally the ssme as the corresponding relation
applied throughout sn entire flow field in linearized-supersonicairfoil
theory. The partial derivative bp/&5 is-taken tith Mmand 50 “held
constant. Expressing equation (35) in terms of the pressure coefficient
and free-stream conditions

there results

or, since

●

,

—

d

.
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.
This equation appears
computed readily with

15

fairly simple, but is not in a form which can be
the aid

as local pressure ratio p/pt
-.

wave pt/Pt~ are tabulated.
ting purposes is

aP 2 FM2

a

.

.

.

of existing tables where quantities such
and total-pressure ratio across a ‘shock

Thus, a more convenient form for calcula-

From this equation a numerical value of bp/bl can be determined from
tabulated oblique-shock and expansion characteristics once yet, M=,
and the local slope y’ are specified.

The functions E(Y) and 7(H) have been calculated for shock-, “
expansion theory by substituting equation (36) into equations (9) and (12),
respectively, and then performing the indicated integration graphically
by the method outlined in appendix A. In this process other useful
quantities are calculated such as (~P/~y’)o and jn. The results are
presented in figures 4, 5, 6, and 7. In figure J+the quantity

(bP/ay’)o/(2/~), which is equal to (ap/bY’)o/[(a?/bY’).15 ~OJ

is plotted as a function of 80 for various values of Mm. StiiO~rly,

jn/(jn)boqo is plotted in figure 5. It is to be noted

where

kn =

Curves of F? versus 50

[

2forn=l
If/2for n = 2 1 (37)
1.l+023...forn = 3

for various values of base pressure are pre-
sented in figure 6, from which it is apparent that the dimensionless
trailing-edge thiclmess increases if either the airfoil thickness
increases (50 increases), or if the base pressure increases. In figure 7
the functions E(Y) and v(H) for various 50,&, and n are presented
plotted in the form Y versus ~, and H versus q. The cties of Y
versus E determine the shape of the optimum profile, while the curves
of E versus q are useful in determining I, S/C,
curves of Y versus ~ have been terminated at the
small circle) corresponding to zero base pressure.

EXAMPLES AND DISCUSSION

and t/c. Many of the
point (indicated by

In order to determine an optimum profile it is necessary, of course,
to know the base pressure. Experiments have shown that base pressure in
two-dtiensional flow depends principally on the Mach number, type of

,
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boundary-layer
(See reference

NACA TN 2787

flow, and the boundary-layer thiclmess at the base. . .

6.) Average experimental valu$s are shown in figure 8
for both lsminar &d turbulent flow Ilotted .asa function of the parame-
ters proportional to the ratio of boundary-layer thickness to trailing- ?-

edge thiclmess. Step-by-step details of the method of determining an
optimum profile by combining experimental base pressure data with the
curves of figures 4 to 7 me giyen in appendix B. ,

In figure 9 exsmples of optimum profiles determined by the theory
of the present report are shown together with corresponding profiles
determined by linearized theory (reference 4). For each of the various
auxiliary conditions the Particular v~ue of I selected for ‘hese
examples is equal to that for a circular-arc biconvex airfoil of thick-
ness ratio tea/C = 0.06. Since

.-

22n(n!)2(tca/2)n-a
1ca = (2n + 1)!

(see reference 4), it follows that with c = 1 the optimum profiles in
figure 9 correspond to the value

2m(n!)2(().()3)n-”
I

*=.
(2n + .1)!

The auxiliary condition for n = m (fig. 9(d)) corresponds to a given
maxhnum airfoil thickness of 0.06c.

f
As indicated in figure 9 (and also

in subsequent figures of this report), the base pressure for & = 1.5
and Mm= 3.0 corresponds to turbulent boundary-layer flow at a Reynolds
number of 107. Since h is involved in the abscissa of figure 8, due
allowance is made for the variation of base pressure with trailing-edge
thickness. Because base pressure data are not available as yet for
Mm = 8, a constant value has been assumed (pb = 0.1 pa) which is believed
to be reasonable for a moderately thick ’trailingedge (h/c N 0.05 or more),

.-

but Trobably greatly overestimates the base drag for a thin trailing edge
(h/c * 0.01 or less). For B&= w, it is not necessary to how the base

pressure since the optimum profile at this limit is independent of pb.

In figure 10 examples are.shown for various values of I with
M==3,n =3, andu=0. Instead of specifying the value of I in each
case, the thickness ratio of a structurally equivalent circular-arc
biconvex airfoil is specified, as”the significance of this latter value
is easier to visualize. AS would.be expected} there iS no appreciable

.-

difference between the profiles determined by linearized and shock-
expansion theory when the value of I is small (tea/c = 0.02, for.
exemple), although differences are evident for larger values of I

(t~a/C = O.O4 and.larger). .

For each of’the e-pies show in figures 9 -d 10s it is to be
noted that in comparison to the profile determined by linearized theory, ,
the corresponding optimum profile determined by shock-expansion theory

.

●
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.
has a smaller slope
position of maximum

over the portion of surface facing upstre~, a
thictiess farther aft, and a greater slope over the

* portion of surface facing downstream. This difference which increases
with increasing Mach number is to be e~ected, as indicated in refer-
ence 4, because the linearized theory overestimates the suction forces
and underesttites the positive pressure forces.

As regards drag coefficient, it is evident that drag calculations
b~sed on linearized theory cannot be used at hypersonic Mach numbers
since the computed coefficient approaches zero as the Mach number
increases. Also, it is to be remembered that linearized theory is con-
siderably less accurate in predicting the drag of blunt-trailing-edge
airfoils than of sharp-trailing-edge airfoils, since the Busemann second-
order terms for the Wstream and downstream surfaces do not cancel as
they do when the trailing edge is sharp.

If shock-e~ension theory is used to calculate the drag of the pro-
file determined by linearized theory, the resulting value is only slightly
greater than the drag of the ssme profile determined by she@-eWansion
theory. In order to put this idea on a more firm quantitative basis,
the case of infinite Mach numbed can be considered, as the differences

. between profiles determined by”linear and nonlinear the~ry are the
greatest at this limit. (See exsmples in fig. 9.) By use of the expres-
sion P = Cyf2 to calculate the drag of the profile determined by linear

e theory, and dividing by the drag calculated correspondingly for the pro-
file determined by nonlinear theory, the following expression results:

2

422

[

n+2-a

16(ni-1) (n+2)(2n+3-2a)1
[ 12@&2Q~

3(n+2-a)

It is seen that
optimum profile
exceed the drag

3

s

‘1.08 for n=l,c=O
1.o6 for n=2,a=0
1.07 for n=2,cr=l
1.04 for n=3,a=0
1.05 for n=3,cr=l,
1.00 for n=~a finite

(38)

at infinite Mach number the actual pressure drag of an
whose shape
of the true

is determined by linearized theory ~oes not ‘
optimum profile by more than about 8 percent.

If consideration is given to the consistent differences noted earlier
between the shapes of optimum profiles determined by linear and nonlinear
theory, it is evident that linearized theory can be used with good
accuracy to determine the optimum profil~ at any supersonic Mach number
up to infinity.2 Even without considering the consistent difference noted
above, the profile”determined by linearized theory is sufficiently accurate
for most engineering purposes. Under less general conditions a similar

2As indicated in reference 4, however, the linearized theory does not
yield a reasonably accurate profile at the low supersonic Mach numbers
near or below shock detachment.
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result also has been found in the recent investigation of Klunker and
Harder (reference 7) which appeared while the present report was being
prepared. The shape of some of the optimum proPiles determined in
reference 7, however, does not agree with the shape of analogous profiles
in this report. For’example, it is indicated in reference 7 that the
profile of least drag for t/c = 0.06 has a--sharptrailing edge at all
Mach numbers below about 6, whereas the corresponding profiles shown in
figure 9(d) indicate appreciable trailing-edge thickness even at Mach
numbers of 1.5 and 3. This discrepancy is attributed to the arbitrary
base pressure curve assumed in reference 7 which does not correspond to
measured data for thin trailing edge~. -

From an engineering viewpoint it is desirable to know how much lower
the drag of an optimum profile is than that of a sharp-trailing-edge
profile, and also how much the optimum profile can be altered without
significantly increasing the drag. In order to-provide a basis of com-
parison, the zero-lift pressure drag of a fsmily of sharp-trailing-edge
circular-arc biconvex airfoils of various thickness ratios has been
calculated by shock-expansion theory for the Mach number range between..
1.5 and 8. The results are shown in figure 11. Thus, for any profile
the drag of a structurally equivalent (ssme value of I) circular-arc
biconvex profile can be determined readily from the curves in figure 11
by simply calculating tca from the equation

I Ica == #n(n!)2(tca/2)n-o/(2n+ 1)!

Computations of drag have been made for a family of “semioptimum”
profiles having arbitrarily selected values of trailing-edge bluntness H,
a shape forward of the trailing edge that yields minimum foredrag for each
particular H, and the ssme value of I “as “acircular-arc biconvex pro-
file of thickness ratio tea. These calculations have been carried out
for tea/c = 0.02, 0.04, 0.06, 0.08, and 0.10 at Mach numbers of 1.5, 3,
and 8, and for vtiious combinations of n and a. As in previous
examples, the base drag in each case was determined from the curves of
figure 8 for turbulent-boundary-layerflow at Re = 107. The results are
shown in figure 12 plotted in the form of a drag ratio versus H. Each
curve corresponds-to a constant value of 1, and is identified by the
thickness ratio (tea/c) of a circular-arc biconvex profile having the
sane value for I. In order to maintain a constant value of 1, the
actual thickness ratios (t/c)of the semioptimum profiles change somewhat
as H varies between O and 1 (the ratio t/tea lies between about 0.90
and 1.05 for the case n=l,u = O, between about 0.71 and 0.84 for
n= 2, a = 1, and between about 0.97 and 1.08 for n = 3, cr= O). For
each curve in figure 12 the semioptinmm profile having the minimum drag
coincides with the optimum profile determined from the curves of fig-
ures 5 to 8. The ordinate of each minhaum point indicates the relative
drag of the opthnun compared to a structurally equivalent circular-arc
biconvex profile, while the rise on each side of the minimum indicates
the ciragpenalty resulting from the use of too much or too little
trailing-edge thickness. It may be noted that some of the curves do not
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. cover the complete range of values of H. In all such cases, however,
sufficient calculations were made so that the minimum point was bracketed.

. Perhaps the most significant feature apparent from the curves of
figure 12 is the large increase in drag that results for thin airfoils
when a trailing-edge thickness considerably greater than the optimum is
employed at moderate supersonic Mach numbers. The pressure drag of full-
blunt profiles at Mach numbers of 1.5 snd 3 for the case tc$c = 0.02 is
several times the pressure drag of the optimum, the exact factor varying
between about 2.8 and 3.9 depending on Mti n, and a. On the other
hand, for thicker profiles (tea/c~ 0.08) the pressure drag is much less
sensitive to variations in trailing-edge thickness about the optimum,
and the use of a full-blunt profile instead of the opthnun would result
in a much smaller percent drag penalty. Also, for a given value of tea/C
it is evident from figure 12 that the pressure drag becomes less sensitive
to variations in trai~ng-edge thickness from the optimum as the Mach num-
ber is increased into the hypersonic regime.

As would be ~ected, the semiopttium sharp-trailing-edge profiles
(H = O in fig. 12) have somewhat less pressure drag than a structurally
equivalent circular-src biconvex profile. The observed difference in
drag for thin airfoils at moderate Mach numbers is negligible for the

* case of n = 1, cr= O, since the optimum sharp-trailing-edge profile for
these conditions is very close to a circular-arc biconvex profile (if
linearized theory were employed the optimum sharp-trailing-edge profile

. for n=l,u = O would be a circular-arc biconvex profile). The
corresponding difference in drag for the case n=2,cr = 1, however, is
significant since the optimum profile in this case has a midsection of
constant thickness, and hence is of considerably different shape, as
well as being considerably thinner than a
arc biconvex profile.

Each of the curves for ~ = 1.5 and
a minimum at some finite value of H. but

structurally equival&k circular-

3 (figs. 12(a) and 12(b)) show
the curves for tea/c = 0.02 at

M =8 (fig. 12(c)) do not; If all o~her parameters were constant, this
trend would not be expected inasmuch as the optimum trailing-edge-blunt-
ness for a given thickness ratio generally increases as the Mach number
is increased into the hypersonic range. (See reference 4.) The unexpected
trend is observed in the present exsmples because the variation of base
pressure with trailing-edge thickness is considered at M = 1.5 and 3
where expertiental measurements sre available, butiit is not considered
at & = 8 where, in the absence of expertiental data, a constant base
pressure was arbitrarily assumed (one-tenth of the free-stream pressure,
irrespective of trailing-edge thiclmess). It is expected that if base
pressuremeasurements were made at IQ= 8, they would show a dependence
on trailing-edge thiclmess just as at the lower Mach numbers. Conse-
quently, it is believed that the acttil curves for the thinner airfoils
at Mm = 8 will be greatly different than shown in figure 12(c), although
the curves for the thicker airfoils are not e~ected to be significantly
different. If a constant base pressure corresponding to measured values
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on thick trailing
for tc~c = 0.02
than at u = 8.
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edges were assumed at & = 1.5 and 3, the curves .

would rise starting from H = O even’more steeply
This illustrates the necessity of considering the

dependence–of base pressure on trailing-edge thickness in such an .
=

analysis.s

The drag of the various optimum profiles (mintium points in fig. H)
is seen to be less than the drag of a structurally equivalent circular-
arc biconvex profile by amounts varying between about 1 percent and
53 percent, depending on the values of n, a, Ma and tca C./ The largest
drag reduction occurs for the case of n = 2, CT= 1, just as indicated
by the linearized theory of reference 4. Likewise, the drag reduction
generally increases as the Mach number or the thickness ratio is
increased, as predicted by linearized theory.

CONCLUSIONS .

1. For a given Mach number and structural requirement, the shape
and drag of the profile having the least possible pressure drag at zero
lift, ascomputed from shock-expansion theory, can be determined readily
provided the base pressure is known from experhnents and provided curves x

of certain characteristic functions are available. (These functions
are E(Y, 5., n), q(H, Go, n), H(50, Pb/P~, n), jn(~o), and bphY’ (bo)~ ~
exsmples of which are presented in figures 4 to 7.)

2. A cmparison of profiles determined by shock-e~ansion theory
and linearized theory indicates that the linearized theory may be Used t
with reasonable accuracy at Mach numbers up to infinity to determine the
shape of the optimum profiles although it cw be used only at moderate
supersonic Mach numbers to determine the drag.

—

3. Considerable deviations in profile shape frcm the theoretical
optimum can be made without increasing the drag excessively provided the
Mach number is high, or the airfoil thickness ratio is relatively large.
Large drag penalties result, hpwever, if a trailing-edge thickness
appreciably greater than the optimum is employed on a thin airfoil at
moderate supersonic Mach numbers.

4. It is necessary to consider the expertientally observed depend- - -
ence of base pressure on trailing-edge thickness when calculating the
optimum-profile shape and drag of a thin airfoil.

—

Ames Aeronautical Laboratory
National Advisory Co?mnitteefor Aeronautics .

Moffett Field, Calif., June 2’j, 1952
31f the bo~darY layer were l~inarj the effect on the optimum shape of

the dependence of base pressure on trailing-edge thiclmess would be
w-
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APPENDIX A

MBTHOD OF cALCULATING 5(Y)

The singularity at Y = 1 of the integrands in equation (9) causes
difficulty when directly evaluating such integrals numerically or graphi-
cally. This difficulty, however, canbe circumvented by transforming
from Y as the integration variable to a new function fn(Y) defined as

follows:

[

Y
fn(Y) =

&

(Al)

Yn

With this transformation the equation for ~(Y) becomes

.

In this
finite.

. ence k,

,(Y) ]’n(y~dfn
‘ % aPdfn

(A2),

Jr by’

equation the ‘integrandsand the ranges of integration ~e au
The constant kn is the ssme quantity as that used in refer-
nsmely,

11
2 forn=l

m/2 forn=2
kn =fn(l) =

1.k023 forn=3

1 f’orn=rn

(A3)

R The functions fn(Y), apart from an additive constsnt, sre likewise the
ssme characteristic functions as appeared throughout the ~alysis of
reference h when linearized supersonic airfoil theory was employed for P.
Thus,

1

2(1 - J-) forn=l

sin-~ Y forn=2
f~(Y) =

1

(Ak)

1.4023 - 3~F(k, 9) for n = 3

.Y forn=rn. j
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where F(k,~) is the incomplete elliptic integral
mod!ulus k = sin 75° = 0.9659, ~d ~plitude

$). ~o~-. (J-? -1 +--Y)

(J’3+ 1-Y)

NACA TN 2787

of the first kind of ?.
..

.

With the transformation to fn} the integrals in equation (A2) are
evaluated by first selecting a number of values of yf ranging from yof
to large negative values. For each y’ the ordinate Y is computed
from equation (6), fn from equation (Ak), ~d ?lP/~y~ from the particu-
lar airfoil theory. A plot is then maae of ~Pfiy’ versus fn in order
to evaluate the integrals determining E.(Y).
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APPENDIX B

. DETAILS OF METHOD OF DETERMINING THE SHAPE AND DRAG OF

AN OPTIMUM PROFILE BY SHOCK-EXPANSION METHOD

In the shock-expansion equations the leading-edge deflection
angle b. is a more convenient parameter to use them the given value
of I, hence the steps outlined below involve an iterative procedure.

(1) Assume values of 80 and pb/p=

(2) Read value of Hn from figure 6 ~d ccmpute H

(3) Read values of E(H) and v(H) from figure 7; compute ~ from
equation (14) and s/c from equation (13)

(4) Read value of (aP/ay’)0 from figure 4, jn/(jn)~o s Oo

from figure 5; compute (jn)bo . ~o from equation (37),

t/c from equation (15a)
.

(5) Compute I = ~ (t/2)n-u

. By comparison of the computed value of I with the given value, a new
value of 50 can be estimated. Also, frcm the computed value of h/c,
the experimental base pressure curves in figure 8 yield a new value of

Pb/Pa●
By repetition of the above steps until the final computed value

of I is equal to the given value, and the final computed value of h/c
corresponds to the final base pressure assumed, all characteristics”
(~0, t/c, S/C, H, 6(Y), (aP/ay’)0, Jnj and ~) of the optimum profile are
determined. The pressure drag is then calculated from equation (17).
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