-

View metadata, citation and similar papers at core.ac.uk brought to you by ,i CORE

provided by NASA Technical Reports Server

0CT 15 1852
NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

NACA TN 2797

TECHNICAL NOTE 2797

A STUDY OF THE TRANSIENT BEHAVIOR OF SHOCK WAVES
IN TRANSONIC CHANNEIL FLOWS
By Robert V. Hess

Langley Aeronautical Laboratory
Langley Field, Va.

Washington
October 1952

N A C A LIBRARY

LANGLEY AERONALUTS AL LARORATORY
Langiey Fewd, Ya


https://core.ac.uk/display/42802641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1G

I Ié’ IM// LTy

76 01433 4156
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAI NOTE 2797

A STUDY OF THE TRANSIENT BEHAVIOR OF SHOCK WAVES
IN TRANSONIC CHANNEL FLOWS

By Robert V. Hess
SUMMARY

The accuraty of the result obtained in a fundamental paper by
Kantrowitz (NACA TN 1225) that a small short-time lowering of the back
pressure in steady, shock-free, transonic diffuser flow causes a sta-
tionary or trapped shock to form near the critical sonic channel throat
is investigated by considering the contribution of a higher-order term
in the short-time calculations which was neglected in Kantrowitz's
paper. In this more accurate approximation to the short-time effects,
the shock is no longer stationary or trapped unless it is supported by
a negative steady-flow back pressure. The inclusion of the higher-order
term in the short-time calculations avoids the use of approximate quasi-
steady-flow considersations for the complete diffuser flow to increase
the accuracy of the shock motion, as aas required in Kantrowitz's paper.
In a broad sense, the present paper offers a firmer basis for the short-
time approach originated in Kantrowitz's paper.

The present results transform into those previously reported in NACA
TN 1878 for amplitudes that are small compared to the difference between
local and critical sonic velocities of the channel flow.

INTRODUCTION

In Kantrowitz's paper (ref. 1), the time-dependent shock behavior
produced by lowering the back pressure and the stability of steady
shock-free transonic diffuser flows are treated by dividing the time
history of the phenomena into short-time effects and long-time effects.
The short-time effects are analyzed for a single distinct upstream dis-
turbance or short pulse for which the equations describing the character
of unsteady flow are greatly simplified. For additional simplification
of the short-pulse equations the highest-order term is neglected. The
long-time effects are concerned with transitory phenomena which occur
in the interval between the end of short-time phenomens and the finsl
steady flow state in the channel. The calculations indicate that the
short-time effect of a small-amplitude expansion pulse, produced by a
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small short-time lowering of the back pressure, consists of the forma-
tion of a shock from the crest of the expansion pulse which becomes sta-
tionary or trapped. In an originally shock-free flow, the occurrence of
a stationary or trapped shock unsupported by a negsgtive back pressure is
in disagreement with steady-flow solutions for stationary shocks, and the
accuracy of shock-velocity considerations has therefore to be increased.
The more accurate shock calculations are made in reference 1 by means of
an spproximate application of the involved long-time effects and the
steady-flow back pressure at the end of the diffuser, with the aid of a
convenient quasi-steady-flow approach. The result, knowh from experi-
ments, is that the originally stetionary or trepped shock will consume
the short-time expansion pulse if the back pressuré is that, of the shock-
free steady diffuser flow and that the shock has to move to a new posi-
tion if-the back pressure is reduced. L L

In the present paper the increase in asccuracy of the shock-velocity
calculations is made in a different way. Since the result of the sta-
tionary shock in reference 1_is obtained by neglecting a higher-order
term in the equations for short-time-pulse motion, the contribution of
this term to the order of accuracy of the shock motion should be Inves-
tigated before the approximated contributions due to the basically dif-
ferent quasi-steady-flow considerations are taken into @ccount. Such an
approach shows whether the short-time considerations directly result in
e stationary or trapped shock without application of a negative back
pressure.

SYMBOLS .- -
a velocity of sound
n flow velocity
b4 distance along channel axis
A cross-sectional area of chennel
Apuise pulse area, = = e -
t time -
P, Q parameters of characteristic families; used as quantities for

measuring amplitudes of unsteady-flow disturbances. Also

‘used as mere lsbels for distinction between downstream and
upstream disturbances. The expressions "disturbance” and

"pulse' are used interchangesbly in the present paper.
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a¥ critical sonic channel flow velocity
M Mach number, u/a
M=X
a¥
m=M -1
Xg location of initiasl shock. formation

1 _ (dui>
bl dx x=0

1 d
B2 ) g;-Er:.)x=0

X1 R coordinate of leading edge of pulse

Xpg coordinate of trailing edge of pulse

uq velocity immediately ahead of trailing shock
uy velocity immediately behind trailing shock
4 ratio of specific heats

o] density

D pressure

Subscript:

o steady-flow values

A prime designates deviations from steady channel flow.

ANALYSIS

Background for Present Analysis

As a time-dependent, upstream-moving'disturbance or pulse moves
through the steady flow gradient in a diffuser that is free of other
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disturbances, the shape of the pulse is changed and reflected waves are
produced inside the pulse. The growth in amplitude of the reflected
downstream waves from zero magnitude at the leading edge of the upstream
pulse to the value when leaving the pulse depends on the magnitude of
the flow gradient and the time the reflected waves are permitted to grow
inside the pulse or on the length of the pulse (see also refs. 1 and 2).
For a given steady flow gradient a certain pulse length can always be
found in which the values of the reflected amplitudes grown from zero
inside the pulse are negligible compared to the originasl pulse amplitude.
The original pulse and 1ts reflected. pulse that is built up over this
length and leaves the original pulse can thus be treated separately.
This separability of original and reflected pulses holds for pulses
which are locally superposed on the steady flow gradient (the extent

of the local neighborhood depends on the magnitude of the steady flow
gradient).

Disturbances of this nature have the great advantage of presenting
8 case for which the unwieldy equations for unsteady flow disturbances can
be solved with relative simplicity. The application of the localized
pulses is mainly in the study of disturbances that influence the steady
channel flow for only a comparatively short time. In contrast, the long-
time effects which lead to the final steady flow state depend on the
influence of the complete diffuser flow on the reflections and repeated
reflections from the original pulse. Pulses which can be treated inde-
pendently of their reflections are designated as short in the subsequent
development.

The basic equations for motion of isentropic unsteady flow dis-
turbances are conveniently expressed in terms of the characteristic

parameters P = u + 2 T @ and Q =u - 2 I a (see refs. 1 and 2) as

- Yy -

dP s d log A _

a—t— + u ax = 0. (l)
-q'g - us g_ﬁg._é =0 (2)
dt dx

where
P _ oP oP
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and

The velocities of propagation of P and Q are given, respectively, by

g% =u+ a (3)
and

dx— -

-d?—u a ()-l-)

Since the unsteady pulses considered represent deviations from steady
flow, the quantities u end a are expressed in the form

u=u, +u'

= v
a—ao+a

2
5 7 -1
Q' =ut - " 7 a', based on deviations from steady flow, which are
associated with downstream and upstream motions, respectively, in the
underlying steady channel flow are conveniently considered as the ampli-
tudes of downstream and upstream pulses. Equation (4) for the motion of
upstream Q' pulses indicates that the foot of an upstream pulse will
travel with the velocity u, - &y, whereas a given amplitude Q' travels

with the velocity u - a = (up - &o) + (u' - a').

a' and

The characteristic parameters P' = u' +

The resulting equations for the motion of upstream pulses with the
emplitude Q' are _ .

dQ'_ 3"7 1 7+1| 2 7'1 12 12
il -(1+Mo)(TP g Q).+(Mo - l: (P Q)+

P' + Q' ., 2 =1pt _ a1 du,
Mg * L \P Q ] ax (5)
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g% =Uu-8a=1u - ag + é—i—z P' + ?_;'l Q' (6)

These equations are subsequently simplified by the introduction of the
short-pulse concept; that is, the amplitudes P' of the reflected waves
inside the pulse are considered to be negligible compared to the ampli-
tude Q' of the pulse under consideration. “Setting P' = u' + 5a’ =.0
is equivalent to letting u' = -5a'; therefore, Q' = u' - 35a' = 2u',.
The amplitude of the short pulse can thus be expressed in terms of the
velocity deviation u'. For the sake of mathemstical simplicity, equa-
tion (5) 1s further reduced for use near. My = 1 by assuming that the
emplitude Q' or 2u' i1s small compared with the critical sonic velo-
city. (This assumption, however, is not & requirement for short pulses.)
Equations (5) and (6) are thus reduced to :

] . I. d
am E<1+Mo)1’—;-l-u'+(»402-1)(2ML0-Ll;—lu')Eix‘2 (7)

ax _ _ Yy +1
gt " Mo T Fo T T u (8)

In spite of the simplification of the equations for pulse motion
achieved through the short-pulse concept, the resulting equations are
still too complicated to permit simple solutions. It was noted in refer-
ence 1 that, in the neighborhood of M, = 1, the higher-order term in

equation (7), (M02 - l)u'(ﬁéé - Z—if%), may be neglected compared to

(1 + Mp)u? Z—E—l since My - 1 is negligibly small. For the solution
of equations (7) and (8), furthermore, a relation between undisturbed
quantities uy,, &g, and x has to be known. In the neighborhood of
Mo =1, uo - 85 1is conveniently expressed in terms of the distance x
from the critical sonic section of the channel. In reference 1, the
Taylor series development of ugy - a, in x 1is broken off with terms
of the order x. The development of up(x) broken off with the term of
the order x is : o : S o .

u(x) = ug(0) % X(%:Q)ko = ag* + -535]-_- (9)
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d
where - = o is a negative quantity following the notation of
by dx %=0

reference 1, where x is positive in the direction of decreasing steady-
flow velocity ug, (see also fig. 1).

The quantity ay 1s related to u, by the Bernoulli equation

g2 + 2 2 Y+l (10)

Development of the square-root expression for &8, and subtraction
from u, ylelds

_r+1x :
Ug &g = 2 by (11)

Substitution of equation (11) into equetions (7) and (8) without the
term (Mbe - l)u'(E%; - 2—:—;> results in

)
du' _ _x + 1yt (12)
at 2 by
dx + 1 x Y+ 1
dx _ 7 x 1
dt 2 by z U (13)

The solution of this system of equations is

b
(x + ?1 u')u' = Constant (1h)

The pulse distortion near My = 1 thus follows a family of hyperbolas,
d
in which one asymptote has the slope Egg of the velocity gradient and
X

the other is symmetric to it with respect to the x-sxis. Figure 1 shows
the distortion of an expansion pulse in the velocity plane; an expansion
pulse is chosen since its shock formation is of special interest. A
pulse with, for example, the original shape ABCD 1is distorted as it
approaches M, =1 and takes the shape ABCD. TIn the course of this

distortion along the family of hyperbolas, the part of the pulse to the
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right of the line xg = Constant will come to lie at a larger distance x
from the minimum section of the channel than other parts of the pulse.
The overhanging part CEF of the pulse cannot physically exist since,

1
when the crest of the pulse reaches point E, its slope %%T is infinite
and shock formation therefore occurs. A triangular pulse with a trailling
shock is finally formed; the leading expansion phase of the pulse is at

the slope -~ _Eg;. T ' | T

dx

1
Because of the occurrence of an infinite slope %%T’ it is desirable
to introduce combinations of u' and x which will not undergo such
extreme changes as My = 1 1s approached. The pulse area is such a
quantity. As is indicated in reference 1, the pulse area 1s sufficient
to determine the position of the shock trailing a triangular pulse near

M, = 1, because the shape and movement of the leading expansion phase as

it epproaches My = 1 are known and simple. For the case discussed in

reference 1 (that is, the term (M02 - 1>u' 2& 24 ; l) is neglected)
o

the pulse-area growth with time is  obtained from equations (12) and (13).

The pulse-area growth with time is

= \Fm e fXTE S(uax)

where the differentiation

a 0 d
= ==+ (u-2a)=
at 3t ox
. d
may be performed under the integral sign since Ty indicates a motion
with the pulse. From equations (12) and (13),
d . _ du! u! d
dt(u dx) = 3¢ dx + 3¢ &
=.rr1 1 udx + L= 1 JL-u'dx + X L u'au'
2 by 2 by 2
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The first two terms cancel. The integral of the remaining term from
the leading edge xyp to the trailing edge Xqm of the pulse 1s

zero since the corresponding values of u' are equal (zero) at these
points. The pulse-area growth with time when the higher-order term

(Mo2 - l)u' 2L _rx-1 is neglected is thus zero, the value obtained
2M, )

in reference 1.

Present Analysis

Mathematical development.- In order to anslyze the effect of the

higher-order term (Mbg - 1)u'(§é; -z ; l) on the pulse-area growth

near the critical sonic chamnel section, u, - a5 or Mg - 1 is

developed in terms of the distance x from the sonic throat. Since

Mg - 1 1s of the order of the distance x made nondimensional and the
distance x @and the amplitude u' made nondimensional are assumed to
be small and.of the same order, the lowest-order contribution of the

term (sz - 1)u'(§$g - Z—i—l) is of the order x2. The condition that

u' and x be of equal order is well-satisfied for a triangular pulse
bounded by a shock near My = 1 (u' is proportional to x for such a
pulse); the motion of such a triangular shock-bounded pulse is of main
interest in this paper. For the present calculations the Taylor series

of uo(x), broken off with terms of the order x2 rather than x as
was done in reference 1, is used:

du 2/d2yu
= 0 -2 X __9 1
uo(x) = up(0) + x<dx)x=o + = dx2>x=0 (15)

In snalogy with reference 1, the coefficients are

(&) _1
dx /y.0 b1

and
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With the aid of the Bernoulli equation (eq. (10)), uy - a5 is
expressed in terms of x as

e Lz#lx 11
g 8.0—---2 .bl+——-}+—.b2x2+

-1, (-2 i 2
Lh + 5 aO*bl2x + 0 (16)

In order to obtain M, - 1, equation (16) is divided by ag. If, for
the neighborhood of Mg = 1, equation (7) is written in the modified form

%1?'= _[2+(Mo-1§]71_1ur+2(Mo_-1)(%['3_7;1u') 31_1::0

the substitution of the expressions for wug - a; and My - 1 into the
modified equation (7) and equation (8) ylelds

du'  _y+lu' 7y +lu'x _(7+l)2+(3-7)(7+1) u'x ()
dt 2 by 2 - 8 L by2ag*
and

dx _y+1 X y4+1x2 S1, (y =102 %2 7y 1,
EE_Tbl+-Lh—_E+I:Zh + 22 X + s (18)

The pulse-aresa growth

o Lo e [ e
xI_E XLE : ’
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is obtained by using equations (17) end (18). Now

i 1 = du' + + 4 dx
gplidx) = G ax v Ul e
C C c
= - Si u'dx - —é xu'dx + ———1—5 xu'dx +
C 2C
Ei u'dx + 53 xu'dx + ———2-5 xu'ldx + C3u'du'
1 2 8o*by
or
C, + 2C
_d_.(u’d_x) =k 2 xutdx + CSu'du' (19)
dt ao*'b12
where
(y + 1)2 (3 - 7)(7 + 1)
Cqy =- +
8 L
y -1, (y -1)°
Ch = +
27y 8
and
c, = +1
3 2

Since the term Cgu'du' disappears when the integration is performed
from the leading edge xyg to the trailing edge =xpp of the pulse, the
pulse-area growth with time is

C + 2C
%PE u'dx = P xu 'dx (20)
X @ ao*bl
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Now the pulse-area growth with time is calculated near M, = 1,

where the pulse has assumed triasngular form. The reason the pulse can
s8t111 be considered in trianguler form for the present case in which
terms of higher order them those in reference 1 are considered for the
pulse-area growth is as follows: In the present.approximation the
asymptoti¢c velocity distribution of supersonic steady flow approached

by the leading edge of the expansion pulse 1s no longer a straight line
symmetric to the linear steady-flow subsonic velocity distribution,
because the relation between velocity and cross-sectional area (or
distance x) for supersonic and subsonic steady isentropic channel flow
is asymmetric with respect to critical sonic velocity (see fig. 2 and
the appendix). For the pulse that is cut off by the discontinuous shock
gt a small value of x, the pulse area added due to the slight deviation
of the pulse amplitude u' from symmetric conditions will be of higher
order than that being considered (see fig. 2). The pulse-area addition
due to the asymmetric condition of the present approximation can thus be
neglected and the pulsé can be considered in triangular form. The integra-
tion in equation (20) over the triangular shape is simplified by the fact
that the expansion phase is bounded by the shock which coincides with the
ordinate ul'. The integration therefore only has to be performed over

the leading expansion phase from X g to Xeppg » In the neighborhood of
My = 1 +the leading expansion phase can be considered ss parallel to tl;e
asymptote u' = - %% x for the present case and is given by

ut = - %%(x - xLE), where b; 1s a negative quentity. Substitution of

this expression for u' into equation (20) yilelds for the triangular-
pulse-aree growth with time . :

a T . 9 C, + 2Ch E
2(0 +20) ( —"x )2 ( -x )3 | )
_ 8 2 X1R LE) . X7g 1B (21)
ao*b13 2 .3

As Mg —>1 or xp—> O equation (21) becomes

2({Cq7 + 2C
TE 1 2
% u'dx = - (—_._3_l xTE3 (22)
xIE 3ao*bl
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Since by 1is a negative quantity, equation (22) shows that, as the
triangular pulse spproaches M, = 1, its area grows and is proportional
to the cube of the distance from the critical sonic section. Since the
area of a triangular pulse Apulse is

TR e -~ g,
Apulse = u'dx = 11
X | 2
1 2
= - -b_l'(xTE - xm) (23)

equation (22) can also be stated in the form, as x;g —>0,

1 d(Apulse) 2 Cy + 2C, *m (2h)

Apulse at 3 ao*bl2

which indicates that the logarithmic growth rate of the pulse area is
proportional to the distance of the pulse-area center from the critical
sonic section.

The speed of the traililing shock is obtained by comparing the pulse-

area growth from equation (21) with the growth obtained by differentiating
equation (23) with respect to_ time

d(APulse2 __ 26+ QCQEE (xrg - xLE)2 + (% - xLE)%]
d T by LE 2 3

8p¥b1”

- (%E B} dz—tLE) (25)

dx
LE of

ax:
where the term éﬁE still has to be determined. The speed

the foot u' = O of the leading phase of the expansion pulse (see
eq. (18)) is

dx
IE 7+ 11
T~ 5 EE Xig + Constant x1m

2
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dx
As Mg—>1 or Xig —>0, the speed azE of the trgiling edge of
the pulse therefore becomes ' ' ' ' .
d Cqy +2C .
XTE = 1 2 xTE2 — (26)

_ 2
In terms of the pulse smplitude uy' o= -;EI xpgs the speed of the
trailing edge of. the pulse is : . LT .-

Ty _C1tpwm L DG - ) BT (27)

dt = 12 B * 96 ao*

According to equation (27), the trailing edge moves away from the
critical sonic channel section in agreement with the pulse-ares growth
glven by equations (22) end (24).

Correction to increase accuracy of shock velocity.- In the develop-
ment of equation (27), the motion of the discontinuous trailing edge has
been identified with that of the trailing shock, without further dis-
cuesion of the process in which +the shock is obtained from the over-
hanging pulse. In making no special issue concerning the effect of
shock formatlon on the pulse growth, it is tacitly taken for granted
that it does not affect the magnitude of the pulse area as a function
of time. In that case the shock is obtained by averaging the pulse area
such that the overhanging area CGM is equal to the new area MEN added
by the shock (see fig. 1). This averagling process for obtaining shocks
is known to apply to disturbances of-small amplitudes wu' moving through
constant cross section (ref. 3). The gpplicability of this averaging
process to the present case of varying cross section is directly con-
nacted with the fact that the pulse will remain a shock-bounded triangle
as 1t approaches My, = 1. More specifically, ahy time the pulse begins
to overhang it is at.once averaged by a shock (fig. 1 represents an
exaggerated picture of the process of shock formation); that is, ‘the
averaging process by the shock occurs in neighboring sections. The
shock-wave influence can thus be treated as independent .of variation of
cross section (the exact proof lies in the fact that the thickness of
the shock is zZero and its pressures are bounded).

Since an averaging process applies to the small amplitudes u', and

equation (27) for the shock speed contains a term of the order ul'e,



NACA TN 2797 ' 15

the problem arises whether the averaging process which gives the first-
order effect of the shock has to be corrected with a higher-order term.
It is indiceated in the preceding paragraph that the process of shock
formation can be treated independently of the variation in cross section;
thus, the higher-order effects in the expressions for shock speed in
constant cross section can be used. The development for a downstream
shock is (in the notation of ref. 3, eq. (72.05))

L+ 1P @ -w)®
32 Co

U=ug + cq + (u - ug)

Yy + 1
L

Also, it can be found from reference 3, equations (72.06)

vy + 1

and (72.03), that the sum of the terms wuy, + cg + (u - uy) is

equivalent to the average velocity %(uo + c, +u+ c). . In other words,

o
the first three terms in equation (28) deal with the averaging of the
speed of the overhanging pulse by that of the shock. (Note that, since
in the present case upstream waves are being considered, the averaged

shock velocity is %(uo -Cco +tu - c).)

(y + 1)2 ul'2
32 as¥*
present notation) effectively increases the strength and speed of the
trailing shock which moves upstream during its formation and thus has
to be subtracted from the shock speed based on averaging the pulse-areea
growth (eq. (27)). The proper speed of the trailing shock thus is

Introduction of the higher-order effect (in the

12 2
dxrg 4 4+ 1[3 - ¥ Yy y + 1 _ uy'
% - 55 [ 3 - (7 + 1] el el ey (29)

The negative speed indicates that the shock tends to consume the short-
time expansion pulse &s the pulse spproaches M, = 1. Note that the

ratio of the proper negative shock speed (eq. (29)) and the aversged
shock speed (eq. (27)) is 3—h7 = -3.5 (for air, 7 = 1.4%). The proper
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negative shock speed is thus several times larger than the averaged
positive speed based on the pulse-area growth.

Conditions for stationary trailing shock.- An independent check of
sign and magnitude of the present results is simple to make with the
aid of steady-flow considerations for a stationary trailing shock. In
order to bring the pulse-consuming shock to rest, &n upstream-moving
pulse area has to be fed intu the shrinking pulse ares bounded by the
moving shock. The amplitude up' of this fed-in pulse area (see fig. 2)

has to be equal to the back velocity directly behind the stationary shock
obtained from steady-flow considerations in the region extending from
the critical sonic throat to the rear of the shock (see the appendix).
The stationary shock used for such a check does not represent the actual
steady-flow solution that has to be adjusted to a certain back pressure
at the end of the complete diffuser; however, 1t represents a possible
steady-flow solution for a different back pressure at the end of the
complete diffuser. The magnitude of the error in the actual steady-flow
back pressure {velocity) at the end of the diffuser depends on the
importance of the influence of the long-time effects, govermed by the
repeated reflections, leading to the steady flow state in the complete
diffuser. The preésent check of the short-time results gains in physical
significance because, as discussed in a subsequent section, the long-
time effects will exert relatively minor influence.

The back velocity necessary to Bring the shock motion to rest is
found from the eguivalent condition thet the sum of the pulse-area
shrinkege per unit time due to the shock and the pulse-area gain per
unit time due to application of the (still unknown) positive back velo-
cilty immediately behind the shock is zero. The amplitude of the
reflected downstream pulse 1 shown subsequently to be negligible com-
pared to the back velocity. The pulse-area shrinkage per unit time of
the triangular pulse is given for xgp—>0 (eq. (25)) by

dgﬁpulse) __ 2 dx7R -
at b, "TE “at
Introduction of equation (29) with u;' = - %L-XTE yields for the
1

pulse-aresa shrinkage (bl is a negative quantity)

df{ A
! pulse! =_%_(7 + 1)y xTE3 (30)
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The rate at which the pulse area due to back velocity enters the tri-
angular pulse at the shock locetion Xpg 1s given by

1
- dx gy-
o dt

because the speed at which the various parts of the back-velocity pulse
enter the shock is their velocity in the negative x-direction. Equa-

tion (18) for %f is then applied, and

2’ xTE
dx ' + 1 ) 2 t
- E = du [ I +u + Constant xTE]du

+leE 1 + 1 2
Z—E—— 1;; uy' - Z—E__ u,' - Constant xTEeue'

If the sum of the triangular-pulse-area shrinkage (eq. (30)}) and the

pulse-srea addition based on the back velocity u2' is set equal to
'b .

Zero, where Xqm = = 2% 1’

-ul'2 {r+ 1)y u;' + Constant uéi] = ue'(ul' - ua') =0 (31)

24&0*

In equation (31) the back velocity up' is to be considered negligibly
small compared with uj'. The condition of smallness of ue' was

actually introduced previously by the fact that the shock was assumed
to cut off the full height of the pulse triangle. (In order to include
the possibility of wvalues of up' which are of the order of wujy', the
whole process of shock formastion would have to be considered, during
which the shock would cut off only a finite part of the pulse. For the
present problem the finagl stages of pulse shrinkage, represented by the
pulse-area triangle, are, however, of primary interest.) Neglect of uo'

compared with ul' in equation (31) ylelds for the back velocity uo'

(32)
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It was previously stated that the amplitude of the positive back
velocity wup' that will bring the shock to rest would have to be equal
to the back velpcity requlred immedistely behind a stationary steady-
flow shock. This back velocity is obtained by subtracting the velocity
increment through a steady shock near Mg = 1 from the increment between
supersonlic and subsonic velocltles corresponding to the seme channel
area near Mgy = 1 for isentropic flow. In the appendix this difference
is shown to be equal to the value in equation (32).

This calculation of the back velocity wp' 18 especially simple
because the amplitude of the reflected downsitream pulse, which is built
up in the triangular upstream pulse, can be neglected. Under such condi-
tions the back velocity required to bring the shock (trailing the tri-
angular pulse) to rest does not have to be superposed on the reflected
amplitude but cen be directly superposed on the foot of the trailing-
shock amplitude. The proof for the permissibility of the neglect 1s now
glven.

The amplitude AP' of the built-up reflected short pulse near Mach
number 1 is obtalned from the equation for a downstream or P' pulse.
A numerical estimate of the reflected amplitude is given in reference 1;
however, its order of magnitude is not specified there. The derivation
is thus repeated here with different emphasis. The growth dP' of a
reflected P' wave is given by (for air, 7 = 1.4)

apr ol y3P + 20" +(M02_l)(P‘ + Q' P! -le

dt ax 5 M, 10
P|2 - Q,'E - d.P‘
where —Son is neglected. For consideration of e as the growth
0

of the reflection of a short Q' pulse, P' 18 neglected compared with
Q'; thus, near M, =1,

duo

2 o
Tt =5 (- Molgyr

For a downstream pulse, the relation between t and x is given by the
downstream speed of the pulse foot (for the present order of accuracy)
as - _ .

dx

d—t-=uo+ao
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Ifdtroducing 1 - My = Constant x (eq. (16)) to obtain the first-order
effect for the reflected amplitude and noting that Q' = 2u' yields

. . du0
dP' = Constant u'x —— —
Uy + 8¢

Near My =1, ujy + ay = 2a,*¥ and writing

_ 0 _ 1
dugy = = dx = Ei dx

results in

dP' = Constant u'x dx

The reflected amplitude AP' 1is obtained by:using the relation
ut = Constant(x - XLE) from the triangular pulse, integrating from

X;pg tO Xpp, and letting xz—>0

AP' = Constant ul'3

The reflected amplitude produced by the entropy change in the shock
is also proportional to the third power of the velocity change in the
shock (ref. 3). The amplitude of the reflected pulse 1s thus negligible
compared with the back velocity u2' which:is of second power in ul'

d
(provided the flow gradient 7;§-= gk- has a reasonable value). In
1

contrast, as previously indicated, the pulse-area growth and the related
reflected-pulse area cannot be neglected under considerations of the same
order.

It should be pointed out that the equations used in this analysis
and in reference 1 for the determination of the downstream reflection
leaving a short upstream pulse are based on'isentropic considerations.
They therefore 4o not apply directly to the pulse-area shrinkage due to
the motion of the proper shock but rather to the pulse-area growth averaged
by the shock. The positive speed of the averaging shock (eq. (27))
and the negative speed of the proper shock (eg. (29)) are, however, of
the same order of magnitude (their ratio of -3.5 is not sufficiently large
to affect the order). The reflected amplitude AP' based on motion of
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the proper shock is thus of the same order of magnitude as the ampli-
tude AP' Dbased on pulse-area sveraging. S

DISCUSSION OF RESULTS

The result has been obtained that the consumption of the expsnsion
pulse by the shock does not have to wait for long-time effects depending
on repeated reflections and leading to the final steady flow state in
the complete diffuser but that the consumption begins =s soon =s the
shock has formed. The speed of—pulse consumptlon was considered for the
case in which the shock is already fully formed (for the nature of the
shock formation, see fig. 1), and the pulse was conveniently considered
to be in the immediate neighborhood of Mach number 1 where the leading
expansion phase of the pulse approaches zero speed. The fact, however,
that the proper negative speed of the pulse-consuming shock (eq. (29))
is larger by the appreciable factor of 3.5 than the shock speed in the
opposite directlon based on averaging the positively growing pulse area
indicates that the pulse consumption begins when the shock 'is still in the
last stages of formstion and the leading expansion phase of the pulse
has a small but finlte speed.

The long-time effects exert their influence through the repested
reflections from the complete diffuser flow, which in turn affect the
shock velocity directly through a change in back velocity immediately
behind the shock. The amplitudes of the first downstream reflections
have been shown previously to be small compared to the back velocity
near Mach number 1. The repeated reflections, which are the basis of
the long-time effects, are small compared to the flrst downstream reflec-
tions and they move upstream at a low speed. The negligible contribution
of the long-time eff'ects indicates that the back velocity immediately
behind the shock obtained from short-time-pulse considerations is essen-
tially equal to that corresponding to the actual steady-flow back pres-
sure at the end of the diffuser. The present higher-order approximation
to the short-pulse consideretions for small shocks near Mach number 1
thus indicates that shock motion occurs immediately after shock formation
and is essentially the same as that due to the actual back pressure at
the end of the diffuser. The approximate consideratlons of the long-time
effects and of the actual steady-flow back pressure which had to be made
in reference 1 are thus avoided in the present paper.

In reference 1 & procedure that is somewhat similar to that in the
present paper is used in that the channel end conditions are also applied
directly behind the shock. However, in view of the fact that in refer-
ence 1 the increased accuracy of the shock-veloclty calculations is not
balenced by an increased accuracy in the short-time-pulse equations (7)
and (8), a true measure of the negligible smallness of the long-time



NACA TN 2797 21

effects of repeated reflections is lost. This situation is the actual
reason why the increased accuracy of the shock velocity in reference 1
has to be gained through discussion of the various steady-flow conditions
at the end of the diffuser and why the approximate treatment of the long-
time effects has to be considered as a "simplifying assumption” and the
long-time effects still cannot be truly neglected. It should be empha-
sized that in the present short-time considerations the speed of the

shock which consumes the pulse is of the order x2; whereas the speed
of the pulse before the leading expansion phase approaches zero speed

is of the order of x or u' (eq. (18)). The present results thus
agree with those obtained from approximate quasi-steady-flow considera-
tions in reference 1 in that the speed of pulse consumption for small
shocks will be small compared with the speed of pulse approach. The
present paper, however, indicates that a statlonary shock does not occur
unless a negative back pressure is applied and that the shock begins to
consume the pulse immediately after the shock is formed. This paper
also avoids the introduction of the approximaete quasi-steady considera-
tions (dealing with the complete diffuser flow) for proof of the condi-
tions of pulse consumption and thus gives a firmer basis for the funda-
mental short-time approasch in reference 1. The fact that for the diffuser
flow the shock is not trapped after formation but tends to consume the
expanslon pulse directly after formetion has bearing on the problem of
existence of shocks 1n transonic flows about bodies.

The concluslons concerning the nature of shock formation do not
affect the important result obtained in reference 1 that short compres-
sion pulses moving upstream can be compensated by the area of a sta-
tionary but still short (as defined herein) expansion pulse which is
part of the undisturbed steady supersonic flow bounded by a shock. (For
a given shock amplitude, an increase in throat length increases the area
of the compensating expansion pulse.)

The preceding results of pulse-area growth are now compared with
those in reference 2. For purposes of mathematical facllity, equa-
tions (7) and (8) were simplified by the restriction u' << ug - ag-

The significance of this simplification is quickly seen by substituting

equation (8) into equation (7), which results in a differential eguation
for u' in terms of Mgy, for which separation of variables is possible.
The restriction, however, has the following effect on the pulse distor-

tion for which the term (M02 - l)u'Qﬁ%; -7 ; ) can be neglected;

namely, equations (12) and (13) for the pulse distortion are reduced to

1

1

1

o

du! - .7

+
dt 2

(o g

(33a)
dx _ 7 +1 x
at - 2 b1
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Thelir solution is

xu' = Constant - : (33b)

For such a distortion the pulse will not overhang (see preceding analysis)
as it spproaches M, = 1, and no shock formation will occur. Note that
the restriction u' << x causes equations (33) for the pulse distortion
to break down as x —>0, because u' —>=; the restriction requires
that the distance of the pulse from the sonic channel throat remsin of
the order x. Athough such a gimplified approach will give the proper
order of megnitude of the pulse-area growth near Mg = 1 without the
effects of the shock, it cannot treat the final shrinkage of the pulse
bounded by a shock. In order to derilve an expression analogous toc that
appearing in reference 2 for the rate of logarithmic growth of the pulse
area, equation (20) is divided by the integrated pulse area. As the
leading and trailing edges of the pulse are permitted to approach each
other, the resulting quotient of lntegrals is the location of the center
of the pulse (or x) times a constant

a log\f\x‘rE u'dx '
pe
LE 1 a . ,
T g Eﬁ(ﬂud"
u'dx LE
IR

C; + 2C

Zx - / (34)
ao*bl .

In reference 2, the pulse-area growth with time near M, =-1 is
not glven; however, the pulse-area growth with Mach number is determined.
Equation (34) is reduced to the result in reference 2 as follows: A
relation between t©t and x 1is obtalned from Lo
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dax _ 7 + 1 j;
dat 2 by x (35)

Substitution of equation (35) into equation (34) gives for the pulse-area
growth with distance

d log *TE u'dx
LE C1 + 2Co (36
ax Ty s 1 36)
) aobl
Since
ax

equation (36) becomes

Cy + 2C5 du
a logv[vvrE wax = = 2 _° (37)
XIE Z%_l. ao*

Furthermore, near Mg = 1,

and

GRS i ¢ W 2 Y AR D

‘1= 8 n
02 = 7 - 1 + (7 - 1)2
N 8
Equation (37) becomes
d log\j;xTE u'fdx
2 =7 (38)
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In reference 2, the expression &'log(u'dx)/Md haes the same signif-
icance as the expression d log(ln'dxl/dMo of equation (38). 1In agree-

ment with equation (T4) of reference 2, the pulse-area growth with Mach
nunber near Mo = 1 ie thus equal to 1/3 for ¥ = 1.4 (air). The
pulse-area growth is zero for a hypothetical gas with 7 = 3 (one degree
of freedom).

A simple physical interpretation of the pulse-area growth can be

given by noting that for small disturbances the pulse ares jn'dx, if
multiplied by the density p,, has the dimension of a momentum. Since
the momentum has the dimension of the product of fdrce and time, the
growth rate of the pulse area 1s proportional to a force. 1In the pre-
sent case of channel flow the force is represented by the axlial component
of the normal force on the channel wall. 'The normal force 1s given by
the integral of the excess pressure p' over the length of the pulse
and is of finite value (note the connection of the finite-normasl-force
integral with the pulse area). As the pulse approaches Mg = 1, the
slope of the channel wall becomes zero and thus the axial component of
the finite normal force becomes zerc. It is Iindicated that, in order
that the pulse-area growth with time be zero, the entire pulse would
have to move to the critical sonic channel section. Since, of course,
for the present triangular pulse only the leading edge, not the center
of the pulse, approaches asymptotically the sonic section, the rate of
pulse-area growth (exclusive of the shock motion) remains slightly

positive.

The simple physical picture using_ﬁomentum congiderations can be
algo used for an explanation of the pulse-area growth with distance.
The pulse-area growth with distance is of the dimension Zrorce X Time

F % T4m . = Distance
or orce € . TFor a pulee (or pulse part) that reaches Mg = 1, -

(u - a) X Time
the force is zero, and the pulse velocity u - a also becomes zero.

According to these considerations, the pulse-area growth with distance
near Mo = 1 should thus be of the order of unity.

CONCLUSIONS

A study of the effects of a small short-time iowering of the back
pressure in steady shock-free transonic diffuser flow by means of a
higher approximation than in NACA TN 1225 yields the following conclusions:
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l. The more accurate approximation of the present paper to the
short-time effects shows that the shock is no longer stationary or
trapped in the diffuser unless it is supported by a2 negative steady-
flow back pressure; the result thus is no longer in disagreement with
steady-flow solutions for stationary shocks.

2. The present short-time calculations avoid the use of approxi-
mate quasi-steady-flow considerations for the complete diffuser flow
to increase the accuracy of the shock motion, as was required in
Kantrowitz's paper (NACA TN 1225). The fundamental considerations in
Kentrowitz's paper are thus put on a firmer basis.

3. For short-time pulses with emplitudes that are restricted to
values that are small even compared with the difference betwéen local
and critical sonilc velocities of the chammel flow, the present results
transform into those previously reported in NACA TN 1878.

Langley Aeronautical Laboratory,
Netional Advisory Committee for Aeronsasutics,
Langley Field, Va., July 10, 1952.
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APPENDIX

THE BACK VELOCITY DUE TO STEADY-FLOW

SHOCK LOSSES NEAR M =1

The back velocity 1s obtained by subtracting the velocity increment
through a steady shock near M =1 from the difference between super-
sonic and subsonic velocities corresponding to the same channel area
near M = 1 for isentropic flow. '

The velocity increment through the shock 1s expressed in terms of
(ref. 3)

(for notation used, see fig. 2) as

Alghock _ U1 - Up Ml -

sho — _ Ml (A1)

(o] O

where the subscript 1 refers to the supersonic side of the shock and
the subscript 2 to the subsonic side. If

i (42)

is substituted into equation (Al), the result is

Mo hock __ M
8o Vl + my

The isentropic channel-area equation (where A* 1s the critical
sonic channel area)

1
=ml—§m12+--. (AB)

7+1
.A_)2=_l_ 2 ]_+.7_-_]_'M2) 7-1
A% M2l7 + 1 2
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is altered by making the substitution

2 oW

-
(r +1) - (7 - DF

and by using equation (A2) for E?. The isentropic channel-area equa-
tion then becomes

2
2 - ——
A _ -1 7 -1 7-1
(Ki) = (1 + m) (l - ——5—-n9 (AL)
Development of equation (AL) results in
A\ y +1({o 7y -3 3
Since equal areas are being considered,
7 - 3 2 7 -
m12 * 3 3 m” o= myt + g 3 m23
or
mlg_m22+7§3(ml3 -m23)=0 (A6)

Introducing the difference 3 = m; + my, where o, being on the subsonic

side, is a negative quantity, and dividing by m; - my 1in equation (A6)
yields o

m + mp + z 5 3(m12 + mm, + m22) =0

or

2
Y -3 my
& = - A
T3 (A7)
3
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where the small term Z_:_i can be neglected compared with unity.
3 ma

Now, the isentropic velocity difference is given by

Au u -
is 1 - Y —
Bo* = a,% =M -M;, (48)

The difference Auis/ao* is expressed in terms of & =m; + mpy with My
taken from equation (A2) and with My = Vl + m, as

Auis _

3 Ml = ﬁé

89

VLrm - L+ (5 - my)

.(1 +Zm - %mle) i} E + ieL.(s - ml)- - %(5 - ml)_E_I (A9)

If terms of order_higher than m12 (note that & 1is of the order mle)
are neglected, equation (A9) becomes, with the aid of equation (AT),

Au
is _ S
ag* i _
- ly-3_2
cm + 123w
_ 1_2 .7 _ 2
=m -5 my +gml (ALO)

The difference Auyg - Augpheex Obtained from equations (A3) and (A10)
is

bug , ~ Lu
is shock -7 m12 (A11)
a ¥ 6
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By using equation (A2), equation (All) can be written as

Augg - Mugpese

an% . - - %(Ela - 1)2

or, near M =1,

Auy g - Migpaek - ZE(E ~ l] 2 -2 e!ul - a'O-)(-) 2
6 1 6 ag¥

ag¥*

Since in the present considerations only terms of the order
(ul - u2)2 = ul'2 are to be retained, it is correct to assume that for

the present purpose u; - ag* = -(ue - ao*) or 2(ul - ao*) =y - u
(see fig. 2). The back veloclty thus is

2
aqy¥*

Augg - Mgnock
ao* B

R

or, in agreement with equation (32),

12

u

. 1
112 =%ao*
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Figure 1l.- Distortion of expansion pulse near My = 1 1in the velocity
plane.
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