
m
m

I

.

\)
d
1,

ii
.

.

-.

NATIONAL ADVISORY COMMITTEE

FOR AERONAUTICS
.

TECHNICAL NOTE 2831

SPAN LOAD DISTRD3UTIONS RESULTING FROM CONSTANT

ANGLE OF ATTACK, STEADY ROLLING VELOCITY, STEADY PITCHING

VELOCITY, AND CONSTANT VERTICAL ACCELERATION FOR TAPERED

SWEPTBACK WINGS WITH STREAMWISE TIPS

SUBSONIC LEADING EDGES AND SUPERSONIC TRAIL~G

By Margery E. Hannah and Kemeth Margolis

Langley Aeronautical Laboratory
Langley Field, Va.

Washington

Decem~r 1952

I

.——.

1

https://ntrs.nasa.gov/search.jsp?R=19930083507 2020-06-17T20:23:12+00:00Z



TECHLIBRARYKM=, NM

1P

llulUIBlunlNllllu
Ollb5820

NATIONAL ADVISORY COMMZHRE FOR AERONAUTICS , -

TWJ3NICAL NOTE 2831

SPAN IOAD DISTRIBUTIONS RESULTING FROM CONSTANT

ANGIJ3OF ATTACK, STEADY ROLLING VELOCITY, STEADY PITCHING
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AND SUPERSONIC TRAILING EDGES

By Margery E. Hannah and Kenneth Margolis

SUMMARY

On the basis of linearized supersonic-flowtheory, the theoretical
spanwise distributions of circulation (which are proportional to the
span iced distributions) resulting from constant angle of attack,
steady rolling velocity, steady pitching velocity, and constant verti-
cal accelemtion were calculated for a series of thin, sweptback,
tapered wings with streamwise tips. The analysis is valid at those
speeds for which the wing is wholly contained between the Mach cones
springing from the wing apex and the trailing edge of the root section,
that is, subsonic leading edges and supersonic trailing edges. An
added restriction is that the Mach cones emanating from the leading
edges of the wing tips mqst not intersect on the wing.

Fommil.asfor the spanwise distributions of circtition are given
in closed form. Numerical results are presented as a series of design
charts from which the desired loading my be obtained for given values
of aspect ratio, taper ratio, Mach number, and leading-edge sweepkck.
The axis of pitch is taken at the wing apex although, by use of the cal-
culated results and a simple transfomtion, span lead distributions for
steady pitching velocity my be readily obtained for arbitrary location
of the pitch axis. Variations of the spanwise distributions of circula-
tion with the various plan-form parameters; Mach number, and Ws-of-
pitch location are also presented for illustrative purposes.

.—. —— -. .. .. -- -- —=. —.—



2 NACA TN2831

INTRODUCTION

A knowledge of the spanwise lcding or spanwise distribution of
circulation (which is proportional to the spanwise loading) is of great
value in solving aerodynamic problems and perforndng aerodynamic calcu-
lations. For eale, it has been shown that the upwash -d sidewash
downstream of an airfoil are largely determined by the spanwise circu-
lation except in the region directly behind the trailing edge. In addi-
tion to the estimation of flow fields and evaluation of forces and
moments on the surface itself, the spanwise distribution of circulation
may~also be applied to problems in aerodynamic loads and aeroelasticity.
In view of these consideratio~, a series of chatis gitiw tie sPm~se
distributions of circulation for a variety of wing plan forms at various
Mach numbers will serve many useful purposes.

The present paper considers the spanwise distributions of circula-
tion resulting from a constant angle of attack, a constant =te of roll,
a constant rate of pitch, and constant vertical acceleration for a series
of sweptback tapered wings with streamwise tipsy subsonic leading edges,
and supersonic trailing edges. Reference 1 treats the first three
motions mentioned above for the same general class of tigs but at Mach
nunbers”for which both the leading and t~iling edges are supersonic.
It may be note& at this point that within the Limits of linearized theory
as used herein, the analyses for constant rate of roll and constant rate
of pitch are applicable to wings with linear lateral twist and linear
csmber, respectively.

The results of the analysis are given in the form of equations for
the spanwise distributions of circulation. (For the case of steady
pitching velocity, the axis of pitch is taken at the wing apex.) A
series of design charts permitting the mpid estimation of spanwise
circulation for a wing with given aspect ratio, taper ratio, leading-
edge sweepback, and Mach number are presented. By use of the calculated
results in conjunctionwith a transformation formula, the spanwise dis-
tribution of circulation due to steady pitchi.ngvelocitywith arbitrary
axis of pitch BY readily be obtained. Some illustmtive variations of
the spanwise distributions of circulation with the various wing para-
meters, llachnumber, and -s-of-pitch location are also ~cluded.

SYMBOLS

x) Y Cartesian coordinates (see fig.

Cr root chord

1)

——..-_.—



NACA T!N283I 3

.-

.

.,

b span

h taper ratio (ratio of tip chord to root chord)

A angle of sweepback of leading edge

6 semiapex angle

( )2cr#+x+l
E mean aerodynamic chord,

3(1 + h)
b

c chord at spanwise station y

s wing area

A aspect ratio, — =
~ *.

m=cot A=tanc

v Mach angle

M Mach number

B cotangent of the Mach angle, fi

$ disturbance velocity potential on upper surface

x value of @ for unit angle of attack

v free-stream velocity

P density

AP pressure difference
in sense of lift

ACP pressure-difference

between upper

coefficient,

a angle of attack, radian measure

P rate of roll, radian measure

and lower surfaces,.positive

... . .. —.——— ——- ..-— —. _____ -c —.—. — . -——. — -—
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rate of pitch, radian measure

rate of change of a ‘with time

time

~%’d
circulation at any syanwise statimn y, ; [ ACP dx

K=-=
Bb/2

components of circulation
tionj r.rl+r2

.Uxm

due to constant vertical accelera-

section lift coefficient

s~nwise loading pammeter

spanwise coordinate of intersection of Mach line emanating
frcm wing tip with wing trailing edge (see fig. 2)

-7[ 1~2AB(l+X)-kBm(l -X) +41?m

AB(I!m)(l+X)

? distance freonapex to center of pressure due to

(Q aattack, -E

C&

d distance from apex to assumed

‘sm static m9rgin, Z - d

center-of-gmsd.ty

a

!’
angle of

location

a

cLa

()

a Liftlift-curve slope, ——
aa &S

ajo

(

& Pitching moment due to ande of attack
c%= ba ~%

)a+O

.—. —— -—. — _ ——— — .— ———



NACA TN 2831
.

5

,,

>.

F’(Em) complete elli~tic integral of first kind with mdilus k,
lr/2

J
&,”

o
>

E’(W) complete elliptic integral of second kind with modulus k,

J’*’2F=-
E“(Em) = 1’-

E’(E@

I(Em) =
2(1 - &2)

(2 - B’m2)E’(l?m)- B2m%’(Rm)

G(Bm) =
~-~2

(1- 2B2m2)E’(Em) + B2m%’ (Bin)

Subscripts:

LE leading edge

TE trailing edge

ML Mach line from leading edge.of tip

ex wing region external to Mach cone from l,eadingedge of tip
(see fig. 2)

in wing region internal to Mach cone from leading edge of tip
(see fig. 2)

q pitching

a angle of attack

a pitching about apex

d pitching about assumed center-of-gravitylocation

f
..

--- . . . . . - . ——— ————— — — -— ———. . — —— —,.— -
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ANALYSIS

Scope

The sweptback wings considered in this paper are sketched in
figure 1. The system of coofinates, ting W*ters, ud associated
data used in the analysis are indicated in figures 1 and 2. For the
motions analyzed, the results are the same to the first order in a
(the angle of attack) ih both the axes system used herein and the sta-
bility axes system. The analysis is based on linearized supersonic-flow
theory and is limited to nonsideslipping streamwise-tipwings of vanish-
ingly small thickness that have zero camber.

The results are valid for a range of supersonic speeds for which
the leading edge is subsonic and the trailing edge supersonic (i.e.,
the wing is wholly contained between the Mach cones springing from the
wing apex and the trailing edge of the root section). An added restric-
tion is that the Mach cones emanating from the leading edge of the wing
tips may not intersect on the wing. These conditions expressed mathe-
matically as restrictions on the parameter B cot A are as follows:

For BA(l + h) Z2

BA(l + x) SBcotA~l
EL(J_+A) + 4(1- A)

and for BA(l + h) < 2

EA(l + h) ~BcotA~ EiA(l+ x)
EA(l+L) + 4(1- L) 4- EA(l +X)

Basic Considemtions

The evaluation of spanwise loadings generally requires a knowledge
of the pressure difference between the upper and lower surfaces of the
wing. The distribution of circulation along the span is related to the
spanwise loading pa~ter and pressu~-difference coefficient as
follows:

(1)

.— —
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The spanwise distribution of circulation r is used throughout the
remainder of this paper instead of the spanwise loading pammeter.

Inasmuch as the spanwise distribution of circulation is sptrical
about the root section for angle of attack, pitching, and vertical
accelemtion and is antisymuetrical for rolling, it is necessary to work
with only one half-wing. Accordingly, the right half-wing has been
chosen (see fig. 2). The half-wing is divided into two regions: one
region external to the Mach cone springing from the leading edge of the
tip and the other region internal to this Mach cone. Use of equation (1)
yields the following expression for the circulation function J7 (refer
to fig. 2 for appropriate regions on the wing and limits of integration):

and for yi<y~~

or

r=; r ()AC, ex

‘LIZ

The functions
(Np)ex’ (Np)ih

dx + 2@in

(2)

(3)

%

(4)

or by use of previously published reports. Reference 2 presents the
pressure-difference coefficients for the variou~ wing motions that are
valid for the “external” wing region.

( )=
All expressions for ‘ dCp

used in the subsequent derivations are obtained from this source.
, .i- Reference 3 presents approximate expressions for

()
Acp in and @h

for the cases of consbant angle of attack and steady rolling velocity;
r.

-. ._.— — -—..__- .—-— .——



8 NACA TN 2831

reference 4 gives these same functions for steady pitching velocity.
For the case of constant vertical acceleration,

()‘P in is obtained.

by use of reference ~ in conjunction wizh the results given in refer-
ences 3, 4, and 6.

Substituting the appropriate expressions into equations (2) to (4)
and performing the indi=ted operations yields the formulas for 17. It
should be noted that @in and ~P ~()

as derived in references 3 and 4

are approximate. AS discussed in these references, the results obtiined
by their use are felt to be sufficiently accurate for most practical
purposes.

Derivation of Expressions for Spanwise Distributions of

Constant angle of attack.- For the case of constant
attack,

()ACp ex =
4maE”(Pal)

J1-
1- L2

Circulation

angle of

(5)

(6)

After substitution of these va~ues into equations (2) and (4), integra-
tion, and substitution of the limits of integration .(seefig. 2), the
following form.iks are obtained:

Y sy~For O~—.—. b/2 b/2

(7)

.

‘?

*

—— —. ———.—.— .—.
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.

r!

and for Yi

b/2
< &-
b/2

1

IIv l+Bm

Steady rollihg velocity.- For steady rolling velocity,

()
2m~I(Em)

ACp ~x = ——

‘6

2y(2Bm+ 1) + b(Bm+ 1) - &

(,, ~)3/2

Substituting these values into equations
between the proper limits yields:

((zy+~)(b-%)

(8)

(9)

(lo)

(2) and (4) and integrating

For ()= Y<yi—_—
b/2 b/2

_= I(m,_@i+(_L)2r

()
P22

~ (11)

.. -—-—-— —--————-—. - —. —. —— — -— —-
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Yi
and for Y<~—<—–

b/2 b/2

L
Jqmm + 1)
b/2 +

l+m

steady pitching velocity.- For steady pitching

& ‘

()ACP ~
. 4qti(Rm)

v

3A -1-Ihn)3/2

1bB(l +-W)

I-

[()] 2
X2-L

/*
y2

G

I2(3 + 2BIu)X + 21#IUY-
1-

(13)

(14)

Using these values in equations (2) and (4), integrating,and sub-
stituting the limits of integration gives the following:

~~r Oz Y ~yi—=—
b/2 b/2

.+= 2G@a,I@ZOK)2‘(~~
()‘2 q

(15)

.

.

.

!.1

.—— — —
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8

[ I/m(,,,(3+ ZB@K+BI$-(l+ Em)
31r(,l+ Em)3/2

Constant vertical accelemtion. - For conslant verti&l accelem-.
tion, the expression for ACp for the external region is given by

–.

i

[()]Y2

()ACP = ~ M%(Em)
ex

‘2 y~i JZ$-

(17)

From the discussion presented on pages 3 and 4 of refere?ce ~, the
pressure difference at time t . 0 for the angle of attack at is

.

[

AP = %# M2@)q=l- M$w)a.l- 2p

~

.

(18)
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Hence
.

,,

ACp =

where the subscripts

(19)

q=l and a=l refer to unit pitching velocity and
unit angle of attack, respectively (see ref. 5). Ii is to-be noted-that

()
ACP ~a

( )-
Lcp -l for the internal region my be obtained directly

q=l

by substituting the
expressions for the
the expression for
of equation (19) is

values q = 1 and a = 1 into the appropriate
pressure coefficient given in reference 4 and that
x is given in reference 6. The right-hand side
then readily evaluated as follows:

+
/

M M2[6(3 + 2BM) + (12 + 8Em + 2B%2)y - Bmb(l + ~)] ~ - y
—. .

iK~~&] “’y ‘

()ACP ~ =

(20)

Substituting these expressions”for ACP (eqs. (17) and (20)) into—
equations (2) and (3) and performing the indicated operations results in
the following formulas for I’: /

r

r=
{

~ (I?+ d.,m,(y~v -

L. 1

.—— — ..— ——.—— — .- —. —
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and for %<L%
b/2 b/2

(22)

In the foregoing equations, r is seen to be a function of B as

well as the parameters K, BM, and ~ that appear in the previous
b/2

formulas. In ozxierto facilitate the.calculation and plotting of design
charts, equations (21) and (22) have each been ~~ded into ‘Wo c~O-

Brl r2
nents and so as to reduce the number of independent

&(b/2)2 B&(b/2)2
parameters. The circulation 1? is then obtained by adding rl and r2

(i.e., r= rl+ r2). The components are given as follows:

,

+=+UK,2- (-&)2[+mm,- 2N(RU]
&(b/2)

(23)

_ ——. - .-— —--.— .— —-— -— —-
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‘2 .K/iiF@@!d.E%m)~-
ti(b/2)2

[Y_],

()E“(Rm)~ cosh-l ~

v

Yi y <~and for —
b/2 < b/2

[()-Ehll l---
b/2

+

.

“

1)a“ (ml)

.

.—— -—
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r2 .

~(b/2)2

15

i

+Bm)-

d1+ (L+@l-
b/2 —)[( )21+13n+~

Y b/2
+

~ 3fi

((Bm+l)21+Bm -

L

)
1}

~,Y E“(Em) - ~(Bm) -
b/2 8

J

(26)

RESULTS AND DISCUSSION

The foregoing analysis has enabled the evaluation of the spanwise
distributions of circulation for sweptback wings of arbitrary aspect
ratio and taper ratio at supersonic speeds for which the wing leading
edge is subsonic and the wing trailing edge supersonic: The wing tips
are parallel to the free-stream direction of flow (herein termed stresm-
wise tips) and the permissible combinations of plan form and Mach number
exclude the situation where the Mach cones emanating fram the leading
edge of the wing tips intersect on the wing itself. The types of wing
motions considered and the resulting equations for the spanwise distri-
butions of circulation may be summarized as follows:

Equations

Constant angleofattack . . . . . . . . . . . . . . . . (7) em (8)
Steadyrateofroll . . . . . . . . . . . . . . . . . . (11) and (12)
Steady rateofpitch. . . . . . .. . . . . . . . . . . . (15) and (16)
Constant ’verticalaccelemtion . . . . . . . . . . . . . (23) to (26)

.—. .—— - -— —.. — — -.—
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*

These equations are seen to be functions of the parameters
$2’ .

-.
I@ and K. The parameter K is in turn a function of ~ AB, Bm,

b/2’
and L. Thus genemlized curves of the spanwise distributions of circu-
lation may be readily computed by considering different combinations of
the parameters AB, Bm, and k. Values of the elliptic functions E“(Em),
G(Bm), and I(Iiu) that appear in the equations for the spanwise distri-
butions of circulation have been calculated and are presented in figure 3.
The mathematical restrictions governing the permissible combinations of
the parameters are given in the section of this paper entitled “Scope.”

Calculations have been madefor values of AB from 2 to 20,
for X = O, 0.25, 0.50, 0.75, and 1.00, and for appropriate values of Em.
Results of the numerical calculationshave been prepared in the form of
design charts. The curves of spanwise distributions of circulation due
to constant angle of attack are shown in figures 4 to 9 and an index to
these figures is given in table I. Analogous results for steady rolling
velocity, steady pitching velocity, and constant vertical acceleration
are shown in figures 10 to 15, 16 to 21, and 22 to 27, respectively.
Indexes to these figures are given in tables II, 111, and IV, respectively.

It will be noted that in all cases for a finite taper ratio there
is a more or less abrupt change in slope at thespanwise station yi

where the tip Mach cone intersects the wing tmiling edge.
.

This dis-
continuity in slope is due to the abrupt change in pressu~s across the
Mach cone boundary (see refs. 3, 4, 6, and 7). The fact that approximate
potentials have been used”for the tip region is not expected to intro-
duce any appreciable error in calculations involving the use of these
circulations. ‘Thecurves in figures 16 to 21 are for wings pitching
about the apex. The spanwise distribution of circulation for a wing
pitching about an arbitrary axis located at a distance d from the wing
apex is

(’qJd ‘ (“q)a - %a
(27)

where the subscript q indicates the spanwise distribution of circula-
tion associated with a pitching wing and the subscript a indicates the
spanwise distribution of circulation associated with a wing at constant
angle of attack. It is frequently desirable to perform calculations for
a given static-margin condition, where static-margin is defined as the
distance between the center of pressure and the center of gravity c

*

— .-
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(i.e., Xm =Z - d). It can be shown that the dist&ce d is given

as

[1()c%jd=- + x= (28)
c~

After substitution of equation (28) into equation (27) and some simpli-
fication the following expression is obtained:

Values of C% and C~ may be obtained from references 2 to 4.

[“1r’
Charts for

( *J
are given in figures 16 to 21 labeled

Bq(b/2)2
a

ra

(

r
and charts for —

)
are given in figures 4 to 9 labeled — .

Vab/2 Vab/2
The distribution of circulation along the span for a wing pitching about
an arbitrary axis may thus readily be obtained by use of equation (29)
in conjunction with the charts presented in this paper.

●

Some illustrative curves showing the variation of the spanwise
distribution of circulation for wings at constant angle of attack with
Mach number and with various wing pammeters -aspect ratio, taper
ratio, leading-edge sweepback — are shown in figure 28. Variations of
spanwise dist~bution of circulation with these same parameters due to
steady rolling velocity, steady pitching velocity, and constant vertical
accele~tion are shown in figures 29, 30,-and 31, respectively. In
figure 30 the values presented were calculated by using equation (27).
for a center of gmvity (i.e., pitching axis) located to give a static
margin of 0.0S5. Variations of the spanwise distribution of circulation
with the position of axis of pitch are presented in figure 32. It is to
be noted that the spanwise distribution of circulation I’ due to con-
stant vertical accelemtion (shown in fig. 31) is the sum, rl + r2.

——-— — .- .——.— _ _.— .——
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CONCLUDING REMARKS
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On the basis of linearized supersonic-flowtheory, the spanwise
distributions of circulation resulting from constant angle of attack,
st-eadyrolling velocity, steady pitching velocity, and constant verti-
cal accelemtion have been calculated for a series of thin, sweptback,
tapered wings with streamwise tips.

Results are applicable for a mnge of supersonic speeds for which
the wing is wholly contained between the Mach cones springing from the
wing apex and the tmiling edge of the root section, that is, subsonic
leading edges and supersonic trailing edges. An added restriction
(which, for pmctical configurations,mterially limits the range of
Mach numbers for small aspect ratios’only)is that the Mach cones ema-
nating from the leading edge of the wing tips may not intersect on the
wing.

Generalized design curves are presented which permit rapid estima-
tion of the s-wise distributions of circulation resulting from the
various wing motions for given values of aspect ratio, taper ratio,
Mach number, and leading-edge sweepback. For illustrative purposes
some spdcific variations of the spnwise distributions of circulation
with the aforementioned parameters and axis-of-pitch location are also
presented.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Va.j September 5, 1952.

—. --- — — .— . . . . .
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TABLE I.

INDEX TO CURVES FOR SPANWISE DISTRIBUTION OF CIRCULATION

r
DUE TO CONSTANT ANGLE OF AT9!ACK. —

\

.
Vab/2 ,

AB Figure Page AB Figure Page

$
m
51

z
54
55
56
57

4 27 O.’y) 7(a)
7(b)
7(d)
7(d)
7(e)
7(f)
7(d
7(h)
7(i)
7(s)

2

:
5

:
10
12
15
20

28
29
30

::
33
34
35
36
37

2

3
4
5

;
10
12
15
20

5(a)
5(b)
5(c)
5(d)
5(e)
5(f)
5(g)
5(h)
5(i)
5(s)

o

2

:
5
6
8

10
12
15
20

8(a)
8(b)
8(c)
8(d)
8(e)
8(f)
8(g)
8(h)
8(i)
8(j)

58
59
60
61
62
“63
64
65

2;

.75

.

.

L3

6(a)
6(b)
6(c)
6(d)
6(e)
6(f)
6(g)
6(h)
6(i)
6(j)

38
39
40
41
42
43
44
45
46
47

.25

1.00 2

:
5

;
10
12
15
20

9(a)

9(b)

—-——. — ..
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TABLE II -

INDEX TO CURVES 30R SPANWISE DISTRII?UTIONOF CIRCULATION

l-l
DUE TO STl?ADYROILING

Page Page). AB Figure AB Figure

13(a)
13(b)
13(C)
13(d)
13(e)
ls(f)
is(g)
13(h)
13(i)
13(J)

91
92
93
94

Z
97
98
99
100

101
102
10
102
lo5
106
107
108
109
110

2
3
4

10 70 0.50 2
3
4
5

:
10
12
15
20

n(a)
n(b)
11(C)
n(d)
n(e)
l:(f)
n(g)
n(h)
n(i)
11(J)

71

E
74
75
76
77
78
79
m

o 2

:
!5
6
8
10
12
15
20

14(a)
14(b)
14(C)
lk(d)
lk(e)
14(f)

lb(g)
lb(h)
14(i)
14(s)

.75 2
3
4
5

:
10
12
15
20

81
82
83
84
85
86
87
88
89
90

.25 2
3
4
5
6
8
10
12
15
20

12(a)
12(b)
12(C)
12(d)
12(e)
12(f)

lz(g)

[1
12 h
12 i
12(s)

2
3
4

5

;
10
12
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TABLE III

INDEX TO CURVES FOR SRINWISE DISTRIBUTION OF CIRCULATION

r
DUE TO STEADY PITCHING VELLXXTY, -.

()B:zq

[Wing pitching about ape~

AB

2
3
4

2
3
4
5
6
8
10
12
15
20

2

;
5
6
8
10
12
15
20

Figure

16

17(a)
17(b)
17(C)
17(d)
17(e)
17(f)
17(g)
17(h)
17(i)
17(j)

18(a)
18(b)
18(c)
18(d)
18(e)
18(f)
18(g)
18(h)
18(i)
18(j)

Page

113

114
115
116
117
118
119

121
122
123

124
125
126
127
128
129
130
131
132
133

—

L AB I Figure Page
1 I I

1

0.50 2 19(a) 134
19(b) 135

: 19(C) 136
5 19(d) 137

l$l(e) 138
: lg(f) 139

10 lg(g) 140
12 19(h) 141
15 lg(i) 142
20 lg(j) 143
.

.75 2 20(a) 144
20(b) 145

: 20(C) 146
5 20(d) 147

20(e) 148
: 20(f) 149
10 Zo(g) 150
12 20(h) 151
15 20(i) 152
20 20(s) 153

1.00 2 21(a) 154
3
4
5

; 21(b) 155
10
12

.

.

.
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a

INDEX TO CURVES FOR SPANWISE DISTRIBUTION OF CIRCULATION

Brl
DUE TO CONSTANT VERTICAL ACCELERATION, —

Q’
and

()

~b2

()

2

2
~:

[
r=rl+j

2. AB Figure Page

2 22 156
(~;-$ 3

4

0 2 23(a) 158
3 23(b) 160
4 23(C) 162

5 23(d) 164
23(e) 165

: 23(f) 166
10 23(g) 167
12 23(h) la
15 23(i) 169
20 23(j) 170

.25 2 24(a) 171

3 24(b) 173
4 24(c) 175

5 24(d) 177
24(e) 178

: 24(f) 179
10 24(g) 180
12 24(h) 181
15 24(i) 182
20 24(s) 183

,

.

.75

1.00

AB

2

:
5
6
8
10
12
15
20

2
3
4
5

:
10
12
15
20

2

3
4
5
6
8
10
12
15
20

Figure

25(a)
25(b)
25(c)
25(d)

25(e)
25(f)
25(g)

25(h)
25(i)
25(j)

26(a)
26(b)
26(c)
26(d)
26(e)
26(f)

26(g)
26(h)
26(i)

26(s)

27(a)

27(b)

Page

184
186
188
189
190
191
192
193
194
195

196
198
200
201
202
203
204
205
206
207

208

210
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Figure 3.- Variation of elliptic integral functions with RIII= B cot A.
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Figure 27. - Distribution of circulation along span for wings with constant

vertical acceleration with X = 1.CO. Em = 1.CH3.
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Figure 27. - Continued.
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(b) Variation with aspect ratio. M . 1.8; A . 60°; A = O.50~

Figure 28.- Some illustrativevariations of distribution of circulation
along span with Mach nuniber,aspect ratio, sweepback, and taper ratio
for wings at a constant angle of attack.
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(d) Variation with taper ratio. A = 2; M = 1.8; A = 600.

Figure 28.- Concluded.
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F@ure 29.- Some illustrative variations of distribution
along span with Mach nuniber,aspect ratio, sweepback,
for wings having steady rolling velocity.
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(d) Variation with taper ratio. A = 2; M = 1.8; A = 600.

Figure 29.- Concluded. ‘
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Figure 30.- Some illustrativevariations of distribution of circulation
along span with Mach number, aspect ratio, sweepback, and taper ratio
for wings having steady pitching veloci~. Static margin, 0.05E.
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(d) Variation with taper ratio. A = 2; M = 1.8; A = 600.

Figure 30.- Concluded.,
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(b) Variation with aspect ratio. M = 1.8; A = 60°;

Figure 31. - Some illustrative variations of distribution
along span with Mach number, aspect ratio, sweepback,
for wings with constant vertical acceleration.
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(d) Variation with taper ratio. A = 2; M = 1.8; A = 600.

Figure 31.- Concluded.
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(a) M = 1.25; A = 4; A = 51.5°; x = 0.25.

Figure 32. - Some illustrative variations of distribution
along span with axis-of-pitch location for wings with
pitching veloci@.
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