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TECHNICAL NOTE 2755

ANALYSIS OF LANDING-GEAR BEHAVIOR

By Benjamin Milwitzky and Francis E. Cook
SUMMARY

This paper presents an analytical study of the behavior of the con-
ventional type of oleo-pneumatic landing gear during the process of
landing impact. The basic analysis is presented in a general form and
treats the motions of the landing gear prior to and subsequent to the
beginning of shock-strut deflection. In the analysis of the first phase
of the impact the landing gear is treated as a single-degree-of-freedom
system in order to determine the conditions of motion at the instant of
initial shock-strut deflection, after which instant the landing gear is
considered as a system with two degrees of freedom. The equations for
the two-degree-of-freedom system consider such factors as the hydraulic
(velocity square) resistance of the orifice, the forces due to air com-
pression and internal friction in the shock strut, the nonlinear force-
deflection characteristics of the tire, the wing lift, the inclination
of the landing gear, and the effects of wheel spin-up drag loads.

The applicability of the analysis to actual landing gears has been
investigated for the particular case of a vertical landing gear in the
absence of drag loads by comparing calculated results with experimental
drop-test data for impacts with and without tire bottoming. The calcu-
lated behavior of the landing gear was found to be in good agreement
with the drop-test data.

Studies have also been made to determine the effects of variations
in such parameters as the dynamic force-deflection characteristics of
the tire, the orifice discharge coefficient, and the polytropic exponent
for the air-compression process, which might not be known accurately in
practical design problems.

The study of the effects of variations in the tire characteristics
indicates that in the case of a normal impact without tire bottoming
reasonable variations in the force-deflection characteristics have only
a relatively small effect on the calculated behavior of the landing gear.
Approximating the rather complicated force-deflection characteristics of
the actual tire by simplified exponential or linear-segment variations
appears to be adequate for practical purposes. Tire hysteresis was found
to be relatively unimportant. In the case of a severe impact involving
tire bottoming, the use of simplified exponential and linear-segment



2 . . o . NACA TN 2755

approximations to the actual tire force-deflection characteristics,
which neglect the effects of tire bottoming, although adequate up to

the instant of bottoming, fail to indicate the pronounced increase in
landing-gear load that results from bottoming of the tire. The use of
exponential and linear-segment approximations to the tire character-
istics which take into account the increased stiffness of the tire which
results from bottoming, however, yields good results.

The study of the importance of the discharge coefficient of the
orifice indicates that the magnitude of the discharge coefficient has a
marked effect on the calculated behavior of the landing gear; a decrease
in the discharge coefficient (or the product of the discharge coef-
ficient and the net orifice area) results in an approximately propor-
tional increase in the maximum upper-mass acceleration.

The study of the importance of the air-compression process in the
shock strut indicates that the air springing is of only minor signifi-
cance throughout most of the impact, and that variations in the effec-
tive polytropic exponent n between the isothermal value of 1.0 and
the near-adiabatic value of 1.3 have only a secondary effect on the
calculated behavior of the landing gear. Even the assumption of constant
air pressure in the strut equal to the initial pressure, that is, n = O,
yields fairly good results which may be adequate for many practical
purposes.

In addition to the more exact treatment, an investigation has been
made to determine the extent to which the basic equations of motion can
be simplified and still yield acceptable results. This study indicates
that, for many practical purposes; the air-pressure force in the shock
strut can be completely neglected, the tire force-deflection relation-
ship can be assumed to be linear, and the lower or unsprung mass can be
‘taken equal to zero. Generalization of the equations of motion for this
simplified system shows that the behavior of the system is completely
determined by the magnitude of one parameter, namely the dimensionless
initial-velocity parameter. Solutions of these generalized equdtions
are presented in terms of dimensionless variables for a wide range of
landing-gear and impact parameters which may be useful in preliminary
design.

INTRODUCTION

The shock-absorbing characteristics of airplane landing gears are
normally developed largely by means of extensive trial-and-error dfop‘
testing.- ‘The desire to reduce the expense and time required by such
methods, as well as to provide a more rational basis for the predlctlon
of wheel-inertia drag loads and dynami¢ stresses in flexible airframes
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during landing, emphasizes the need for suitable theoretical methods

for the analysis of landing-gear behavior. Such theoretical methods
should find application in the design of landing gears and complete air-
plane structures by permitting

(a) the determination of the behavior of a given landing-gear con-
figuration under Varylng 1mpact condltlons (ve1001ty at contact, weight,
wing lift, etc.)

(b) the development of a landing-gear configuration to bbtain a
specified behavior under given impact conditions

(c) a more rational approach to the determination of wheel spin-up
and spring-back loads which takes into account the shock-absorbing char-
acteristics of the particular landing gear under consideration

(d) improved determination of dynamic loads in flexible airplane
structures during landing. This problem may be treated either by calcu-
lating the response of the elastic system to landing-gear forcing
functions determined under the assumption that the airplane is a rigid
body, or by the simultaneous solution of the equations of motion for
the landing gear coupled with the equations representing the additional
degrees of freedom of the structure. In many cases the former approach
should be sufficiently accurate, but in some instances, particularly
when the landing-gear attachment points experience large displacements
relative to the nodal points of the flexible system, the latter approach,
which takes into account the interaction between the deformations of the
structure and the landing gear, may be required in onier to represent the
system adequately.

Since many aspects of the landing-impact problem are so intimately
connected with the mechanlcs of the landing gear, the subject of landing-
gear behavior has received analytical treatment at various times (see
bibliography). Many of the earlier investigations, in order to reduce
the mathematical complexity of the analysis, were limited to consider-
ation of highly simplified linear systems which have little relation to
practical landing gears. Some of the more recent papers consider, with
different degrees of simplification, more realistic nonlinear systems.
The present paper represents an attempt at-a more complete analysis of
the mechanics of practical landing géars and, in addition, investigates
the importance of the various elements which comprise the landing gear
as well as the extent to which the system can be reasonably simplified
for the purpose of rapid analysis.

The basic analysis is presented in a general form and takes into
account such factors as the hydraulic (velocity square) resistance of
the orifice, the forces due to air compression and internal friction in
the shock strut, the nonlinear force-deflection characteristics of the
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tire, the wing lift, the inclination of the landing gear and the effects
of wheel spin-up drag loads. An evaluation of the applicability of the
analysis to actual landing gears is presented for the case of a vertical
landing gear in the absence of drag loads by comparing calculated
results with drop-test data.

Since some parameters, such as the dynamic force-deflection charac-
teristics of the tire, the orifice discharge coefficient, and the poly-
tropic exponent for the air-compression pbrocess may not be accurately
known in practical design problems, a study is made to assess the
effects of variations in these parameters on the calculated landing-
gear behavior.

Studies are also-presented to evaluate the extent to which the
dynamical system can be simplified without greatly impairing the
validity of the calculated results. In addition to the investigations
for specific cases, generalized solutions for the behavior of a simpli-
fied system are presented for a wide range of landing-gear and impact
parameters which may be useful in preliminary design.

SYMBOLS
Ag, pneumatic area
Ay hydraulic area
Ag area of oﬁening in orifice plate
Ay internal cross-sectional area of sho;k-strut inner cylinder
Ay external cross-sectional area of shock-strut inner cylinder
AP . cross-sectional area of metering pin or rod in plane of orifice
Ay net orifice area
Cq orifice discharge coefficient
d over-all diameter of tire
Fy pneumatic force in shock strut

Fn hydraulic force in shock strut
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friction force in shock strut
total axial shock-strut force

normal force on upper bearing (attached to inner cylinder)

-normal force on lower bearing (attached to outer cylinder)

force normal to axis of shock strut, applied at axle
vertical force, applied at axle

horizontal forcé, applied at axle

resultant force, applied at axle

force parallel to axis of shock strut, applied to tire at
ground ’

force normal to axis of shock strut, applied to tire at
ground

vertical force, applied to tire at ground
horizontal force, applied to tire at ground
resultant force, applied to tire at ground

gravitational constant
lift factor, L/W
1ift force

axial distance between upper and lower bearings, for fully
extended shock strut

axlal distance between axle and lower bearing (attached to
outer cylinder), for fully extended shock strut

constants corresponding to the various regimes of the tire-
deflection process
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combined constant, ad

combined constant, mdT

polytropic exponent for alr-compression process in shock strut
Reynolds number |

alr pressure in upper chamber of shock strut

hydraulié pressure in lower chamber of shock strut
volumetric rate of diséharge fhfoughborificé
radius of deflected tire

shock-strut axial stroke

wheel»inertia tprgue reaction .

time after contact

time after beginning of shock-strut defleétibp:'
air volume .of shock strut

polar moment of inertia for wheel assembly about axle

vertical velocity
horizontal velocity

total dropping weight

weight of upper mass above strut

weight of lower mass below strut

..+ herizdntal displacement of lower mass from position at initial

Py

contact . : - i T

vertical displaceméﬁt of upper mass from position at initial
contact
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Zp vertical displacement of lower mass from position at initial
contact

uy dimensionless upper-mass displacement from position at initial
contact

o dimensionless lower-mass displacement from position at initial
contact

e dimensionless time after contact

0] angle between shock-strut axis and vertical

€ time interval in numerical integration procedures

Y8 coefficient of friction between tire and runway

By - coefficient of friction for upper bearing (attached to inner
cylinder)

Ho coefficient of friction for lower bearing (attached to outer
cylinder)

p ' mass density of hydfaulic fluid

a angular acceieration of wheel

Axes:

Z yertical axis, positive downward.

X . horizontal axis, positive rearward

Subscripts:

0 at instant of initiallcontact

T - at instanﬁ of initial shock-strut deflection

su at instant of wheel spin-up

Notation:

[( )] = .absolute value of (')

( )* estimated value of ( ) '
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The use of dots over symbols indicates differentiation with respect
to time t or .

A prime mark indicates differentiation with respect to dimensionless
time 0.

MECHANICS OF LANDING GEAR

Dynamics of System

In view of the fact that landing-gear performance appears to be
relatively unaffected by the elastic deformations of the airplane struc-
ture (see, for example, refs. .l and 2) particularly since in many cases
the main gears are located fairly close to the nodal points of the
fundamental bending mode of the wing, that part of the airplane which
acts on a given gear can generally be considered as a rigid mass. As a
result, landing-gear drop tests are often conducted in a Jjig where the
mass of the airplane is represented by a concentrated weight. 1In
particular instances, however, such as in the case of airplanes having
large concentrated masses disposed in an outboard position in the wings,
especially airplanes equipped with bicycle landing gear, consideration
of the interaction between the deformation of the airplane structure and
the landing gear may be necessary to represent the system adequately.

Since the present paper is concerned primarily with the mechanics
of the landing gear, it is assumed in the analysis that the landing gear
is attached to a rigid mass which has freedom only in vertical trans-
lation. The gear is assumed infinitely rigid in bending. The combi-
nation of airplane and landing gear considered therefore comprises a
system having two degrees of freedom (see fig. 1(a)) as defined by the
vertical displacement of the upper mass and the vertical displacement
of the lower or unsprung mass, which is also the tire deflection. The
strut stroke s 1is determined by the difference between the displace-
ments z) and 2z, and, in the case of inclined gears, by the angle o

between the axis of the strut and the vertical. For inclined gears,
compression of the shock strut produces a horizontal displacement of the
axle Xo. From consideration of the kinematics of the system it can be

Zq - Z :
- l 2 P 3 -—
= —_— d = = - .
and x, = s sin @ (zl ze)tan ®. In the

analysis, external lift forces, corresponding to the aerodynamic lift,
are assumed to act on the system throughout the impact. In addition to
the vertical forces, arbitrary drag loads are considered to act between
the tire and the ground.

shown that s
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The system treated in the analysis may therefore be considered to
represent either a landing-gear drop test in a jig where wing lift and
drag loads are simulated, or the landing impact of a rigid airplane if
rotational motions are neglected. Rotational freedom of the airplane,
where significant, may be taken into account approximately by use of an
appropriate effective mass in the analysis.

Figure 1(b) shows a schematic representation of a typical oleo-
pneumatic shock strut used in American practice. The lower chamber of
the strut contains hydraulic fluid and the upper chamber contains air
under pressure. The outer cylinder of the strut, which is attached to
the upper mass, contains a perforated tube which supports a plate with
a small orifice, through which the hydraulic fluid is forced to flow at
high velocity as a result of the telescoping of the strut. The hydraulic
pressure drop across the orifice thus produced resists the closure of
the strut, and the turbulence created provides a powerful means of
absorbing and dissipating a large part of the impact energy. In some
struts the orifice area is constant; whereas, in other cases a metering
pin or rod is used to control the size of the orifice and govern the
performance of the strut.

The compression of the strut produces an increase in the air pres-
sure which also resists the closure of the strut. In figure 1(b) Py

represents the oil pressure in the lower chamber and P, represents the

air pressure in the upper chamber.

In addition to the hydraulic resistance and air-pressure forces,
internal bearing friction also contributes forces which can appreciably
affect the behavior of the strut.

. The forces created within the strut impart an acceleration to the
upper mass and also produce an acceleration of the lower mass and a
deflection of the tire. Figire 1(c) shows the balance of forces and
reactions for the wheel, the inner cylinder, and the outer cylinder.

It is clear that the strut and the tire mutually influence the behavior
of one another and must be considered simultaneously in analyzing the
system.

Forces in Shock Strut
From.consideration of the pressures acting in the shock strut it
can be readily seen from figure 1(b) that the total axial force due to

hydraulic resistance, air compressioun, and bearing friction can be
expressed by

FS = ph(Al - Ap) + pa(A2 - Al) + paAP + Ff
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where

Aq internal cross-sectional area of inner cylinder

Ap external cross-sectional area of inner cylinder

AP cross-sectional area of metering pin or rod in plane of orifice

This expression can also be written as

Fg (ph - Pa)(Al - Ap) + pAy + Fp

(Ph - pa)Ah +ApaAa + Fr

Fy + Fa + Fp (1)

where

Py = Py pressure drop across the orifice

Ay hydraulic area (A; - A, for the strut shown in fig. 1)
A, pneumatic area (Ag for the strut shown in fig. 1)

In this paper the terms (ph - Pa)Ah and pyA,  are referred to as

hydraulic force F, and pneumatic force Fy, respectively. For the

strut shown in figure 1, the hydraulic and pneumatic areas are related
to the strut dimensions as previously noted. In the case of struts .
having different internal configurations, the hydraulic and pneumatic
areas may bear somewhat different relations to the dimensions of the
strut. In such cases, however, consideration of the pressures acting
on the various components of the strut should permit these areas to be
readily defined. :

Hydraulic force.- The hydraulic resistance in the shock strut
results from the pressure difference associated with the flow through
the orifice. -In a landing gear the orifice area is usually small enough
in relation to the diameter of the strut so that the jet velocities and
Reynolds numbers are sufficiently large that the flow is fully turbulent.
As a result the damping force varies as the square of the telescoping ’
velocity rather than directly with the velocity. Since the hydraulic
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resistance is the major component of the total shock-strut force, viscous
damping cannot be reasonably assumed, even though such an assumption
would greatly simplify the analysis.

The hydraulic resistance can Be readily derived by making use of
the well-known equation for the discharge through an orifice, namely,

Q = CdAn\‘/%(Ph - pa)

where
Q voluﬁetric rate of discharge
:Cq coefficient>of.discharge ) : \
“Ap net orifice area.
ph hydraulic pressure in lower chamber
pa air pressure in upper chamber
p mass density of hydraulic fluid

From considerations of continuity, the volumetric rate of discharge
can also be expressed as the product of the telescoping velocity § and
the hydraulic area Ah

Q=Ahé

Equating the preceding expressions for the discharge permits writing the
following simple equation feor the pressure drop across the orifice

y 2:2
o) 5
_p :;A}l_____

P
h 2(chn)2

The hydraulic resistance th due to the telescoping of the strut is
given by the product of the differential pressure Py - 18 and the
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area A, which is subjected to the hydraulic pressure, as previously
noted. Thus '

3
Fh——Lée (2

) z(chn')2

Equation (2) can be made applicable to both the compression and elonga-

tion strokes by introducing the factor -£— +to indicate the sign of the

e

hydraulic resistance; thus

L

= o= E ' (25)
IS' E(CdAn)e

Fy

The net orifice area A, may be either a constant or, when a

metering pin is used, can vary with strut stroke; that is,
Ap = Ay - Ay = A,(s), where A, 1s the area of the opening in the |
orifice plate and Ap is the area of the metering pin in the plane of"

the orifice. At the present time there is an increasing tendency to
eliminate the metering pin and use a constant orifice area, particularly
for large airplanes, in which case A, = A,- In the general case, the

orifice discharge coefficient might be expected to vary somewhat during
an impact because of changes in the size and configuration of the net
orifice area, changes in the exit conditions on the downstream face of
the orifice due to variations in the amount of hydraulic fluid above the
orifice plate, changes in the entry conditions due to variations in the
length of the flow chamber upstream of the orifice, and because of
variations in the Reynolds number of the flow, so that, in general,

Cq = Cq(s, R). Although the individual effects of these factors on the
discharge coefficients for orifices in shock struts have not been evalu-
ated, there is some experimental evidence to indicate appreciable vari-
ations of the discharge coefficient during impact, particularly in the
case of struts with metering pins. It might be expected that such vari-
ations would be considerably smaller for gears having a constant orifice
area.

In order to evaluate the precision with which the orifice-discharge
coefficient has to be known, a brief study is presented in a subsequent
section which shows the effect of the discharge coefficient on the calcu-
lated behavior of a landing gear with a constant orifice area, under the
assumption that the discharge coefficient is constant during the impact.

N
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The foregoing discussion has been concerned primarily with the com-
pression stroke of the shock strut. Most struts incorporate some form
of pressure-operated rebound check valve, sometimes called a snubber
valve, which comes into action after the maximum stroke has been attained
and closes off the main orifice as soon as the strut begins to elongate,
so that the fluid is forced to return to the lower chamber through small
passages. The action of the snubber valve introduces greatly increased
hydraulic resistance to dissipate the energy stored in the strut in the
form of air pressure and to prevent excessive rebound. The product CghAp

to be used in equation (2a) during the elongation stroke is generally
uncertain. The exact area A, during elongation is usually somewhat
difficult to define from the geometry of the strut since in many cases
the number of connecting passages varies with stroke and the leakage area
around the piston may be of the same order of magnitude as the area of
the return passages. Furthermore, the magnitude of the orifice discharge
coefficient, and even possibly the nature of the resistance, are question-
able due to the foaming state of the returning fluid. Fortunately, the
primary interest is in the compression process rather than the elongation
process since the maximum load always occurs before the maximum strut
stroke is reached.

Pneumatic force.- The air-pressure force in the upper chamber is
determined by the initial strut inflation pressure, the area subjected
to the air .pressure (pneumatic area), and the instantaneous compression
ratio in accordance with the polytropic law for compression of gases,
namely p,v* = Constant, or

n
- Vo)
by = pao(??

where

P, air pressure in upper chamber of shock strut

paO air pressure in upper chamber for fully extended strut
v air volume of shock strut

Vo air volume for fully extended strut

Since the instantaneous air volume is equal to the difference between
the initial air volume and the product of the stroke and pneumatic

v n
area Aj, Py = pao<;6_:gK—g> . The force due to the air pressure is
a
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simply the product of the pressure and the pneumatic area:

’

Vo n - | . .
F. = A[—O0 , o .
a pao a<vo ~ hs | o | (3)

In the preceding equations, the effectiVe polytropic exponent n
depends on the rate of compression and the rate of heat transfer. from
the air to the surrounding environment. Low rates .of compression would
be expected to result in values of n approaching the isothermal value
of 1.0; whereas higher values of n, limited by the adiabatic value
of 1.4, would be expected for higher rates of compression. The actual
thermodynamic process is complicated by the violent mixing of the highly
turbulent efflux of hydraulic fluid and the air in the upper chamber
during impact. On the one- hand, the dissipation of energy in the
production of turbulence generates heat; on the other hand, heat is
~absorbed by the aeration and vaporization of the fluid. The effect of
this mixing phenomenon on the polytropic exponent or on the equivalent
air volume is not clear. A 'limited amount of expérimental data obtained
in drop tests, however, (refs. 3 and 4) indicates that the effective
polytropic exponent may be in the neighborhood of 1.1 for practical
cases. A brief study of the importance of the air-compression process
and the effects which different values of n may have on the calculated
behavior of the landing gear is Presented in a subsequent section.

Internal friction force.- In the literature on machine design the
wide range of conditions under which frictional resistance can occur
between sliding surfaces is generally classified in three major cate-
gories, namely, friction between dry surfaces, friction between imper-
fectly lubricated surfaces, and friction between perfectly lubricated
surfaces. In the case of dry friction, the resistance depends on the
physical characteristics of the sliding surfaces, is essentially propor-
tional to the normal force, and is approximately independent of the sur-
face area. The coefficient of friction K, defined as -the ratio of the
frictional resistance to the normal force, is generally somewhat greater
under conditions of rest (static friction) than under conditions of
sliding (kinetic friction). Although the coefficient of kinetic friction
generally decreases slightly with increasing velocity, it is usually con-
sidered, in first approximation, to be independent of velocity. If, on
the other hand, the surfaces are completely separated by a fluid film of
lubricant, perfect lubrication is said to exist. Under these conditions
the resistance to relative motion depends primarily on the magnitude of
the relative velocity, the physical characteristics of the lubricant,
the area, and the film thickness, and is essentially independent of the
normal force and the characteristics of the sliding surfaces. Perfect
lubrication is rarely found in practice but is most likely under condi-
tions of high velocity and relatively small normal pressure, where the
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shape of the sliding surfaces is conducive to the generation of fluid
pressure by hydrodynamic action. In most practical applications
involving lubrication, a state of imperfect lubrication exists and the
- resistance phenomenon is intermediate between that of dry friction and
perfect lubrication.

In the case of landing-gear shock struts, the conditions under
which internal friction is of concern usually involve relatively high
normal pressures and relatively small sliding velocities. Moreover,
the usual types of hydraulic fluid used in shock struts have rather poor
lubricating properties, and the shape of the bearing surfaces is gener-
ally not conducive to the generation of hydrodynamic pressures. It
would therefore appear that the lubrication of shock strut bearings is,
at best, imperfect; in fact, the conditions appear to approach closely
those for dry friction. In the present analysis, therefore, it is
assumed, in first approximation, that the internal friction between the
bearings and the cylinder walls follows laws similar to those for dry
friction; that is, the friction force is given by the product of the
normal force and a suitably chosen coefficient of* friction.

With these assumptions the internal friction forces produced in
the strut depend on the magnitude of the forces on the axle, the incli-
nation of the gear, the spacing of the bearings, and the coefficient of
friction between the bearings and the cylinder walls. Figure 1(c)
schematlcally illustrates the balance of forces acting on the various
components of the landing gear. The total axial friction in the shock
strut is the sum of the friction forces contributed by each of the
bearings:

Fp .= TETQJlIFl| + u2|FQl>_.

.

where

Fe axial friction force

By coefficient of friction for upper bearing (attached to inner
cylinder)

Fy normal force on upper bearing (attached to inner cylinder)

Ko coefficient of friction for lower bearing (aﬁtached to outer
cylinder) :

Fo normal force on lower bearing (attached‘to outer kylinder)

factor to iﬁﬁicafe_sign of friction force -
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During.the interval prior to the beginning of shock-strut motion
the friction forces depend on the coefficients of static friction; dafter
the strut beglns to telescope the coefficients of kinetic frlctlon

apply.

From considerations of the balance of moments it can be éeen from
figure 1(c) that

and
lp - 8
Fp = Fy [-2—— + 1
all+s
so that
12 - 8 "
Fp = ,SIIFN |1 (-2 + “2)7-—;—g + Ho (1)
where
Fy =Fy sino - F cos 4
Ny ' . @ Hy ? (La)
and
FNa force normal to strut applied at axle
FVa vertical force applied at axle
FHa horizontal force applied at axle
) angle between strut axis and vertical
3] axial distance between upper and lower bearings, for fully
' extended strut :
lo axlal distance between axle and lower bearing (attached to

outer cylinder), for fully extended strut
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The quantities FNa, FVa, and FHa are forces applied at the axle

and differ from the ground reactions by amounts equal to the inertia
forces corresponding to the respective acceleration component of the
lower mass. Since the inner cylinder generally comprises only a rela-
tively small fraction of the lower mass, the lower mass may reasonably
be assumed to be concentrated at the axle. With this assumption, the
relationships between the forces at the axle and the forces at the
ground are given by

Wo .. - Wo ..
FVa = Fvg + E Z2 - W2 FHa = FHg - —g— .XQ

The normal force at the axle can therefore be expressed in terms of the
ground reactions and the component accelerations of the lower mass by

. .W2 . ' . Wo .. .

Fy, = FVg.+ z %2 - Ws)sin ¢ - FHg - & X2jcos @ (k)
where
Fvg  vertical force applied to tire at ground
¥y horizontal force applied to tire at ground

g .

Wo
= effective mass below shock strut, assumed concentrated at axle
Xo horizontal acceleration of axle
Zy vertical acceleration of axle

_ In the case of an inclined landing gear having infinite stiffness
in bending, the horizontal displacement of the lower mass Xo 1s related

to the vertical displacements of the upper and lower masses by the kine-
matic relationship Xo = (Zl - ze)tan P, as previously noted. Double

differentiation of this relationship gives Xp = (El - Eg)tan ®. Substi-
tution of this expression into equation (Lb) gives
W

~ . ' o L
Fy, = FVg sin @ - FHg cos @ + s z) sin @ - Wy sin @ (4c)
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In equation (4c) the quantity 2 sin ¢ represents the acceleration
of the lower mass normal to the strut axis when the gear is rigid in
bending. In the case of a gear flexible in bending, the normal acceler-
ation of the lower mass is not completely determined by the vertical
acceleration of the upper mass and the angle of inclination of the gear.
If it should be necessary to take into account, in particular cases, the

. effects of gear flexibility on the relationship between the normal force

on the axle and the ground reactions, the quantity El sin @ in equa-
tion (4c) may be replaced by estimated values of the actual normal accel-
eration of the lower mass as determined from consideration of the bending
response of the gear to the applied forces normal to the gear axis. The
effects of gear flexibility are not considered in more detail in the
present analysis.

Forces on Tire’

Figure 2(a) shows dynamic force-deflection characteristics for a
27-inch smooth-contour (type I) tire inflated to 32 pounds per square
inch. These characteristics were determined from time-history measure-
ments of vertical ground force and tire deflection in landing-gear drop
tests with a nonrotating wheel at several vertical:velocities. As can be
seen, the tire compresses along one curve and unloads along another, the
hysteresis loop indicating appreciable energy dissipation in the tire.
There is some question as to whether the amount of hysteresis would be
as great if the tire were rotating, as in a landing with forward speed.
The force-deflection curve for a velocity of 11.63 feet per second is for
a severe impact in which tire bottoming occurs and shows the sharp
increase in force with deflection subsequent to bottoming.

In figure 2(b) the same force-deflection characteristics are shown
plotted on logarithmic coordinates. As can be seen, the force exhibits
an exponential variation with deflection. A systematized representation
of the force-deflection relationship can therefore be obtained by means
of simple equations having the form

r zp\*

—_ —_ 1.

FVg = mzpt = m (?f) (5)
where

ﬁ&é:: vertical force, applied to tire at ground

25 vertical displacement of lower mass from bosition at initial

contact (radial deflection of tire) .
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d over-all diémeter of tire

m,r constants corresponding to the various regimes of the tire-
"deflection process

m' combined constant, mdT

It may be noted from figure 2 that essentially the same force-
deflection curve holds during compression for all impact velocities, up
to the occurrence of tire bottoming, and that in figure 2(b) the slopes
of the curves in each of the several regimes of the tire-deflection
process are also independent of velocity, except in the compression
regime following tire bottoming.

Figure 2 also shows simple approximations to the tire character-
istics which were obtained by fitting straight-line segments (long-
dashed lines) to the actual force-deflection curves in figure 2(a) for
impacts at 8.86 and 11.63 feet per second. These approximations, herein-
after referred to as linear-segment -approximations, are included in a
study, presented in a subsequent section, to evaluate the degree of
accuracy required for adequate representation of the tire character-
istics. The various representations of the tire characteristics con-
sidered and the pertinent constants for each regime of tire deflection
are shown in figure 3.

EQUATIONS OF MOTION

Thevinterhal axial force Fg produced by the shock strut was shown

in a previous section to be equal to the sum of the hydraulic, pneumatic,
and friction forces, as given by equation (1). Since these forces act
along the axis of the strut, which may be inclined to the vertical by

an angle ¢, the vertical component of the axial shock-strut force is
given by Fg cos @. The vertical component of the force normal to the

shock strut is given by ENa sin ¢. These forces act in conjunction with

the 1lift force and weight to produce an acceleration of the upper mass.
The equation of motion for the upper mass is

Wy ..
Fg cos @ + Fy, sin @ + L - Wy = -25 z1 (6)

The vertical components of the axial and normal shock-strut forces
also act, in conjunction with the weight of the ldwer mass, to produce
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a deformation of the tire and an acceleration of the lower mass. The
‘equation of motion for the lower mass is

. W
. 2 e
FS cOs @ + FNa sin q) + WE - g— 22 = Fvg (22) (7)

where the vertical ground reaction FVg is. expressed.as a- function of
the tire deflection 2z,. ‘The relationship between FVg and 2z, has

been discussed in the previous section on tire characteristics.

‘By combining equations (6) and (7), the vertical ground force can
be written in terms of the inertia reactions of the ‘upper and lower
masses, the 1lift force, and the total weight. : The over-all dynamic
equilibrium is given by - ' oo

M) smgh - FhRoiew (g

Motion Prior to Shock-Strut Deflection

Conventional oleo-pneumatic shock struts are inflated to some finite
pressure in the fully extended position. Thus the strut does not begin
to deflect in an impact until sufficient force is developed to overcome
the initial preloading imposed by the air pressure and intérnal friction.
Since the strut is effectively rigid in compression, as well as in
bending, prior to this instant, the system may be considered to have
only one degree of freedom during the initial stage of the impact. The
equations of motion for the one-degree-of-freedom system. are derived in
order to permit determination of the initial conditions required for the
analysis of the landing-gear behavior subsequent to the beginning of. |
shock-strut deflection. ' . ' A

‘Since z) = Zy = z during this first phase of the impact, equa-
tion (8) may be written as

Fy,(2) =-‘§’ z - W(KL - 1) | (9)

where' KL = %.
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For the general case of an exponential relationship between vertical
ground force and tire deflection, equation (5) applies and the equation
of motion becomes :

g Z + mzT + W(KL - l) =0 (10)

/ .
The shock strut begins to telescope when the sum of the inertia,

weight, and 1ift forces becomes equal to the vertical components of the

axial and normal shock-strut forces. At this instant tr, Fg = Fao + FfT

and equation (6) can be written as

(Fao + FfT)COS P + FNa? sin ¢ + KW - W;

Zr = - (11)
W1/8 )
where \
Fao initial air-pressure preload force, ,paOAa
FfT static friction at instant +t;

At the instant t;, s = O and equation (l4) becomes

Fp_ = IENaT K, : (11a)

where
_ lp
Kp o= (w1 + “2)71— + Mo

and W and are coefficients of static friction.
1 2

Since the strut is assumed essentially rigid in compression (and
also rigid in bending), there is no kinematic displacement of the lower
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mass in the horizontal direction up to the beginning of shock-strut
deflection, so that xp = O and equation (4b) becomes '

Wo .. >
F = R + —2_ - Wo]sin @ - F cos @ (11b)

Incorporatlng equatlons (11a), (llb), and (9) into equatlon (11)
gives ‘

Fao - (i K, sin @ - cos Q)(KLW - le ;‘Eﬁé(i K, cosu¢f+‘sin-®)
W1

. (12)
gt K sin e - cor 0)

ZT=

In equation (12) wherever the % sign appears the plus signs apply ﬁhen '
FN; >0 and the minus signs apply when FNa < 0.
T T

From equation (10) the vertical displacement of the system:at the
instant t; 1is given in terms of the corresponding acceleration by

1/r

ZT={113E’(1 - ) - g Z{] )

Integrating equation (10) and noting. ‘that zy = O provides the

relationship between the vertical velocity . and the vertical displacement
of the system at the beginning of shock-strut deflection

. .o 2 m T+l o .
Z = \/ZO - T%[; — z.o o+ W(KL - l)ZE] (14)

In view of the fact that the tire force-deflection curve is essen-
tlally linear for small deflections, it may be reasonably assumed that .
= 1 for the purpose of determlnlng the time after contact ‘at Which
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the strut begins to telescope. With this assumption tr can be deter-
mined from the relationship )

z 7, .
T — =
0 2 0] ' ’
‘ . 5 2 _ 28im 2 _ :
: . 'l/zo - Wl:?z + W(Kg, l)z:]
where the general expression for the variable z is obtained from equa-

tion (14) without the subscripts T. Performing the indicated inte-
gration. gives T :

s ;'\'/n‘l":g' sin"h (1 - k) - sin} C[(l‘ - Kp) - I%:] < (15)
where

C - g
M'zog % + [(1 - KL)g:,?

The computation of t, can be greatly simplified by use of the

following approximation which assumes a linear relationshipvbetween
velocity and time: '

2z
ty = —— | (152)
Zg t+ 27

Equation (15a) should be a fairly good approximation in view of the
relatively short time interval between initial contact and the beginning
of shock-strut motion.

Equations (12), (13), and (14) permit the determination of the
‘vertical acceleration, displacement, and velocity, respectively, of the
system (upper and lower masses) at the beginning of shock-strut deflec-
tion. Equation (15) or (15a) permits calculation of the time interval
between initial contact and this instant. These equations provide the
initial conditions required for the analysis of the behavior of the
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landing gear as a system with two degrees of freedom after the shock’
strut begins to deflect.

If drag loads are considered, the solution of equation (12) requires
knowledge of the horizontal ground force Eﬁg at the instant t;.
T

Since the present analysis does not explicitly treat the determination
of drag loads, values of EHg have to be estimated, either from other
T

analytical considerations, experimental data, or on the basis of
experience.

Motion Subsequent to Beginning of Shock-Strut Deflection

Once the sum of the inertia, weight, and 1lift forces becomes suffi-
ciently large to overcome the preloading force in the shock strut due to
initial. air pressure and internal friction, the shock strut can deflect
and the system becomes one having two degrees of freedom. Incorporating
the expressions for the hydraulic, pneumatic, and friction forces
(eas. (2a), (3), and (4)) into equation (6) permits the equation of
motion for the upper mass to be written as follows:

Wy ..o . oea 3 - v n
1% Z] +9 = h 5 52 + pa-Aa<———l%r—> +
i|S| 2(Cghn) 0 %\Vo - Ags

. ‘ e s ‘ : .
S 2 .
——_ - - W =
|é||FNa '(“l + “2)11 — p2| cos @ + KW 1+ FNa sin g = 0 (16)
where

_ 2% - 2%
cos @

I
cos @ - o
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and, since Fvg = Fvg(ZQ), equation (lc) becomes

Wo ., = A
Fy, = Fvg(zz)sin P - FHg cos @ + E? Z} sin @ - Wy sin o

a

where EVg(ZQ) is determined from the force-deflection characteristics
of the tire. For the usual type of pneumatic tire, Evg(ZQ) = mzo¥, as
previously noted. '

Similarly, the equation of motion for the lower mass follows from
equation (7):°

3 n
W . PA. . v
E? Z, - I?I h 5 82 + P, Aa<; OA S) +
S -
2(Cqhy) 0 "\0 - %4

22 - 8

TET'FNaI (“1 + “2)11 TSt H2f(fcos 9+ Fvg(z2) - Py, sin o - W? =0

(17)

The over-all dynamic equilibrium equation is still, of course, as
given by equation (8) -

= El + = 22 + W(KL - l) + Evg(z2)= 0

Any two of the preceding equations (egs. (16), (17), and (8)) are
sufficient to describe the behavior of the landing gear subsequent to
the beginning of shock-strut motion. These equations may be used to
calculate the behavior of a given landing-gear configuration or to
develop orifice and metering-pin characteristics required to produce a
specified behavior for given impact conditions. They may also be used
as a basis for the calculation of dynamic loads in flexible airplane
structures either by (a) determining the landing-gear forcing function
under the assumption that the upper mass is a rigid body and then using
this forcing function to calculate the response of the elastic system
or (b) combining the preceding equations with the equations representing
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the additional degrees of freedom of the structure; the simultaneous
solution of the equations for such a system would then take into account
the interaction between the deformation of the structure and the landing
gear. / :

SOLUTION OF EQUATIONS OF MOTION

In the general casé the analysis of a landing gear involves the
solution of the equations of motion given in the section entitled
"Motion Subsequent to the Beginning of Shock-Strut Deflection," with the
initial conditions taken as the conditions of motion at the beginning of
shock-strut deflection, as determined in accordance with the initial
impact conditions and the equations given in the section entitled
"Motion Prior to Shock-Strut Deflection."

Numerical Integration Procedures

In view of the fact that the equations of motion for the landing
gear subsequent to the beginning of shock-strut deflection are highly
nonlinear, analytical solution of these equations does not appear
feasible. "In the present paper, therefore, finite-difference methods
are resorted to for the step-by-step integration of the equations of
motion. Although such numerical methods lack the generality of ana-
lytical solutions and are especially time-consuming if the calculations
are carried out manually, the increasing availability of automatic cal-
culating machines largely overcomes these objections.

Mogt of the solutions presented in this paper were obtained with a
procedure, hereinafter referred to as the "linear procedure," which
assumes changes in the motion variables to be linear over finite time
intervals. A few of the solutions presented were obtained with a pro-
cedure, hereinafter referred to as the "quadratic procedure," which
assumes a quadratic variation of displacement with time for successive
intervals. The generalized solutions for the simplified equations dis-
cussed in a subsequent section were obtained by means of the Runge-Kutta
procedure. The application of these procedures is described in detail
in appendix A.- L ’ s

e T Use>of‘Tife Force;Déflection Charactéristics

In order to obtaiﬁ solutions for particular cases, it is, of course,
necessary - to héve;‘in'addition to information regarding the physical
characteristics of the landing gear, some knowledge of the'force-

deflection characteristics of the tireih
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If extensive data regarding the dynamic tire characteristics, such
as shown in figures 2 and 3, are available, an accurate solution can be
obtained which takes into account the various breaks in the force-
deflection curves_(logarithmic'coordinates), as well as the effects of
hysteresis. In view of the fact that the constants m' and r have
the same valués'throughout praétically the entire tire compression
‘process regardless of the initial impact velocity or the maximum load
attained, these values of m' and r, as determined from the force-
deflection curves, can be used in the calculation of the motion subse-
quent to the beginning of shock-strut deflection until the first break
in the force-deflection curve is reached prior to the attainment of the
maximum force. If the conditions for the calculations are the same as
those for which force-deflection curves are available, the values of m!'
and r for each of the.several regimes subsequent to the first break
can also be determined directly from the force-deflection curves. In
general, however, the conditions will not be the same and interpolation
will be necessary to estimate the values of m' for the subsequent |
regimes. Such interpolation is facilitated, particularly after the
maximum force-deflection point has been calculated, -by the fact that each
subsequent regime has a fixed value of r, regardless of the initial
impact conditions. o

The use of the tire-deflection characteristics in the calculations
is greatly simplified if hysteresis is neglected since the values of m!'
and r which apply prior to the first break in the force-deflection
curves are then used throughout the entire calculation, except in the
case of severe impacts where tire bottoming occurs, in which case new
values of m' and r are employed in the tire-bottoming regime. A
similar situation exists with'respéct to the constants a' and b when
the linear approximations which neglect hysteresis are used. These
simplifications  would normally be employed when only the tire manu-
facturer's static or so-called impact load-deflection data are available,
as is usually the case. ' ' ’

Effect of Drag Loads

Although the present analysis permits taking into account the
effects of wheel spin-up @rag loads on the behavior of the landing gear,
the determination of the drag-load time history is ndt treated explicitly.
Thus, if it is desired to consider the effects of the drag load on the
gear behavior, such as in the case of a drop test in which drag loads
are simulated by reverse wheel rotation or in a landing with forward
speed; it is necessary to estimate the drag load, either by means of
other analytical considérations or by recourse to experimental data.

As a first approximation the instantaneous drag force may be assumed to
be equal to the vertical ground reaction multiplied by a suitable coef-
ficient of friction u; that is, EHg = Fvgu, up to the instant when
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the wheel stops skidding, after which the drag force may be assumed
equal to zero. (The current ground-loads réquirements specify a skidding
coefficient of friction p = 0.55; limited experimental evidence, on the
other hand, indicates that p may be as high as 0.7 or as low as 0.4.)
In some cases experimental data indicate that representation of the drag-
load time history can be simplified even further by assuming a linear
variation of the drag force with time during the period of wheel skidding.
The instant at which the wheel stops skidding can be estimated from
the simple impulse-momentum relationship

. o .
su su LV :
JF Fy_ dt = gjr Fy_dt = 50
o  Hg© o g 2

Ta
where
I, - polar moment of inertia of-wheel assembly ébout‘axle
VHO initial horizéntal velocity
T3 radius of deflected tire : | . . \
tsu time of wheel spin-up

When the drag force is expressed in terms of the vertical force,

t , :

the value of the integral ‘jp FHg dt can be determined as the step-by-
. o | -

step calculations proceed and the drag-force term can be eliminated from-

the equations of motion after the required value of the integral is

reached. '

s

EVALUATION OF ANALYSIS @YfCOMPARISON OF CALCULATED

RESULTS WITH EXPERIMENTAL DATA

In order to evaluate the applicability of the foregoing analytical
treatment to actual landing gears, tests were conducted in the Langley
impact basin with a conventional oleo-pneumatic landing gear originally
designed for a small military training airplane. A description of the
test specimen and apparatus used is given in appendix B. E
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In this section calculated results are compared with experimental
data for a normal impact and a severe impact with tire bottoming. The
vertical velocities at the instant of ground contact used in the calcu-
lations correspond to the vertical velocities measured in the tests.
Equations (12), (13), (14), and (15a) were used to calculate the values
of the variables at the instant of initial shock-strut deflection.
Numerical integration of equations (16) and (17) provided the calculated
results for the two-degree-of-freedom system subsequent to the beginning
of shock-strut deflection.

In these calculations the discharge coefficient for the orifice and
the polytropic exponent for the air-compression process were assumed to
have constant values throughout the impact. Consideration of the shape
of the orifice and examination of data for rounded approach orifices in
pipes suggested a value of Cq equal to 0.9. Evaluation of data for
other landing. gears indicated that the air-compression Process could be
represented fairly well by use of an- average value of the effective
polytropic exponent n = 1.12, 1In view of the fact that the landing
gear was mounted in a vertical position and drag loads were absent in.
the tests, friction forces in the shock strut were assumed to be negli-
gible in the calculations. Since the. weight was fully balanced by 1lift
forces in the tests, the lift factor K; was taken equal to 1.0. The

appropriate exact tire characteristics (see fig. 3) wére used for each
case. - , \

Normal Imiact

Figure 4 presents a comparison of calculated results with experi-
mental data for an impact without tire bottoming at a vertical velocity
of 8.86 feet per second at the instant of ground contact. The exact
dynamic force-deflection characteristics of the tire, including hyster-
esis, were used in the calculations. These tire characteristics are
shown by the solid lines in figure 2(a) and values for the tire con-
stants m' and r are given in figure 3(a).

Calculated time histories of the total force on the upper mass and
the acceleration of the lower mass are compared with experimental data
in figure 4(a). Similar comparisons for the upper-mass displacement,
upper-mass velocity, lower-mass displacement, strut stroke, and strut
telescoping velocity are presented in figure 4(b).. As can be seen, the
agreement between the calculated and experimental results is reasonably
good throughout most of-the time history. Some of the minor discrep-
ancies during the later Stages of the impact appear to be due to errors
in measurement since the deviations between the calculated and experi-
mental upper-mass accelerations. (as represented by the force on the
upper mass) are incompatible with those for the upper-mass displacements,
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whereas the calculated upper-mass displacements are necessarily directly
compatible with the calculated upper-mass accelerations. The maximum
value of the experimental acceleration of the lower mass may be scmewhat
high because of overshoot of the accelerometer. .

In addition to the total force on - the upper mass, figure 4(a) pre-
sents calculated time histories of the hydraulic and pneumatic components
of the shock-strut ‘force, as determined.from equations (2) and .(3),.
respectively. It can be seen that throughout most -of the impact the
force developed in the shock strut arises prlmarlly from the hydraulic
resistance of the orifice. .Toward the end of the -impact, however,
because of the decreased telescoplng velocities and fairly large strokes
which correspond to high compression ratios,- the alr-pressure force
becomes larger than the hydraulic force. :

Impact With Tire Bottoming .

Figdre.S'présents a comparison of calculéted.and exﬁerimental
results for a severe impact (VV0,= 11.63 feet per seqond) in which tire

bottoming occurred. The tire force-deflection characteristics used in .
the calculations are shown by the solid lines in figure 3(b). Region (l)
of the tire. force-deflection curve has the same values of the tire con-
stants m' and r as for the case previously discussed. Following the
occurrence of tire bottoming, however, different values of m' and r
apply. These values are given in figure 3(b).

It can be seen from figure 5 that the agreement between the calcu-
lated and experlmental results for this case is 31mllar to that for the
comparison prev1ously presented. -

i The calculated 1nstant of tire bottoming is indicated in figure 5.
When tire bottoming occurs, the greatly increased stiffness - -of the tire
causes a marked increase in the shock-strut telescoping velocity, as is
shown in the right-hand portion of figure 5(b). Since the strut is
suddenly forced to absorb energy at a much higher rate, an abrupt
increase in the hydraulic resistance takes place. The further increase
in shock-strut force immediately following the occurrence of tire
bottoming is evident from the left-hand portion of figure 5(a). The
sudden increase in lower-mass acceleration at the instant of tire
bottoming can also be seen. :

In this severe impact the hydraulic resistance of the orifice
represents an even greater proportion of the total shock-strut force
than was indicated by the calculated results for an initial vertlcal
velocity of 8.86 feet per second previously discussed. .
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The foregoing comparisons indicate that the analytical treatment
presented, in conjunction with reasonably straightforward assumptions
regarding the parameters involved in the equations, provides a fairly
accurate representation of the behavior of a conventional oleo-pneumatic
landing gear.

PARAMETER STUDIES

In the previous section comparisons of calculated results with
experimental data showed that the equations which have been developed
provide a fairly good representation of the behavior of the landing gear
for the impact conditions considered. In view of ‘the fact that the equa-
tions are somewhat complicated and require numerical values for several
parameters such as the tire force-deflection constants m' and r, the
orifice discharge coefficient Cg, and the polytropic exponent n, which
may not be readily or accurately known in the case of practical engi-
neering problems, it appears desirable (a) to determine the relative
accuracy with which these various parameters have to be known and (b) to
investigate the extent to which the equations can be simplified and still
yield useful results. In order to accomplish these objectives, calcu-
lations have been made to evaluate the effect of simplifying the force-
deflection characteristics of the tire, as well as to determine the
effects which different values of the orifice discharge coefficient and
the effective polytropic-exponent have on the calculated behavior. The
results of these calculations are discussed in the present section. The
question of simplification of the equations of motion is considered in
more detail in a subsequent section.

Representation of Tire Force-Deflection Charactefistics

In order to evaluate the degree of accuracy required for adequate -
representation of the tire force-deflection characteristics, comparisons
are made of the calculated behavior of the landing gear for normal impacts
and impacts with tire bottoming when the tire characteristics are repre-
sented in various ways. First, the force-deflection characteristics will
be assumed to be exactly as shown by the solid-line curves in figure 2(b),
including the various breaks in the curve and the effects of hysteresis.
These characteristics are referred to hereinafter as the exact exponen-
tial tire characteristics. The effectfs of simplifying the representation
of the tire characteristics will then be investigated by considering

a) the exponential characteristics without hysteresis, that is, the tire
will be assumed to deflect and unload along the same exponential curve,
(v) the linear-segment approximations to the tire characteristics (long-
dashed lines), which also neglect hysteresis, and (c) errors introduced
by neglecting the effects of tire bottoming in the case of severe impacts.

\
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The calculated results presented in this study make use of the relation-
ships between vertical force on the tire and tire deflection, as shown
in figures 3(a) and 3(b).

Figure 6 presents a comparison of the calculated results for a
normal impact at a vertical velocity of 8.86 feet per second, whereas
figure 7 permits comparison of the 'solutions for a severe impact,
involving tire bottoming, at a vertical velocity of 11.63 feet per
second. In figures 6 and 7 the solid-line curves represent solutions
of the landing-gear equations when the exact exponential relationships
between force and tire deflection are considered. Since these solutions
were previously shown to be in fairly good agreement with experimental
data (figs. 4 and 5), they are used as a basis for evaluating the results
obtained when tire hysteresis is neglected and the force-deflection
characteristics are represented by either simplified exponential or
linear-segment relationships.

As in the calculations previously described, the solutions were
obtained in two parts. During the first stage of the impact the shock
strut was considered to be rigid until sufficient force was developed
to overcome the initial air-pressure force. The calculations for the
landing-gear behavior subsequent to this instant were based on the equa-
tions which consider the gear to have two degrees of freedom. Time
histories of the upper-mass acceleration calculated on the basis of a
rigid shock strut are shown by the dotted curves in figures 6 and 7.
These solutions show the greatest rate of increase of upper-mass accel-
eration possible with the exponential tire force-deflection character-
istics considered. Comparison of these solutions with those for the -
two-degree-of-freedom system indicates the effect of the shock strut in
attenuating the severity of the impact.

Normal impact.- In the case of the normal impact at a vertical
velocity of 8.86 feet per second, figure 6 shows that the solution
obtained with the exponential force-deflection variation which neglects
hysteresis and the solution with the linear-segment approximation .to
the tire characteristics are in fairly good agreement with the results
of the calculation based on the exponential representation of the exact
tire characteristics. The greatest-differences between the solutions
are evident in the time histories of upper- and lower-mass acceleration;
considerably smaller differences are obtained for the lower-order deriva-
tives, as might be expected. With regard to the upper-mass' acceleration,
the three solutions are in very good agreement during the early stages
of the impact. 1In the case of the simplified exponential characteristics
neglect of the decreased slope of the force-deflection curve between the
first break and the maximum (regime C) in fig. 3(a)) resulted in the
calculation of a somewhat higher value of the maximum upper-mass accel-
eration than was obtained with the exact tire characteristics.

2
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For the simplified exponential and linear-segment characteristics, -
neglect of hysteresis resulted in the calculation of somewhat excessive
values of upper-mass acceleration subsequent to the attainment of the
maximum vertical load. It is of interest to note that the calculated
results for the exponential and linear-segment characteristics without
hysteresis were generally in quite good agreement with each other
throughout the entire duration of the impact, although the assumption. .
of linear-segment tire force-deflection characteristics did result in
somewhat excessive values for the maximum lower-mass acceleration. On
the whole, the simplified tire force-deflection characteristics con-
sidered permit calculated results to be obtained which represent the
behavior of the landing gear in’normal impacts fairly well.

Impact with tire bottoming.- In the case of the severe 1mpact at a
vertical velocity of ‘1l. 63 feet per second, the effects of tire bottoming
on the upper-mass acceleration, the lower—mass acceleration, and the
strut telescoping velocity are clearly indicated in .figure. 7 by the
calculated results based on the exact tire characteristics. As can be
seen, the linear-segment approximation to the tire deflection character-
1st1cs which takes into account the effects of tire bottoming resulted
in a reasonably good representation of the landing-gear behavior through-
out most of the time history. On the other hand, as might be expected,
the calculations which neglected the effects of bottomlng on the tire
force-deflection characteristics did not reveal the marked increase in
the upper-mass acceleration due to the increased stiffness of the tire
subsequent to the occurrence of bottoming. It is also noted that the
discrepancies in the calculated upper-mass acceleration due to neglect
of hystere51s in the later stages of the impact are more pronounced in
this case-than in the impact without tire bottomlng previously con-
sidered, as might be expected.

Effect of Orifice Discharge Coefficient

In view of the fact that there is very little information available
regarding the magnitude of discharge coefficients for orifices in landing
gears, it appears desirable to evaluate the effect which differences in
the magnitude of the orifice coefficient can have on the calculated
results. Figure 8 presents comparisons of calculated results for a range
of values of the orifice discharge coeff1c1ent Cd between 1.0 and 0.7.

The four. solutlons presented are for.the same set of initial conditions
as the normal impact without tire bottoming previously considered -and
are based on the exponential tire force-deflection characterlstlcs which
neglect hysteresis.

These calculatlons show that a decrease in the orlflce discharge
coefficient results in an approximately proportlonal increase in the
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upper-mass acceleration. This variation is to be expected since the
smaller coefficients correspond to reduced effective orifice areas which
result in greater shock-strut forces due to increased hydraulic resist-
ance. As a result- of the increased shock-strut force acting downward

on the lower mass, the maximum upward acceleration of the lower mass is
reduced with decreasing values of the discharge coefficient. The
increase in shock-strut force with decreasing discharge coefficient also
results in a decrease in the strut stroke and telescoping velocity but
an increase in- the lower-mass velocity and displacement, as might be
expected. However, since the increases in lower-mass displacement and
velocity are smaller than the decreases in strut stroke and telescoping
velocity, the upper-mass displacement and velocity are reduced with
decreasing orifice discharge coefficient.

These comparisons show that the magnitude of the orifice coef-
ficient has an important effect on the behavior of the landing gear and
indicates that a fairly accurate determination of the numerical value of
this parameter is necessary to obtain good results.

Effect of Air-Compression Process

Since the nature of the air-compression process in a shock strut
is not well-defined and different investigators have assumed values for
the polytropic exponent ranging anywhere between the extremes of 1.k
(adiabatic) and 1.0 (isothermal), it appeared desirable to evaluate the
importance of the air-compression process and to determine the extent
to which different values of the polytropic exponent can influence the
calculated results. Consequently, solutions have been obtained for
three different values of the polytropic exponent, namely, n = 1.3,
1.12, and 0.

The value n = 1.3 corresponds to a very rapid compression in
which an adiabatic process is almost attained. The value n = 1.12
corresponds to a relatively slow compression in which the process is
virtually isothermal. The value n = O is completely fictitious since
it implies constant air pressure within the strut throughout the impact.
The assumption n = O has been considered since it makes one of .the
terms in the'equations of motion a constant and permits simplication of
the calculations. The three solutions presented are for the same set
of initial conditions as the normal impact without tire bottoming previ-
ously considered and are based on the exponential tire force-deflection
characteristics which neglect Hysteresis. '

Figure 9 shows that the air pressure contributes only a relatively
small portion of the total shock-strut force throughout most of the
impact since the compression ratio is relatively small until the later
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stages of the impact. Toward the end of.the impact, however, the air-
pressure force becomes a large part of the total force since the com-
pression ratio becomes large, whereas the hydraulic resistance decreases
rapidly as the strut telescoping velocity is reduced to zero.

As a result, the calculations show that the magnitude of the poly-
tropic exponent has only a very small effect on the behavior of the
landing gear throughout most of the impact. For the practical range of
polytropic exponents, variations in the air-compression process result
in only minor differences in landing-gear behavior, even during the very
latest stages of the impact. The assumption of constant air pressure in
the strut throughout the impact (n = 0), however, does lead to the
calculation of excessive values of stroke and of the time to reach the
maximum stroke.  The time history of the shock-strut force calculated
on the basis of this ‘assumption is, on the other hand, in quite good
agreement with the results for the practical range of air-compression
processes.

On the whole it appears that the behavior of the landing gear is
relatively insensitive to variations in the air-compression process.
The foregoing results suggest that, in many cases, fairly reasonable
approximations for the landing-gear force-time variation might be
obtained even if the air-pressure term in the equations of motion were
completely neglected.

SIMPLIFICATION OF EQUATIONS OF MOTION

The preceding studies have indicated that variations in the tire
force-deflection characteristics and in the air-compression process
individually have only a relatively minor effect on the calculated
behavior of the landing gear. These results suggest that the equations
of motion for the landing gear might be simplified by completely
neglecting the internal air-pressure forces in the shock strut and by
considering the tire force-deflection characteristics to be linear.
With these assumptions, the equations of motion for the upper mass, lower
mass, and complete system (egs. (16), (17), and (8)) can be wrltten as
follows for the case where the wing lift is equal to the weight and
landing-gear inclination and internal friction are neglected:

wl .o - -' 2 h
? Zl + A(Zl - Z2> + W2 =0
Wy C
e A(zl - 22)2 + azo + b - We =0 Z (18)
Wy .. Wo ..
2% z) + E? Zp + azo + b=0
J
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‘where
. 3
P T N
8| 2(cqhn)?
and
a slope of linear approx1mat10n to tire force—deflectlon
S characterlstlcs
b value of force corresponding to zero tire deflectlon, as
) determined from the linear-segment approx1mat10n to the tire
force-deflection characterlstlcs
d over-all diameter of tire

The motion variables at the beglnnlng of shock-strut deflectlon
can be readily determined in a manner similar to that employed in the
more’ general treatment previously discussed. For the s1mp11f1ed equa—
tions the varlables at the 1nstant tr -are glven by

i 1
ZT:__2g

Wy

W W

2 2
Zp = 1+ =< : : 1
r < w1> I <
. 2 ag _'2
Z, = dzo - == z.°

In most cases the term ‘%% ZTE is smallaih comparison.with>-é02 S0’

that .Z-r ~ .Zo.

The values determined from equations (19) are used as initial condi-
tions in the solution of equations (18).

The fact that the lower mass is a relatively small fraction of the
total mass suggests that the system might be simplified even further
without greatly modifying the calculated results by assuming the lower
mass Wo equal to zero. With this assumption t; = O -and the initial

values of the variables in equation (18) correspond to the conditions
at initial contact.
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Evaluation of Simplifications

In order to evaluate the applicability of these simplifications,
the behavior of the landing gear has been calculated in accordance with
equations (18) for an impact with an initial vertical velocity of
8.86 feet per second. A similar calculation has been made with the
assumption Wp = 0. These results are compared in figure 10 with the
more exact solutions previously presented in figure 4, which include
consideration of the air-compression springing and the exact exponential
tire characteristics. A time history of the lower-mass acceleration is
not presented for the case where W, 1is assumed equal to zero since the

values of Ez/g have no significance in this case.

Figure 10 shows that the two simplified solutions are in quite good
agreement with each other, as might be expected, and are also in fairly
good agreement with the more exact results. Neglecting the air-pressure
forces and assuming a linear tire force-deflection variation resulted in
the calculation of slightly lower values for the maximum upper-mass
acceleration and somewhat higher values for the maximum stroke than were
obtained with the more exact equations. The effect of neglecting the
lower mass was primarily to reduce the lower-mass displacement (tire
deflection), as a result of the elimination of the lower-mass inertia
reaction.

On the whole, it appears that the assumptions considered permit
appreciable simplification of the equations of motion without greatly
impairing the validity of the calculated results.

Generalized Results

By writing the simplified equations of motion in terms of dimen-
sionless variables, generalized solutions can be obtained for a wide
range of landing-gear and impact parameters which may be useful in pre-
liminary design. If Wp 1is taken equal to zero and it is further

assumed that the tire force-deflection curve is represented by a single
straight line through the origin (b = O throughout the impact), equa-
tions (18) reduce to

Ly v a5 =0

A% - 22)2 - azy = 0 r (20)
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W
where E%’ A, and a are constants, as previously defined. With this

representation of the system the shock strut begins to deflect at the
instant of initial contact (t; = 0) and the initial values of the vari-
ables in equations (20) are equal to the initial impact conditions.

By introducing the dimensionless variables

Ag [Ag
"
2
w23 . A% apt = 2 _ 5 A%
' " as ~ Hwa a6 Elea
and
2
d“u .-
u;tt = 1.3 (A
1
1 d92 (a)
where
6 = 28
w1

equations (20) can be written as
(ar' - wp")® + upre =0 |

(Lll' - u2')2 - W =0 } ‘ (21)

Inasmuch as equations (21) do not involve any constants, the solu-
tions to these equations are completely determined by the initial values
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of the variables. Since ‘the displacements.at initial contact ulo
and u20 are equal to zero and the initial velocities ulo' and uzo'

are equal, the only parameter is the\dimensionless initialvvelocity.

_ -
. ‘Ag
o' = Rofs

where ug' = u " = upo'.
Generallzed solutlons of equatlons (21) are presented in figure 11
for values of-. uo correspondlng to a wide range of landlng-gear and

impact parameters

Figure 12 illustrates the results obtained by applying the gener-
alized solutions to the case of the normal impact at an 1n1t1al vertical.
velocity of 8.86 feet per second prev1ously considered and shows how. .
these results compare w1th the nore exact solution presented in fig- |
ure 4. ‘For the purpose of applying the generallzed solutions to this
case, the tire force-deflection curve was approximated by a straight line

through the origin having-a slope a'= 18:5 x 103 pounds per foot

(a' =ad ="41.6 x 103 pounds) as, shown by the short dashed llne 1n flg-
ure ‘2(a).” This value of a and the other. pertlnent landing-gear and
impact parameters result’ in a value 'O0f the’ ‘initial dimensionless veloc1ty
parameter uo = 2.57. Since the generallzed solutions of figure 11 have

been calculated only for integral values of up'; generalized curves for
uo = 2.57 were graphlcally 1nterpolated by cross-plottlng agalnst uo

These results were then converted to the d1mens1onal quantltles presented
in figure 12' by multlplylng the dlmen31onless varlables by the appro= -
riate constants.

. As can be seén from flgure 12 " the results obtalned by appllcatlon,
of the generalized solutions are a fairly good first approximation to
the more exact solution. The discrepancies which exist are attributable
to the ‘marked differences in slope between the. very 51mple tlre force- .
deflection relatlonshlp assumed dnd the exact tire characterlstlcs, to
the neglect of the shock-strut preloadlng prov1ded by the alr-pressure
force, and to the neglect of “thé lower mass. It thus appears. that the .
generalized results offer a means of rapidly estimating the behavior of
the landing gear within reasonable limits of accuracy, and may therefore
be useful for preliminary design purposes.
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SUMMARY OF RESULTS AND CONCLUSIONS

An analytical study has been made of the behavior of the conven-
tional type of oleo-pneumatic landing gear during the process of landing
impact. The basic analysis is presented in a general form and treats
the motions of the landing gear prior to and subsequent to the beginning
of shock-strut deflection. 1In the first phase of the impact the landing
gear is treated as a single-degree-of-freedom system in order to deter-
mine the conditions of motion at the instant of initial shock-strut
deflection, after which instant the landing gear is considered as a
system with two degrees of freedom.” The equations for the two-degree-
of-freedom system consider such factors as the hydraulic (velocity
square) resistance of the orifice, the forces due to air compression
and internal friction in the shock strut, the nonlinear force-deflection
characteristics of the tire, the wing lift, the inclination of the
landing gear, and the effects of wheel spin-up drag loads.

The applicability of the analysis to actual landing gears has been
investigated for the particular case of a vertical landing gear in the
absence of drag loads by comparing calculated results with experimental
drop-test data for corresponding impact condltlons, for both a normal
impact and a severe impact involving tire bottoming.

Studies have also been made to determine the effects of variations
in such parameters as the dynamic force-deflection characteristics of
the tire, the orifice discharge coefficient, and the effective polytropic
exponent for the air-compression process, whlch might not be known accu-
rately in practical de81gn problems.

In addition to the more exact treatment an investigation has also

been made to determine the extent to which the basic equations of motion

can be simplified and still yield useful results. Generalized 8olutions
of the simplified equations obtained are presented for a wide range of
landing-gear and impact parameters. . .

On the basis of the foreg01ng studies the following conclusions are
indicated:

1.  The behavior of the landing gear as calculated from the basic
equations of motion was found to be in good agreement.- with experimental
drop-test data for the case of a vertical landing gear in the absence:

of drag loads, for both a normal impact and. a severe 1mpact involving -

tire bottomlng
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2. A study of the effects of variations in the force-deflection
characteristics of the tire indicates that

a. In the case of a normal impact without tire bottoming, reasonable
variations in the force-deflection characteristics of the tire have only
a relatively small effect on the calculated behavior of the landing gear.
Approximating the rather complicated force-deflection characteristics of
the actual tire by simplified exponential or llnear-segment variations
appears to be adequate for practical purposes. Tire hysteresis was
found to be relatively unimportant.

b. In the case of a severe impact involving tire bottoming, the
use of simplified exponential and linear-segment approximations to the
actual tire force-deflection characteristics which neglect the effects
of tire bottoming, although adequate up to the instant of bottoming,
fails to indicate the pronounced increase in landing-gear load which
results from bottoming of the tire. The use of exponential or linear-
segment approximations to the tire characteristics which take into
account the increased stiffness of the tire that results from bottoming,
however, yields good results.

3. A study of the importance of the discharge coefficient of the
orifice indicates that the magnitude of the discharge coefficient has a
marked effect on the calculated behavior of the landing gear; a decrease
in the discharge coefficient (or the product of the discharge coefficient
and the net orifice area) results in an approx1mately proportional
increase in the maximum.upper-mass acceleration.

4. A study of the importance of the air-compression process in the
shock strut indicates that the air springing is of only minor signifi-
cance throughout most of the impact, and that variations in the effective
polytropic exponent n between the isothermal value of 1.0 and the near-
adiabatic value of 1.3 have only a secondary effect on the calculated
behavior of the landing gear. Even the assumption of constant air pres-
sure in the strut equal to the initial pressure (n = 0) yields fairly
good results, which may be adequate for many practical purposes.

5. An investigation of the extent to which the equations of motion
for the landing gear can be simplified and still yield acceptable calcu-
lated results indicates that, for many practical purposes, the air-
pressure force in the shock strut can be completely neglected, the tire
force-deflection relationship can be assumed to be linear, and the lower
Oor unsprung mass can be taken equal to zero. :

6. Generalization of the equations of motion for the simplified
system described in the preceding paragraph shows that the behavior of
this system is completely determined by the magnitude of one parameter,
namely, the dimensionless initial-velocity parameter. Solution of these
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generalized equations in terms of dimensionless variables permits compact
representation of the behavior of the system for a wide range of landing-
gear and impact parameters, which may bé useful in preliminary design.

'Langley Aéronautical Laboratory ' 'j(
National Adv1sory Committee for Aeronautlcs
Langley Field, Va., May 1, 1952
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APPENDIX A

 NUMERICAL, INTEGRATION PROCEDURES.

As previously noted, most of .the specific solutions presented in
thls paper were obtained with a numerical integration procedure, termed
the "linear procedure,' which assumes changes in the variables to be
linear over finite time intervals. With this procedure a time interval
€ = 0.001 second was used in order to obtain the desired accuracy for
the particular cases considered. A few of the specific solutions pre-
sented were obtained by means of a procedure, termed the "quadratic
procedure,” which assumes a guadratic variation of displacement with
time for successive ‘intervals. This procedure, although requiring some-
what more computing time per interval, may permit an increase in the
interval size for a given accuracy, in some cases allowing .a reduction
in the total computing time required. In the case of the more exact
equations of motion the accuracy of the quadratic procedure with a time
interval of 0.002 second appears ‘to ‘be equal to ‘that of the linear pro-
cedure with an interval of 0.001 second. Although the accuracy naturally
decreases with increasing interval size, the loss in accuracy for pro-
portionate increases in interval size appears to be smaller for the
quadratic than for the linear procedure. In the case of the simplified
equations of motion reasonably satisfactory results were obtained in
test computations with the quadratic procedure for intervals as large
as 0.0l second, whereas the linear procedure was considered questionable
for intervals larger than 0.002 second.

The generalized solutions presented, because of the relatively
simple form of the equations of motion, were obtained with the well-
known Runge-Kutta procedure.. A study of the allowable interval size
resulted in the use of an interval A6 = 0.08, which corresponds to a
time interval of about 0.005 second for the landlng gear under
consideration.

Linear Procedure

In this step-by-step procedure the variations in displacement,
velocity, and acceleration are assumed to be linear over each finite
time interval €. The method, as used, involves one stage of iteration.
Linear extrapolation of the velocity at the end of any interval is used
to obtain estimated values of velocity and displacement for the next
interval. These values are then used to calculate values of the accel-
eration in accordance with the equations of motion. Integration of the
acceleration provides improved values of the velocity and, if desired,
the displacement and acceleration. In this procedure. all 1ntegrat10ns
are performed by application of the trapezoidal rule.
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The following derivation illustrates the application of the linear
procedure to the equations of motion for the landing gear, which apply
subsequent to the beginning of shock-strut deflection at time ty. 1In
the example presented internal friction forces and inclination of the
landing gear are neglected in order to simplify the derivation. However,
the same general procedure can be used if these, or other complicating
effects, are included <in the equations.

For the case under consideration the equations of_motion'(eqs.‘(l6),
(17), and (8)) can be written as follows: ‘

g}.gl + A(él - %2)2 + B[% - C<Zl.‘_?é§]-n'+'D =0 :4 (Al)

W ..> . . 2 ‘ ,“.'. . , ‘
-ég- Zp - A%y - 2p) }--B[l - (= *Azeﬂ ?fFV(ZQ) - W= 04 (A2)

L+ 2+ Ry(z)+E=0 o (a3)

where

[8] g(chn)
B = paoAa

A
c =2

VQA
D =KW - W

t
I
=
)
=
;o
o
Lo
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Solving equation (A3) for El gives

. %- = [F - GZp - HFV(ZQﬂ

[0 Lo

where

_ W2
"
H=2L
W

Integratiﬁg equation (A4) with respect to t between th
ting that b < b =i )
and t and no 1ng ha le 22T Z, gilves

where T = (t - tr)

‘ T
2) = 2; + Fr - 6(2p - 2,) - f Fy(zp)dr
: o |

L5

(Ak)

e limits t4

(A5)

Integrating again and noting that Z)., = 22, = 27 gives

| 2 - TPT
. Fr¢ .
zp = (1 + G)(ZT + ZTT) + —%— - Gzo - gjp Jf Fv(Ze)dT dar  (Aa6)
ovYo
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Substituting for él and 1z 1in equation (A2) gives

2
_Zg£=wL2 Af(L +G) (21 - z2)+FT;Hj;; Fv(zg)dT +
B<1l - C[El + G)(ZT_+ %T{ - 22) +
) T AT ’ -n -
Fr L
AL HJ/\Jf Fr(z-)dr d7| ¢ - Fo(z,) + W (AT)
1) J, () v(ze) * W

The motion of the landing gear subsequent to the beginnihg of shock-
strut deflection is determined by means. of a step-by-step solution of
equation (A7): This numerical procedure yields time histories of the
lower-mass motion variables 2p, 25, and’ %o, from which the motion
variables for the upper mass 21, il, and zl' can be calculated by

means of equations (AL), (A5), and (A6).

The initial éohditfons~fbr‘the'step2by—step proéeduré are

~
"ln=0 = "2n=o = *T
L éma;3x¥ T
L) 2n=0 i (8)
\ “In=0 = %2p=0 -~ 2T 7|
S J

where 2z, 2., and Z, are the conditions of motion at the beginning of

shock-strut deflection as determined from the solution for the one-
degree-of-freedom system.
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Estimated values of the lower-mass velocity at the end of the first
time increment € following the beginning of shock-strut defleqtion can
be obtained from the expression ) -

éan = 2r + €Zp ’ (A9)
or, as a first approximation,
Zy =z
2p=1 T
The corresponding displécement is given by

€/ 77. 7 ’ .
22n=1 =z + ?(221 + zT) (A10)

After the initial conditions and the conditions at the end of the
first time increment are éstablished,_a step-by-step calculation of the
motion can be obtained by routine operations as indicated by the fol-
lowing general procedure which applies at any time T = ne¢ after the
beginning of the process. The operations indicated are based on inte-
gration by application of the trapezoidal rule: ‘

¥ . .« .« . . €[ .
22n - 22n—-l * (Zen-l - Z2n—2) - zen~l * §(zgn-l + Zen-Q) (A11)

b- C -* } . 62 (X3 . '
z + 2z =z + €7 + —(z + 2z Al2
( 2n—l 2n) ,En-l . 2n—l h-( 2n-l 2n—2> ( )

With the estimated values 'ég and z; the acceleration of the:
n . “n - C :

lower mass can be determined by substitution in the appropriate integro-
differential equation for the system, equation (A7) in the present case,
Thus

. o X * I
22n = f<Z2n,Zen,Tn) (Al3)
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In equation (A7) the integral expressions can also be evaluated by
application of the trapezoidal rule. For example, when Fv(zg) = mz,T,

ne r € T r r r
z2n dtT R —{2_" + 22 + .. . 22z + 2 >
j; 2 2<T 2 “n-1 n

(n-1)e r . . r
NL/(; z, dr + §(Zzn—l + Z2n ) (ALlk)

and

ne pne (n-1)€ p(n-1)€ r
ff z2d-rd'r“’f f 2o dr dr +
0 Yo - 0

0

(n-1)e ‘
. ‘2‘(]{1 n-1)e 2otar s /one zgr’dT) (5;5)

An impréved value: for the velocity is obtained from the expression '

i €
= 4+ =
2, = 22, 1 * 5(

ip, ) * ) . | (16)

This value is used-in the calculation of the estimated velocity 'z;n
' +1 -
and displacement ,z* for the next interval. '
°n+l.
If desired, improved values of the displacement and acceleration

for the nth interval subsequent to the beginning of shock-strut deflec-
tion can be obtained as follows:

. . 2 foe .
€ (e €
= + =z + 2 = + €2 + == + Al
an 22n-l 2( 2n-1 2n) °n-1 °n-1 N (Zzn-l z2n) (A17)
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and

n

%o =-f<.22n,22n,1‘n) : - (A18)

where f(éen,zgn,Tn) is an appropriate equation for the system, such

as equation (AT7).

With the values of zp , éen’ and Een’ the motion variables for
the upper mass 21,0 Z1p» and z), can be calculated,separatelylfrom

equations (Ak), (A5), and (A6), as previously noted.

In setting up the numerical procedure used in obtaining the solu-
tions presented in this paper, an evaluation of the errors introduced by
the procedure indicated that it would not be necessary to calculate the
improved values of the displacemeént ,zzn (eq. (Al7)) or the acceler-

ation Ezn (eq. (A18)). However, improved values of the velocity éen

were calculated by means of equation (A16) for the purpose of determining
estimated values of the velocity 2, and the displacement Z, (egs. (All)

and (Al2)) for the increment immediately following.

In order to illustrate the application of the method, a tabular com-
puting procedure for the solution of the system represented by equa-
tions (Al), (A2), and (A3) is presented in table I.

Quadratic Procedure

. In this step-by-step procedure a quadratic variation of displacement
is assumed over successive equal finite time intervals for the purpose of
extrapolating values of the motion variables from one interval to the
next. With this assumption the displacement variation over two successive
equal time intervals is completely determined by the three values of dis-
placement at the beginning and end. of each of the two intervals. By
writing the quadratic variation in difference form, the velocity and _
acceleration at the midpoint of the double interval can be expressed in
‘terms of the three displacement values previously mentioned. Substi-
tuting for the velocity and acceleration in the differential equations’
for the system yields difference equations of motion in terms of succes-
sive displacement values which-can be evaluated interval by interval.

The following derivation shows how the'ﬁrocedure can be applied to
the determination of the behavior of the landing gear subsequent to the
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beginning of shock-strut deflection at time +tr. In order to simplify

the derivation, internal friction forces and landing-gear inclination
are again neglected in setting-up the equations of motion.

The assumption of a quad-
ratic variation of displace-
ment with time (constant accel- - - : /m—
eration) over two successive /,/’
intervals, each of duration ¢,
permits expressing the velocity
and acceleration at -the mid-
points of the double interval
(see sketch) in terms of the °
displacement values at the .
beginning, midpoint, and end
of the double interval by the
equations (see ref. 5, p. 16):

"111\{ -
o] € " (n-l)e ne (n+l)e

2€
T=1t-t;
. Zn+l =~ Zn-1
Z, = ———————
and
o Pnel " Pag tPna .
e (x20)
€ ‘ :
where éh’ En’ and -z, -are the velocity, acceleration, and«displace-

ment at the end of the nth intérval (T = ne) after the beginning of
shock-strut deformation and Zo_1 and z,,] are the displacements at

the end of intervals n - 1 and. n + 1, respectively.

Substituting the difference relations for 2y, Zoy El,land Zp
into equations (Al) and (A3) permits writing the equations of motion
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for the landing gear in difference form as follows:

W

A
— [z - 2z + z + -=2_(z -z -2 + 2 +
ge2 ( ln+l In ln-l) 4e?2 ( Inyl ln-1 2n+l 2n-l)

and

i : o) ) .
z =227 = Z - Gfz - 22 + Z - H Fyrz + B A22
ln+l ln ln-l ( 2n+l 2n 2n—l) € [:V( 2n) :] ( )

where the constants are as defined in the previous section.

Substituting for z -

in equation (A21) gives
n+l - »

20, W, -

\[thEWQ(gAWBn+1 + W12W2) - 8AW2(“W12an+1 + 8A7n+1) (A23)

where:.

2

-
Bpsl = 2w2z2n + (Wl - W2)ZEn-1,+ 2Wl(zln - zln-l) - ge? FV(Z2n) + %]

and
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- v -n
Tael =~ B[} - C(zln - Zzni] + D

Equations (A22) and (A23) are essentially extrapolation formulas
which permit the determination of values for the upper- and lower-mass
displacements to come from the values of displacement already calculated.
These equations thus permit step-by-step calculation of the displacements
as the impact progresses, starting with the initial conditions, from which
the upper- and lower-mass velocities and accelerations can be determined
by means of equations (A19) and (A20).

Since the calculation of the displacements 27 and zp at any

_instant by means of equations (A22) and (A23) requires values for the

dlsplacements at two previous 1nstants, the routine application of these
equations can begin only at the end of the second interval (T = 2¢)
following the beginning of shock-strut deflection. Before the displace-
ments at the end of the second interval can be calculated, however, it
is necessary to determine the displacements at the -end of the first -
interval. These values can be obtained from the conditions of motion

at the instant of initial shock-strut deflection by applying equa=-

tions (Al19) and (A20) to the instant t = t .

At the instant of initial shock-strut deflection

4 =2 =z
ln=0 2n=0 T
z =z = 7 A2k
1n=0 “n= or C ( )
zZ =z =z
ln=0 2n=0 o

‘
.. :

Application ‘of the difference equatlons (Al9) and (A20) to the
instant t = tr (that is, n = 0) gives the following equations:

. _ l-z"‘l 7
= e

> (425)
e Zp=] - 221 + Zp. g

€ J
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Since.the'landing gear'is considered as a one-degree-of-freedom
system from initial contact up to the instant t = t;, the foregoing

application of the difference equations results in identical values for
the upper-mass displacement .and lower-mass displacement-at the end of
the first interval. Simultaneous solution of equations (A25) gives the
following expression for the displacement at the end of the first
interval:

= = Z + 2 +"—" A26
“2pm1 T Flpy T AT T CET T B . (A26)

With the values for .z.. and 2, 7, equations (A22) and (A23) permit

the steép-by-step calculation of the upper-mass and lower-mass displace-
ments subsequent to the first interval following the beginning of shock-
strut deflection. The corresponding velocities and accelerations of the
upper and lower masses can be determined from the calculated displacements
by means of equations (Al9) and (A20), as previously noted.

A tabular computing procedufe illustrating the application of the
method is presented in table II. \

Runge-Kutta Procedure

In this step-by-step procedure the differences in the dependent
variables over any given interval of the independent variable are calcu-
lated from a definite set of formulas, the same set of formulas being
used for all increments. Thus the values of the variables at the end of
any given interval are completely determined by the values at the end of
the preceding interval. Unfortunately, however, unless the equations to
be integrated are relatively simple, the method can become quite lengthy.

The following derivation illustrates the application of the Runge-
Kutta method to the generalized equations of motion (egs. (21)) for the
simplified system considered in the section on generalized results. Since
these equations can be- readily reduced to the first order, they can be
- integrated by the step-by-step application of the general equations given
on pages 301 and 302 of reference 6 for first-order simultaneous differ-
-ential equations.
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The generallzed equations for the 31mp11f1ed system previously
dlscussed ‘(egs. (21)) are

(ﬁl' - upt) e uyt - bA,‘

(ul' - UQ')2 - u2 =0

ul" + Up - = O>

Inasmuch 4s any two -of these equations’are sufficient to describe
the behavior of the system, only the last two of these equations are
employed in this procedure. These equations can be reduced to a first-
order system by introducing the new variable

wo= gt o - | (A27)
s8¢0 that
W= ugtt (A28)

and

' (a29)

w' +up =0
Solving_equations (A29) for uo! >and w', respectively, gives
up' =W - Jug : ‘ (A30)

w' = -up (A31)
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Applying the general procedure presented in the reference previously
cited to the simultaneous equations (AE?),.(A30)! and (A31l) gives

. )
— ) _ 1/
‘Aulv— uln - uln—l —. 6(kl + 2k2 + 2k3 + ku)
MV = wy - Vg = %(zl + 205 + 203 + 1) S (A32)
Aus = u - up = l-(m + 2m2 + 2m, + mh)
2 2n n-1 6 1 3 J

where

b
[}
1
I
(=]
S

b
=
]
—~
=
+
o
W
~
8



56 NACA TN 2755

m = (wn;l'f uen;l) AO = up' AB

— Z Lt - . — .
_ 2 / T
m3 = l_{er_l + ?‘) - U.zn_l + T—‘] AB
mh = (wn-l + 13) - uen-l + m%J ;)

With this procedure, u;, W, and u2 can be calculated in step-

by-step fashion from the values for the preceding interval, the pro-
cedure beginning with the initial conditions. From these values, u ',

ui'', and u,' can be calculated by means of equations (A27), (a28),
and (A30), respectively.
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APPENDIX B
~ SOURCE. OF EXPERIMENTAL DATA

’ Follow1ng is a brlef descrlptlon of the apparatus and test spec1men
used in obtalnlng the experimental data presented in this paper.

Equipment

The basic plece -of equlpment employed in the tests is the carriage
of the Langley 1mpact basin (ref. 7) which provides means for effecting
the controlled descent of the test specimen. In these tests the impact-
basin carriage was used in much the same manner as a conventional
stationary landing-gear test jig (see ref. 8). 1In order to simulate
mechanically. the wing 1ift forces wh1ch sustain an airplane. during.
landing the pneumatic cyllnder and cam system incorporated in the
carriage was used to apply a constant 1lift force to the dropping mass
and landing gear during impact. The lift force -in these tests was equal
to the total dropplng weight of 2542 pounds.

Test Specimenr

B The landing gear used in the tests was originally designed for a
small mllltary training alrplane having a gross weight of approx1mately

. 5000 pounds. The gear is of conventional cantilever construction and
incorporates a standard type of oleo—pneumatlc shock strut. The wheel

1is fitted with a 27-inch type 1 (smooth-contour) tire, 1nflated to .

32 pounds per square inch. The weight of the landing gear is 150 pounds.

The weight of the lower mass (unsprung welght) is 131 pounds.

In the present investigation the gear was somewhat modified in that
the metering pin was removed and the original orifice plate was replaced
with one having a smaller orifice diameter. Figure 13 shows the internal
arrangement of the shock strut and presents details of the orifice. .
Other pertinent dimensions are presented in table. III. The strut was
filled with specification AN-VV-0-366B hydraulic fluid. The inflation
pressure with the strut fully extended was 43 5 pounds per square inch.

In these tests the landlng gear was mounted with the shock—strut axis
vertlcal ~Figure 14 is a photograph of the landlng gear installed for
testlng.



58 ' NACA TN 2755

Instrumentation

A variety of time-history instrumentation was used during the tests.

The vertical acceleration of the upper mass was measured by means of an
oil-damped electrical strain-gage accelerometer having a range of 18g
and a natural frequency of 85 cycles per second. A low-frequency

(16.5 cycles per second) NACA air-damped optical-recording accelerometer,
having a range of -1lg to 6bg, was used as a stand-by instrument and as a
check against the strain-gage accelerometer. Another oil-damped strain-
gage accelerometer, having a range of +12¢ and a natural frequency of
260 cycles per second, was used to determine the vertical acceleration
of the lower mass. The vertical displacement of the lower mass (tire
deflection) and the shock-strut stroke were measured separately by means
of variable-resistance slide-wire potentiometers. The vertical displace-
ment of the upper mass was determined by addition of the strut-stroke and
tire-deflection measurements. The vertical velocity of the landing gear
at the instant of ground contact was determined from the output-of an
elemental electromagnetic voltage generator. A-time history of the
vertical velocity of the upper mass was obtained by mechanically inte-
grating the vertical acceleration of the upper mass subsequent to the
instant of ground contact. Electrical differentiation of the current
output of the strut-stroke circuit provided time-history measurements

of the shock-strut telescoping velocity. The instant of ground contact
was determined by means of a microswitch, recessed into the ground plat-
form, which closed a circuit as long as the tire was in contact with the
platform. ’

The electrical output of the instruments was recorded on a lh-channel
osc1llograph The galvanometers were damped to approximately O. T critical
damping and had natural frequencies high enough to produce virtually uni-
form response up to frequencies commensurate with those of the measuring
instrumentation. A typical oscillograph record is shown in figure 15.

It is believed that the measurements obtained in the tests are
accurate within the following limits:

Measurement : o :  Accuracy
Upper-mass acceleration, g . . « « « v « « « v v 4 o vt o4 . w . %0.2
Force On UPPer MasS, 1D . v « « « « + + o « o o o « « o « « o » 1500
Lower-mass acceleration, g « « « « « « « % o e o o« o o« o o+« o 0.3
Vertical velocity at ground contact, fps . . . « « . « . v o . %0.1
Upper-mass velocity during impact, fps . . . . . v . v o o . . . *0.5
Upper-mass displacement, ff . « « « % o + o « % v v« o 0 . . . +0.05
Lower-mass displacement, ft . « « v v « & « o & ¢ « & « o o+ . 20,03
Shock-strut stroke, ft . . . . . e e e e e e e e s e e e . . %0.03
Shock-strut telescoping veloc1ty, fps e e e e e e e e e e s e . %0.5

Time after contact, s€C . « ¢« « ¢ ¢ ¢ ¢« ¢ ¢ ¢ v e 0 e e e . +0.003
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TABLE I.

LINEAR PROCEDURE

NACA TN 2755

Row Quantity Equation Procedure
(a)
@' T -
.* . € fo . B
P ..+ o(Zs A Z
® “2n “2p-1 Ht2.5 an—l.) ©s 5
* . . %
2 z z,  + £z O30 N PR + ¢
Q ‘2n : 2n-l 2 ( 2;1—1 j 25].'1 ‘ : @p ’ p'
% Determined from tire’
Fv(zgn) force-deflection
B characteristics -

Equation (Alk)

®-fo-¢] |

BEquation iAiﬁ)

©-q] |

©loje ©| e

Z—Zﬂ eq‘xaj::".o'n (Aﬁ? G‘iveln by gc%ué:ilgn .(;;’\7.);; ‘
S RRT A oW GieTS
%(22;. 5 ) i+ -i—(zanl +22n) @+§ +g .'
® o | Pt B, ) | ®--+%:@ . £|g -
%ﬂ Equation (Al) Given by equation (Ak)

Equation (A5)

Given by

equation (A5)

®| ®

Zln

Equation(A6)

Given by

equation (A6)

o

O

P

denotes value for previous time interval.
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TABLE II
QUADRATIC PROCEDURE
Row | Quantity Equation Procedure
(a)
@ T ' -t o
: @ ’ 22n ------------------- @p
@ Zln """"""""""""" i @p
. @ 22n+l Equation (A?3) .. éiven by equation (A23) -
® 2] 1 Equation (A22) Given by equation (A22)
n
o z -z
@ . 2n+l 2n-l @ - @p
Z = P
2n 2¢€ 2€
- 22 + -
© . “2ns1 2t 2 | @ -20+ O
2
B of 62 €2
@ : e ] ® - @p
1n . 2¢ : 2¢
-2 +
o Zln+l zln Zln--l @ = 2@ + @p
2]
n €2 e2
a
O denotes value for previous time interval.



IMPORTANT

A,, sq ft .

Ay, sq ft .

sq ft .

Vg, cu ft . ..
Pay 1b/sq ft .
1y, ft Cl
12, £t .« . ...
Wy, 1b . .

Wo, 1b . .

TABLE III

CHARACTERISTICS OF LANDING GEAR USED IN'

. . .
s s e
. . . . . . . .
. . e o . .
. Vv .
. . . ¢« e 0 .
. . . . . . « o . e . . . . . . . .
. ) . . . . . .
. . * o e o . .

NACA TN 2755

TESTS

. 0.05761
. 0.04708

. 0.0005585

. 0.03545
.. 6264

0.5521

. 2.22604
2411
.. 131

“!ﬂ:’!”A
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(a) System with two degrees of freedom. (b) Schematic rebre_z;en'tation of shock stru‘t..'

Figure 1l.- Dynamical system Eonsidered in analysis. _
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(c) Balance of forces and reactions for landing-gear components.

Figure 1.~ Concluded.
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Figure 11.- Continued.
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Figure 11.- Concluded.
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Figure 13.- Shock strut of landing

NACA TN 2755

Alr valve

Lock screw

Bronze bearing
Connecting hole

Outer aﬁnular chamber
Piston supporting tube
Fitting assembly flange
Outer cylinder

Inner chamber

Spacer

Upper packing-ring spacer
Packing rings

Lower packing-ring spacer
Bearing nut

Wiper ring

Piston

Orifice plate

Lower chamber

Inner cylinder

End plate

Yoke collar

Yoke

OPORO®GROGOOEOCEEAOPEEEOEE

Flller plug

.25!:)——-T ‘fi;.250 R ‘

2.936
']

Orifice detalls ,
(Dimensions in inches) : R

4

gear tested at Langley impact basin.



NACA TN 2755 97

Litt rods NI : Optical

accelerometer

Strut-stroke
telescoping
velocity
glide~wire
Strain-gage
accelerometer

Tire-deflection slide-wire

Figure 1lh.- View of landing gear and instrumentation.
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