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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 2767 

DYNAMICS OF MECHANICAL FEEDBACK-TYPE HYDRAULIC SERVOMOTORS 


UNDER INERTIA LOADS 

By Harold Gold, Edward W. Otto, and Victor L. Ransom 

An analysis of the dynamics of mechanical feedback-type hydraulic 
servomotors under inertia loads is developed and experimental verifica-
tion is presented. This analysis, which is developed in terms of two 
physical parameters, yields direct expressions for the following 
dynamic responses: (i) the transient response to a step input and the 
maximum cylinder pressure during the transient and (2) the variation of 
amplitude attenuation and phase shift with the frequency of a sinusoi-
dally varying input. The validity of the analysis is demonstrated by 
means of recorded transient and frequency responses obtained on two 
servomotors. These data, which were obtained over a wide range of iner-
tia loads, input magnitude, and pressure differential, are presented 
along with the analytically determined responses. In all cases the cal-
culated responses are in close agreement with the measured responses. 
The relations presented are readily applicable to the design as well as 
to the analysis of hydraulic servomotors. 

INTRODUCTION 

The servomotor dealt with in this paper is a power amplifying, 
positioning device of the type used in such applications as control-
valve positioners, gun-turret positioners, flight controls, and power-
steering devices. The hydraulic servomotor as a device has been known 
for approximately 100 years. Its application to high-speed machinery, 
however, appears to be relatively recent. There is, consequently, very 
little published literature on the dynamics of this servomotor in spite 
of its long history. Nevertheless, when properly designed, the hydrau-
lic servomotor is particularly suited for high-speed service because of 
the extremely high force-mass ratios that can be obtained and because 
the device inherently is heavily damped. 

A differential equation for the response to a step input of the 
hydraulic servomotor with mechanical feedback under an inertia load is
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available in the literature (refeence 1). This equation (a form of 
which is derived, in the present paper) can be considered to be exact 
over a fairly representative portion of the response but is not valid 
in the early part of the transient. Furthermore, under a heavy inertia 
load the fluid on the driving side of the piston may cavitate, in which 
case the response cannot be described by a single equation. It is 
therefore necessary to treat the response of the servomotor in distinct 
phases. 

The basic technique employed in this paper in the analysis of the 
servomotor is the approximation by one or more linear systems whose 
individual responses match the behavior' of the actual system in defina-
ble phases of the response. The several linear systems are then cor-
related by relating each to the same physical parameters of the system. 
In this instance, two parameters are all that are required for the cor-
relations. One of these parameters is a direct function of the dimen-
sions of the servomotor and the hydraulic pressure drop across the 
motor. The second parameter is a function of the magnitude of the dis-
turbance and the mass of the load. By means of this method, analytical 
expressions are obtained for the following dynamic responses of the 
servomotor: (1) the transient response to a step input and the maximum 
cylinder pressure during the transient and (2) the variation of ampli-
tude attenuation and phase shift with the frequency of a sinusoid.ally 
varying input. 

The validity of the analysis is demonstrated by means of recorded 
transient and frequency responses that were obtained on both a straight-
line and a rotary type of servomotor. These data, which were obtained 
over a wide range of inertia loads, input magnitude, and pressure dif-
ferential, are presented along with the analytically determined 
responses. The investigation was conducted at the NACA Lewis laboratory.. 

SYMBOL 

The following symbols are used in this analysis: 

A	 ratio of output amplitude at a given frequency to output 
amplitude at zero frequency 

Ap	 piston area, sq in. 

open area of pilot valve (inlet or discharge side), sq in. 

a	 constant 

b	 constant
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C	 dimensional constant in fluid-flow equation (95.1 sq lxi. 
sec AM 

based on specific gravity of 0.851 and flow coefficient 
of 0.59) 

c	 constant 

D	 constant 

E	 inertia index (transient response) 

E l	 inertia index (frequency response) 

F,F1,F2 functions 

low-frequency band-break frequency, cps 

high-frequency band-break frequency, cps 

f3 cross-over frequency, cps 

H constauxt 

h width of vane, in. 

J polar moment of inertia,	 (lb-in.)(sec2)/radians 

L1 inner vane radius of rotary servomotor, in. 

L2 outer vane radius of rotary servomotor, in. 

N load mass, (lb)(sec2)/in. 

P1 upstream cylinder pressure, lb/sq in. abs 

P2 downstream cylinder pressure, lb/sq in. abs 

Pd drain pressure, lb/sq in. abs 

P5 supply pressure, lb/sq in. abs 

pressure drop across piston, lb/sq in. 

valve pressure drop, lb/sq in. 

v,d discharge-valve pressure drop, lb/sq in. 

inlet-valve pressure drop, lb/sq in.
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Q	 shaft torque, lb-in. 

q	 flow through valve, cu in./sec 

ratio of valve travel to piston travel at fixed input, in ./in. 

r	 ratio of valve travel to vane shaft rotation at fixed input, 
in. /radians 

S	 magnitude of step (measured at output), in. 

S t	 amplitude of output sine wave at zero frequency, in. 

T	 no-load time constant, sec 

t	 time from start of transient, sec 

t1	 value of t at inflection point of transient, sec 

value of t at phase limits in transient, sec 

W	 width of valve port (measured perpendicular to line of valve 
travel), in. 

x	 instantaneous position of output measured from position at 
t=O, in. 

x1	 value of x at inflection point of transient response, in. 

x2 ,x3	 value of x at phase limits in transient, in. 

XM	
value of x at point of maxim= deceleration in transient 

response, in. 

instantaneous position of output measured from position at 
t = 0, radians 

e	 magnitude of step (measured at output), radians 

0'	 amplitude of output sine wave at zero frequency, radians 

lP	 phase shift, radians 

CD	 angular frequency, radians/sec 

Ull	
low-frequency band-break frequency, radians/sec
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high-frequency band-break frequency, radians/sec 

cross-over frequency, radians/sec 

DEFINITIONS AND INITIAL ASSUMPTIONS 

Straight-line servomotor. - The elements of the straight-line 
hydraulic servomotor are shown schematically in figure 1(a). In the 
neutral position, the spool member of the pilot valve closes the pas-
sages to tEe piston. When the spool. member is displaced from the neu-
tral position by movement of the input lever at point A, the flow of 
fluid through the pilot valve causes the piston to move in the direc-
tion which returns the spool to the neutral position. It follows from 
the geometry of the linkage that for every position of the linkage 
point A there is a corresponding equilibrium position of the piston. 
The description of several other forms of pilot valving and feedback 
linkage is available in the literature. 

Rotary servomotor. - The rotary servomotor is shown schematically 
in figure 1(b). Rotation of the pilot valve with respect to the output 
shaft opens a pressure passage to one side of the vane and a drain pas-
sage to the opposite side of the vane. The vane is thereby caused to 
rotate in the same direction as the pilot valve. In the neutral posi-
tion of the valve the passages to either side of the vane are closed. 

Initial assumptions. - The analysis which follows is developed 
with the following initial assumptions: 

(1) The area of opening of the pilot valve varies linearly with 
the motion of the load. 

(2)At all positions of the pilot valve the inlet and discharge 
openings are equal. 

(3)At fixed input, the ratio of pilot-valve travel to piston 
travel is constant. 

(4) The supply and drain pressures are constant. 

(5) Structure and linkage are rigid. 

(6) The compressibility and mass of the hydraulic fluid are 
negligible.

(7) Mechanical friction forces are negligible.
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(8) Leakage is negligible. 

(9) Fluid friction losses in the motor passages are negligible. 

TRANSIENT RESPONSE TO A STEP INPUT 

The transient response is analyzed for the no-load case as well 
as for the inertia-load case. The analysis of the response at no load 
yields an important parameter used in the analysis of the response 
under an inertia load.

No-Load Response 

Basic character of response. - Under the conditions of zero load 
on the output shaft and negligible piston and shaft mass, the pressure 
drop across the piston will be zero during the transient as well as in 
steady state. In the transient state, therefore, the fluid flow 
through the cylinder is essentially unobstructed. On the basis of the 
initial assumptions and on the further assumption of constant flow 
coefficient of the pilot valve, the flow of fluid is then proportional 
to the valve opening and hence proportional to the position error of 
the piston. The velocity of the piston is therefore proportional to 
the error. This relation between the piston velocity and the error may 
be expressed by the following equation: 

Tx = (s - x)
	

(1) 

The solution of equation (1) is: 

x=S(le T)	 (2) 

In the no-load case the transient response is therefore defined by 
the time constant T. 

Determination of time constant from servomotor dimensions 
(straight-line servomotor). - In the no-load case the sum of the pres-
sure drops across the inlet and discharge ports is equal to the pres-
sure difference across the servomotor. From the initial assumptions it 
therefore follows that the pressure drops across the two valves are the 
same and hence equal to half the pressure difference across the 
servomotor

-Pd 
2	

(3)
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If the flow coefficient of the pilot valve is considered constant, the 
rate of fluid flow into the cylinder is given by the relation 

q=CAAJ_
S 2	

(4) 

The area of opening of the valves is proportional to the error and 
may be written

	

AV = (s 7 x)RW	 (5) 

The velocity of the piston is determined by the flow rate through 
the valves and is related by the following expression: 

Ax = q
	

(6) 

Equations (4), (5), and (6) may be combined to form the differen-
tial equation of the response 

Ax =CRW PS - Pd) (s - x)	 (7) 

Equation (7) is of the same form as equation (1), from which it 
follows that

A/2 Ap 
T ___


CRWAJPS - 

Determination of time constant from motor dimensions (rotary 
servomotor). - The area of opening of the valves as a function of the 
error may be written

Av	 (e - ct)rw	 (9) 

The angular velocity of the output shaft may be related to the 
flow rate through the valves by the following expression 

- fl (L2 2 - L1 2 )a = q	 (10) 

Equations (4), (9), and (10) may be combined to form the differen-
tial equation of the response

(8) 

- L12) = (rw d)e - )	 (U)
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From equation (n) the time constant is 

h(L22 - 2)


i,jT CrW '\Ps - d. 

Experimental responses. - A typical response of a hydraulic servo-
motor to a step input at no load Is presented in figure 2. The servo-
motor used in this run is of the rotary type. The data are plotted as 

the logarithm of the characteristic term (i - a) 1 against time. In 

a response described by equation (2) (rewritten in terms of a and e), 

the term log (i - )1 varies linearly with time. The data as shown 

fall essentially along a straight line and are in close agreement with 
the calculated response based on the calculated time constant. The 
calculated response is based on the value of time constant computed by 
means of equation (12). The dimensions of the servomotor necessary for 
the application of equation (12) are given in appendix A; also described 
are the experimental methods used to obtain the data. 

In figure 2 the deviation of the data points from the theoretical 
straight line is the greatest in the early part of the transient where 
the effect of the internal servomotor mass is greatest. The response 
in the later part of the transient is less affected by the internal 
mass and is therefore indicative of the theoretical no-load response. 
The close agreement of the points with the theoretical straight line 
over the entire transient can be attributed to the relatively small 
internal mass of this servomotor. The ratio of static torque to the 
moment of inertia of the motor in this case was 3 1 500,000 radians per 

second per second. 

Transient Response Under inertia Load 

General characteristics of response. - Under the condition of an 
inertia load on the output shaft, the pressure drop across the piston 
will be proportional to the acceleration of the load. The general 
nature of the variation of the pressure drop across the piston along 
with the corresponding output shaft response is shown in figure 3. In 
the figure the following relations exist among the cylinder pressures 
P1 and P2 and the pressure drops across the piston App , the inlet 

valve LPv,j and the discharge valve 

T= (12)
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Pp = Pi - 1'2 

v,i	 s - 

v,d = 2 - 

In the steady state, the pressure drop across the piston is zero. The 
cylinder pressures are equal and their magnitude is a function of the 
leakage areas around the valves. If the leakage areas around the 
valves are equal, the cylinder pressures will be equal to 	 - Pd)/2. 
This condition is assumed in figure 3. 

In response to a step input, P1 immediately rises to the supply 

pressure P5, and P2 immediately drops to the drain pressure d• 

The accelerating pressure differential is then initially (p5 - 

As the piston accelerates ., - the flow of fluid through the valve ports 
increases and at the same time the valve-port areas decrease. This 
action causes P1 to decrease and P2 to increase. The two curves 

(p1 F1(t) and P2 = p2 (t)) are mirror images and therefore inter-

sect at the value of (P 5 - Pd)/2. At the intersection, the pressure 

differential across the piston is zero and the transient is therefore 
at the inflection point. Beyond the point of intersection of the two 
pressure curves the momentum of the load causes P1 to continue to 

decrease and P2 to continue to increase, which action results in a 

decelerating pressure differential across the piston. The deceleration 
causes a reduction in the rate of fluid flow through the valves and a 
consequent reduction in the rate of change of P1 and P2 . The pres-

sures P2 and P1 therefore pass through maximum and minimum values, 

respectively. The deceleration continues until the error is reduced to 
zero. The magnitude of the maximum and minimum values of the cylinder 
pressures during the deceleration phase is a function of the value of 
error and of momentum at the inflection point. Based on these factors 
alone, the value of the maximum and minimum is finite but not limited. 
The pressure P1, however, is physically limited at absolute zero. The 

effect of P1 limited at absolute zero is treated in a later section. 

In the analysis that follows, the minimum value of P 1 is not limited. 

In the transient response treated in this section, P1 and P2 

vary as mirror images throughout the entire transient. In this case 

v,i = 'vd
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The sum of the valve pressure drops may be written 

j +Apv.,d = 

The pressure drop across the piston may be written 

isp	psd2v	 (13) 

The pressure drop across the piston is related to the acceleration by 
the following expression

(14) 

From equations (13) and (14) 

A^Pv = 2: (Ps Pd	 (15) 

With the flow coefficient of the pilot valve considered constant, the 
equation of flow through the valve ports is 

= [ P̂d- (S - x)	 (16) 

Equation (16) cannot be integrated to x except by numerical or graph-
ical methods. Some solutions of equation (16) are given in reference 1. 

Under an inertia load the piston is accelerated from zero velocity. 
There is consequently an initial period in the response during which 
the flow through the valve ports is laminar. As a result of this, the 
flow coefficient of the pilot valve is not constant but is subject to 
wide variation. The net effect of the variation in flow coefficient 
is that of a marked reduction, which results in slower initial accel-
eration rate than is indicated by equation (16). This effect is appar-
ent in the comparison between measured responses and responses calcu-
lated by a form of equation (16) shown in reference 1. 

At the conclusion of the transient the piston velocity again 
approaches zero, but in this part of the transient the valve areas also 
approach zero so that high fluid velocity is maintained in the valve 
ports. The flow coefficient may therefore be considered constant 
except in the initial acceleration phase. In the no-load case the 
assumption of constant-flow coefficient is valid because the piston 
velocity is a maximum at the start of the transient.
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In spite of the complex nature of the response there are basically 
only two phases in the transient: the acceleration phase and the decel-
eration phase. This conclusion, particularly with reference to a con-
tinuous deceleration phase without overshoot or oscillation, is based 
on the assumption of rigid oil and structure and zero leakage. Fig-
are 4 shows an oscillographic record of the response of a servomotor 
to a step input under a relatively heavy inertia load. The character-
istic acceleration phase and dead-beat deceleration phase are quite 
clearly deimnstrated. 

Linear system for approximation of acceleration phase of transient 
response. - It is indicated by the measured responses of hydraulic 
servomotors under inertia loads that the acceleration phase may be 
approximated by a linear second-order system. The general form of a 
second-order differential equation with constant coefficients may be 
written

ax+bx+x=c	 (17) 

The constants a, b, and c are now evaluated to match the physi-
cal system. 

The equilibrium value of x in the physical system has been 
defined by the symbol S; hence,

c= S 

At no load the servomotor responds as a first-order system. Equa-
tion (17) should therefore reduce to equation (1) for the inertialess 
case. Therefore,

b = T 

The constant a can be determined from the initial conditions. 

When

t = +0 

x= 0 

0 

= (P8	
d)p (see fig. 3)
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The substitution of these values in equation (17) yields 

MS 
a	

(P5 - Pd)Ap	
(18) 

The differential equation of the linear system that approximates 
the acceleration phase is then 

MS 
(Ps _pd)Ax+Tx+x=S	

(19) 

Evaluation of coefficients for rotary servomotors. - The stalled 
torque of the rotary servomotor is given by the following expression: 

Hence, when

Q = (p5 - Pd)(L2 2 - L12)h 

2 

t=0 

= (p6 - Pd)(L22 - L12)h 

2J

(20)

(21) 

The term J/M, which occurs in the case of the straight-line 

servomotor, is replaced in the case of the rotary servomotor by the 
terms h(L22 - L1 2 )/2J. Replacing terms in equation (18) yields 

2J0 

a= h(L22 - L12)(P5 - d) 

The differential equation of the linear system that approximates 
the acceleration phase in the case of the rotary servomotor is 

2Je (22) 
[h(L22 - L12 )(P5 - Pa)] 

Linear system for approximation of deceleration phase of transient 
response. - In the deceleration phase of the transient the flow through 
the valve ports is turbulent; consequently the flow coeffióient remains 
constant and equation (16) may be directly applied. 

Rearranging terms of equation (16) and dividing both sides by the 

term	 - d yields
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c 
I AflAp \ ;	 Mx 

tt CRW/sJPs - Pd) S - 
=	 - A(PS - d)	

(23) 

Substituting equation (8)in equation (23) yields, 

T(^ _ ) =i_	
S. _	 Mx	 (24) 

(Ps - d) 

At the start of the deceleration phase the value of x is zero 
and consequently the right-band side of equation (24) equals unity. As 
the transient continues, the value of x increases to a maximum value 
and then returns to zero. For small inertia loads, the peak decelera-
tion pressure difference across the piston will not exceed the value of 
the term (' - d) (see fig. 3). In a transient in which the maximum 
decelerating pressure difference across the piston equals the differ-
ence (p6 - Pd), the right-hand side of equation (24) has a maximum 

value of tff. In even extremely severe transients the maximum value of 
this term will not exceed 2. High values of the maximum deceleration 
are associated with short durations. The effect of the decelerating 
pressure differential will therefore have a small effect on the inte-
grated solutions. In treating the deceleration phase of the position 
response of the servomotor, therefore, the pressure differences across 
the servomotor may be neglected. Equation (24) may therefore be 
reduced to

T(SxX)=l	 (25) 

Equation (25) is the same as equation (1). In this linearization, 
therefore, the deceleration phase of the transient is approximated by 
an exponential decay. 

Application of equations. - Equations (19) and (22), which are 
used in this analysis to approximate the acceleration phase of the 
transient, are linear second-order differential equations and may be 
integrated in terms of several parameters. The no-load time constant 
T will be employed as a parameter in the integrated solution because 
this quantity is a direct function of the physical dimensions of the 
servomotor. The second parameter that will be used is the reciprocal 
of the damping ratio. This quantity is herein designated the inertia 
index E. The new term is employed in thispaper because the quantity 
is later applied to equations in which the term "damping ratio" would 
have no meaning.



14
	

NACA TN 2767 

Equation (19) expressed in terms of the parameters T and E may 
be written

T2E2x	 2c=l	 (26) 
4 

The value of E may be obtained directly from the dimensions of 
the servomotor ,, the load mass, and the initial error. Equating like 
coefficients in equations (19) and (26) gives 

E	 MS
= d)Ap	

(27) 

With the substitution of equation (8) in equation (27) the general 
expression for E is obtained

CRW 

Ap 
E-	 3/2 

With the same procedure followed in the case of the rotary servo-
motor, the inertia index is 

E	
4CrW4s1 	 (29) 

[h(L2 2 - L12] 3/2 

The integrated forms of equation (26) are as follows: 

When E=l,

(2t\ [l +	 t]	 (30) 2) 

When E< 1,

	

(T2_	 2 AJ)t- 
22

1 (1- )e	 (31) 

(2 

x	 1 ( +	 1 - 

 

When E > 1,

(28)
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12t \ 

X	 EeT) 

1
[cos [(2 AJE2 - 1 

E2T 
)_ tan-

AJE2-1JJ 

Equations (30), (31), and (32) apply specifically to the acceler-
ation phase of the transient. In this analysis the deceleration phase 
is approximated by an exponential decay as defined by equation (25). 

There is, however, very little difference between the values of 1 as 

defined by equation (30) or equation (31) beyond the inflection point and 
as defined by the integrated form of equation (25). When El, the 
corresponding equations (30) or (31) may therefore be applied in evaluat-

ing - = F(t) in the deceleration phase of the transient as well as 

the acceleration phase. When E > 1, equation (32), which applies to 
the acceleration phase, deviates markedly from a first-order response 
in the deceleration phase. Equation (32) may therefore be applied only 
up to the inflection point. The time at which the inflection point 
occurs as evaluated from equation (32) is 

TN2	
(tan- AJE2 _ 1)	 (33)


= 2E2 - 1 

Equation (32) is therefore solved for values of - for values of t 
between zero and t1. 

Values of	 for values of t> t1 are obtained by integrating - 


equation (25) with the initial conditions 

t = t  

X = x1 

which yields

(^T

-tl

 1 

1 (
	 x1\ 

-= - 1--je	 (34) 
SI 

The relations defined in this section are summarized in figure 5 
along with the expression for T and E.
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Experimental responses. - As derived in this analysis, the tran-
sient response of the servomotor is characterized dynamically by an 
acceleration phase that is approximately described by a linear second-
order differential equation and a deceleration phase that is approxi-
mately described by a linear first-order differential equation. The. 
coefficient of the equations for both phases are determined by the two 
parameters T and E. The parameter T is a function of the motor 
dimensions and the pressure difference across the motor. The parameter 
E is a function of the motor dimensions, the load mass (or moment of 
inertia), and the magnitude of the input step. Figure 6 shows the 
characteristic agreement between calculated and measured responses in 
a series of runs in which the factors that determine the parameters T 
and E have been varied. The data shown were obtained on a rotary 
servomotor. The servomotor and the experimental procedure are described 
in appendix A. 

In figure 6(a) is shown the agreement between calculated and meas-
ured responses at various pressure differences across the motor. This 
set of runs was made at a fixed step magnitude and a fixed load moment 
of inertia. Figure 6(b) shows the agreement obtained in a series of 
runs in which the magnitude of the step was varied while pressure dif-
ference and load moment of inertia were held constant. Figure 6(c) 
shows the agreement obtained in a series of runs made at constant pres-
sure difference and step magnitude in which the load moment of inertia 
was varied. 

As can be seen in figure 6, the calculated responses have provided 
a close approximation of the actual responses over a very wide range of 
conditions. It may be of particular interest to note that the effect 
of the magnitude of the input step predicted by the approximating equa-
tions is evident in the measured responses. 

Determination of Peak Cylinder Pressure During Transient 


Response under an Inertia Load 

It has been indicated in the previous section.that the pressure 
difference acr6ss the piston during the deceleration phase does not 
cause the motor response to deviate significantly from a response 
characterized by an exponential decay. The linear equation (equa-
tion (25)) that is therefore adequate to describe the deceleration 
phase of the position response neglects the variation in deceleration 
rate and cannot be used to obtain an indication of the peak cylinder 
pressure during the transient. In the analysis that follows a method 
will be developed by which an equation similar to equation (16) can be 
utilized by purely analytical means to determine the peak cylinder 
pressure that occurs in the deceleration phase.
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Initial assumptions. - In the construction of high-speed, high-
output hydraulic servomotors, it is usual to employ high supply-pressure 
differences across the motor. In such instances, the drain pressure 
Pd is, relative to the supply pressure 	 close to absolute zero. 

Under this condition, a severe deceleration, resulting from a heavy 
inertia load, which causes the downstream pressure P 2 to rise above 

P5 , will drive the upstream pressure P1 to its limit at essentially 

absolute zero. In the analysis that follows this condition is assumed 
-o hold. The characteristic pressure variation during such a transient 
is presented in figure 7. 

As shown in figure 7, the pressure transient is divided into three 
phases. In phases I and III the two pressure curves ( p1 = F1 (t) and 

= F2 (t)) are mirror images. In phase II, P1 is considered con-

stant at absolute zero. The calculation of the maximum value of P2 

in phase II is based on the determination of the maximum value of 
deceleration. In order to evaluate the maximum deceleration, it will 
be necessary to determine the output position and velocity at the 
beginning of phase II. The symbols to be used in defining the initial 
conditions for each of the three phases are shown on the upper curve of 
figure 7. 

Determination of initial conditions for phase II. - Up to the 
inflection point, phase I is identical with the acceleration phase pre-
viously treated. It is an assumption that the transients that result 
in high decelerating pressures will be of the type in which the inertia 
index E is large; therefore, only the solution to equation (26) 
for E > 1 need be considered. Equation (32) therefore describes the 
function x = F(t) up to the inflection point. As defined in fig-
ure 7, phase I extends beyond the inflection point. The coordinates of 
the junction of phases I and II are 

X = x2 

t	 t.2

0 

P2 = p5 

At this point, by definition,

v,i = v,d =
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At any point in the transient the piston velocity is related to the 
flow through the valves by equation (16). Thus, at the junction of 
phases I andII

CRW 

	

X2 =:ç-	 ,fi; (s - x2 )	 (35) 

From equation (8) the following relation may be written: 

CRW
(36)


	

A	 - T 

Substituting equation (36) in equation (35) yields 

x2 AJ	
- T X2)

(37) 

From equation (37) it is seen that the velocity at the junction 
of phases I and II is the velocity corresponding to the inertialess 

case multiplied by A./. At the inflection point the velocity corres-
ponds exactly to the inertialess case. Thus, 

S-x1 

T 

Based on the consideration that 

(S-x1)> (S-x2) 

the following approximation is made: 

	

(s - x1 )	 (s - x2) 

Hence,

X2 

From this the conclusion is drawn that the piston moves from the 
inflection point to x2 with substantially the velocity at the inflec-
tion point. 

	

The expression for the term	 can be found by differentiating 

equation (32) and setting t = t 1, where t1 is givei by equation (33). 
This yields
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tan-1E2_1d\ 

	

2Se	 (38)
X2 = x1 

The term x2 is determ1ned by substituting the value of c 2 (as 

determined by equation (38) in equation (37)). 

Differential equation for phase II of response. - As shown in fig-
ure 7, the following relations exist in phase II: 

Pi=o 

Pp - P2 

LPv,d = P2 

The pressure drop across the piston is related to the acceleration 
by the following expression:

Mx 
PA 

From the condition specified above, 

v,d -	
X 

The equation of flow through the valve ports is 

	

(CRW	 (S - x) 
Ap 

Squaring and rearranging terms gives 

1 A	 \i • p	 x ) +x=O	 (39) 

	

C2R2W2MJ	 - 

From equation (28)

	

2S	 Ap3 

E2 - C2R2W2M 

Hence, equation (39) may be written in terms of the inertia index
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(40) 

S) 

Determination of maximum value of deceleration. - Differentiating 
equation (40) and setting 	 = 0 yields 

- x) + ()2 = 0	 (41) 

Eliminating x between equation (40) and equation (41) gives 

()2 _(k)2=o 
E2 (s - x) 

from which

T	 E2
(42) 

Substituting equation (42) in equation (40) yields 

E2(i)2 
ax	 2S	

(43) 

The value of x at x = Xm is found by integrating equation (40). 

This integration is shown in appendix B. By inserting this value of x 
in equation (43), the value ofxmax is obtained. Based on the consid-

eration that P1 equals zero, the relation between the maximum down-

stream cylinder pressure and the maximum value of the deceleration is 

2,max =	 max
	 (44) 

It is further shown in appendix B that the ratio 	 can be 

expressed as a function solely of the inertia index. This relation is 
given below

P2_, max E2e 2F (E) 
P5 - 14.77

(45) 

where
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tan-1E2_1	 ,j\ 

F(E) = !	
' AJ i	 ) tan-i 'jj 

It is shown in appendix B that equation (45) has real values for 
all values of E> 2.38. 

Comparison of experimental and analytical values of peak cylinder 
pressure. - Equation (45 is plotted in figure 8 for values of E from 
2.38 to 6.5. Also shown in the figure are experimental values obtained 
on the rotary servomotor described in appendix A. The experimental 
technique used to obtain the data is also described in appendix A. It 
can be noted that the experimental values are slightly lower than the 
analytical curve at low values of E and are in close agreement with 
the curve at higher values of E. The value of E equal to 5.7, which 
is the highest experimental value shown ) was the highest value that was 
practicably obtainable with the test equipment. In general, values of 
E in excess of 6 represent very heavy inertia loads and large step 
magnitudes. 

Effect of high decelerating cylinder pressure on transient 
response. - In the derivation of the equations that describe the tran-
sient response of the servomotor, it was shown that the deceleration 
phase of the transient response could be approximated by an exponential 
decay, in which case the variations in the cylinder pressures are neg-
lected. This method of approximation is outlined in figure 5. For 
transients in which the upstream cylinder pressure is driven to abso-
lute zero, the relations that have been derived for the determination 
of the peak decelerating cylinder pressure can be used for a more pre-
cise determination of the transient response than is afforded by the 
method of figure 5. The application of these relations to the tran-
sient response is presented in appendix B and is outlined in figure 9. 
A comparison of the method of figure 5 and the method of figure 9 with 
an experimental response is shown in figure 10. The agreement between 
the measured response and the response calculated by the method of fig-
ure 9 is extremely close. The value of the inertia index in this 
response was 4.49; hence, from figure 8, the ratio P2,max/Ps 

equals 1.75. Even with this high decelerating pressure the method of 
figure 5 provides a fair approximation of the response. The calcula-
tions involved in the application of the method outlined in figure 9 
are many times longer than that required with the method outlined in 
figure 5. For this reason the method of figure 9 should be applied 
only when the need for increased accuracy justifies the longer 
calculation.
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RESPONSE TO A SINUSOIDAL INPUT 

The analysis of the frequency response at no load yields an 
important parameter used in the analysis of the response under an 
inei'tia load. For this reason, both the no-load and the inertia-load 
cases are treated.

No-Load Response 

Basic character of response. - The basic character of the zero 
mass response is defined by the linear proportionality between the out-
put velocity and the pilot valve opening (or position error). The pro-
portionality constant between the velocity and the error is the no-load 
time constant T. For a sinusoidally varying input the instantaneous 
output velocity is then

St cos Wt - x 
T	

(46) 

The solution of equation (46) is 

St = Ae]()t)
	

(47) 

Substituting equation (47) and its derivative in equation (46) gives 

Ae_	 1 
- 1 + ia:T 

The term AeP is a vector quantity having an amplitude A and 
a phase angle p. From equation (48)

1 

A = '\Jl + T2w2	
(49) 

cp = - tan- Tw	 (50) 

For large values of w

A - !
th 

Hence, the asymptote of the response is given by

(48) 

M-1 am



NACA TN 2767	 23 

A=

	

	 (51)

TW 

The intersection of the asymptotic line and A = 1 yields the break 
frequency and orients the asymptote

1	
(52) 

Experimental responses. - Figure 11 shows the correlation between 
the analytical first-order frequency response and the measured frequency 
response of a servomotor at no load. The servomotor used was the rotary 
motor described in appendix A. The techniques of instrumentation and 
experiment are also described in appendix A. The close agreement 
between the calculated response and the measured response for the wide 
range of input amplitudes used characterizes the basic linearity of 
the response of the servomotor at.no load. 

Response Under an Inertia Load 

It has been shown that onder an inertia load the transient 
response of the servomotor is nonlinear. In the transient response 
the basic character of the response varied with time. It is therefore 
to be expected that in the frequency response the basic character of 
the response will vary with frequency. 

Low-frequency amplitude attenuation. - At low frequencies the 
forces that act on the mass of the system are small and hence the 
response in this frequency range will be similar to the no-load 
response. The attenuation may therefore be described by equations (49) 
and (51). In the log-log plot of amplitude ratio against frequency 
(fig. 12), an asymptote may then be considered to' exist with unity 
slope and a break frequency of l/T. The break frequency of the low-
frequency asymptote expressed in cycles per second is

(53) 

High-frequency amplitude attenuation. - At no load the piston 
velocity is at all times proportional to the valve opening. Therefore, 
in the response to a sinusoidal input at no load the pilot-valve area 
is zero at the ends of the output travel (the velocity being zero). 
Under an inertia load the piston velocity is not proportional to the 
pilot-valve 6pening, and hence in the response to a sinusoidal input 
the valve area is not necessarily zero at the ends of the output 
travel. If at a given frequency the response of the servomotor is 
assumed to be essentially sinusoidal, the maximum acceleration can be
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considered to occur at the limits of the output travel and hence when 
the piston velocity is zero. Under the condition of negligible mass 
of the hydraulic fluid, the pressure difference across the piston at 
any instant, when the piston velocity is zero and the pilot-valve area 
is greater than zero, is the pressure difference across the servomotor. 
Above some frequency the system may then be approximated by a linear 
system wherein the pressure difference across the piston varies sinus-


	

oidally with an amplitude of (P5 - 	 and with the frequency of the 

input. On the basis of this approximation the acceleration of the 
piston is

•.	 (P5 - 
x=	

14	
sin wt	 (54) 

Integrating equation (54), introducing the condition that x 
varies about zero, and neglecting the change in sign yield 

x=
 (P___Pd)Ap s
	

sin wt	 (55) 

After both sides of equation (55) are divided by the output ampli-
tude at zero frequency, the equation relating the amplitude ratio and 
the frequency is

A =
	 - d)p	 (56) 

j 

In the log-log plot of amplitude ratio against frequency (fig. 12) 
an asymptote may therefore be considered to exist having a slope of 
2 decades per decade. The break frequency of the high-frequency asymp-
tote is found from equation (56) by setting A = 1 

- P)A 
U)2	 SSM	 (57) 

The expression for the value of w2 may be made independent of 

the type of servomotor by relating •u to the no-load time constant 

and the dimensionless quantity previously defined as the inertia index. 
The inertia index is defined for the frequency response by replacing 
the term magnitude of step S with the term amplitude of output sine 
wave at zero frequency S. 

Rewriting equation (28) and introducing the symbol 5' in place 
of S give



2 
= TV

(59) 
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E1 I¼/; CRW 

	

-	 A3/2 

From equation (8)

JI

	 4 Ap 

- CRWA^P p,  

Combining these two relations yields

MSt 

	

VT =	
- d)	

(58) 

Substituting equation (58) in (57) gives 

The break frequency of the high-frequency asymptote expressed in 
cycles per second is

	

= 1	 (60) 

The amplitude ratio may also be expressed in terms of T and E'. 
Substituting equation (58) in equation (56) gives 

4 
A 

= (E')2T2u2 

Cross-over frequency. - The intersection of the low- and high-
frequency asymptotes defines the limit of the low-frequency band and 
the start of the high-frequency band. For f2 > f1 this intersection 
is found by equating the amplitude ratios as defined by equations (51) 
and (61)

l_	 4 
TM - 

from which

(61) 

= T(E')2
	 (62)
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The cross-over frequency expressed in cycles per second is 

13 =  
AT(Et)2

(63) 

For f2 < f the cross-over frequency occurs at f 2; hence 

= 

Correlation of frequency response and transient response. - It has 
been shown that the derived attenuation asymptotes of the frequency 
response are functions of the same parameters that govern the derived 
characteristics of the transient response. It has been shown further 
that the analytical relation that governs the characteristics in the 
low-frequency band is the same as the analytical relation that governs 
the characteristics of the deceleration phase of the transient response 
(fig. 5). It can also be shown that the linear system used to approxi-
mate the acceleration phase of the transient response attenuates along 
the same asytote as has been derived for the high-frequency band. 

Equation (26) expresses the dynamic equilibrium in the accelera-
tion phase of the response to a step input. Equation (26) rewritten 
for a sinusoidal input is 

T2(E')2 
4	

x+Tx+x=SIe1t	 (64) 

The solution to equation (64) is 

St = Aei)
	

(65) 

Substituting equation (65) and its derivatives in equation (64) yields 

Ae =
	 1	 (66) 

T
w2T2(E)2)+ 

-	 4 

The term Ae-" is a vector quantity having an amplitude A and 
a phase angle (

1 
A =	 __ 	 (67) 

J(1 - w2T2(Et)2)2 + (02T2



NACA TN 2767	 27 

oil 

(1 - 
w2T2(El)2)	

(68) 

At high frequencies the relation of equation (67) approaches the 
asymptote

A= (E 2T2u2

	 (69) 

Equation (69) is identical with equation (61). It is therefore shown 
that the linear system described by equation (64) attenuates along the 
same asytote as the linear system described by equation (26). 

Phase shift. - The correlation of the amplitude attenuation with 
a linear first-order system in the low-frequency band and with a linear 
second-order system in the high-frequency band provides a basis for the 
description of the phase shift of the servomotor. The phase shift of 
linear systems can be represented by straight lines on the coordinates 
of phase shift against log frequency. The characteristic slope of the 

straight line for a first-order system is the slope 	 of the phase-dw 
shift-frequency relation at cp = 45 0 . The characteristic slope of the 

straight line for a second-order system is the slope LT of the phase- dw 
shift-frequency relation at T = 90°. The orientation of these lines 
and the relations for the slopes are shown in figure 12. The derivation 
of the relations shown in figure 12 is presented in the following 
paragraphs. 

Based on the correlation of the low-frequency-amplitude attenua-
tion with the no-load response., the phase shift Is, from equation (50), 

= - tan- TO) 

and, from equation (52), the break frequency in the low-frequency band 
is

1 

Substituting equation (52) in equation (50) yields 

= - tan-11 = 450
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Differentiating equation (50) with respect to w and setting 

= . yield the slope IT at a. 
= 450 

T

(io) 

	

&D 2	 - 

The straight line on the semi-log plot may be written 

= K log10u
	

(71) 

Differentiating equation (71) with respect to w and solving for 
K give

K = 2.3w dM	 (72). 

Substituting the values of	 and w at cp = 450 yields the dw 
characteristic slope of the first-order system on the semi-log plot 

K1 = 1.15
	

(73) 

The phase shift in the low-frequency band may therefore be repre-
sented by a straight line on the semi-log plot having a slope of 
1.15 radians per decade (66 0/decade) and passing through the point 

= 1	 450 

Based on the correlation of the amplitude attenuation in the high-
frequency band, with the acceleration phase of the response to a step 
input, the phase shift in the high-frequency band is characterized by 

the relation expressed in equation (68). The characteristic slope dw 
of equation (68) is found by differentiating equation (68) and setting 

w equal to Jj- ((p=90°)

d(P- T(E02	 (74) 
&1)	 2 

After the substitution of equation (74) and w = 	 in equa-

tion (72), the characteristic slope of the second-order system on the 
semi-log plot is

K2 = 2.3E'	 (75)
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It is a fundamental precept that in representing the response of 
the servomotor in two frequency bands the relations used to approximate 
the response shall yield equal amplitude ratios and equal, phase shifts 
at the cross-over frequency. The cross-over frequency has already 
been defined for equal amplitude ratios. The phase-shift line in the 
low-frequency band has been previously oriented. The phase-shift line 
in the high-frequency band therefore intersects the low-frequency phase-
shift line at the cross-over frequency and has a slope of 2.3E' radians 
per decade (1320 E t decade). It should be noted that the low-frequency 
phase-shift line is limited, at 90 0 and the high-frequency band phase- 
shift line is limited at 1800 . In figure 12 the cross-over frequency 
is shown to occur after the low-frequency phase-shift line has reached 
the 90° limit. The orientation of the high-frequency phase-shift line 
for other relative locations of the cross-over frequency is shown in 
conjunction with the experimental responses. 

Experimental responses. - Figure 13 shows the experimentally and 
analytically determined, effect on the frequency response of the hydrau-
lic servomotor of the parameters: load inertia, input amplitude, and 
pressure. Examples are presented for both the rotary and straight-line 
types of motor. 

In figure 13(a) is shown the effect of load inertia on the ampli-
tude attenuation and on the phase shift of a rotary servomotor. An 
increase in load inertia results in a reduction in the frequency at 
which the attenuation becomes rapid. In the analytical expression 
developec5. in this paper (summarized in fig. 12) this effect is vident 
in the increased value of E l with increasing load inertia and the 
consequent reduction in the values of f2 and f3. 

The experimental and calculated frequency response of the same 
rotary servomotor at various input amplitudes are shown in figure 13(b). 
The amplitudes given in the figure correspond to the term e' and con-
sequently are half the total output stroke at zero frequency. In the 
case of this particular servomotor, this amplitude corresponds exactly 
to the amplitude of the input sine wave. The increase in input ampli-
tude is seen to have an effect similar to that of increasing load 
inertia. This effect is made evident in the analysis by equation (57). 

The agreement between experimental and analytical responses for a 
straight-line servomotor is shown in figures 13(c) and 13(d). Phase 
shift could not be measured in this installation. Figure 13(c) shows 
the effect of the pressure difference across the motor. Increased pres-
sure results in increasing the frequency at which the motor begins to 
attenuate rapidly. In the analytical expressions, the increase in pres-
sure results in a decrease in T and a consequent increase in f1, f2, 

and f3 . The inertia index E T is independent of the pressure



30
	

NACA TN 2767 

difference and therefore the effect of pressure on f 2 and f3 is not 

as great as the effect on f1. The effect of amplitude shown in fig-

ure 13(d) is similar to that already shown in the case of the rotary 
servomotor in figure 13(b). 

In both amplitude attenuation and phase shift the agreement between 
the measured response and the analytical straight-line approximation is, 
in general, well within the experimental accuracy. The slopes of the 
attenuation and phase data clearly demonstrate the first-order charac- 
teristics of the response in the low-frequency band and the second-
order characteristics of the response in the high-frequency band. The 
transition from first-order to second-order characteristics at the cal-
culated cross-over frequency is quite pronounced. The values of T 
and E' shown in figure 13 are based on a value of C of 95.1, on the 
dimensions of the servomotors as given in appendix A. and on the condi-
tions stated on each plot. In figures 13(c) and 13(d), the pressure 
differences given are not the actual pressure differences across the 
motor but are reduced values based on a pressure necessary to overcome 
friction in the loading carriage. This reduction is discussed in 
appendix A. In all the other calculated results presented in this 
paper, no correction whatever was applied to the measured pressure dif-
ference across the motor.

CONCLUDING REMARKS 

Application to analysis. - The dynamic relations presented in this 
paper can be directly applied to the analysis of a given servomotor. 
The dimensions of the servomotor and the operating pressure difference 
across the motor determine the no-load time constant T. The inertia 
index E is then determined from the load inertia and the magnitude or 
amplitude of the input disturbance. With these two constants deter-
mined, the relations for the transient response, the peak cylinder pres-
sure in the transient, and the frequency response can be applied. 

The validity of the analysis has been demonstrated by means of 
recorded transient and frequency responses obtained on two servomotors. 
In all cases the calculated responses are in close agreement with the 
measured responses. 

Application to design. - The optimum combination of servomotor 
dimensions to meet specific dynamic requirements involves further dis-
cussion of physical considerations that are beyond the scope of this 
paper. It is nevertheless apparent that, based on this analysis, pro-
cedures can be established for the rational design of hydraulic servo-
motors. In general, the procedures will involve the inversion of . the 
analytical expressions in order that the dimensional parameters (such
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as A. R, and w) may be expressed in terms of the analytical parame-

ters T and E, and the establishment of means of specifying the 
desired response in terms of the analytical parameters. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland, Ohio, May 19, 1952
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APPARATUS AND EXPERIMENTAL. PROCEDURES 


Servomotor Dimensions 

The two servomotors used in this investigation had the following 
dimensions: 

Straight-line servomotor: 

Piston area, A, sq in. . . . . . . . . . . . . . . ..... . 4.4 

Ratio of valve travel to piston travel at fixed input, 
B, in./ln.	 .........................0.1062 

Widthof valve port, W, in. . . . . . . . . . . . .- . . . . . .	 1.33 

Rotary servomotor: 

Widthof vane, h, in.. . . . ......... . . . . . . . . .	 2.000 

Inner vane radius, Irj in. . . .	 . . • • ..........0.760 

Outer vane radius, L2 , in. . . .	 ....... . . . . .	 2.267 

Ratio of valve travel to vane shaft rotation at fixed input, 
r, in./radians . . . . . . . .	 ...... -	 .....	 0.3125 

Width ofvalve port, W, in	 ...... 0.2225 

Transient Response 

Position recorder. - Input and output shaft positions were recorded 
by means of direct-writing oscillographs. The oscillographs were 
driven by amplifiers. The a1ifiers, in turn, received their signal 
from potentiometers coupled to the servomotor shafts. The frequency 
response of the amplifier-oscillograph combination was essentially flat 
over a frequency range from 0 to 80 cycles per second. 

Pressure recorder. - Cylinder pressures were also recorded by 
means of direct-writing oscillographs. The pressure pickups used were 
of the strain-gage type. The signal developed across the strain-gage 
bridge was aiilified by suitable amplifiers which, in turn, drove the 
oscillographs. The frequency response of this amplifier-oscillograph 
combination was essentially flat over a frequency range from 0 to 
80 cycles per second. The natural frequency of the pressure pickup was 
1000 cycles per second. 

Step-input apparatus. - In order to introduce a step change in a 
mechanical system such as the hydraulic servomotor, it is necessary to
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accelerate and decelerate a finite mass (such as the input shaft) at 
very high rates. The time constant of the servomotor to be tested was 
about 0.03 second. The very high accelerations that would be required 
of the input mechanism for the transient to be negligible did not 
appear.to be reasonably attainable in this case. It was therefore 
decided to use a step input that is obtained , by restraining the output. 
This procedure should be made clear by figure 14. 

As can be seen in the photograph, the output shaft is held in 
position by a wire suitably anchored. The wire used was music wire 
stressed to approximately 150,000 pounds per square inch. With the 
output so restrained, the input lever is advanced for the desired mag-
nitude of step. The transient is then triggered by cutting the highly 
stressed wire. In the transient runs, the output motion was recorded 
directly. The input motion, which has no meaning in this case, was 
not recorded. The start of the transient was recorded by placing the 
restraining wire in the signal circuit of one recorder. A change 
occurred in the signal voltage when the wire was parted. 

The moment of inertia of the load was varied by bolting additional 
weights to the ends of the bar that was. fastened to the output shaft of 
the servomotor. For the no-load runs a light-weight arm was used in 
place of the bar that is shown in figure 14. 

Frequency-Response Apparatus 

Drive apparatus. - The rotary-servomotor setup for frequency-
response measurement is shown in figure 15. In the photograph of fig-
ure 15 the servomotor input shaft is on the right-hand side. A rack 
and gear assembly is coupled to the input shaft. The rack is connected 
to a variable-stroke crank that is driven by a variable-speed transmis-
sion. The drive had a range of from 0.1 to 20 cycles per second. 

The straight-line-servomotor setup for frequency-response measure-
ments is shown in figure 16. The input lever is linked directly to a 
variable-speed, variable-stroke drive. The output potentiometer is 
coupled to the output shaft by means of a rack and pinion assembly. 
The servomotor is loaded by means of weights that are bolted to a slid-
ing carriage. Input motion was not measured in this apparatus. The 
variable speed drive had a range from 0.1 to 11 cycles per second. 

Output and phase-angle measurement. - Phase angle was measured only 
in the case of the rotary servomotor. The circuit diagram showing the 
method of connecting the potentiometers to the recorder amplifiers is 
shown in figure 17. By means of the arrangement shown, the output 
motion and the error between the output and input shaft position are 
recorded. In the diagram the potentiometers marked input and output
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are the two that are visible in figure 15 and are coupled directly to 
the input and output shaft, respectively. The balance potentiometer 
is uncoupled. 

The output attenuation ratio is obtained directly from the oscil-
lograph traces. The phase angle is obtained by means of the graphical 
construction shown in figure 18. The input amplitude is laid out to 
an arbitrary scale. With the use of this scale, the output-amplitude 
ratio is swung as an arc from the starting point of the input-vector. 
The error-amplitude ratio, referred to amplitude at infinite frequency 
(obtained by locking output), is swung as an arc from the opposite end 
of the input vector. The triangle thus formed yields the phase angle. 

The particular advantage of this procedure lies in the relatively 
greater accuracy with which the amplitude of a wave can be measured 
compared with the determination of the exact point in the cycle at 
which the maximum height of the wave occurs. 

Friction determination. - In the frequency-response runs made with 
the straight-line servomotor, the limitations imposed by the sinusoidal 
drive and pumping equipment restricted the range of frequencies to a 
maximum of U cycles per second. In order to obtain a significant 
range of amplitude ratios below U cycles, it was necessary to make 
these runs at low pressure differences across the motor. The pressure 
necessary to overcome friction in the servomotor was approximately 
2 pounds per square inch and therefore could be neglected in the cal-
culations. The pressure necessary to overcome friction in the loading 
carriage was as high as 22.5 pounds per square inch at maximum load. 
This pressure was defined as the pressure necessary to maintain a 
steady oscillation with a given load on the carriage. The pressure 
was found to be substantially independent of the frequency in the 
range of frequency up to 11 cycles per second. The calculated asymp-
totes shown in figures 13(c) and 13(d) were made with the friction 
pressure subtracted from the measured pressure difference across the 
motor. 

The procedure previously outlined applies only to figures 13(c) 
and 13(d). In all the other runs shown, no correction whatever was 
applied to the measured pressure difference across the motor.
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APPENDIX B
	

LI 

DERIVATION OF EQUATIONS FOR TRANSIENT RESPONSE IN WELCH UPSTREAM


CYLINDER PRESSURE IS LIMITED AT ABSOLUTE ZERO 

In the following sections the formal mathematical operations 
employed in the derivations of the expressions for the peak cylinder 
pressure and for the position response are presented. 

Peak Cylinder Pressure 

Integration of differential equation for limited pressure phase 
(equation (40)). - The differential equation for the phase of the tr 
sient in which the upstream cylinder pressure is limited at absolute 
zero is, from equation (40), 

2S	 x
(Bl) 

_ X)2 

The order of the equation may be reduced by means of the following gen-
eral relation:

- &(x) <	 - d(x) 
- dt	 d.x	 clx 

With the substitution of equation (B2) in equation (Bl), the reduced 
equation is obtained

2Sf S _\2;d() =0 

	

E2x)	 dx 

Rearranging terms yields

2S	 dx	 d(x) 

	

+	 =0 
E2(sx)2 

Integrating each term gives 

2S	 1
(B3) 

from which
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I	 2s i \ 

	

X = e -	
Ts-x))	 (B4) 

With use made of the symbols defined in figure 7, the initial conditions 
are

t = t2 

x=x2 

= X 

Introducing these values in equation (B3) yields 

2S	 1 
D=(Sx)+lnX2	 (B5) 

Relation between ratio of peak pressure to supply pressure and 
inertia index. - From equation (43)

2 ()2	 (B6) 

From equation (42) the value of x when x is at the maximum value is 
given by the following relation

(B7) 

With the substitution of equation (B7) into equation (B4), an expres-
sion is obtained for the piston velocity when the deceleration is at 
the maximum value

XM =
	 ( B8) 

Substituting equation (B8) in equation (B6) yields 

E 2 e2 
xmax= T S	 (B9) 

Based on the consideration that P1 equals zero, the relation between 

the downstream cylinder pressure P 2 and the deceleration is 

= Mx	 (Blo)
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Combining equations (B9) and (BlO) and dividing by P. 'yield 

2max - 2e 2t)	
(Bu) 

Ps - 2JSe2P5 

Based on the consideration that P1 and Pd are zero, the fol-

lowing 'relation is derived from equation (27): 

Substituting equation (B12) in the right-hand side of equation (Bil) 
gives

2,max - E4T2e2D	
(B13) 

- 8S2e 

Inserting the numerical value of e 2 gives 

,max -	 e	 (B14) 
- 59.152 

The exponent D may be expressed in terms of the relations that 
have been derived for x 2 and	 From equation (37) 

S - x2 = 

Tx2	
(B15) 

and from equation (38)

(LanK-' ) 

2Se	 sin (tan K)	 (B16) x2 =TK 

where K = tJE2 -1 

By use of the trigonometric identity 

sin a =

'Vi + tan' a 
it can be shown that



38
	

NACATN 2767 

sin (taif 1 K) =	 K 

iJi + K2 
Furthermore,

r'.Ji + K2 = E 

Hence.,

sin (tan-1 K) = 

and equation (B16) may be written

(tan 
2Se' K 1K) 

X2 =	 (B17) 

Substituting equation (B17) in equation (B15) yields 

(tan l K' 
__ K ) 
- E	 (B18) 

Substituting equations (B17) and (BiB) in equation (B5) gives


(tan* K\ 

K ) tan 1 K	 2S 

	

E 
e	 -	 K	 + in TE	 (B19) 

Let

(-' ic'\ 
K

- 

	

E e	 K	 F(E) 

A am 01

D = F(E) + in 
TE 

4S2 [2F(E)] e- =	 e	 (B20) 
T 

2 
E 

2
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Substituting equation (B20) in equation (B14) gives 

2,	 E 2[E] 

	

max	 e	 (B21) 
PS	 14.77 

It can be seen from figure 7 that equation (B21) will yield real 
values only if the following relation exists: 

Xla> X2 

	

S	 S 

Because x./S and x2/S are both functions solely of E, the 

value of E when x/S = x21S represents the limiting value of E 
for real values of 

From equation (B7)

(B22)


	

S	 E2 

From equation (B18)

(tan7l Aj

(B23)

 Equating equations (B7) and (B18) gives 

(tanl AJ77\ 

	

E=4e'	
6	 (B24)


The value of E that satisfies this relation is 2.38. 

Because x..JS approaches unity more rapidly than x2/S as E


increases, 2,x/s as defined by equation (B21) has real values for 
E 2.38. The validity of this proof is demonstrated by the evaluation 
of equation (B21) at E = 2.38. Inserting this value of E in equa-
tion (B21) yields

2,max =1 Ps
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Position Response 

Determination of initial coordinates of phase II. - From 

equation (37)

X2 1 (B25) 
s-

From equation (38)

tan-1 'si\ 

X2	 2 (B26) 

Substituting equation (B26) in equation (B25) yields 

(-1 Aj 

X2 e	 (B27) 
E  

xl	 x2 
The velocity is constant from the point -- to the point --; 

hence,

+

 (

X2 - x1 

(B29) 

Integration of differential equation for phase II. - The first 
step in this integration is presented in the previous section in which 
equation (Bl) is Integrated to x (equation (B4)). 

Let

28	 1 —	 =u 
E2 (S - x) 

du = 2S (S - x) 2 dx  — 
E2 

dx = 2 -
S 1 X -;:; du

E2 u
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Making these substitutions in equation (B4) and rearranging terms 
yield

dt= (2se-D\ e  
E2 )-du	 (B30) 

fe

	

n= 
U	 eU z n	 (B31) 

The integrated, equation is then

n= 
t = (se  

E2)( u - - +>	
+ H)	 (B32)

un 

n=1 

The constant II is evaluated by introducing the initial condition 

t = t2 

X = 

Hence,

(B33) 

where

2S z
E2 TS-----x27 

Determination of initial conditions for phase III (fig. 7). - As 
defined in figure 7, the coordinates of the junction of phaes II and III 
are

X = x3 

t = t3 

As further defined, the following conditions exist at t =
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P1 = P2 0 

P2 = P5 

/Pp = - Ps 

LPV,j =	 = 

Hence,

•. - AP 

M 

By equation (7)

CRW x3 =ç- i\fi(S-x3 )	 (B34) 

Substituting equation (36) yields 

=	 (S - x3 )	 (B35) 

From equation (B4) a second velocity-position relation is obtained 

(	 23 1 

X3 = e'? -
	 FS-X3))	 (B36) 

Combining equations (B35) and (B36) yields 

2S	 1 
E2 (3 - x3 ) +	

(S - x3 )	 (B37)' 

The constant D is evaluated by means of equation (B19) and 

is determined graphically from equation (B37). The coordinate t 3 is 

evaluated by means of x3 and equation (B32). 

Equation for phase III of response. - Phase III is identical with 
the deceleration phase of figure 3. Therefore, following the derivation 
of equation (34), the equation of the response in phase III is 

x	 3) -C;t3)
(B38)
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J..	 p.' 
i 01

(a) Straight-line servomotor. 

Error 

(b) Rotary servomotor. 

Figure 1. - Schematic drawings of two types of hydraulic servomotors 


with mechanical feedback.
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0
/ 	 14	 .uG	 .uB	 .0	 .12	 .14 

Time from start of transient, t, sec 

Figure 2. - Response of a hydraulic servomotor to a step input under negligible inertia 
load. Rotary servomotor; torque-inertia ratio, 3,500,000 radians per second per 
second; supply pressure, 1000 pounds per square inch; total shaft displacement, 200.
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04 

cc 
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Figure 3. - Characteristic pressure variations during transient response of a 
hydraulic servomotor with mechanical feedback. Step input and inertia load 
(cylinder pressures not limited).

46
	

NACA TN 2767 



NACA TN 2767

W1"TrIiIIIL so 

i-IIiII-I-IIIii1 
ME

Time-.	 -'I	 0.04 sec 

Figure 4. - 0ci11oaphic record of response to a step input of a 

hydraulic servomotor under an inertia load. 
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1 _L + 2 l-i 
1 	 TE2PR 

R<1 1	 (i+	 )e

12	 2 

1
E2) e 

E = 1 t	 = 1 - e T 1+

1 (
	

]C1\* T ) 

(tan_14E2 - 1 

xl	 2e	 'ii-i	 ) 

PR2 tan-1 /E2 - 1 
2'JE - 1  

Time, t, sec 

Straight-line servomotor	 Rotary servomotor 

	

T = 	 T	
h(L22 - L12) 

- Pd	 -JCrW-v"Ps - 

-IF

	

E -	 E =
	 4CrW-/ 

	

-	 A3/2	 [h(2 - L12)]72 

Figure 5. - Summary of linear relations for transient response of hydraulic servomotors 

with mechanical feedback. 
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0 ME
a. Response

_____a 
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(a) Effect of pressure differential. Step input, 30"; moment of inertia of 


1nd. 125 nound inches nersecond Der second. 
1.0 

0Kb	 .8 
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.6 
M 

4.,

.4 
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o	 .2 

1.0 

8 

6 

4 
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- T-F
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Response 
Measured	 Calculated	 e	 T	 E 

-' 0	 5	 0.0617 0.998 
0	 -----10	 .0617 1.40 

20	 .0617 1.992 
__ -
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WIIIIIIHHH_I 
(b)Effect of magnitude of step. Moment of inertia of load, 12.35 pound inches 

rnod ner second: treasure differential, 250 pounds per square inch. 

( Response 
Measured Calculated 	 3	 T	 E 5r- / 

'j 0	 0.15 0.0617 0.2195 
/ 2.05	 .0617	 .812 

0	 5.00	 .0617 1.267 - 7L./
 

,0
/ 12.35	 .0617 1.993

0	 .0 

Time, t, sec 

(c) Effect of load inertia. Step input, 200 ; pressure differential, 250 pounds 

per square inch. 

Figure 6. - Responses of a hydraulic servomotor to a step input under inertia load. 

Rotary servomotor. 
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'I 



H 
a) 

4.) 

0 
4.) 

PLI 

Absolute 0 

a) 

C) 

IM 

a) 

Q 

Is 
H 

0

50
	

NACA TN 2767 

0	 Time, t, sec 

Figure 7. - Characteristic pressure variations during transient response of a 
hydraulic servomotor with mechanical feedback. Step input and inertia load 
(upstream cylinder pressure limited at absolute zero).
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Analytical relation 

rr	 ftanK\	 1 
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2	 3	 4	 5	 6	 7

Inertia index, E 

Figure 8. - Ratio of peak transient cylinder pressure to supply pressure as a 

function of inertia index. Hydraulic servomotor with mechanical, feedback. 



f ± \2 

	

•j	 2!	 S 
- 
S E2 i-

T	 + 2E	 = 1 
4 S	 S S

T+= 1 

out 

52
	

NACA TN 2767 

1.0 
x3/S 

kit!) xm/S 

j xe/S 

0

Time, t, see 

Figure 9. - Analytical relations for approximating transient response 
of a hydraulic servomotor with mechanical feedback. Step input and 
inertia load (upstream cylinder pressure limited at absolute zero).



NACA TN 2767
	 53 

r	 0 Measured response 
-Method of figure 9 
---Method of figure 5 

1.0
- 

.8 
IQ 

ci 

i	 .4 

0
.2 

[II
Time, t, sec 

Figure 10. - Comparison of method of figures 5 and 9 with a measured response. 
Transient response of a hydraulic servomotor with mechanical feedback. 
Rotary servomotor; step input, 30 0 ; moment of inertia of load, 41.75 pound 
inches per second per second; pressure differential, 250 pounds per square 
inch. Inertia index, E. 4.49; no-load time constant, T, 0.0617 second.
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(a) Amplitude attenuation. 

0	 C 

----

Calculated phase shift 111111	 iii: 
—l---szz=----

I 
2	 4 9 .6 .7 .8.9 1	 2	 3	 4 5 6 7 8 910	 20	 30 40 57 W	 8D 100 

Frequency, cps 

(s) Phase shift. 

Figure 11. - Frequency response of a hydraulic servomotor under negligible inertia load. Rotary servomotor; torque-inertia 
ratio, 3,500,000 radians per second per second; supply pressure, 1000 pounds per square inch.
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Log10 frequency, cps 

Straight-line servomotor	 Rotary servomotor 

	

1	 T =	 _______	 T =
	 - L12) 

	

= 23T	 CRW-fl -	 -v"CrWv'P5 - 

	

- 1	 I 
= 	 - 4CrW-J 

2 --r	 3/2	 -	 2	
2 3/2itTE  

A	 [h(L2 _Li)] 

2 

Figure 12. - Summary of linear relations for frequency response of hydraulic servomotors 

with mechanical feedback.
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(a) Effect of load inertia J-Rotary servomotor; amplitude at zero 
frequency, 100 ; pressure differential, 125 pounds per square inch. 

1igure 13. - Frequency responses of hydraulic aervomotors under Inertia load. 
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0

.1 

0

.4	 .S	 ..	 ,-----

Frequency, cps 

(1) Effect of amplitude 8 1 . Rotary servomotor; moment of inertia of load, 5 pound inches per 

second per second; pressure differential, 125 pounds per square inch. 

Figure 13. - Continued. Frequency responses of hydraulic servomotors under inertia load. 
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(c) Effect of pressure differential 9s"d Straight-line servomotor; Load mass, 1.08 pounds 

per second per second per inch; amplitude at zero frequency, 0.65 inch. 

Frequency, cps 

(d) Effect of amplitude S'. Straight-line servomotor; load mass, 1.08 pounds per second 

per second per inch; pressure differential, 28.5 pounds per square inch. 

Figure 13. - Concluded. Frequency responses of hydraulic servomotors under inertia load. 
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Figure 17. - Instrumentation for cletermining frequency-response 

characteristics of hydraulic servomotor.
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I	
Scale of unity 

I	
Input 

Phase' angle between

input and output 

Ratio of output amplitude to output 
"\ amplitude at zero frequency 2v /\ 

Ratio of error amplitude to error amplitude - 
at infinite frequency 

Figure 18. - Diagram for determination of phase angle from 

frequency-response data. 
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