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SUPERSONIC WAVE DRAG OF NONLIFTING DELTA WINGS WITH
LINEARLY VARYING THICKNESS RATIO

By Arthur Henderson, dJr.
SUMMARY

The supersonic wave drag of a nonlifting, symmetrical, double;
wedge-profile, delta wing the thickness ratio of which varies linearly
in the spanwise direction is calculated by means of linear theory.

In general it is found that a delta wing with linearly varying
thickness ratio can have less wave drag than a constant-thickness-ratio
delta wing of the same plan form when both wings have either the same
projected frontal area or the same internal volume. The thickness
distributions for minimum drag and the corresponding values of the ratio
of the drag of a linearly varying thickness-ratio wing to a constant-
thickness-ratio wing are found.

INTRODUCTION

In reference 1, Puckett has found the supersonic wave drag of a
nonlifting, symmetrical, double-wedge-profile, delta wing with constant
thickness ratio. It is shown that the drag coefficient for the delta
wing may be reduced below the two-dimensional value only for the case
in which both the leading edge and the ridge line are subsonic, the
maximum reduction for a given Mach number and semiapex angle being a
function of the position of the ridge line. ’

In the present paper the additional effect on the drag of varying
the thickness ratio in the spanwise direction is determined with the
assumption that the thickness ratio varies linearly in the spanwise
direction, which means that, when the wing is viewed from behind, the
line of maximum thickness has a parabolic shape. The source-distribution
method developed in reference 1 is used to represent the variable-
thickness-ratio wings.

It is shown that the deviation of the maximum-thickness line from
a straight l1ine can be represented by a nondimensional parameter. Charts
are presented from which, if this parameter is known, the drag of a
variable-thickness-ratio delta wing can be found. Also shown is the fact
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that a delta wing with a linearly varying thickness ratio can give less
wave drag than a constant-thickness-ratio delta wing when both wings have
the same projected frontal area or when both have the same internal
volume. The value of the nondimensional maximum-thickness-distribution
parameter, for which the ratio of the drag of the variable-thickness-
ratio wing to the drag of the constant-thickness-ratio ving is a minimum,
is calculated for both criteria.

SYMBOLS

Ap ‘ projected-frontai area -
a = Bepy )
B=_JY =B(3’/°r)

CreLE
b = Bérp
B=VM -1
Cp drag coefficient, D/qS
Cr root chord
c(y) local chord
D drag
Ap local static pressﬁre minus frée-stream static pressure
€LE tangent of leading-edge semiapexjangle
€RI, tangent of ridge-line semiapex angle
Fl:FQ:F3
Gl,GE,G3 functions defiﬁed in appendix B
Hi,He,H3

A slope of airfoil surface in streamwise direction
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€,n

Py and P

free-stream Mach number

-

dimensional thicknesé-distribution parameter

nondimensional thickness-distribution parameter,
mcneéyp  Mmc.b

T BT

dumy variables for x and y, respectively

pressure-distribution function and 31 /3x associated
with basic source distribution when b < 1

pressure-distribution function and Jfp/dx associated
with superimposed source distribution when a < 1

Ql:di and ql,ai pregsure-distribution functions and 8¢1/ax assoclated

with basic source distribution when b > 1

Qp,Q and q5,dp pressure-distribution functions and dfo/dx  associated

with superimposed source distribution when a >1

N

dynamic pressure, %pve

free-stream density
plan-form area

root thickness

local maximum thickness

thickness ratio at root, tr/cr

free-stream velocity

Internal volume

perturbation velocity potential
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Subscripts:
R
1

2
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perturbation velocity in g-direction

Cartesian coordinates (right-handed system), x in
direction of free-stream velocity

right helf of wing
basic distr;bution

superimposed distribution .

Primes denote constant-thickness-ratio wing.

ANATYSIS

The linearized partial differential equation for the perturbation
potential in steady supersonic flow is

When considering a thin symmetricel airfoil at zero angle of attack,
for which small disturbances are assumed, the boundary conditions on
the surface of the wing may be satisfied, to the first order, in the
plane of the wing. Hence

(gg)z;o =w=2AV | ‘ (2)

In reference 1, it is shown that a solution of equation (1) which satis-
fies condition (2) is that for a source distribution

$x,y) o == [ —= "‘g"”dg an (3)
“[7 8 Vix - 8)2 - g2y - )2
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where w(E,n) = A(E,n)V is proportional to the source strength per
unit area and A is the slope of the airfoil section measured in the
streamwise direction. For the wing shown in figure 1, the slope of
the surface ahead of the ridge line is equal to the ratio of one-half
the local maximum thickness at the ridge line to the part of the local
chord ahead of the ridge line; the slope of the rear surface 1is the
negative ratio of one-half of the local maximum thickness at the ridge
line to the remainder of the local chord. In the present paper the
thickness ratio is assumed to vary linearly with y, or

) b, 4 |
c(y) - cr + amy . (ll')

where tr/cr ‘is the root thickness ratio, and -m 1is a parameter which

determines the shape of the thickness curve in the spanwise direction.
Therefore, over the forward part of the wing .

oW v [t
w(ft,y) T el - r)\ec my) (52)

and over the rear part

__sp)v v b o
w(,y) = -2 = r<2cr + my) (5b)

€
where r = g%% and represents the ridge-line position in percent chord

measured from the trailing edge.

In the following analysis of/dx is evaluated from equation (3) by
integrating over the right half of the upper surface of the wing. Inas-
much as the wing shape, and therefore the pressure distribution, is sym-
metrical with respect to the x-axis, a¢(x,y)/ax for the entire upper
surface is
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3;¢(Jac;{y) _ [5¢(>$Y_)]R . [i%xz_‘ﬁ]R (6)

The potential of any point (x,y) is found By integrating over the area
of the wing lying within the forward-drawn Mach lines from the point (x,¥)
in order to obtaln the effect on the point of all the sources that can

influence it.

The wing of the present paper is represented by a distribution of
sources in the plane =z = 0. This distribution is uniquely determined
by the boundary conditions on the wing. Since equation (3) is a solu-
tion to a linear partial differential equation, this distribution may
be represented by a superposition of source distributions in any manner
desired as long as the net result is that prescribed by the boundary
conditions. The drag on the wing is then found by computing the drag
caused by the pressure field of each source distribution and algebrai-
cally adding ﬁhe results.

In the present analysis two source distributions are used: one,
the basgic distribution which extends over the entire plan form and
follows the law governing the source strengths representing the forward
slopes of the wing, and the other, the superimposed distribution which
lies in the region bounded by the ridge lines and the trailing edge.

The sources in this region have the strengths prescribed by the boundary
conditions for this region plus the negative value of the strengths of

the first distribution. Thus, when superimposed, the net source distri-
bution for the whole wing is that prescribed by the boundary conditions.

From figure 2(a), the basic source distribution used to represent
a delta wing with subsonic leading edge (BGLE < 1) can be expressed as

t
[ :I x-p(y-n) <§{ + mn>d§ dn
¢l( o T -
"(1 "o Jujew Vix - 82 - g2y - )2
tr
(20r + mn)dé an

GIE(X+By) +B8(y-1)
l+BeLE
- Vix - £)2 - g2(y - )2

(7)
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and the superimposed source distribution when the ridgénline is sub-
sonic (Begp, < 1), as

-B(Y"ﬂ < tr + lg a
26 mn 1.
@a(x,y]R (1 - r)f f ‘ +
i

Jegr. Vix - £)2 - g2(y - )2

eRL(X+By) x+B(y-n) < &

v 1+Be€gy, EC—E ’ mn) * o
ar(l - r) v “ Jn/err, \/(;- £)2 - Be(y - )2
(8)

By the use of equations (6) and (7), a solution for the basic distribu-
tion is obtained: . -

x Br(l - r)V1 - \/1 - u2

OVmbex tann-1 VL = b2 |
3/2
Bex(1 - r)(1 - b2) Vi - 2

3 : 1{ 2
2Vmb-ux 73 taph—1 & l-Db +
B2x(L - r)(1 - ¥2) bV - ul

2Vmbx L2
B2n(1 - r)(1 - b2)

t
ov(—Z )b
a¢l = - QCI) a.nh'l \}l - b2

= P]_(m)r:x:u:b) | . (9)

e o o e e e i —— o S e e e e i, P e, | T S g e | YA et A e - wp o ww s we m — =
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vhere u = ‘%’ b = BerE, and & = Berr. Equation (9) is obtained in.

appendix A. Similarly, equations (6) and (8) produce the solution for
the superimposed distribution:

g

1
=p, = - ;-pl(m,r,x;u,a) (10)

The expression for the potential of the basic source distribution
used to represent a delta wing the leading edge of which is supersonic
(Berg > 1) is similar to equation (7); however, since in this case the
Mach lines from the apex lie on the wing, there are two regions of inte-
gration (fig. 2(b)). One is the region interior to the Mach lines where
the right and left halves of the wing are interdependent and ¢lR is

exactly equation (7). The integral is evaluated differently, -however,
since BeE > 1. The other is the region that lies between the Mach

lines and the leading edge where the flow is two-dimensional. Here the
right and left regions are independent of each other, and the expression
for the potential on one slde also gives the potentia} for the other.

For the region of the wing exterior to-the Mach lines,

—8(v= %

¢ f - B(y-n) '(ﬁﬂﬂdﬁdn

1° e m(x-By -
1-erg e:IE V- 82 -y - 0)?

eLE(x+By) X+B(y—n) oo v
- “1+Bergp Zo, T dg dn
1

Cen Jew G- 02 - By - n)?
' (11)

vhich, with equation (7), yields for a supersonic-leading—edge delta
wing, when osSuts1
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) VT,

¥ g1 - )R - Vi

2Vmb%c tan-1 \/b2 -1
B2n(L - r) (b2 - 1)3/2 : \./1\- ul

oVmbux ‘c:a.n"'l uVbe - 1
Ber(l - ) (b2 - 1)3/2 bV1 - w2

2Vmb=x 2
B2n(1 - r) (b2 - 1)
= ql(m,r,x,u,b) (12a)
and, when 1 Susho
t
Viz=p .3 o
oy 2Cr Vmboux Vmb“x

+

ax B(1 - r)Vyb2 -1 ) B2(1 - r)(b° - 1)3/2 B2(1 - r)(b2 - 1)3/2

= E1-]_(111;r:x‘vu:b) (12b)

The corresponding functions for the superimposed source distribu-
tion when the ridge line is supersonic are for 0 Su £ 1

o

gx— =04 = - % ql(m,r,x,u,a) (133)
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and, for 1 Su S a,

g,

HiR

al(er:XJu:a) (l3b)

The parameter m in the preceding equations has the dimensions of

(length)'l. It will be useful to examine the curves of thickness plotted
against spanwise distance that can be produced by a variation of m

(fig. 3) with the purpose of forming a new dimensionless parameter which
includes m. From equation {4), a nondimensional form of the thickness
curve is

2 c(y>¢i ; %‘V) ()

and since, from figure 1, c(y) = cp - =

CréLE T r°LE
2
=1+ <2§:rb _ )B(yicr) _ ezirb[%(Y£cr{] (15a)

where
ogﬂy—éc—r)-§1

The nondimensional thickness-distribution parameter is, therefore, taken
to be mcrb/BT which is hereinafter denoted by @. Equation (15a) may

be rewritten as follows:
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%ﬂ=1+(ﬁ-1)3-2ﬁ32 | ‘ (15b)
r

where

B(¥/cx)

b

Equation (15b) is a quadratic in B and represents a parabola. If the
type of curve for equation (15b) is known, one absolute limit on m can
be established. This limit can be determined since, at the wing tip the
slope of the thickness curve cannot be less than zero. For this case,

m =<-%. When the slope of the thickness curve 1is zero at the root,

m however, this value 1s not necessarily an upper limit. Curves of

1
2!
thickness distribution for different values of m are shown in figure 3.

PRESSURE DISTRIBUTION

To the first order, the pressure on the surface of the wing is
given by

. . e, =

Introducing the parameter m into equations (9), (10), (12a), (12b),
(13a), and (13b) and using equetion (16) gives the pressure equations in
| the following forms:

For the basic subsonic-leading-edge delta wing

&p _ . 27b tenn-1 VL - b2
4 Br(l - r)V1 - b2 Vi - v?

e
hﬁb(q) 1 tann-l ”{
Br(l - r)(1 - v2) W _ o2 ,/—"

__;EE__ tanh-l EJL};:;PE _\/1 - u2

1 - b2 bV1 - w?

_ p(a,r,g‘;,u,b): P, (0 Su<b) (17)
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For the superimposed subsonic-leading-edge delta wing

(0 Su<a)

For the baslic supersonic-leading-edge delta wing

Op 2T1b tan
4 Br(l - r)Vp2 - 1
hmb (XN T
& (.

Bx(L - 1) (b2 - 1)\%2 1

R

-1

b

1 -2

-1 ng -1 _
V1 - u?

conl Vb2 -1

V1 - w2
o wR o1 T

o g

™ 2ﬁb(§i)7
I VE T 3o - e
é(ﬁ,r,é%,u,b) = ai
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(18)

(0Sus1) (19a)

1 - ub)

(1

For the superimposed supersonic-leading-edge delta wing

1A

<1)

IA

a)

A

b) (19b)

(20a)

(20D)
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~

The pressure field associated with the basic source distribution
is shown in figure L4 for both the subsonic- and supersonic-leading-edge

cases for particular wings. For these wings m = -% which prescribes

that the maximum-thickness line, which is at the trailing edge, have
maximum concavity (see fig. 3). The effect of having @ < 0 is that,
as x/cr  increases, the pressures are progressively decreased in a
spanwise direction below the values for a conical pressure field. If
m > 0, the pressures would be progressively increased in a spanwise
direction above the conical pressures as x/cr increases.

DRAG

For the drag of the delta wing herein considered, the following
three distinct cases must be treated:

Case I - Supersonic leading edge and supersonic ridge line (b >1, a >1)
Case II - Subsonic leading edge and supersonic ridge line (b <1, a > 1)
Case III - Subsonic leading edge and subsonic ridge line (b <1, a <1)

In computing the drag by the method of superposition, it must be
kept in mind that the basic source distribution creates a pressure field
the influence of which is felt over the whole surface of the wing;
whereas the pressure field from the superimposed source distribution is
felt only over that part of the wing which lies between the ridge lines
and the trailing edge, except for case III where the pressure field
"spills over" the ridge lines and exerts its influence on the forward
slopes up to the Mach lines from the ridge-line apex.

Since the wings are symmetrical about both the x,y- and x,z-planes,
the drag is computed for the right half of the upper surface of the wing
and the result is then multiplied by four.

Case I.- The drag for case I (fig. 5(a)) is represented by

Do [ 2y as (21)
q g 4 .

which, as a result of the superposition of source distributions, becomes

e e e —— e = —— A
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J/]; Qo aS -% Thp @S (22)

The limits of integration on the second and fifth integrals make
the operation rather cumbersome. This difficulty may be obviated by
rewriting equation (22) in the following form, which includes the sub-

1 -

stitution ).2 = -
r

Xl:

t- r/;2 Gyhy dS + = —erf Ty dS (23)

For this case b >1, a> 1.

The element of area is dS = dx dy, but the variables of integration
are X and u vwhere u = B%. Therefore, if y = u}—Bc- and the Jacobian
of x and y 1is taken with respect to- x and u, the element of area
becomes 4S5 = % dx du. Performing the operations indicated in equa-

tion (23), reducing the result to coefficient form, and making the sub-
stitution a = = yields ‘.
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CpB

2
T

= Fy(r,b) + @p(r,b) + B F5(r,b) (b>1>r) (24)

) Equations for F;, Fp, and F3 are given in appendix B and are
' plotted in figure 6.

Case II.- The drag for case II (fig. 5(b)) is given by

D

: Iq »/;Pl)‘lds+f3l+32Pl)2dS-%~/;lQ2A2ds-%»[3262)‘2‘15

-l-fPlxlds-l'rf Pl_).lds+l_'rf Q) dS +
T Jp r  Ja+B1+Bo r2 Jp

1l -r -
, 3 JQQ QM 48 (25)

In evaluating equation (25) it must be remembered that b <1, a > 1.
The final value may be expressed in coéfficient form by

| CDB = Gy (r,b) + Hay(r,b) + n—12G3(r,b) (L>b>r) (26)

Equations for Gy, Gp, and G3 are given in appendix B and piottéd
in figure 7 with the H-functions which are presented subsequently.

Case III.- The drag for case III (fig. 5(c)) is expressed as i

h

1

&l

1 1
Ple ds + f Pl)'.? as - -I—‘ f P2X2 as - _1: f PQA']_ ds
+Ao B . B A .

2

= %.JF PjM dS - i_____l.Jf PyM dS + Ll_:;El‘jF Bohy dS -
Al+A2 A +Ar+B r2 B
2 f Pohy @S | (27)
Ap X

b o e e e e ————— = A
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Here b <1, a <1, and the result is

% - Ey(r,b) + WHp(r,b) + EH(r,b) (1>r>0b)  (28)
. |

Equations for H;, Hp, and H3 are given in appendix B and plotted
in figure 7. .

Whether a variable-thickness-ratio delta wing is better from the
wave-drag standpoint than a constant-thickness-ratio delta wing depends
upon the criterion chosen. Equations (2Lk), (26), and (28) give the drag
for a constant-thickness-ratio delta wing when m = O; the results are
identical to those of reference 1. Inasmuch as Fp > F3, Go > G3,
and Hp > H3 always, it is obvious that, if the variable- and constant-
thickness-ratio wings are compared on the basis of identical plan form,
r,b, and thickness ratio at the root, the concave thickness-distribution

A

curve (—i-g m < 0, see fig. 3) will give lower drag. This criterion,
2

however, is a poor one because the internal volume and the projected
frontal area are reduced. Since the same projected frontal area appears

to provide a fair basis for comparison and internal volume is important

in practical design considerations, these two criteria are developed for
the purpose of comparing the drag of a constant- with a variable-thickness-
ratio delta wing.

PROJECTED-FRONTAL-AREA CRITERION

If a variable-thickness-ratio delta wing and a constant-thickness-
ratio delta wing have identical plan form, r, b, and projected frontal
area, then

C..€
Ap =2j; oL t(y)dy

and from equation (15b)

2m - 1 2m 2
t(Y) = tr<l + —CrGLE Yy - Cr2€ 3 y)
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Therefore,
_ 2
Ap = ST(l *+ 3 m) (29)

where Af is the projected frontal area, S 1is the plan-form area,
and T 1s the thickness ratio at the root.

For a constant-thickness-ratio delta wing
Ap' = ' ~ (30)

From equations (29) and (30), the stipulation that Apf = Ap' and
S = 38" gives the relationship between T' and T as

T' = 'r(l + % ﬁ) ‘ (31)
From equation (24)

CpB ,
—T—2=Fl+ﬁF2+fn2F3

for the varisble-thilckness-ratio delta wing, and

—=F (32)

for the constant-thickmess-ratio delta wing. Forming the ratio of equa-
tion (24) to equation (32) and substituting equation (31) gives:

‘ =2
CD =Fl+ﬁF2+mF3

Ch' 2

(33)
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The ratio Cp/Cp' can be minimized with respect to 1, and the value
of m, which gives minimum drag for the conditions stipulated, 1s

4F. - 3F
- (34)
3~ 2

Equation (34) mpplies to the G- and H-functions as well as to the
F-functions where the corresponding G- and H-functions are substituted
for the F-furnctions.

The nondimensional thickness-distribution parameter m for minimum
drag, based on frontal-area considerations, 1s presented in figure 8.
Figure 9 presents Cp/Cp' as calculated from equation (33) using the
values of T obtained from figure 8. When b > 1 > r, it can be seen
from figure 8 that the wing for minimum drag is essentially that with
constant thickness ratio (@ = 0), except when b = 1.001l, and even for
this case figure 9 shows a meximum drag reduction of less than 2 percent.

When 1 > b > r, figure 8 indicates that the wing for minimum drag
has a concave thickness distribution (m.< 0). The corresponding curves
of figure 9 indicate a maximum drag reduction of only about 4 percent
for this case. The main conclusion to be drawn then is that, with the
projected frontal area held constant, the thickness can be shifted from
the tip to the root with no penalty in wave drag.

When 1 >r >Db, the optimum thickness distribution is sometimes
concave (m < 0, for which the same conclusion can be drawn as for
1 >b >r) and sometimes convex (® > 0). Some of the indicated shapes

for m >0 are highly unrealistic (that is, m >>-%) which indicates

that, within the realm of physically practical shapes, there is no
minimm m. This condition, however, does not mean that a drag reduc-
tion is not possible. Figure 10 presents the curve of. CD/CD' plotted
ageinst @ for a case when m, as determined from equation (34), gives
an unrealistic shape. It can be seen that, although m for minimum
drag as calculated from equation (34) is 3.68, values of @ Zfrom 1/2
to 1 give a drag reduction of 20 to 25 percent. In figure 9 the dashed
lines show values of Cp/Cp' when m represents a wing that is unreal-
istic, where an unrealistic wing has arbitrarily been' chosen to be one
for which m > 1. (See fig. 3.)
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' INTERNAL-VOLUME CRITERION

In order to compare the variable- and constant-thickness-ratio
delta wings on the basis of internal volume, both wings are specified
to have identiceal plan form, r, b, and internal volume. The internal
volume of the wing of figure 1 is

| V1=ffz;ixdy | €35)

For the right half of the wing, from the leading edge to the ridge line

z = ‘ (36)

£ :
'C‘E%}(c:_ x) | (37)

Using equations (35), (36), and (37) gives, for a variable-thickness-
ratio wing,

S ,
v - Cr (1 1 fn') . ' (38)

Vj_' = —— : (39)

When equations (38) and (39) are equated and the conditions that
Vi =Vi', cr =cr', and S =8' are fulfilled,

it e e s, VU,
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T! ='r(l + % ﬁ) (ko)
CpB Cp'B
Forming the ratio of —a to sy as before for the present criterion,
T T!

gives

_2
CD _Fl+ﬁF2+mF3

CD! - 1 ) (l"l)
—m] F a
which, when minimized with respect to m, gives
Fi -F
=2 = 2 (42)
hF3 - Fp

\

for the value of T for minimum drag under the conditions stipulated.

Values of m for minimum drag based on internal-volume considera-
tions are presented in figure 11. Figure 12 presents CD/CD' as calcu-

lated from equation (41) by the use of the values of W from figure 11.
When b > 1 > r, figure 11(b) shows that the value of @ for minimum
drag is approximately constant at sabout o = -0.45; that is, the thickness
distribution for minimum drag is very close to that of maximum concavity.
The corresponding curve of figure 12 gives a maximum drag reduction of
between 8 and 10 percent.

When 1 >b >r, figure 11(a) indicates a value of W which is
fictitious in that m <-% which would prescribe a wing where part of

the upper surface is below the bottom surface and conversely. Therefore,
there is no minimum drag for any real wings in this range. Figure 13 is
a plot of Cp/Cp' against @ for a particular configuration in this

range. Although the optimum m as determined from equation (h2) is
fictitious, it can be seen that any valie of m between 1 = -5 and

m =0 will give a drag reduction, the reduction in drag at m = -%

being about 20 percent. In figure 12, the values of Cp/Cp' which were
obtained by using fictitious velues of m are represented by short
dashed lines.
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When 1 > r > b, figure 11 ghows that the m for minimum drag
varies from negative to positive with 'Increasing r for each value of b.

Included in this range are both fictitious (ﬁ <-% and unrealistic

(ﬁ >>'%> values of ‘@ calculated from equation (42).  The corresponding

values of CD/CD' are shown in figure 12 where the short dashed lines
were obtained by the use of fictitious values of Eﬁ(ﬁ'< - %) and the

long dashed lines indicate the use of unrealistic values of . (& >1).

It should be emphasized, however, that substantial drag decreases can be
realized in the regions of the dashed curves for practical wings, as

can be seen from figures 10 and 13, which indicate the trend of all curves
of Cp/Cp' plotted against m when the T for minimm Cp/Cp' is

either positive or negative.
JLLUSTRATIVE EXAMPLE

If, for a given constant-thickness-ratio delta wing, it is desired
to increase the thickness of the root and, for structural reasons, the
thickness at the tip is not to be decreased, two methods are suggested.
Either a variable-thickness-ratio wing with prescribed root and tip thick-
ness ratios or a new constant-thickness-ratio wing with prescribed root
thickness ratio could be formed.

For the former case, if T' 1s the thickness ratio of the original
constant-thickness-ratio wing, the slope of the maximum thickness line
with respect to ¥y is -T'/EGLE. If the variable-thickness-ratio wing

has this slope at the tip, equation (15) gives

a[ﬂﬁ] S
Wl e y=Cp€1g QELE( + o) 2¢LR
or

" = (1 +-2m) (43)

If the root thickness of the original wing is increased by n times,

et e e v e e 2 i o T o s
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T = nT' (4h)

The two equations (43) and (44) yleld the necessary thickness distribu-
tion .

=_l-n .
W= ‘ (45)

As an example, consider the wings for which b = 0.8 and r = 0.5, If
the root thickness of the original constant-thickness-ratio wing is

increased by 1/2, n =3 and m =-~=. When the ratio

2

ey o

Cp Gy + Gy + BoG3

" (1 +2m)2e

is formed, the drag of the variable-thickness-ratio wing is found to be
1.77 times that of the original constant-thickness-ratio wing.

If the increased root thickness is attained by forming a new
constant-thickness-ratio wing, the drag is 2.25 times that of the
original wing. Here, of course,'both the projected frontal area and
the internal volume are larger than those for the variasble-thickness-
ratio wing. The drag of a constant-thickness-ratio wing which has the
same projected frontal area as the previously mentioned variable-thickness-
retio wing is 1.78 times the drag of the original wing; whereas, the
drag of a constant-thickness-ratio wing which has the same internal
volume as the previously mentioned variable-thickness-ratio wing is 1.89
times that of the original wing. .

CONCLUDING REMARKS

The variable-thickness-ratio delta wing has been compared with the
constant-thickness-ratio delta wing under the conditions that they have
identical projected frontal area and identical internal volume. For
these conditions the optimum value of the thickness-distribution parameter
has been determined. The wing shape given by this value, although not
always practical or real, nonetheless gives an indication of the types
of maximum-thickness-line distribution; that is, whether it should be
convex, straight, or concave. From the analysis the following conclusions
are drawn: ’
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1. On the basis of fixed frontal area,

(a) When the leading edge and ridge line are both supersonic,
the constant-thickness-ratio delta wing has essentially optimum
wave-drag characteristics for all combinations of leading-edge
semiapex angle and position of the ridge line.

(b) When the leading edge is subsonic and the ridge line is
supersonic, the concave maximum-thickness distribution has the
optimum wave-drag characteristics which, compared with a constant-
thickness-tratio wing, gives greater thickness at the root and less
thickness at the tip. It should be noted, however, that the drag
reduction which can be realized in this range is small.

(c) When the leading edge and ridge line are both subsonic,
as the ridge line moves forward from the sonic condition to the
leading edge, the maximum-thickness distribution for optimm wave
drag goes from concave to straight to convex. For the latter case,
the drag decrease indicated 1s large and absurd velues are approached
as the ridge line approaches the leading edge.

2. On the basis of internal volume considerations, -

(a) When the leading edge and ridge line are both supersonic,
the concave maximum-thickness distribution has optimum wave-drag
characteristics, the drag reduction being sbout 8 to 10 percent for
all combinations of leading-edge semiapex angle and position of the
ridge line. ’

(b) When the leading edge is subsonic and the ridge line is
supersonic, the concave thickness distribution has the best wave-
drag characteristics, with drag reductions of as much as 20 percent
being predicted.

(c) When the leading edge and ridge line are both subsonic,
as the ridge line moves forward from the sonic condition to the
leading edge, the maximum-thickness line goes from concave to
straight to convex; whereas the corresponding drag reductions range
from about 20 percent to zero to absurd values.

Langley Aeronauticel Laboratory,

National Advisory Committee for Aeronautics,
Langley Field, Va., October 1, 1952.
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APPENDIX A

EVALUATION OF % (BGLE < l)

Equation (7) is

y ~x-B(y-n) < _2_:_1: X mn)d§ N
(By), = -~ r )
It(l - I‘) 0 T]/GLE \/(x _ §)2 } 32(y )

n)2

ELE(X+B}’) x+B (y_-rl ) tr g
l"'BGLE 2_cr- + mm)ds dn
J‘[(l - ) 0

/e1m \/;-§)2_52(y,_n)2

Let
X -8 |_ osh 2z
B(y - 1)
Then
X-Z’H—
cosh-l LE
B(y-n
(s = =57, +@®O Ce
e r(x+8y) x-

-1
- cosh
v l+B €ILE tr —(—)-B ¥-n
+m)d dz
7(1 - r) 2c
Yy r 0

x - _1]_
__ 1l SE
Jt(l - I')f 20 * mﬂ) cosh™ (j' — T]) d
g (x+8y)
v "1+_;35LE— ty X - G_T]LE
(-—— + mnjcosh™ S (R
(1l - 1) . 2cy B(y - n)
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Differentiating (@1)g with respect to x gives

&=

t

>— + mnjdn
=+ m)

’ e g(x+By)
<a¢l> _ VGLE l+BELE
t x /). a(l-r)

R ] 0

\/(XELE - n)2 - BPerg2(y - )2

; By the use of equations (160) and (169) in reference 2, the following

equation is obtained:

¢1> _ Verr tr
ax R 2 2Cr
LE

m(ﬁdeLEQ - XG]E'E) logy |—= B(Y - XELE) _
ot ] e - ) s -

& ny/Pers” - B?GLEEJ'&]
; Vi - BEGLE2
i
Let b= ey and u'= pL; then

B

& /R x(l - rj 1 - b2 |2

b ~u ’
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Using equation (6) gives:

B¢l‘ VELE t b2 _ u2

r
=- loge +
™ a1 - VL - P |20 le “w2 -V1 - b2)2

mxe 1 b2 - wl 2mx€LE\,/l - ul
o - -
1-1b° 8;e@:L-u2-\./1--1:2)2 V1o 2

mbuxer (v - u)l—l + bu —\/(l - 11%)(1 - Le)l

1
1 -1b2 e (b +u)E- - bu ‘\/(1 _uE)(l - bg):l

Finally, after some algebraic manipulations are made and the identity

1'+x
1l -x

log, = 2 tanh~l x (x2 < 1)

is used, this equation is obtained in the following form:

ev( tr)b
pr(l - r)Y1 - b2 Vi - w®

OVmbox = sann-1 V1 - b2 .\
B2r(1 - r)(1 - b2)3 Vi - u?

oVmbux sanh-1 wl - b2
. 3/2 v/ 2
B2x(1 - r)(1 - b2) bVl - u

+

. OVmbex Vi o2

B2n(L - r)(1 - v2)
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APPENDIX B

PRESENTATION OF F-, G-, AND H-FUNCTIONS

F-Functions (b > 1 > r)

b

2
Fp(r,b) = % S cos~L = + 2b . tan-L yz “--rr.2
(l - r2) b° - 1 I‘(l - I‘Q)Vb2 - r2 )

8 b(l + r) b(l - r) -1 Mbe - r°
Fo(r,b) = = tan -
° 3 {L(l - r2)ub2 - r2 ’ 2(1 - 1'2)('b2 - r2)3[2J

b(l - ) | 11

cos™ 1 +
2(1 - r2) (2 - 1)372 °
e - r b 1

Ccos

Qb(b2 - )(be - r2) ’ 2r(1 - r)Vbé - r2

A o'lR

F3(r,b) = 4 r b(1l - r)(l + 3r2) ) ob(1 - r)2(1 + ﬁzl]tan-l\/b—e—"—r—z .
i l;(l - r2)2(b2 - r2)3/2 3e(1 - r2)3|/b2 2 b-r

[ b(1 - r)(3+ r2) )
6(1 - 1-2)2(132 - 1)3/2

b1 - r)2(3 + r?)
3(1 - r2)3Vb2 -1

ob(1 - r)2(12 + 1) . (2v2 - 3:2)

3 - 202 - 1)(? - £2)  6x(1 - r)(p2 - £8)3/2

cos-1 L 4

b2 - r _
b oep(v2 - 1) (12 - £2)

——— — . e e e e e e+ g e ——
ot s o ————— - -

T A o e o S b o T
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G-Functions (L > b > r)

2 b b
Gy(r,b) == loge b + logg ————— | +
‘ 7
(1 - 22VL -2 1 V1212
' 2 2
b - -
tan=1 b L + r(ll =) cos"l b
1’(1-1‘2)Vb2—r2 1 -r+)1-12
8
G,(r,b) = = L log_ b +

3x (l _ r2) (l _ b2)3/2 e

b(l - r) log, b .

2(l-r2)(l—b2)3/2 1-V1-12

b(l - r) .
(1 - (2 - r2)3/2

b1+r) .o L R
r(l_rE)b2_r2 1-17+V1-12
(1 + r)(be-r) _ e -1

ob(1 - ) (62 - VL - 2 2b(p? - r2) (1 - 1@ +

T
cos-1 =

- b
or(l - Vb2 - r2 b

1
-1
5r(1 - %) cos b +
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4b(1 - r)? b3 (1 - r)°

A . |
G3(r:b) == 4= + | 1og, b -
" {l;(l - r2)3b]_‘ - b° /3(1 - 1'2)2(1 _ b2)3/%l

b(1 - r)2(3 + r2) N
3(1 - r2)3l/1 - v2

b(1 - r)(3 + £2) log, — 24
6 - 2)°(1 - b2)3/2 1 -Vl -2

3(1 - %2 - 22

b1 - r)2(1 « rf) ]tw'l b2 - r° .
3(1 - r2)2(b2 - r2)3/2 1-r+V1-1° ‘

[ebg- r)2(3 + 3

@ -nle@ - ) - 62 -5 i
6o (1 - r2)21/1 - b?

r1 o)l v 52-1;

év(1 - 1-2)2(102 VA a2 - 12 (2 -+

+

O r) S x?)
2
30 -0 - A0 -®) - 0fe -2

cos"l

o'iR

|
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H-Functions (1 > r > b)

Hl(r,b) =

loge b+ loge

(1 - r2;\/in—2 l—-—ll)\/_-—_?—;l )

b log, @ - o)z + 2 - 12) _
r(L - 222 _ 12 r -2 +y/(z2 - 2) (1 - 12)

L gin~l b +
r(l - ) r(l -r).

2
s

sj_n-l E -
: r

b b
logg = +
r(l - rz)\/r2 - b2 '

log, b(l - r)

(1 - Ay1 - w2 r-b2+\/(r2-b2)(l-b2)

(1 - 2) (1 - 2)3/2

Hy(r,b) = g% loge b +

b(l - r) log, b -

o(1 - 2 (1 - »2) %/ 1-V1-712

r - b° + b(1 - r) -
ob(r2 - v2)(1 - 12) 2(1 - r2)(z2 - b2)3/2
b(l + r) i}log (} - r)(r + Vr2 - b2) _
or(1 - r2)~Vr2 ~2| e a2 - ) (1 - D)

" (Equation continued on next page)
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1 sin“ll;+ ir -be)(l+r)
2r(1 - x) ob(1 - r2)(x2 - BAVI -
br log, E’+ b(1l + 1)
(1 - ) (2 - 132)3/2 o or(1 - V1 - b2

b(l - r) b(l - r)

-2 - beﬁ%l% N raav e

b log r + \/r2 - b2 + 1 sin~Lt b
€ b 2r(l - r) T
or(l - VK2 - B2

r r2 - b2

b1 - )2 - 2 2p(1 - r2)(1 - v2) Ve - 12

y(r,p) = & oA - 2)2(£+ r2) -
6(1 - r2) (r2 - b2)3
b(l - r)2(3 + r@}loge (1 - r)(r + \r® - b2)

3(1 - r2)3 T2 - b2

[ (1 - r)(3+ 1)
6(1 - r2)2(l - b2 )3/2

b(1 - r)2(3 + r2) log, b
3(1 - 2)Wa J w2 1 -1 -2

k(1 - r)? + b3 - r)® log. b -
3(1 - 22 W - w2 30 - r2)2( - b2)3E

(Equation continued on next page)
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76b(l -'re)g(rz - 1:2)\/1_-_13E 3(1 - 1»2)2(1‘2 - b2)(1 - b2)

NACA TN 2858
r - b2 +(_l—r)|:‘2(l -Ib2)+(r-—b2)] .
6b(r2 - be) (l - b2) 6b (l _ I.E) 2"1_ _ -b2
r(1 - )1 - BY ) ob(1 - r)2(r + v2)

e o) b3 - 1)° rogg 2+
: o T
b2)3/

é(l - r2)3\/r2 v 31 - r2)2(r2 -

b(l - r)2(l + r2) .
6r(1 - r2)2(1 - b2)3[2

b(x - r)2(1 + 3r2)]loge b(l - r)

3r(1 - r2)3Vl N
b(3:2 - 2b°) r o+ 2 - b2

log — -
6c(1 - r)(z2 - p2)¥/2 © b

(1 - r)EB(rE - b2) + (r - b2il ) (1 - ’r)(rlL - bh)

6b(1 - r2)2¢r2 R 6or(1 - r2)2(1/ - V2 - b2
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Figure 1.- Plan form and profiles of delta wing with varying thickness ratio,
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Figure 2.- Limits of integration for determining the potential due to a
source distribution representing a subsonic- and supersonic-leading-
edge wing.
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Figure 3.- Spanwise variation of thickness distribution for various
'

values of m.
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(2) Subsonic leading edge; b = 0.2, r = 0.5, and = =-—é-.

Figure k.- Variation of spanwise pressure distribution in the chordwise
direction for single-wedge-profile, variable-thickness-ratio delta
wings with subsonic and supersonic leading edges. ’
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(b) Supersonic leading edge; b = 1.5, r = 0.5, and m = -

Mo+

Figure 4.- Concluded.
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(a) Case I: b>1, a >1.

(p) Case II: <1, a>1. (c) Case III: p<1, a<1.

. Figure 5.- Regions of integration for computing the drag.
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Figure 6.~ Variation of F-functions with 1 - r fo:c; different values of b.
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Figure T.- Variation of G- and H-functions with 1 - r for different
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Figure 8.- Variation of @m for minimm Cp/Cp' based on projected-
frontal-area considerations with 1 - r for different values of b.




NACA TN 2858

|
b=0.|8 b'OI.’I b=0.6
T |
.96 / J/ B205 bs04 bron
i/
92 ! / 7N
el AL L1 )/
N
84 /i
Co /
GI
° 80 /J 7 /
76 7///7///
72 [
68
64
1 2z 3 =4 5 6 1 8 9 10
(a) Cp/Cp' for G- and H-functionms.
- =2
1.5
. 1.8
g, O° T | T 5
< bstool {50
D { !
96 . :
*‘!ﬂ‘!’r’
92 '
] 4 - 4 D . ¢ . 1.0

I-r
(v) cp/cp' for F-functions.

Figure 9.~ Variation of Cp/Cp' with 1 - r for different values of b
using the values of @ from figure 8.

b7




<A

JSD
o

2 3 4 5 6 7 8 9
' m
Figure 10.- Variation of Cp/Cp' with @ for a case when 1 for

minimm Cp/Cp' prescribes an impractical meximum thickness
distribution. b = 0.5, r = 0.9,

gage NI YOVN



X

NACA TN 2858 49
5
4
™m 3\
2 \
| \Q\
o \\\
N ]
4 B-08_|.b=07 | b-06 | b=05 | b=04  b=02
) [ 2 3 4 5 6 7 8 9 10
I=r
(a) @ for G- and H-functions.
=9 .
|
-4 /b=:~30| —
™ ——"
5 L—
|
%5 2 3 4 5 6 7 8 9 10

I-r

(b) m™ for F-functionms.
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